mmio.c 8.6 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68
/*
 * mmio.c: MMIO emulation components.
 * Copyright (c) 2004, Intel Corporation.
 *  Yaozu Dong (Eddie Dong) (Eddie.dong@intel.com)
 *  Kun Tian (Kevin Tian) (Kevin.tian@intel.com)
 *
 * Copyright (c) 2007 Intel Corporation  KVM support.
 * Xuefei Xu (Anthony Xu) (anthony.xu@intel.com)
 * Xiantao Zhang  (xiantao.zhang@intel.com)
 *
 * This program is free software; you can redistribute it and/or modify it
 * under the terms and conditions of the GNU General Public License,
 * version 2, as published by the Free Software Foundation.
 *
 * This program is distributed in the hope it will be useful, but WITHOUT
 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
 * more details.
 *
 * You should have received a copy of the GNU General Public License along with
 * this program; if not, write to the Free Software Foundation, Inc., 59 Temple
 * Place - Suite 330, Boston, MA 02111-1307 USA.
 *
 */

#include <linux/kvm_host.h>

#include "vcpu.h"

static void vlsapic_write_xtp(struct kvm_vcpu *v, uint8_t val)
{
	VLSAPIC_XTP(v) = val;
}

/*
 * LSAPIC OFFSET
 */
#define PIB_LOW_HALF(ofst)     !(ofst & (1 << 20))
#define PIB_OFST_INTA          0x1E0000
#define PIB_OFST_XTP           0x1E0008

/*
 * execute write IPI op.
 */
static void vlsapic_write_ipi(struct kvm_vcpu *vcpu,
					uint64_t addr, uint64_t data)
{
	struct exit_ctl_data *p = &current_vcpu->arch.exit_data;
	unsigned long psr;

	local_irq_save(psr);

	p->exit_reason = EXIT_REASON_IPI;
	p->u.ipi_data.addr.val = addr;
	p->u.ipi_data.data.val = data;
	vmm_transition(current_vcpu);

	local_irq_restore(psr);

}

void lsapic_write(struct kvm_vcpu *v, unsigned long addr,
			unsigned long length, unsigned long val)
{
	addr &= (PIB_SIZE - 1);

	switch (addr) {
	case PIB_OFST_INTA:
69
		panic_vm(v, "Undefined write on PIB INTA\n");
70 71 72 73 74
		break;
	case PIB_OFST_XTP:
		if (length == 1) {
			vlsapic_write_xtp(v, val);
		} else {
75
			panic_vm(v, "Undefined write on PIB XTP\n");
76 77 78 79
		}
		break;
	default:
		if (PIB_LOW_HALF(addr)) {
80
			/*Lower half */
81
			if (length != 8)
82 83
				panic_vm(v, "Can't LHF write with size %ld!\n",
						length);
84 85
			else
				vlsapic_write_ipi(v, addr, val);
86 87
		} else {   /*Upper half */
			panic_vm(v, "IPI-UHF write %lx\n", addr);
88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104
		}
		break;
	}
}

unsigned long lsapic_read(struct kvm_vcpu *v, unsigned long addr,
		unsigned long length)
{
	uint64_t result = 0;

	addr &= (PIB_SIZE - 1);

	switch (addr) {
	case PIB_OFST_INTA:
		if (length == 1) /* 1 byte load */
			; /* There is no i8259, there is no INTA access*/
		else
105
			panic_vm(v, "Undefined read on PIB INTA\n");
106 107 108 109 110 111

		break;
	case PIB_OFST_XTP:
		if (length == 1) {
			result = VLSAPIC_XTP(v);
		} else {
112
			panic_vm(v, "Undefined read on PIB XTP\n");
113 114 115
		}
		break;
	default:
116
		panic_vm(v, "Undefined addr access for lsapic!\n");
117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132
		break;
	}
	return result;
}

static void mmio_access(struct kvm_vcpu *vcpu, u64 src_pa, u64 *dest,
					u16 s, int ma, int dir)
{
	unsigned long iot;
	struct exit_ctl_data *p = &vcpu->arch.exit_data;
	unsigned long psr;

	iot = __gpfn_is_io(src_pa >> PAGE_SHIFT);

	local_irq_save(psr);

133
	/*Intercept the access for PIB range*/
134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151
	if (iot == GPFN_PIB) {
		if (!dir)
			lsapic_write(vcpu, src_pa, s, *dest);
		else
			*dest = lsapic_read(vcpu, src_pa, s);
		goto out;
	}
	p->exit_reason = EXIT_REASON_MMIO_INSTRUCTION;
	p->u.ioreq.addr = src_pa;
	p->u.ioreq.size = s;
	p->u.ioreq.dir = dir;
	if (dir == IOREQ_WRITE)
		p->u.ioreq.data = *dest;
	p->u.ioreq.state = STATE_IOREQ_READY;
	vmm_transition(vcpu);

	if (p->u.ioreq.state == STATE_IORESP_READY) {
		if (dir == IOREQ_READ)
152 153
			/* it's necessary to ensure zero extending */
			*dest = p->u.ioreq.data & (~0UL >> (64-(s*8)));
154
	} else
155
		panic_vm(vcpu, "Unhandled mmio access returned!\n");
156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249
out:
	local_irq_restore(psr);
	return ;
}

/*
   dir 1: read 0:write
   inst_type 0:integer 1:floating point
 */
#define SL_INTEGER	0	/* store/load interger*/
#define SL_FLOATING	1     	/* store/load floating*/

void emulate_io_inst(struct kvm_vcpu *vcpu, u64 padr, u64 ma)
{
	struct kvm_pt_regs *regs;
	IA64_BUNDLE bundle;
	int slot, dir = 0;
	int inst_type = -1;
	u16 size = 0;
	u64 data, slot1a, slot1b, temp, update_reg;
	s32 imm;
	INST64 inst;

	regs = vcpu_regs(vcpu);

	if (fetch_code(vcpu, regs->cr_iip, &bundle)) {
		/* if fetch code fail, return and try again */
		return;
	}
	slot = ((struct ia64_psr *)&(regs->cr_ipsr))->ri;
	if (!slot)
		inst.inst = bundle.slot0;
	else if (slot == 1) {
		slot1a = bundle.slot1a;
		slot1b = bundle.slot1b;
		inst.inst = slot1a + (slot1b << 18);
	} else if (slot == 2)
		inst.inst = bundle.slot2;

	/* Integer Load/Store */
	if (inst.M1.major == 4 && inst.M1.m == 0 && inst.M1.x == 0) {
		inst_type = SL_INTEGER;
		size = (inst.M1.x6 & 0x3);
		if ((inst.M1.x6 >> 2) > 0xb) {
			/*write*/
			dir = IOREQ_WRITE;
			data = vcpu_get_gr(vcpu, inst.M4.r2);
		} else if ((inst.M1.x6 >> 2) < 0xb) {
			/*read*/
			dir = IOREQ_READ;
		}
	} else if (inst.M2.major == 4 && inst.M2.m == 1 && inst.M2.x == 0) {
		/* Integer Load + Reg update */
		inst_type = SL_INTEGER;
		dir = IOREQ_READ;
		size = (inst.M2.x6 & 0x3);
		temp = vcpu_get_gr(vcpu, inst.M2.r3);
		update_reg = vcpu_get_gr(vcpu, inst.M2.r2);
		temp += update_reg;
		vcpu_set_gr(vcpu, inst.M2.r3, temp, 0);
	} else if (inst.M3.major == 5) {
		/*Integer Load/Store + Imm update*/
		inst_type = SL_INTEGER;
		size = (inst.M3.x6&0x3);
		if ((inst.M5.x6 >> 2) > 0xb) {
			/*write*/
			dir = IOREQ_WRITE;
			data = vcpu_get_gr(vcpu, inst.M5.r2);
			temp = vcpu_get_gr(vcpu, inst.M5.r3);
			imm = (inst.M5.s << 31) | (inst.M5.i << 30) |
				(inst.M5.imm7 << 23);
			temp += imm >> 23;
			vcpu_set_gr(vcpu, inst.M5.r3, temp, 0);

		} else if ((inst.M3.x6 >> 2) < 0xb) {
			/*read*/
			dir = IOREQ_READ;
			temp = vcpu_get_gr(vcpu, inst.M3.r3);
			imm = (inst.M3.s << 31) | (inst.M3.i << 30) |
				(inst.M3.imm7 << 23);
			temp += imm >> 23;
			vcpu_set_gr(vcpu, inst.M3.r3, temp, 0);

		}
	} else if (inst.M9.major == 6 && inst.M9.x6 == 0x3B
				&& inst.M9.m == 0 && inst.M9.x == 0) {
		/* Floating-point spill*/
		struct ia64_fpreg v;

		inst_type = SL_FLOATING;
		dir = IOREQ_WRITE;
		vcpu_get_fpreg(vcpu, inst.M9.f2, &v);
		/* Write high word. FIXME: this is a kludge!  */
		v.u.bits[1] &= 0x3ffff;
250 251
		mmio_access(vcpu, padr + 8, (u64 *)&v.u.bits[1], 8,
			    ma, IOREQ_WRITE);
252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268
		data = v.u.bits[0];
		size = 3;
	} else if (inst.M10.major == 7 && inst.M10.x6 == 0x3B) {
		/* Floating-point spill + Imm update */
		struct ia64_fpreg v;

		inst_type = SL_FLOATING;
		dir = IOREQ_WRITE;
		vcpu_get_fpreg(vcpu, inst.M10.f2, &v);
		temp = vcpu_get_gr(vcpu, inst.M10.r3);
		imm = (inst.M10.s << 31) | (inst.M10.i << 30) |
			(inst.M10.imm7 << 23);
		temp += imm >> 23;
		vcpu_set_gr(vcpu, inst.M10.r3, temp, 0);

		/* Write high word.FIXME: this is a kludge!  */
		v.u.bits[1] &= 0x3ffff;
269 270
		mmio_access(vcpu, padr + 8, (u64 *)&v.u.bits[1],
			    8, ma, IOREQ_WRITE);
271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318
		data = v.u.bits[0];
		size = 3;
	} else if (inst.M10.major == 7 && inst.M10.x6 == 0x31) {
		/* Floating-point stf8 + Imm update */
		struct ia64_fpreg v;
		inst_type = SL_FLOATING;
		dir = IOREQ_WRITE;
		size = 3;
		vcpu_get_fpreg(vcpu, inst.M10.f2, &v);
		data = v.u.bits[0]; /* Significand.  */
		temp = vcpu_get_gr(vcpu, inst.M10.r3);
		imm = (inst.M10.s << 31) | (inst.M10.i << 30) |
			(inst.M10.imm7 << 23);
		temp += imm >> 23;
		vcpu_set_gr(vcpu, inst.M10.r3, temp, 0);
	} else if (inst.M15.major == 7 && inst.M15.x6 >= 0x2c
			&& inst.M15.x6 <= 0x2f) {
		temp = vcpu_get_gr(vcpu, inst.M15.r3);
		imm = (inst.M15.s << 31) | (inst.M15.i << 30) |
			(inst.M15.imm7 << 23);
		temp += imm >> 23;
		vcpu_set_gr(vcpu, inst.M15.r3, temp, 0);

		vcpu_increment_iip(vcpu);
		return;
	} else if (inst.M12.major == 6 && inst.M12.m == 1
			&& inst.M12.x == 1 && inst.M12.x6 == 1) {
		/* Floating-point Load Pair + Imm ldfp8 M12*/
		struct ia64_fpreg v;

		inst_type = SL_FLOATING;
		dir = IOREQ_READ;
		size = 8;     /*ldfd*/
		mmio_access(vcpu, padr, &data, size, ma, dir);
		v.u.bits[0] = data;
		v.u.bits[1] = 0x1003E;
		vcpu_set_fpreg(vcpu, inst.M12.f1, &v);
		padr += 8;
		mmio_access(vcpu, padr, &data, size, ma, dir);
		v.u.bits[0] = data;
		v.u.bits[1] = 0x1003E;
		vcpu_set_fpreg(vcpu, inst.M12.f2, &v);
		padr += 8;
		vcpu_set_gr(vcpu, inst.M12.r3, padr, 0);
		vcpu_increment_iip(vcpu);
		return;
	} else {
		inst_type = -1;
319 320
		panic_vm(vcpu, "Unsupported MMIO access instruction! "
				"Bunld[0]=0x%lx, Bundle[1]=0x%lx\n",
321
				bundle.i64[0], bundle.i64[1]);
322 323 324 325 326 327 328 329 330 331
	}

	size = 1 << size;
	if (dir == IOREQ_WRITE) {
		mmio_access(vcpu, padr, &data, size, ma, dir);
	} else {
		mmio_access(vcpu, padr, &data, size, ma, dir);
		if (inst_type == SL_INTEGER)
			vcpu_set_gr(vcpu, inst.M1.r1, data, 0);
		else
332
			panic_vm(vcpu, "Unsupported instruction type!\n");
333 334 335 336

	}
	vcpu_increment_iip(vcpu);
}