i2c-mxs.c 24.4 KB
Newer Older
1 2 3
/*
 * Freescale MXS I2C bus driver
 *
4
 * Copyright (C) 2012-2013 Marek Vasut <marex@denx.de>
5
 * Copyright (C) 2011-2012 Wolfram Sang, Pengutronix e.K.
6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27
 *
 * based on a (non-working) driver which was:
 *
 * Copyright (C) 2009-2010 Freescale Semiconductor, Inc. All Rights Reserved.
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 *
 */

#include <linux/slab.h>
#include <linux/device.h>
#include <linux/module.h>
#include <linux/i2c.h>
#include <linux/err.h>
#include <linux/interrupt.h>
#include <linux/completion.h>
#include <linux/platform_device.h>
#include <linux/jiffies.h>
#include <linux/io.h>
28
#include <linux/stmp_device.h>
29 30
#include <linux/of.h>
#include <linux/of_device.h>
31 32
#include <linux/dma-mapping.h>
#include <linux/dmaengine.h>
33 34 35 36 37

#define DRIVER_NAME "mxs-i2c"

#define MXS_I2C_CTRL0		(0x00)
#define MXS_I2C_CTRL0_SET	(0x04)
M
Marek Vasut 已提交
38
#define MXS_I2C_CTRL0_CLR	(0x08)
39 40

#define MXS_I2C_CTRL0_SFTRST			0x80000000
41
#define MXS_I2C_CTRL0_RUN			0x20000000
42
#define MXS_I2C_CTRL0_SEND_NAK_ON_LAST		0x02000000
M
Marek Vasut 已提交
43
#define MXS_I2C_CTRL0_PIO_MODE			0x01000000
44 45 46 47 48 49 50
#define MXS_I2C_CTRL0_RETAIN_CLOCK		0x00200000
#define MXS_I2C_CTRL0_POST_SEND_STOP		0x00100000
#define MXS_I2C_CTRL0_PRE_SEND_START		0x00080000
#define MXS_I2C_CTRL0_MASTER_MODE		0x00020000
#define MXS_I2C_CTRL0_DIRECTION			0x00010000
#define MXS_I2C_CTRL0_XFER_COUNT(v)		((v) & 0x0000FFFF)

51 52 53 54
#define MXS_I2C_TIMING0		(0x10)
#define MXS_I2C_TIMING1		(0x20)
#define MXS_I2C_TIMING2		(0x30)

55 56 57 58
#define MXS_I2C_CTRL1		(0x40)
#define MXS_I2C_CTRL1_SET	(0x44)
#define MXS_I2C_CTRL1_CLR	(0x48)

59
#define MXS_I2C_CTRL1_CLR_GOT_A_NAK		0x10000000
60 61 62 63 64 65 66 67 68
#define MXS_I2C_CTRL1_BUS_FREE_IRQ		0x80
#define MXS_I2C_CTRL1_DATA_ENGINE_CMPLT_IRQ	0x40
#define MXS_I2C_CTRL1_NO_SLAVE_ACK_IRQ		0x20
#define MXS_I2C_CTRL1_OVERSIZE_XFER_TERM_IRQ	0x10
#define MXS_I2C_CTRL1_EARLY_TERM_IRQ		0x08
#define MXS_I2C_CTRL1_MASTER_LOSS_IRQ		0x04
#define MXS_I2C_CTRL1_SLAVE_STOP_IRQ		0x02
#define MXS_I2C_CTRL1_SLAVE_IRQ			0x01

L
Lucas Stach 已提交
69
#define MXS_I2C_STAT		(0x50)
70
#define MXS_I2C_STAT_GOT_A_NAK			0x10000000
L
Lucas Stach 已提交
71 72 73
#define MXS_I2C_STAT_BUS_BUSY			0x00000800
#define MXS_I2C_STAT_CLK_GEN_BUSY		0x00000400

M
Marek Vasut 已提交
74
#define MXS_I2C_DATA(i2c)	((i2c->dev_type == MXS_I2C_V1) ? 0x60 : 0xa0)
75

M
Marek Vasut 已提交
76
#define MXS_I2C_DEBUG0_CLR(i2c)	((i2c->dev_type == MXS_I2C_V1) ? 0x78 : 0xb8)
77 78 79

#define MXS_I2C_DEBUG0_DMAREQ	0x80000000

80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100
#define MXS_I2C_IRQ_MASK	(MXS_I2C_CTRL1_DATA_ENGINE_CMPLT_IRQ | \
				 MXS_I2C_CTRL1_NO_SLAVE_ACK_IRQ | \
				 MXS_I2C_CTRL1_EARLY_TERM_IRQ | \
				 MXS_I2C_CTRL1_MASTER_LOSS_IRQ | \
				 MXS_I2C_CTRL1_SLAVE_STOP_IRQ | \
				 MXS_I2C_CTRL1_SLAVE_IRQ)


#define MXS_CMD_I2C_SELECT	(MXS_I2C_CTRL0_RETAIN_CLOCK |	\
				 MXS_I2C_CTRL0_PRE_SEND_START |	\
				 MXS_I2C_CTRL0_MASTER_MODE |	\
				 MXS_I2C_CTRL0_DIRECTION |	\
				 MXS_I2C_CTRL0_XFER_COUNT(1))

#define MXS_CMD_I2C_WRITE	(MXS_I2C_CTRL0_PRE_SEND_START |	\
				 MXS_I2C_CTRL0_MASTER_MODE |	\
				 MXS_I2C_CTRL0_DIRECTION)

#define MXS_CMD_I2C_READ	(MXS_I2C_CTRL0_SEND_NAK_ON_LAST | \
				 MXS_I2C_CTRL0_MASTER_MODE)

101 102 103 104 105 106
enum mxs_i2c_devtype {
	MXS_I2C_UNKNOWN = 0,
	MXS_I2C_V1,
	MXS_I2C_V2,
};

107 108 109 110
/**
 * struct mxs_i2c_dev - per device, private MXS-I2C data
 *
 * @dev: driver model device node
111
 * @dev_type: distinguish i.MX23/i.MX28 features
112 113 114 115 116 117 118
 * @regs: IO registers pointer
 * @cmd_complete: completion object for transaction wait
 * @cmd_err: error code for last transaction
 * @adapter: i2c subsystem adapter node
 */
struct mxs_i2c_dev {
	struct device *dev;
119
	enum mxs_i2c_devtype dev_type;
120 121
	void __iomem *regs;
	struct completion cmd_complete;
F
Fabio Estevam 已提交
122
	int cmd_err;
123
	struct i2c_adapter adapter;
124 125 126

	uint32_t timing0;
	uint32_t timing1;
127
	uint32_t timing2;
128 129

	/* DMA support components */
130
	struct dma_chan			*dmach;
131 132 133 134
	uint32_t			pio_data[2];
	uint32_t			addr_data;
	struct scatterlist		sg_io[2];
	bool				dma_read;
135 136
};

137
static int mxs_i2c_reset(struct mxs_i2c_dev *i2c)
138
{
139 140 141
	int ret = stmp_reset_block(i2c->regs);
	if (ret)
		return ret;
142

143 144 145 146 147 148 149 150 151
	/*
	 * Configure timing for the I2C block. The I2C TIMING2 register has to
	 * be programmed with this particular magic number. The rest is derived
	 * from the XTAL speed and requested I2C speed.
	 *
	 * For details, see i.MX233 [25.4.2 - 25.4.4] and i.MX28 [27.5.2 - 27.5.4].
	 */
	writel(i2c->timing0, i2c->regs + MXS_I2C_TIMING0);
	writel(i2c->timing1, i2c->regs + MXS_I2C_TIMING1);
152
	writel(i2c->timing2, i2c->regs + MXS_I2C_TIMING2);
153

154
	writel(MXS_I2C_IRQ_MASK << 8, i2c->regs + MXS_I2C_CTRL1_SET);
155 156

	return 0;
157 158
}

159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293
static void mxs_i2c_dma_finish(struct mxs_i2c_dev *i2c)
{
	if (i2c->dma_read) {
		dma_unmap_sg(i2c->dev, &i2c->sg_io[0], 1, DMA_TO_DEVICE);
		dma_unmap_sg(i2c->dev, &i2c->sg_io[1], 1, DMA_FROM_DEVICE);
	} else {
		dma_unmap_sg(i2c->dev, i2c->sg_io, 2, DMA_TO_DEVICE);
	}
}

static void mxs_i2c_dma_irq_callback(void *param)
{
	struct mxs_i2c_dev *i2c = param;

	complete(&i2c->cmd_complete);
	mxs_i2c_dma_finish(i2c);
}

static int mxs_i2c_dma_setup_xfer(struct i2c_adapter *adap,
			struct i2c_msg *msg, uint32_t flags)
{
	struct dma_async_tx_descriptor *desc;
	struct mxs_i2c_dev *i2c = i2c_get_adapdata(adap);

	if (msg->flags & I2C_M_RD) {
		i2c->dma_read = 1;
		i2c->addr_data = (msg->addr << 1) | I2C_SMBUS_READ;

		/*
		 * SELECT command.
		 */

		/* Queue the PIO register write transfer. */
		i2c->pio_data[0] = MXS_CMD_I2C_SELECT;
		desc = dmaengine_prep_slave_sg(i2c->dmach,
					(struct scatterlist *)&i2c->pio_data[0],
					1, DMA_TRANS_NONE, 0);
		if (!desc) {
			dev_err(i2c->dev,
				"Failed to get PIO reg. write descriptor.\n");
			goto select_init_pio_fail;
		}

		/* Queue the DMA data transfer. */
		sg_init_one(&i2c->sg_io[0], &i2c->addr_data, 1);
		dma_map_sg(i2c->dev, &i2c->sg_io[0], 1, DMA_TO_DEVICE);
		desc = dmaengine_prep_slave_sg(i2c->dmach, &i2c->sg_io[0], 1,
					DMA_MEM_TO_DEV,
					DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
		if (!desc) {
			dev_err(i2c->dev,
				"Failed to get DMA data write descriptor.\n");
			goto select_init_dma_fail;
		}

		/*
		 * READ command.
		 */

		/* Queue the PIO register write transfer. */
		i2c->pio_data[1] = flags | MXS_CMD_I2C_READ |
				MXS_I2C_CTRL0_XFER_COUNT(msg->len);
		desc = dmaengine_prep_slave_sg(i2c->dmach,
					(struct scatterlist *)&i2c->pio_data[1],
					1, DMA_TRANS_NONE, DMA_PREP_INTERRUPT);
		if (!desc) {
			dev_err(i2c->dev,
				"Failed to get PIO reg. write descriptor.\n");
			goto select_init_dma_fail;
		}

		/* Queue the DMA data transfer. */
		sg_init_one(&i2c->sg_io[1], msg->buf, msg->len);
		dma_map_sg(i2c->dev, &i2c->sg_io[1], 1, DMA_FROM_DEVICE);
		desc = dmaengine_prep_slave_sg(i2c->dmach, &i2c->sg_io[1], 1,
					DMA_DEV_TO_MEM,
					DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
		if (!desc) {
			dev_err(i2c->dev,
				"Failed to get DMA data write descriptor.\n");
			goto read_init_dma_fail;
		}
	} else {
		i2c->dma_read = 0;
		i2c->addr_data = (msg->addr << 1) | I2C_SMBUS_WRITE;

		/*
		 * WRITE command.
		 */

		/* Queue the PIO register write transfer. */
		i2c->pio_data[0] = flags | MXS_CMD_I2C_WRITE |
				MXS_I2C_CTRL0_XFER_COUNT(msg->len + 1);
		desc = dmaengine_prep_slave_sg(i2c->dmach,
					(struct scatterlist *)&i2c->pio_data[0],
					1, DMA_TRANS_NONE, 0);
		if (!desc) {
			dev_err(i2c->dev,
				"Failed to get PIO reg. write descriptor.\n");
			goto write_init_pio_fail;
		}

		/* Queue the DMA data transfer. */
		sg_init_table(i2c->sg_io, 2);
		sg_set_buf(&i2c->sg_io[0], &i2c->addr_data, 1);
		sg_set_buf(&i2c->sg_io[1], msg->buf, msg->len);
		dma_map_sg(i2c->dev, i2c->sg_io, 2, DMA_TO_DEVICE);
		desc = dmaengine_prep_slave_sg(i2c->dmach, i2c->sg_io, 2,
					DMA_MEM_TO_DEV,
					DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
		if (!desc) {
			dev_err(i2c->dev,
				"Failed to get DMA data write descriptor.\n");
			goto write_init_dma_fail;
		}
	}

	/*
	 * The last descriptor must have this callback,
	 * to finish the DMA transaction.
	 */
	desc->callback = mxs_i2c_dma_irq_callback;
	desc->callback_param = i2c;

	/* Start the transfer. */
	dmaengine_submit(desc);
	dma_async_issue_pending(i2c->dmach);
	return 0;

/* Read failpath. */
read_init_dma_fail:
	dma_unmap_sg(i2c->dev, &i2c->sg_io[1], 1, DMA_FROM_DEVICE);
select_init_dma_fail:
	dma_unmap_sg(i2c->dev, &i2c->sg_io[0], 1, DMA_TO_DEVICE);
select_init_pio_fail:
294
	dmaengine_terminate_all(i2c->dmach);
295 296 297 298 299 300
	return -EINVAL;

/* Write failpath. */
write_init_dma_fail:
	dma_unmap_sg(i2c->dev, i2c->sg_io, 2, DMA_TO_DEVICE);
write_init_pio_fail:
301
	dmaengine_terminate_all(i2c->dmach);
302 303 304
	return -EINVAL;
}

305
static int mxs_i2c_pio_wait_xfer_end(struct mxs_i2c_dev *i2c)
306 307 308
{
	unsigned long timeout = jiffies + msecs_to_jiffies(1000);

309
	while (readl(i2c->regs + MXS_I2C_CTRL0) & MXS_I2C_CTRL0_RUN) {
310 311 312
		if (readl(i2c->regs + MXS_I2C_CTRL1) &
				MXS_I2C_CTRL1_NO_SLAVE_ACK_IRQ)
			return -ENXIO;
L
Lucas Stach 已提交
313 314 315 316 317
		if (time_after(jiffies, timeout))
			return -ETIMEDOUT;
		cond_resched();
	}

318 319 320
	return 0;
}

321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337
static int mxs_i2c_pio_check_error_state(struct mxs_i2c_dev *i2c)
{
	u32 state;

	state = readl(i2c->regs + MXS_I2C_CTRL1_CLR) & MXS_I2C_IRQ_MASK;

	if (state & MXS_I2C_CTRL1_NO_SLAVE_ACK_IRQ)
		i2c->cmd_err = -ENXIO;
	else if (state & (MXS_I2C_CTRL1_EARLY_TERM_IRQ |
			  MXS_I2C_CTRL1_MASTER_LOSS_IRQ |
			  MXS_I2C_CTRL1_SLAVE_STOP_IRQ |
			  MXS_I2C_CTRL1_SLAVE_IRQ))
		i2c->cmd_err = -EIO;

	return i2c->cmd_err;
}

L
Lucas Stach 已提交
338 339 340 341 342 343 344 345 346 347 348 349
static void mxs_i2c_pio_trigger_cmd(struct mxs_i2c_dev *i2c, u32 cmd)
{
	u32 reg;

	writel(cmd, i2c->regs + MXS_I2C_CTRL0);

	/* readback makes sure the write is latched into hardware */
	reg = readl(i2c->regs + MXS_I2C_CTRL0);
	reg |= MXS_I2C_CTRL0_RUN;
	writel(reg, i2c->regs + MXS_I2C_CTRL0);
}

350 351 352 353 354 355 356 357 358 359 360 361
/*
 * Start WRITE transaction on the I2C bus. By studying i.MX23 datasheet,
 * CTRL0::PIO_MODE bit description clarifies the order in which the registers
 * must be written during PIO mode operation. First, the CTRL0 register has
 * to be programmed with all the necessary bits but the RUN bit. Then the
 * payload has to be written into the DATA register. Finally, the transmission
 * is executed by setting the RUN bit in CTRL0.
 */
static void mxs_i2c_pio_trigger_write_cmd(struct mxs_i2c_dev *i2c, u32 cmd,
					  u32 data)
{
	writel(cmd, i2c->regs + MXS_I2C_CTRL0);
M
Marek Vasut 已提交
362 363 364 365 366

	if (i2c->dev_type == MXS_I2C_V1)
		writel(MXS_I2C_CTRL0_PIO_MODE, i2c->regs + MXS_I2C_CTRL0_SET);

	writel(data, i2c->regs + MXS_I2C_DATA(i2c));
367 368 369
	writel(MXS_I2C_CTRL0_RUN, i2c->regs + MXS_I2C_CTRL0_SET);
}

370 371 372 373 374 375
static int mxs_i2c_pio_setup_xfer(struct i2c_adapter *adap,
			struct i2c_msg *msg, uint32_t flags)
{
	struct mxs_i2c_dev *i2c = i2c_get_adapdata(adap);
	uint32_t addr_data = msg->addr << 1;
	uint32_t data = 0;
376 377
	int i, ret, xlen = 0, xmit = 0;
	uint32_t start;
378 379 380 381

	/* Mute IRQs coming from this block. */
	writel(MXS_I2C_IRQ_MASK << 8, i2c->regs + MXS_I2C_CTRL1_CLR);

382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398
	/*
	 * MX23 idea:
	 * - Enable CTRL0::PIO_MODE (1 << 24)
	 * - Enable CTRL1::ACK_MODE (1 << 27)
	 *
	 * WARNING! The MX23 is broken in some way, even if it claims
	 * to support PIO, when we try to transfer any amount of data
	 * that is not aligned to 4 bytes, the DMA engine will have
	 * bits in DEBUG1::DMA_BYTES_ENABLES still set even after the
	 * transfer. This in turn will mess up the next transfer as
	 * the block it emit one byte write onto the bus terminated
	 * with a NAK+STOP. A possible workaround is to reset the IP
	 * block after every PIO transmission, which might just work.
	 *
	 * NOTE: The CTRL0::PIO_MODE description is important, since
	 * it outlines how the PIO mode is really supposed to work.
	 */
399
	if (msg->flags & I2C_M_RD) {
400 401 402 403 404 405 406 407 408 409 410 411 412 413
		/*
		 * PIO READ transfer:
		 *
		 * This transfer MUST be limited to 4 bytes maximum. It is not
		 * possible to transfer more than four bytes via PIO, since we
		 * can not in any way make sure we can read the data from the
		 * DATA register fast enough. Besides, the RX FIFO is only four
		 * bytes deep, thus we can only really read up to four bytes at
		 * time. Finally, there is no bit indicating us that new data
		 * arrived at the FIFO and can thus be fetched from the DATA
		 * register.
		 */
		BUG_ON(msg->len > 4);

414 415 416
		addr_data |= I2C_SMBUS_READ;

		/* SELECT command. */
417 418
		mxs_i2c_pio_trigger_write_cmd(i2c, MXS_CMD_I2C_SELECT,
					      addr_data);
419

420 421 422 423
		ret = mxs_i2c_pio_wait_xfer_end(i2c);
		if (ret) {
			dev_err(i2c->dev,
				"PIO: Failed to send SELECT command!\n");
424
			goto cleanup;
425
		}
426

427
		/* READ command. */
L
Lucas Stach 已提交
428 429 430
		mxs_i2c_pio_trigger_cmd(i2c,
					MXS_CMD_I2C_READ | flags |
					MXS_I2C_CTRL0_XFER_COUNT(msg->len));
431

432 433 434
		ret = mxs_i2c_pio_wait_xfer_end(i2c);
		if (ret) {
			dev_err(i2c->dev,
435
				"PIO: Failed to send READ command!\n");
436 437 438
			goto cleanup;
		}

M
Marek Vasut 已提交
439
		data = readl(i2c->regs + MXS_I2C_DATA(i2c));
440 441 442 443 444
		for (i = 0; i < msg->len; i++) {
			msg->buf[i] = data & 0xff;
			data >>= 8;
		}
	} else {
445 446 447 448 449 450 451 452
		/*
		 * PIO WRITE transfer:
		 *
		 * The code below implements clock stretching to circumvent
		 * the possibility of kernel not being able to supply data
		 * fast enough. It is possible to transfer arbitrary amount
		 * of data using PIO write.
		 */
453 454 455 456 457 458 459
		addr_data |= I2C_SMBUS_WRITE;

		/*
		 * The LSB of data buffer is the first byte blasted across
		 * the bus. Higher order bytes follow. Thus the following
		 * filling schematic.
		 */
460

461
		data = addr_data << 24;
462 463 464 465 466 467 468 469

		/* Start the transfer with START condition. */
		start = MXS_I2C_CTRL0_PRE_SEND_START;

		/* If the transfer is long, use clock stretching. */
		if (msg->len > 3)
			start |= MXS_I2C_CTRL0_RETAIN_CLOCK;

470 471 472
		for (i = 0; i < msg->len; i++) {
			data >>= 8;
			data |= (msg->buf[i] << 24);
473 474 475 476 477 478 479 480 481 482

			xmit = 0;

			/* This is the last transfer of the message. */
			if (i + 1 == msg->len) {
				/* Add optional STOP flag. */
				start |= flags;
				/* Remove RETAIN_CLOCK bit. */
				start &= ~MXS_I2C_CTRL0_RETAIN_CLOCK;
				xmit = 1;
483 484
			}

485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516
			/* Four bytes are ready in the "data" variable. */
			if ((i & 3) == 2)
				xmit = 1;

			/* Nothing interesting happened, continue stuffing. */
			if (!xmit)
				continue;

			/*
			 * Compute the size of the transfer and shift the
			 * data accordingly.
			 *
			 * i = (4k + 0) .... xlen = 2
			 * i = (4k + 1) .... xlen = 3
			 * i = (4k + 2) .... xlen = 4
			 * i = (4k + 3) .... xlen = 1
			 */

			if ((i % 4) == 3)
				xlen = 1;
			else
				xlen = (i % 4) + 2;

			data >>= (4 - xlen) * 8;

			dev_dbg(i2c->dev,
				"PIO: len=%i pos=%i total=%i [W%s%s%s]\n",
				xlen, i, msg->len,
				start & MXS_I2C_CTRL0_PRE_SEND_START ? "S" : "",
				start & MXS_I2C_CTRL0_POST_SEND_STOP ? "E" : "",
				start & MXS_I2C_CTRL0_RETAIN_CLOCK ? "C" : "");

L
Lucas Stach 已提交
517
			writel(MXS_I2C_DEBUG0_DMAREQ,
M
Marek Vasut 已提交
518
			       i2c->regs + MXS_I2C_DEBUG0_CLR(i2c));
519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542

			mxs_i2c_pio_trigger_write_cmd(i2c,
				start | MXS_I2C_CTRL0_MASTER_MODE |
				MXS_I2C_CTRL0_DIRECTION |
				MXS_I2C_CTRL0_XFER_COUNT(xlen), data);

			/* The START condition is sent only once. */
			start &= ~MXS_I2C_CTRL0_PRE_SEND_START;

			/* Wait for the end of the transfer. */
			ret = mxs_i2c_pio_wait_xfer_end(i2c);
			if (ret) {
				dev_err(i2c->dev,
					"PIO: Failed to finish WRITE cmd!\n");
				break;
			}

			/* Check NAK here. */
			ret = readl(i2c->regs + MXS_I2C_STAT) &
				    MXS_I2C_STAT_GOT_A_NAK;
			if (ret) {
				ret = -ENXIO;
				goto cleanup;
			}
543 544 545
		}
	}

546
	/* make sure we capture any occurred error into cmd_err */
547
	ret = mxs_i2c_pio_check_error_state(i2c);
548 549

cleanup:
550 551 552 553
	/* Clear any dangling IRQs and re-enable interrupts. */
	writel(MXS_I2C_IRQ_MASK, i2c->regs + MXS_I2C_CTRL1_CLR);
	writel(MXS_I2C_IRQ_MASK << 8, i2c->regs + MXS_I2C_CTRL1_SET);

M
Marek Vasut 已提交
554 555 556 557
	/* Clear the PIO_MODE on i.MX23 */
	if (i2c->dev_type == MXS_I2C_V1)
		writel(MXS_I2C_CTRL0_PIO_MODE, i2c->regs + MXS_I2C_CTRL0_CLR);

558
	return ret;
559 560
}

561 562 563 564 565 566 567
/*
 * Low level master read/write transaction.
 */
static int mxs_i2c_xfer_msg(struct i2c_adapter *adap, struct i2c_msg *msg,
				int stop)
{
	struct mxs_i2c_dev *i2c = i2c_get_adapdata(adap);
568
	int ret;
569
	int flags;
570
	int use_pio = 0;
571
	unsigned long time_left;
572

573 574
	flags = stop ? MXS_I2C_CTRL0_POST_SEND_STOP : 0;

575 576 577 578 579 580
	dev_dbg(i2c->dev, "addr: 0x%04x, len: %d, flags: 0x%x, stop: %d\n",
		msg->addr, msg->len, msg->flags, stop);

	if (msg->len == 0)
		return -EINVAL;

581
	/*
582 583 584
	 * The MX28 I2C IP block can only do PIO READ for transfer of to up
	 * 4 bytes of length. The write transfer is not limited as it can use
	 * clock stretching to avoid FIFO underruns.
585
	 */
586 587 588 589 590
	if ((msg->flags & I2C_M_RD) && (msg->len <= 4))
		use_pio = 1;
	if (!(msg->flags & I2C_M_RD) && (msg->len < 7))
		use_pio = 1;

591
	i2c->cmd_err = 0;
592
	if (use_pio) {
593
		ret = mxs_i2c_pio_setup_xfer(adap, msg, flags);
594 595 596
		/* No need to reset the block if NAK was received. */
		if (ret && (ret != -ENXIO))
			mxs_i2c_reset(i2c);
597
	} else {
598
		reinit_completion(&i2c->cmd_complete);
599 600 601
		ret = mxs_i2c_dma_setup_xfer(adap, msg, flags);
		if (ret)
			return ret;
602

603
		time_left = wait_for_completion_timeout(&i2c->cmd_complete,
604
						msecs_to_jiffies(1000));
605
		if (!time_left)
606
			goto timeout;
607 608

		ret = i2c->cmd_err;
609
	}
610

611
	if (ret == -ENXIO) {
612 613 614 615 616 617
		/*
		 * If the transfer fails with a NAK from the slave the
		 * controller halts until it gets told to return to idle state.
		 */
		writel(MXS_I2C_CTRL1_CLR_GOT_A_NAK,
		       i2c->regs + MXS_I2C_CTRL1_SET);
618
	}
619

M
Marek Vasut 已提交
620 621 622 623 624 625 626 627 628 629 630 631 632
	/*
	 * WARNING!
	 * The i.MX23 is strange. After each and every operation, it's I2C IP
	 * block must be reset, otherwise the IP block will misbehave. This can
	 * be observed on the bus by the block sending out one single byte onto
	 * the bus. In case such an error happens, bit 27 will be set in the
	 * DEBUG0 register. This bit is not documented in the i.MX23 datasheet
	 * and is marked as "TBD" instead. To reset this bit to a correct state,
	 * reset the whole block. Since the block reset does not take long, do
	 * reset the block after every transfer to play safe.
	 */
	if (i2c->dev_type == MXS_I2C_V1)
		mxs_i2c_reset(i2c);
633

634
	dev_dbg(i2c->dev, "Done with err=%d\n", ret);
635

636
	return ret;
637 638 639

timeout:
	dev_dbg(i2c->dev, "Timeout!\n");
640
	mxs_i2c_dma_finish(i2c);
641 642 643 644
	ret = mxs_i2c_reset(i2c);
	if (ret)
		return ret;

645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664
	return -ETIMEDOUT;
}

static int mxs_i2c_xfer(struct i2c_adapter *adap, struct i2c_msg msgs[],
			int num)
{
	int i;
	int err;

	for (i = 0; i < num; i++) {
		err = mxs_i2c_xfer_msg(adap, &msgs[i], i == (num - 1));
		if (err)
			return err;
	}

	return num;
}

static u32 mxs_i2c_func(struct i2c_adapter *adap)
{
665
	return I2C_FUNC_I2C | I2C_FUNC_SMBUS_EMUL;
666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684
}

static irqreturn_t mxs_i2c_isr(int this_irq, void *dev_id)
{
	struct mxs_i2c_dev *i2c = dev_id;
	u32 stat = readl(i2c->regs + MXS_I2C_CTRL1) & MXS_I2C_IRQ_MASK;

	if (!stat)
		return IRQ_NONE;

	if (stat & MXS_I2C_CTRL1_NO_SLAVE_ACK_IRQ)
		i2c->cmd_err = -ENXIO;
	else if (stat & (MXS_I2C_CTRL1_EARLY_TERM_IRQ |
		    MXS_I2C_CTRL1_MASTER_LOSS_IRQ |
		    MXS_I2C_CTRL1_SLAVE_STOP_IRQ | MXS_I2C_CTRL1_SLAVE_IRQ))
		/* MXS_I2C_CTRL1_OVERSIZE_XFER_TERM_IRQ is only for slaves */
		i2c->cmd_err = -EIO;

	writel(stat, i2c->regs + MXS_I2C_CTRL1_CLR);
685

686 687 688 689 690 691 692 693
	return IRQ_HANDLED;
}

static const struct i2c_algorithm mxs_i2c_algo = {
	.master_xfer = mxs_i2c_xfer,
	.functionality = mxs_i2c_func,
};

694
static void mxs_i2c_derive_timing(struct mxs_i2c_dev *i2c, uint32_t speed)
695
{
696
	/* The I2C block clock runs at 24MHz */
697
	const uint32_t clk = 24000000;
698
	uint32_t divider;
699
	uint16_t high_count, low_count, rcv_count, xmit_count;
700
	uint32_t bus_free, leadin;
701 702
	struct device *dev = i2c->dev;

703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724
	divider = DIV_ROUND_UP(clk, speed);

	if (divider < 25) {
		/*
		 * limit the divider, so that min(low_count, high_count)
		 * is >= 1
		 */
		divider = 25;
		dev_warn(dev,
			"Speed too high (%u.%03u kHz), using %u.%03u kHz\n",
			speed / 1000, speed % 1000,
			clk / divider / 1000, clk / divider % 1000);
	} else if (divider > 1897) {
		/*
		 * limit the divider, so that max(low_count, high_count)
		 * cannot exceed 1023
		 */
		divider = 1897;
		dev_warn(dev,
			"Speed too low (%u.%03u kHz), using %u.%03u kHz\n",
			speed / 1000, speed % 1000,
			clk / divider / 1000, clk / divider % 1000);
725 726 727
	}

	/*
728 729 730 731 732 733 734
	 * The I2C spec specifies the following timing data:
	 *                          standard mode  fast mode Bitfield name
	 * tLOW (SCL LOW period)     4700 ns        1300 ns
	 * tHIGH (SCL HIGH period)   4000 ns         600 ns
	 * tSU;DAT (data setup time)  250 ns         100 ns
	 * tHD;STA (START hold time) 4000 ns         600 ns
	 * tBUF (bus free time)      4700 ns        1300 ns
735
	 *
736 737 738 739
	 * The hardware (of the i.MX28 at least) seems to add 2 additional
	 * clock cycles to the low_count and 7 cycles to the high_count.
	 * This is compensated for by subtracting the respective constants
	 * from the values written to the timing registers.
740
	 */
741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760
	if (speed > 100000) {
		/* fast mode */
		low_count = DIV_ROUND_CLOSEST(divider * 13, (13 + 6));
		high_count = DIV_ROUND_CLOSEST(divider * 6, (13 + 6));
		leadin = DIV_ROUND_UP(600 * (clk / 1000000), 1000);
		bus_free = DIV_ROUND_UP(1300 * (clk / 1000000), 1000);
	} else {
		/* normal mode */
		low_count = DIV_ROUND_CLOSEST(divider * 47, (47 + 40));
		high_count = DIV_ROUND_CLOSEST(divider * 40, (47 + 40));
		leadin = DIV_ROUND_UP(4700 * (clk / 1000000), 1000);
		bus_free = DIV_ROUND_UP(4700 * (clk / 1000000), 1000);
	}
	rcv_count = high_count * 3 / 8;
	xmit_count = low_count * 3 / 8;

	dev_dbg(dev,
		"speed=%u(actual %u) divider=%u low=%u high=%u xmit=%u rcv=%u leadin=%u bus_free=%u\n",
		speed, clk / divider, divider, low_count, high_count,
		xmit_count, rcv_count, leadin, bus_free);
761

762 763
	low_count -= 2;
	high_count -= 7;
764 765
	i2c->timing0 = (high_count << 16) | rcv_count;
	i2c->timing1 = (low_count << 16) | xmit_count;
766
	i2c->timing2 = (bus_free << 16 | leadin);
767 768
}

769 770 771 772 773 774 775 776
static int mxs_i2c_get_ofdata(struct mxs_i2c_dev *i2c)
{
	uint32_t speed;
	struct device *dev = i2c->dev;
	struct device_node *node = dev->of_node;
	int ret;

	ret = of_property_read_u32(node, "clock-frequency", &speed);
777
	if (ret) {
778
		dev_warn(dev, "No I2C speed selected, using 100kHz\n");
779 780 781 782
		speed = 100000;
	}

	mxs_i2c_derive_timing(i2c, speed);
783 784 785 786

	return 0;
}

787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804
static struct platform_device_id mxs_i2c_devtype[] = {
	{
		.name = "imx23-i2c",
		.driver_data = MXS_I2C_V1,
	}, {
		.name = "imx28-i2c",
		.driver_data = MXS_I2C_V2,
	}, { /* sentinel */ }
};
MODULE_DEVICE_TABLE(platform, mxs_i2c_devtype);

static const struct of_device_id mxs_i2c_dt_ids[] = {
	{ .compatible = "fsl,imx23-i2c", .data = &mxs_i2c_devtype[0], },
	{ .compatible = "fsl,imx28-i2c", .data = &mxs_i2c_devtype[1], },
	{ /* sentinel */ }
};
MODULE_DEVICE_TABLE(of, mxs_i2c_dt_ids);

805
static int mxs_i2c_probe(struct platform_device *pdev)
806
{
807 808
	const struct of_device_id *of_id =
				of_match_device(mxs_i2c_dt_ids, &pdev->dev);
809 810 811 812
	struct device *dev = &pdev->dev;
	struct mxs_i2c_dev *i2c;
	struct i2c_adapter *adap;
	struct resource *res;
813
	int err, irq;
814

815
	i2c = devm_kzalloc(dev, sizeof(*i2c), GFP_KERNEL);
816 817 818
	if (!i2c)
		return -ENOMEM;

819 820 821 822 823
	if (of_id) {
		const struct platform_device_id *device_id = of_id->data;
		i2c->dev_type = device_id->driver_data;
	}

824
	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
825 826 827
	i2c->regs = devm_ioremap_resource(&pdev->dev, res);
	if (IS_ERR(i2c->regs))
		return PTR_ERR(i2c->regs);
828

829 830 831
	irq = platform_get_irq(pdev, 0);
	if (irq < 0)
		return irq;
832 833 834 835 836 837

	err = devm_request_irq(dev, irq, mxs_i2c_isr, 0, dev_name(dev), i2c);
	if (err)
		return err;

	i2c->dev = dev;
838

839 840
	init_completion(&i2c->cmd_complete);

841 842 843 844 845
	if (dev->of_node) {
		err = mxs_i2c_get_ofdata(i2c);
		if (err)
			return err;
	}
846

847
	/* Setup the DMA */
848
	i2c->dmach = dma_request_slave_channel(dev, "rx-tx");
849 850 851
	if (!i2c->dmach) {
		dev_err(dev, "Failed to request dma\n");
		return -ENODEV;
852 853
	}

854 855 856
	platform_set_drvdata(pdev, i2c);

	/* Do reset to enforce correct startup after pinmuxing */
857 858 859
	err = mxs_i2c_reset(i2c);
	if (err)
		return err;
860 861 862 863 864 865 866

	adap = &i2c->adapter;
	strlcpy(adap->name, "MXS I2C adapter", sizeof(adap->name));
	adap->owner = THIS_MODULE;
	adap->algo = &mxs_i2c_algo;
	adap->dev.parent = dev;
	adap->nr = pdev->id;
867
	adap->dev.of_node = pdev->dev.of_node;
868 869 870 871 872 873 874 875 876 877 878 879
	i2c_set_adapdata(adap, i2c);
	err = i2c_add_numbered_adapter(adap);
	if (err) {
		dev_err(dev, "Failed to add adapter (%d)\n", err);
		writel(MXS_I2C_CTRL0_SFTRST,
				i2c->regs + MXS_I2C_CTRL0_SET);
		return err;
	}

	return 0;
}

880
static int mxs_i2c_remove(struct platform_device *pdev)
881 882 883
{
	struct mxs_i2c_dev *i2c = platform_get_drvdata(pdev);

884
	i2c_del_adapter(&i2c->adapter);
885

886 887 888
	if (i2c->dmach)
		dma_release_channel(i2c->dmach);

889 890 891 892 893 894 895 896
	writel(MXS_I2C_CTRL0_SFTRST, i2c->regs + MXS_I2C_CTRL0_SET);

	return 0;
}

static struct platform_driver mxs_i2c_driver = {
	.driver = {
		   .name = DRIVER_NAME,
897
		   .of_match_table = mxs_i2c_dt_ids,
898
		   },
899
	.probe = mxs_i2c_probe,
900
	.remove = mxs_i2c_remove,
901 902 903 904
};

static int __init mxs_i2c_init(void)
{
905
	return platform_driver_register(&mxs_i2c_driver);
906 907 908 909 910 911 912 913 914
}
subsys_initcall(mxs_i2c_init);

static void __exit mxs_i2c_exit(void)
{
	platform_driver_unregister(&mxs_i2c_driver);
}
module_exit(mxs_i2c_exit);

915
MODULE_AUTHOR("Marek Vasut <marex@denx.de>");
916
MODULE_AUTHOR("Wolfram Sang <kernel@pengutronix.de>");
917 918 919
MODULE_DESCRIPTION("MXS I2C Bus Driver");
MODULE_LICENSE("GPL");
MODULE_ALIAS("platform:" DRIVER_NAME);