Kconfig 43.5 KB
Newer Older
1 2 3 4 5 6
#
# Generic algorithms support
#
config XOR_BLOCKS
	tristate

L
Linus Torvalds 已提交
7
#
D
Dan Williams 已提交
8
# async_tx api: hardware offloaded memory transfer/transform support
L
Linus Torvalds 已提交
9
#
D
Dan Williams 已提交
10
source "crypto/async_tx/Kconfig"
L
Linus Torvalds 已提交
11

D
Dan Williams 已提交
12 13 14
#
# Cryptographic API Configuration
#
15
menuconfig CRYPTO
16
	tristate "Cryptographic API"
L
Linus Torvalds 已提交
17 18 19
	help
	  This option provides the core Cryptographic API.

20 21
if CRYPTO

22 23
comment "Crypto core or helper"

N
Neil Horman 已提交
24 25
config CRYPTO_FIPS
	bool "FIPS 200 compliance"
26
	depends on (CRYPTO_ANSI_CPRNG || CRYPTO_DRBG) && !CRYPTO_MANAGER_DISABLE_TESTS
27
	depends on MODULE_SIG
N
Neil Horman 已提交
28 29 30 31
	help
	  This options enables the fips boot option which is
	  required if you want to system to operate in a FIPS 200
	  certification.  You should say no unless you know what
32
	  this is.
N
Neil Horman 已提交
33

34 35
config CRYPTO_ALGAPI
	tristate
36
	select CRYPTO_ALGAPI2
37 38 39
	help
	  This option provides the API for cryptographic algorithms.

40 41 42
config CRYPTO_ALGAPI2
	tristate

H
Herbert Xu 已提交
43 44
config CRYPTO_AEAD
	tristate
45
	select CRYPTO_AEAD2
H
Herbert Xu 已提交
46 47
	select CRYPTO_ALGAPI

48 49 50 51
config CRYPTO_AEAD2
	tristate
	select CRYPTO_ALGAPI2

52 53
config CRYPTO_BLKCIPHER
	tristate
54
	select CRYPTO_BLKCIPHER2
55
	select CRYPTO_ALGAPI
56 57 58 59 60

config CRYPTO_BLKCIPHER2
	tristate
	select CRYPTO_ALGAPI2
	select CRYPTO_RNG2
61
	select CRYPTO_WORKQUEUE
62

63 64
config CRYPTO_HASH
	tristate
65
	select CRYPTO_HASH2
66 67
	select CRYPTO_ALGAPI

68 69 70 71
config CRYPTO_HASH2
	tristate
	select CRYPTO_ALGAPI2

72 73
config CRYPTO_RNG
	tristate
74
	select CRYPTO_RNG2
75 76
	select CRYPTO_ALGAPI

77 78 79 80
config CRYPTO_RNG2
	tristate
	select CRYPTO_ALGAPI2

81
config CRYPTO_PCOMP
82 83 84 85 86
	tristate
	select CRYPTO_PCOMP2
	select CRYPTO_ALGAPI

config CRYPTO_PCOMP2
87 88 89
	tristate
	select CRYPTO_ALGAPI2

H
Herbert Xu 已提交
90 91
config CRYPTO_MANAGER
	tristate "Cryptographic algorithm manager"
92
	select CRYPTO_MANAGER2
H
Herbert Xu 已提交
93 94 95 96
	help
	  Create default cryptographic template instantiations such as
	  cbc(aes).

97 98 99 100 101
config CRYPTO_MANAGER2
	def_tristate CRYPTO_MANAGER || (CRYPTO_MANAGER!=n && CRYPTO_ALGAPI=y)
	select CRYPTO_AEAD2
	select CRYPTO_HASH2
	select CRYPTO_BLKCIPHER2
102
	select CRYPTO_PCOMP2
103

104 105
config CRYPTO_USER
	tristate "Userspace cryptographic algorithm configuration"
106
	depends on NET
107 108
	select CRYPTO_MANAGER
	help
109
	  Userspace configuration for cryptographic instantiations such as
110 111
	  cbc(aes).

112 113
config CRYPTO_MANAGER_DISABLE_TESTS
	bool "Disable run-time self tests"
114 115
	default y
	depends on CRYPTO_MANAGER2
116
	help
117 118
	  Disable run-time self tests that normally take place at
	  algorithm registration.
119

120
config CRYPTO_GF128MUL
121
	tristate "GF(2^128) multiplication functions"
K
Kazunori MIYAZAWA 已提交
122
	help
123 124 125 126 127
	  Efficient table driven implementation of multiplications in the
	  field GF(2^128).  This is needed by some cypher modes. This
	  option will be selected automatically if you select such a
	  cipher mode.  Only select this option by hand if you expect to load
	  an external module that requires these functions.
K
Kazunori MIYAZAWA 已提交
128

L
Linus Torvalds 已提交
129 130
config CRYPTO_NULL
	tristate "Null algorithms"
131
	select CRYPTO_ALGAPI
132
	select CRYPTO_BLKCIPHER
H
Herbert Xu 已提交
133
	select CRYPTO_HASH
L
Linus Torvalds 已提交
134 135 136
	help
	  These are 'Null' algorithms, used by IPsec, which do nothing.

137
config CRYPTO_PCRYPT
138 139
	tristate "Parallel crypto engine"
	depends on SMP
140 141 142 143 144 145 146
	select PADATA
	select CRYPTO_MANAGER
	select CRYPTO_AEAD
	help
	  This converts an arbitrary crypto algorithm into a parallel
	  algorithm that executes in kernel threads.

147 148 149
config CRYPTO_WORKQUEUE
       tristate

150 151 152
config CRYPTO_CRYPTD
	tristate "Software async crypto daemon"
	select CRYPTO_BLKCIPHER
153
	select CRYPTO_HASH
154
	select CRYPTO_MANAGER
155
	select CRYPTO_WORKQUEUE
L
Linus Torvalds 已提交
156
	help
157 158 159
	  This is a generic software asynchronous crypto daemon that
	  converts an arbitrary synchronous software crypto algorithm
	  into an asynchronous algorithm that executes in a kernel thread.
L
Linus Torvalds 已提交
160

161 162 163 164 165 166 167 168 169 170 171 172
config CRYPTO_MCRYPTD
	tristate "Software async multi-buffer crypto daemon"
	select CRYPTO_BLKCIPHER
	select CRYPTO_HASH
	select CRYPTO_MANAGER
	select CRYPTO_WORKQUEUE
	help
	  This is a generic software asynchronous crypto daemon that
	  provides the kernel thread to assist multi-buffer crypto
	  algorithms for submitting jobs and flushing jobs in multi-buffer
	  crypto algorithms.  Multi-buffer crypto algorithms are executed
	  in the context of this kernel thread and drivers can post
173
	  their crypto request asynchronously to be processed by this daemon.
174

175 176 177 178 179 180
config CRYPTO_AUTHENC
	tristate "Authenc support"
	select CRYPTO_AEAD
	select CRYPTO_BLKCIPHER
	select CRYPTO_MANAGER
	select CRYPTO_HASH
L
Linus Torvalds 已提交
181
	help
182 183
	  Authenc: Combined mode wrapper for IPsec.
	  This is required for IPSec.
L
Linus Torvalds 已提交
184

185 186 187
config CRYPTO_TEST
	tristate "Testing module"
	depends on m
188
	select CRYPTO_MANAGER
L
Linus Torvalds 已提交
189
	help
190
	  Quick & dirty crypto test module.
L
Linus Torvalds 已提交
191

192
config CRYPTO_ABLK_HELPER
193 194 195
	tristate
	select CRYPTO_CRYPTD

196 197 198 199 200
config CRYPTO_GLUE_HELPER_X86
	tristate
	depends on X86
	select CRYPTO_ALGAPI

201
comment "Authenticated Encryption with Associated Data"
202

203 204 205 206
config CRYPTO_CCM
	tristate "CCM support"
	select CRYPTO_CTR
	select CRYPTO_AEAD
L
Linus Torvalds 已提交
207
	help
208
	  Support for Counter with CBC MAC. Required for IPsec.
L
Linus Torvalds 已提交
209

210 211 212 213
config CRYPTO_GCM
	tristate "GCM/GMAC support"
	select CRYPTO_CTR
	select CRYPTO_AEAD
214
	select CRYPTO_GHASH
215
	select CRYPTO_NULL
L
Linus Torvalds 已提交
216
	help
217 218
	  Support for Galois/Counter Mode (GCM) and Galois Message
	  Authentication Code (GMAC). Required for IPSec.
L
Linus Torvalds 已提交
219

220 221 222 223
config CRYPTO_SEQIV
	tristate "Sequence Number IV Generator"
	select CRYPTO_AEAD
	select CRYPTO_BLKCIPHER
224
	select CRYPTO_NULL
225
	select CRYPTO_RNG
L
Linus Torvalds 已提交
226
	help
227 228
	  This IV generator generates an IV based on a sequence number by
	  xoring it with a salt.  This algorithm is mainly useful for CTR
L
Linus Torvalds 已提交
229

230
comment "Block modes"
231

232 233
config CRYPTO_CBC
	tristate "CBC support"
234
	select CRYPTO_BLKCIPHER
235
	select CRYPTO_MANAGER
236
	help
237 238
	  CBC: Cipher Block Chaining mode
	  This block cipher algorithm is required for IPSec.
239

240 241
config CRYPTO_CTR
	tristate "CTR support"
242
	select CRYPTO_BLKCIPHER
243
	select CRYPTO_SEQIV
244
	select CRYPTO_MANAGER
245
	help
246
	  CTR: Counter mode
247 248
	  This block cipher algorithm is required for IPSec.

249 250 251 252 253 254 255 256 257 258 259 260 261
config CRYPTO_CTS
	tristate "CTS support"
	select CRYPTO_BLKCIPHER
	help
	  CTS: Cipher Text Stealing
	  This is the Cipher Text Stealing mode as described by
	  Section 8 of rfc2040 and referenced by rfc3962.
	  (rfc3962 includes errata information in its Appendix A)
	  This mode is required for Kerberos gss mechanism support
	  for AES encryption.

config CRYPTO_ECB
	tristate "ECB support"
262 263 264
	select CRYPTO_BLKCIPHER
	select CRYPTO_MANAGER
	help
265 266 267
	  ECB: Electronic CodeBook mode
	  This is the simplest block cipher algorithm.  It simply encrypts
	  the input block by block.
268

269
config CRYPTO_LRW
270
	tristate "LRW support"
271 272 273 274 275 276 277 278 279 280
	select CRYPTO_BLKCIPHER
	select CRYPTO_MANAGER
	select CRYPTO_GF128MUL
	help
	  LRW: Liskov Rivest Wagner, a tweakable, non malleable, non movable
	  narrow block cipher mode for dm-crypt.  Use it with cipher
	  specification string aes-lrw-benbi, the key must be 256, 320 or 384.
	  The first 128, 192 or 256 bits in the key are used for AES and the
	  rest is used to tie each cipher block to its logical position.

281 282 283 284 285 286 287 288
config CRYPTO_PCBC
	tristate "PCBC support"
	select CRYPTO_BLKCIPHER
	select CRYPTO_MANAGER
	help
	  PCBC: Propagating Cipher Block Chaining mode
	  This block cipher algorithm is required for RxRPC.

289
config CRYPTO_XTS
290
	tristate "XTS support"
291 292 293 294 295 296 297 298
	select CRYPTO_BLKCIPHER
	select CRYPTO_MANAGER
	select CRYPTO_GF128MUL
	help
	  XTS: IEEE1619/D16 narrow block cipher use with aes-xts-plain,
	  key size 256, 384 or 512 bits. This implementation currently
	  can't handle a sectorsize which is not a multiple of 16 bytes.

299 300
comment "Hash modes"

301 302 303 304 305 306 307 308 309 310 311
config CRYPTO_CMAC
	tristate "CMAC support"
	select CRYPTO_HASH
	select CRYPTO_MANAGER
	help
	  Cipher-based Message Authentication Code (CMAC) specified by
	  The National Institute of Standards and Technology (NIST).

	  https://tools.ietf.org/html/rfc4493
	  http://csrc.nist.gov/publications/nistpubs/800-38B/SP_800-38B.pdf

312 313 314
config CRYPTO_HMAC
	tristate "HMAC support"
	select CRYPTO_HASH
315 316
	select CRYPTO_MANAGER
	help
317 318
	  HMAC: Keyed-Hashing for Message Authentication (RFC2104).
	  This is required for IPSec.
319

320 321 322 323
config CRYPTO_XCBC
	tristate "XCBC support"
	select CRYPTO_HASH
	select CRYPTO_MANAGER
324
	help
325 326 327 328
	  XCBC: Keyed-Hashing with encryption algorithm
		http://www.ietf.org/rfc/rfc3566.txt
		http://csrc.nist.gov/encryption/modes/proposedmodes/
		 xcbc-mac/xcbc-mac-spec.pdf
329

330 331 332 333 334 335 336 337 338 339 340
config CRYPTO_VMAC
	tristate "VMAC support"
	select CRYPTO_HASH
	select CRYPTO_MANAGER
	help
	  VMAC is a message authentication algorithm designed for
	  very high speed on 64-bit architectures.

	  See also:
	  <http://fastcrypto.org/vmac>

341
comment "Digest"
M
Mikko Herranen 已提交
342

343 344
config CRYPTO_CRC32C
	tristate "CRC32c CRC algorithm"
345
	select CRYPTO_HASH
346
	select CRC32
J
Joy Latten 已提交
347
	help
348 349
	  Castagnoli, et al Cyclic Redundancy-Check Algorithm.  Used
	  by iSCSI for header and data digests and by others.
350
	  See Castagnoli93.  Module will be crc32c.
J
Joy Latten 已提交
351

352 353 354 355 356 357 358 359 360 361 362 363
config CRYPTO_CRC32C_INTEL
	tristate "CRC32c INTEL hardware acceleration"
	depends on X86
	select CRYPTO_HASH
	help
	  In Intel processor with SSE4.2 supported, the processor will
	  support CRC32C implementation using hardware accelerated CRC32
	  instruction. This option will create 'crc32c-intel' module,
	  which will enable any routine to use the CRC32 instruction to
	  gain performance compared with software implementation.
	  Module will be crc32c-intel.

364 365 366 367 368 369 370 371 372
config CRYPTO_CRC32C_SPARC64
	tristate "CRC32c CRC algorithm (SPARC64)"
	depends on SPARC64
	select CRYPTO_HASH
	select CRC32
	help
	  CRC32c CRC algorithm implemented using sparc64 crypto instructions,
	  when available.

373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393
config CRYPTO_CRC32
	tristate "CRC32 CRC algorithm"
	select CRYPTO_HASH
	select CRC32
	help
	  CRC-32-IEEE 802.3 cyclic redundancy-check algorithm.
	  Shash crypto api wrappers to crc32_le function.

config CRYPTO_CRC32_PCLMUL
	tristate "CRC32 PCLMULQDQ hardware acceleration"
	depends on X86
	select CRYPTO_HASH
	select CRC32
	help
	  From Intel Westmere and AMD Bulldozer processor with SSE4.2
	  and PCLMULQDQ supported, the processor will support
	  CRC32 PCLMULQDQ implementation using hardware accelerated PCLMULQDQ
	  instruction. This option will create 'crc32-plcmul' module,
	  which will enable any routine to use the CRC-32-IEEE 802.3 checksum
	  and gain better performance as compared with the table implementation.

394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412
config CRYPTO_CRCT10DIF
	tristate "CRCT10DIF algorithm"
	select CRYPTO_HASH
	help
	  CRC T10 Data Integrity Field computation is being cast as
	  a crypto transform.  This allows for faster crc t10 diff
	  transforms to be used if they are available.

config CRYPTO_CRCT10DIF_PCLMUL
	tristate "CRCT10DIF PCLMULQDQ hardware acceleration"
	depends on X86 && 64BIT && CRC_T10DIF
	select CRYPTO_HASH
	help
	  For x86_64 processors with SSE4.2 and PCLMULQDQ supported,
	  CRC T10 DIF PCLMULQDQ computation can be hardware
	  accelerated PCLMULQDQ instruction. This option will create
	  'crct10dif-plcmul' module, which is faster when computing the
	  crct10dif checksum as compared with the generic table implementation.

413 414 415 416 417 418
config CRYPTO_GHASH
	tristate "GHASH digest algorithm"
	select CRYPTO_GF128MUL
	help
	  GHASH is message digest algorithm for GCM (Galois/Counter Mode).

419 420
config CRYPTO_MD4
	tristate "MD4 digest algorithm"
421
	select CRYPTO_HASH
422
	help
423
	  MD4 message digest algorithm (RFC1320).
424

425 426
config CRYPTO_MD5
	tristate "MD5 digest algorithm"
427
	select CRYPTO_HASH
L
Linus Torvalds 已提交
428
	help
429
	  MD5 message digest algorithm (RFC1321).
L
Linus Torvalds 已提交
430

431 432 433 434 435 436 437 438 439
config CRYPTO_MD5_OCTEON
	tristate "MD5 digest algorithm (OCTEON)"
	depends on CPU_CAVIUM_OCTEON
	select CRYPTO_MD5
	select CRYPTO_HASH
	help
	  MD5 message digest algorithm (RFC1321) implemented
	  using OCTEON crypto instructions, when available.

440 441 442 443 444 445 446 447
config CRYPTO_MD5_PPC
	tristate "MD5 digest algorithm (PPC)"
	depends on PPC
	select CRYPTO_HASH
	help
	  MD5 message digest algorithm (RFC1321) implemented
	  in PPC assembler.

448 449 450 451 452 453 454 455 456
config CRYPTO_MD5_SPARC64
	tristate "MD5 digest algorithm (SPARC64)"
	depends on SPARC64
	select CRYPTO_MD5
	select CRYPTO_HASH
	help
	  MD5 message digest algorithm (RFC1321) implemented
	  using sparc64 crypto instructions, when available.

457 458
config CRYPTO_MICHAEL_MIC
	tristate "Michael MIC keyed digest algorithm"
459
	select CRYPTO_HASH
460
	help
461 462 463 464
	  Michael MIC is used for message integrity protection in TKIP
	  (IEEE 802.11i). This algorithm is required for TKIP, but it
	  should not be used for other purposes because of the weakness
	  of the algorithm.
465

466
config CRYPTO_RMD128
467
	tristate "RIPEMD-128 digest algorithm"
H
Herbert Xu 已提交
468
	select CRYPTO_HASH
469 470
	help
	  RIPEMD-128 (ISO/IEC 10118-3:2004).
471

472
	  RIPEMD-128 is a 128-bit cryptographic hash function. It should only
M
Michael Witten 已提交
473
	  be used as a secure replacement for RIPEMD. For other use cases,
474
	  RIPEMD-160 should be used.
475

476
	  Developed by Hans Dobbertin, Antoon Bosselaers and Bart Preneel.
477
	  See <http://homes.esat.kuleuven.be/~bosselae/ripemd160.html>
478 479

config CRYPTO_RMD160
480
	tristate "RIPEMD-160 digest algorithm"
H
Herbert Xu 已提交
481
	select CRYPTO_HASH
482 483
	help
	  RIPEMD-160 (ISO/IEC 10118-3:2004).
484

485 486 487 488
	  RIPEMD-160 is a 160-bit cryptographic hash function. It is intended
	  to be used as a secure replacement for the 128-bit hash functions
	  MD4, MD5 and it's predecessor RIPEMD
	  (not to be confused with RIPEMD-128).
489

490 491
	  It's speed is comparable to SHA1 and there are no known attacks
	  against RIPEMD-160.
492

493
	  Developed by Hans Dobbertin, Antoon Bosselaers and Bart Preneel.
494
	  See <http://homes.esat.kuleuven.be/~bosselae/ripemd160.html>
495 496

config CRYPTO_RMD256
497
	tristate "RIPEMD-256 digest algorithm"
H
Herbert Xu 已提交
498
	select CRYPTO_HASH
499 500 501 502 503
	help
	  RIPEMD-256 is an optional extension of RIPEMD-128 with a
	  256 bit hash. It is intended for applications that require
	  longer hash-results, without needing a larger security level
	  (than RIPEMD-128).
504

505
	  Developed by Hans Dobbertin, Antoon Bosselaers and Bart Preneel.
506
	  See <http://homes.esat.kuleuven.be/~bosselae/ripemd160.html>
507 508

config CRYPTO_RMD320
509
	tristate "RIPEMD-320 digest algorithm"
H
Herbert Xu 已提交
510
	select CRYPTO_HASH
511 512 513 514 515
	help
	  RIPEMD-320 is an optional extension of RIPEMD-160 with a
	  320 bit hash. It is intended for applications that require
	  longer hash-results, without needing a larger security level
	  (than RIPEMD-160).
516

517
	  Developed by Hans Dobbertin, Antoon Bosselaers and Bart Preneel.
518
	  See <http://homes.esat.kuleuven.be/~bosselae/ripemd160.html>
519

520 521
config CRYPTO_SHA1
	tristate "SHA1 digest algorithm"
522
	select CRYPTO_HASH
L
Linus Torvalds 已提交
523
	help
524
	  SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2).
L
Linus Torvalds 已提交
525

526
config CRYPTO_SHA1_SSSE3
527
	tristate "SHA1 digest algorithm (SSSE3/AVX/AVX2)"
528 529 530 531 532 533
	depends on X86 && 64BIT
	select CRYPTO_SHA1
	select CRYPTO_HASH
	help
	  SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2) implemented
	  using Supplemental SSE3 (SSSE3) instructions or Advanced Vector
534
	  Extensions (AVX/AVX2), when available.
535

536 537 538 539 540 541 542 543 544
config CRYPTO_SHA256_SSSE3
	tristate "SHA256 digest algorithm (SSSE3/AVX/AVX2)"
	depends on X86 && 64BIT
	select CRYPTO_SHA256
	select CRYPTO_HASH
	help
	  SHA-256 secure hash standard (DFIPS 180-2) implemented
	  using Supplemental SSE3 (SSSE3) instructions, or Advanced Vector
	  Extensions version 1 (AVX1), or Advanced Vector Extensions
545 546 547 548 549 550 551 552 553 554 555
	  version 2 (AVX2) instructions, when available.

config CRYPTO_SHA512_SSSE3
	tristate "SHA512 digest algorithm (SSSE3/AVX/AVX2)"
	depends on X86 && 64BIT
	select CRYPTO_SHA512
	select CRYPTO_HASH
	help
	  SHA-512 secure hash standard (DFIPS 180-2) implemented
	  using Supplemental SSE3 (SSSE3) instructions, or Advanced Vector
	  Extensions version 1 (AVX1), or Advanced Vector Extensions
556 557
	  version 2 (AVX2) instructions, when available.

558 559 560 561 562 563 564 565 566
config CRYPTO_SHA1_OCTEON
	tristate "SHA1 digest algorithm (OCTEON)"
	depends on CPU_CAVIUM_OCTEON
	select CRYPTO_SHA1
	select CRYPTO_HASH
	help
	  SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2) implemented
	  using OCTEON crypto instructions, when available.

567 568 569 570 571 572 573 574 575
config CRYPTO_SHA1_SPARC64
	tristate "SHA1 digest algorithm (SPARC64)"
	depends on SPARC64
	select CRYPTO_SHA1
	select CRYPTO_HASH
	help
	  SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2) implemented
	  using sparc64 crypto instructions, when available.

576 577 578 579 580 581 582
config CRYPTO_SHA1_PPC
	tristate "SHA1 digest algorithm (powerpc)"
	depends on PPC
	help
	  This is the powerpc hardware accelerated implementation of the
	  SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2).

583 584 585 586 587 588 589
config CRYPTO_SHA1_PPC_SPE
	tristate "SHA1 digest algorithm (PPC SPE)"
	depends on PPC && SPE
	help
	  SHA-1 secure hash standard (DFIPS 180-4) implemented
	  using powerpc SPE SIMD instruction set.

590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605
config CRYPTO_SHA1_MB
	tristate "SHA1 digest algorithm (x86_64 Multi-Buffer, Experimental)"
	depends on X86 && 64BIT
	select CRYPTO_SHA1
	select CRYPTO_HASH
	select CRYPTO_MCRYPTD
	help
	  SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2) implemented
	  using multi-buffer technique.  This algorithm computes on
	  multiple data lanes concurrently with SIMD instructions for
	  better throughput.  It should not be enabled by default but
	  used when there is significant amount of work to keep the keep
	  the data lanes filled to get performance benefit.  If the data
	  lanes remain unfilled, a flush operation will be initiated to
	  process the crypto jobs, adding a slight latency.

606 607
config CRYPTO_SHA256
	tristate "SHA224 and SHA256 digest algorithm"
608
	select CRYPTO_HASH
L
Linus Torvalds 已提交
609
	help
610
	  SHA256 secure hash standard (DFIPS 180-2).
L
Linus Torvalds 已提交
611

612 613
	  This version of SHA implements a 256 bit hash with 128 bits of
	  security against collision attacks.
614

615 616
	  This code also includes SHA-224, a 224 bit hash with 112 bits
	  of security against collision attacks.
617

618 619 620 621 622 623 624 625 626
config CRYPTO_SHA256_PPC_SPE
	tristate "SHA224 and SHA256 digest algorithm (PPC SPE)"
	depends on PPC && SPE
	select CRYPTO_SHA256
	select CRYPTO_HASH
	help
	  SHA224 and SHA256 secure hash standard (DFIPS 180-2)
	  implemented using powerpc SPE SIMD instruction set.

627 628 629 630 631 632 633 634 635
config CRYPTO_SHA256_OCTEON
	tristate "SHA224 and SHA256 digest algorithm (OCTEON)"
	depends on CPU_CAVIUM_OCTEON
	select CRYPTO_SHA256
	select CRYPTO_HASH
	help
	  SHA-256 secure hash standard (DFIPS 180-2) implemented
	  using OCTEON crypto instructions, when available.

636 637 638 639 640 641 642 643 644
config CRYPTO_SHA256_SPARC64
	tristate "SHA224 and SHA256 digest algorithm (SPARC64)"
	depends on SPARC64
	select CRYPTO_SHA256
	select CRYPTO_HASH
	help
	  SHA-256 secure hash standard (DFIPS 180-2) implemented
	  using sparc64 crypto instructions, when available.

645 646
config CRYPTO_SHA512
	tristate "SHA384 and SHA512 digest algorithms"
647
	select CRYPTO_HASH
648
	help
649
	  SHA512 secure hash standard (DFIPS 180-2).
650

651 652
	  This version of SHA implements a 512 bit hash with 256 bits of
	  security against collision attacks.
653

654 655
	  This code also includes SHA-384, a 384 bit hash with 192 bits
	  of security against collision attacks.
656

657 658 659 660 661 662 663 664 665
config CRYPTO_SHA512_OCTEON
	tristate "SHA384 and SHA512 digest algorithms (OCTEON)"
	depends on CPU_CAVIUM_OCTEON
	select CRYPTO_SHA512
	select CRYPTO_HASH
	help
	  SHA-512 secure hash standard (DFIPS 180-2) implemented
	  using OCTEON crypto instructions, when available.

666 667 668 669 670 671 672 673 674
config CRYPTO_SHA512_SPARC64
	tristate "SHA384 and SHA512 digest algorithm (SPARC64)"
	depends on SPARC64
	select CRYPTO_SHA512
	select CRYPTO_HASH
	help
	  SHA-512 secure hash standard (DFIPS 180-2) implemented
	  using sparc64 crypto instructions, when available.

675 676
config CRYPTO_TGR192
	tristate "Tiger digest algorithms"
677
	select CRYPTO_HASH
678
	help
679
	  Tiger hash algorithm 192, 160 and 128-bit hashes
680

681 682 683
	  Tiger is a hash function optimized for 64-bit processors while
	  still having decent performance on 32-bit processors.
	  Tiger was developed by Ross Anderson and Eli Biham.
684 685

	  See also:
686
	  <http://www.cs.technion.ac.il/~biham/Reports/Tiger/>.
687

688 689
config CRYPTO_WP512
	tristate "Whirlpool digest algorithms"
690
	select CRYPTO_HASH
L
Linus Torvalds 已提交
691
	help
692
	  Whirlpool hash algorithm 512, 384 and 256-bit hashes
L
Linus Torvalds 已提交
693

694 695
	  Whirlpool-512 is part of the NESSIE cryptographic primitives.
	  Whirlpool will be part of the ISO/IEC 10118-3:2003(E) standard
L
Linus Torvalds 已提交
696 697

	  See also:
698
	  <http://www.larc.usp.br/~pbarreto/WhirlpoolPage.html>
699

700 701
config CRYPTO_GHASH_CLMUL_NI_INTEL
	tristate "GHASH digest algorithm (CLMUL-NI accelerated)"
R
Richard Weinberger 已提交
702
	depends on X86 && 64BIT
703 704 705 706 707
	select CRYPTO_CRYPTD
	help
	  GHASH is message digest algorithm for GCM (Galois/Counter Mode).
	  The implementation is accelerated by CLMUL-NI of Intel.

708
comment "Ciphers"
L
Linus Torvalds 已提交
709 710 711

config CRYPTO_AES
	tristate "AES cipher algorithms"
712
	select CRYPTO_ALGAPI
L
Linus Torvalds 已提交
713
	help
714
	  AES cipher algorithms (FIPS-197). AES uses the Rijndael
L
Linus Torvalds 已提交
715 716 717
	  algorithm.

	  Rijndael appears to be consistently a very good performer in
718 719 720 721 722 723 724
	  both hardware and software across a wide range of computing
	  environments regardless of its use in feedback or non-feedback
	  modes. Its key setup time is excellent, and its key agility is
	  good. Rijndael's very low memory requirements make it very well
	  suited for restricted-space environments, in which it also
	  demonstrates excellent performance. Rijndael's operations are
	  among the easiest to defend against power and timing attacks.
L
Linus Torvalds 已提交
725

726
	  The AES specifies three key sizes: 128, 192 and 256 bits
L
Linus Torvalds 已提交
727 728 729 730 731

	  See <http://csrc.nist.gov/CryptoToolkit/aes/> for more information.

config CRYPTO_AES_586
	tristate "AES cipher algorithms (i586)"
732 733
	depends on (X86 || UML_X86) && !64BIT
	select CRYPTO_ALGAPI
734
	select CRYPTO_AES
L
Linus Torvalds 已提交
735
	help
736
	  AES cipher algorithms (FIPS-197). AES uses the Rijndael
L
Linus Torvalds 已提交
737 738 739
	  algorithm.

	  Rijndael appears to be consistently a very good performer in
740 741 742 743 744 745 746
	  both hardware and software across a wide range of computing
	  environments regardless of its use in feedback or non-feedback
	  modes. Its key setup time is excellent, and its key agility is
	  good. Rijndael's very low memory requirements make it very well
	  suited for restricted-space environments, in which it also
	  demonstrates excellent performance. Rijndael's operations are
	  among the easiest to defend against power and timing attacks.
L
Linus Torvalds 已提交
747

748
	  The AES specifies three key sizes: 128, 192 and 256 bits
A
Andreas Steinmetz 已提交
749 750 751 752 753

	  See <http://csrc.nist.gov/encryption/aes/> for more information.

config CRYPTO_AES_X86_64
	tristate "AES cipher algorithms (x86_64)"
754 755
	depends on (X86 || UML_X86) && 64BIT
	select CRYPTO_ALGAPI
756
	select CRYPTO_AES
A
Andreas Steinmetz 已提交
757
	help
758
	  AES cipher algorithms (FIPS-197). AES uses the Rijndael
A
Andreas Steinmetz 已提交
759 760 761
	  algorithm.

	  Rijndael appears to be consistently a very good performer in
762 763 764
	  both hardware and software across a wide range of computing
	  environments regardless of its use in feedback or non-feedback
	  modes. Its key setup time is excellent, and its key agility is
765 766 767 768 769 770 771 772 773 774 775
	  good. Rijndael's very low memory requirements make it very well
	  suited for restricted-space environments, in which it also
	  demonstrates excellent performance. Rijndael's operations are
	  among the easiest to defend against power and timing attacks.

	  The AES specifies three key sizes: 128, 192 and 256 bits

	  See <http://csrc.nist.gov/encryption/aes/> for more information.

config CRYPTO_AES_NI_INTEL
	tristate "AES cipher algorithms (AES-NI)"
R
Richard Weinberger 已提交
776
	depends on X86
777 778
	select CRYPTO_AES_X86_64 if 64BIT
	select CRYPTO_AES_586 if !64BIT
779
	select CRYPTO_CRYPTD
780
	select CRYPTO_ABLK_HELPER
781
	select CRYPTO_ALGAPI
782
	select CRYPTO_GLUE_HELPER_X86 if 64BIT
783 784
	select CRYPTO_LRW
	select CRYPTO_XTS
785 786 787 788 789 790 791 792 793 794
	help
	  Use Intel AES-NI instructions for AES algorithm.

	  AES cipher algorithms (FIPS-197). AES uses the Rijndael
	  algorithm.

	  Rijndael appears to be consistently a very good performer in
	  both hardware and software across a wide range of computing
	  environments regardless of its use in feedback or non-feedback
	  modes. Its key setup time is excellent, and its key agility is
795 796 797 798
	  good. Rijndael's very low memory requirements make it very well
	  suited for restricted-space environments, in which it also
	  demonstrates excellent performance. Rijndael's operations are
	  among the easiest to defend against power and timing attacks.
A
Andreas Steinmetz 已提交
799

800
	  The AES specifies three key sizes: 128, 192 and 256 bits
L
Linus Torvalds 已提交
801 802 803

	  See <http://csrc.nist.gov/encryption/aes/> for more information.

804 805 806 807
	  In addition to AES cipher algorithm support, the acceleration
	  for some popular block cipher mode is supported too, including
	  ECB, CBC, LRW, PCBC, XTS. The 64 bit version has additional
	  acceleration for CTR.
808

809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836
config CRYPTO_AES_SPARC64
	tristate "AES cipher algorithms (SPARC64)"
	depends on SPARC64
	select CRYPTO_CRYPTD
	select CRYPTO_ALGAPI
	help
	  Use SPARC64 crypto opcodes for AES algorithm.

	  AES cipher algorithms (FIPS-197). AES uses the Rijndael
	  algorithm.

	  Rijndael appears to be consistently a very good performer in
	  both hardware and software across a wide range of computing
	  environments regardless of its use in feedback or non-feedback
	  modes. Its key setup time is excellent, and its key agility is
	  good. Rijndael's very low memory requirements make it very well
	  suited for restricted-space environments, in which it also
	  demonstrates excellent performance. Rijndael's operations are
	  among the easiest to defend against power and timing attacks.

	  The AES specifies three key sizes: 128, 192 and 256 bits

	  See <http://csrc.nist.gov/encryption/aes/> for more information.

	  In addition to AES cipher algorithm support, the acceleration
	  for some popular block cipher mode is supported too, including
	  ECB and CBC.

837 838 839 840 841 842 843 844 845 846 847 848 849
config CRYPTO_AES_PPC_SPE
	tristate "AES cipher algorithms (PPC SPE)"
	depends on PPC && SPE
	help
	  AES cipher algorithms (FIPS-197). Additionally the acceleration
	  for popular block cipher modes ECB, CBC, CTR and XTS is supported.
	  This module should only be used for low power (router) devices
	  without hardware AES acceleration (e.g. caam crypto). It reduces the
	  size of the AES tables from 16KB to 8KB + 256 bytes and mitigates
	  timining attacks. Nevertheless it might be not as secure as other
	  architecture specific assembler implementations that work on 1KB
	  tables or 256 bytes S-boxes.

850 851 852 853 854 855 856 857 858 859 860
config CRYPTO_ANUBIS
	tristate "Anubis cipher algorithm"
	select CRYPTO_ALGAPI
	help
	  Anubis cipher algorithm.

	  Anubis is a variable key length cipher which can use keys from
	  128 bits to 320 bits in length.  It was evaluated as a entrant
	  in the NESSIE competition.

	  See also:
861 862
	  <https://www.cosic.esat.kuleuven.be/nessie/reports/>
	  <http://www.larc.usp.br/~pbarreto/AnubisPage.html>
863 864 865

config CRYPTO_ARC4
	tristate "ARC4 cipher algorithm"
866
	select CRYPTO_BLKCIPHER
867 868 869 870 871 872 873 874 875 876 877
	help
	  ARC4 cipher algorithm.

	  ARC4 is a stream cipher using keys ranging from 8 bits to 2048
	  bits in length.  This algorithm is required for driver-based
	  WEP, but it should not be for other purposes because of the
	  weakness of the algorithm.

config CRYPTO_BLOWFISH
	tristate "Blowfish cipher algorithm"
	select CRYPTO_ALGAPI
878
	select CRYPTO_BLOWFISH_COMMON
879 880 881 882 883 884 885 886 887 888
	help
	  Blowfish cipher algorithm, by Bruce Schneier.

	  This is a variable key length cipher which can use keys from 32
	  bits to 448 bits in length.  It's fast, simple and specifically
	  designed for use on "large microprocessors".

	  See also:
	  <http://www.schneier.com/blowfish.html>

889 890 891 892 893 894 895 896 897
config CRYPTO_BLOWFISH_COMMON
	tristate
	help
	  Common parts of the Blowfish cipher algorithm shared by the
	  generic c and the assembler implementations.

	  See also:
	  <http://www.schneier.com/blowfish.html>

898 899
config CRYPTO_BLOWFISH_X86_64
	tristate "Blowfish cipher algorithm (x86_64)"
900
	depends on X86 && 64BIT
901 902 903 904 905 906 907 908 909 910 911 912
	select CRYPTO_ALGAPI
	select CRYPTO_BLOWFISH_COMMON
	help
	  Blowfish cipher algorithm (x86_64), by Bruce Schneier.

	  This is a variable key length cipher which can use keys from 32
	  bits to 448 bits in length.  It's fast, simple and specifically
	  designed for use on "large microprocessors".

	  See also:
	  <http://www.schneier.com/blowfish.html>

913 914 915 916 917 918 919 920 921 922 923 924 925 926 927
config CRYPTO_CAMELLIA
	tristate "Camellia cipher algorithms"
	depends on CRYPTO
	select CRYPTO_ALGAPI
	help
	  Camellia cipher algorithms module.

	  Camellia is a symmetric key block cipher developed jointly
	  at NTT and Mitsubishi Electric Corporation.

	  The Camellia specifies three key sizes: 128, 192 and 256 bits.

	  See also:
	  <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html>

928 929
config CRYPTO_CAMELLIA_X86_64
	tristate "Camellia cipher algorithm (x86_64)"
930
	depends on X86 && 64BIT
931 932
	depends on CRYPTO
	select CRYPTO_ALGAPI
933
	select CRYPTO_GLUE_HELPER_X86
934 935 936 937 938 939 940 941 942 943 944
	select CRYPTO_LRW
	select CRYPTO_XTS
	help
	  Camellia cipher algorithm module (x86_64).

	  Camellia is a symmetric key block cipher developed jointly
	  at NTT and Mitsubishi Electric Corporation.

	  The Camellia specifies three key sizes: 128, 192 and 256 bits.

	  See also:
945 946 947 948 949 950 951 952
	  <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html>

config CRYPTO_CAMELLIA_AESNI_AVX_X86_64
	tristate "Camellia cipher algorithm (x86_64/AES-NI/AVX)"
	depends on X86 && 64BIT
	depends on CRYPTO
	select CRYPTO_ALGAPI
	select CRYPTO_CRYPTD
953
	select CRYPTO_ABLK_HELPER
954 955 956 957 958 959 960 961 962 963 964 965 966
	select CRYPTO_GLUE_HELPER_X86
	select CRYPTO_CAMELLIA_X86_64
	select CRYPTO_LRW
	select CRYPTO_XTS
	help
	  Camellia cipher algorithm module (x86_64/AES-NI/AVX).

	  Camellia is a symmetric key block cipher developed jointly
	  at NTT and Mitsubishi Electric Corporation.

	  The Camellia specifies three key sizes: 128, 192 and 256 bits.

	  See also:
967 968
	  <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html>

969 970 971 972 973 974
config CRYPTO_CAMELLIA_AESNI_AVX2_X86_64
	tristate "Camellia cipher algorithm (x86_64/AES-NI/AVX2)"
	depends on X86 && 64BIT
	depends on CRYPTO
	select CRYPTO_ALGAPI
	select CRYPTO_CRYPTD
975
	select CRYPTO_ABLK_HELPER
976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991
	select CRYPTO_GLUE_HELPER_X86
	select CRYPTO_CAMELLIA_X86_64
	select CRYPTO_CAMELLIA_AESNI_AVX_X86_64
	select CRYPTO_LRW
	select CRYPTO_XTS
	help
	  Camellia cipher algorithm module (x86_64/AES-NI/AVX2).

	  Camellia is a symmetric key block cipher developed jointly
	  at NTT and Mitsubishi Electric Corporation.

	  The Camellia specifies three key sizes: 128, 192 and 256 bits.

	  See also:
	  <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html>

992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007
config CRYPTO_CAMELLIA_SPARC64
	tristate "Camellia cipher algorithm (SPARC64)"
	depends on SPARC64
	depends on CRYPTO
	select CRYPTO_ALGAPI
	help
	  Camellia cipher algorithm module (SPARC64).

	  Camellia is a symmetric key block cipher developed jointly
	  at NTT and Mitsubishi Electric Corporation.

	  The Camellia specifies three key sizes: 128, 192 and 256 bits.

	  See also:
	  <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html>

1008 1009 1010 1011 1012 1013
config CRYPTO_CAST_COMMON
	tristate
	help
	  Common parts of the CAST cipher algorithms shared by the
	  generic c and the assembler implementations.

L
Linus Torvalds 已提交
1014 1015
config CRYPTO_CAST5
	tristate "CAST5 (CAST-128) cipher algorithm"
1016
	select CRYPTO_ALGAPI
1017
	select CRYPTO_CAST_COMMON
L
Linus Torvalds 已提交
1018 1019 1020 1021
	help
	  The CAST5 encryption algorithm (synonymous with CAST-128) is
	  described in RFC2144.

1022 1023 1024 1025 1026
config CRYPTO_CAST5_AVX_X86_64
	tristate "CAST5 (CAST-128) cipher algorithm (x86_64/AVX)"
	depends on X86 && 64BIT
	select CRYPTO_ALGAPI
	select CRYPTO_CRYPTD
1027
	select CRYPTO_ABLK_HELPER
1028
	select CRYPTO_CAST_COMMON
1029 1030 1031 1032 1033 1034 1035 1036
	select CRYPTO_CAST5
	help
	  The CAST5 encryption algorithm (synonymous with CAST-128) is
	  described in RFC2144.

	  This module provides the Cast5 cipher algorithm that processes
	  sixteen blocks parallel using the AVX instruction set.

L
Linus Torvalds 已提交
1037 1038
config CRYPTO_CAST6
	tristate "CAST6 (CAST-256) cipher algorithm"
1039
	select CRYPTO_ALGAPI
1040
	select CRYPTO_CAST_COMMON
L
Linus Torvalds 已提交
1041 1042 1043 1044
	help
	  The CAST6 encryption algorithm (synonymous with CAST-256) is
	  described in RFC2612.

1045 1046 1047 1048 1049
config CRYPTO_CAST6_AVX_X86_64
	tristate "CAST6 (CAST-256) cipher algorithm (x86_64/AVX)"
	depends on X86 && 64BIT
	select CRYPTO_ALGAPI
	select CRYPTO_CRYPTD
1050
	select CRYPTO_ABLK_HELPER
1051
	select CRYPTO_GLUE_HELPER_X86
1052
	select CRYPTO_CAST_COMMON
1053 1054 1055 1056 1057 1058 1059 1060 1061 1062
	select CRYPTO_CAST6
	select CRYPTO_LRW
	select CRYPTO_XTS
	help
	  The CAST6 encryption algorithm (synonymous with CAST-256) is
	  described in RFC2612.

	  This module provides the Cast6 cipher algorithm that processes
	  eight blocks parallel using the AVX instruction set.

1063 1064
config CRYPTO_DES
	tristate "DES and Triple DES EDE cipher algorithms"
1065
	select CRYPTO_ALGAPI
L
Linus Torvalds 已提交
1066
	help
1067
	  DES cipher algorithm (FIPS 46-2), and Triple DES EDE (FIPS 46-3).
A
Aaron Grothe 已提交
1068

1069 1070
config CRYPTO_DES_SPARC64
	tristate "DES and Triple DES EDE cipher algorithms (SPARC64)"
1071
	depends on SPARC64
1072 1073 1074 1075 1076 1077
	select CRYPTO_ALGAPI
	select CRYPTO_DES
	help
	  DES cipher algorithm (FIPS 46-2), and Triple DES EDE (FIPS 46-3),
	  optimized using SPARC64 crypto opcodes.

1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090
config CRYPTO_DES3_EDE_X86_64
	tristate "Triple DES EDE cipher algorithm (x86-64)"
	depends on X86 && 64BIT
	select CRYPTO_ALGAPI
	select CRYPTO_DES
	help
	  Triple DES EDE (FIPS 46-3) algorithm.

	  This module provides implementation of the Triple DES EDE cipher
	  algorithm that is optimized for x86-64 processors. Two versions of
	  algorithm are provided; regular processing one input block and
	  one that processes three blocks parallel.

1091 1092
config CRYPTO_FCRYPT
	tristate "FCrypt cipher algorithm"
1093
	select CRYPTO_ALGAPI
1094
	select CRYPTO_BLKCIPHER
L
Linus Torvalds 已提交
1095
	help
1096
	  FCrypt algorithm used by RxRPC.
L
Linus Torvalds 已提交
1097 1098 1099

config CRYPTO_KHAZAD
	tristate "Khazad cipher algorithm"
1100
	select CRYPTO_ALGAPI
L
Linus Torvalds 已提交
1101 1102 1103 1104 1105 1106 1107 1108
	help
	  Khazad cipher algorithm.

	  Khazad was a finalist in the initial NESSIE competition.  It is
	  an algorithm optimized for 64-bit processors with good performance
	  on 32-bit processors.  Khazad uses an 128 bit key size.

	  See also:
1109
	  <http://www.larc.usp.br/~pbarreto/KhazadPage.html>
L
Linus Torvalds 已提交
1110

1111
config CRYPTO_SALSA20
1112
	tristate "Salsa20 stream cipher algorithm"
1113 1114 1115 1116 1117 1118
	select CRYPTO_BLKCIPHER
	help
	  Salsa20 stream cipher algorithm.

	  Salsa20 is a stream cipher submitted to eSTREAM, the ECRYPT
	  Stream Cipher Project. See <http://www.ecrypt.eu.org/stream/>
1119 1120 1121 1122 1123

	  The Salsa20 stream cipher algorithm is designed by Daniel J.
	  Bernstein <djb@cr.yp.to>. See <http://cr.yp.to/snuffle.html>

config CRYPTO_SALSA20_586
1124
	tristate "Salsa20 stream cipher algorithm (i586)"
1125 1126 1127 1128 1129 1130 1131
	depends on (X86 || UML_X86) && !64BIT
	select CRYPTO_BLKCIPHER
	help
	  Salsa20 stream cipher algorithm.

	  Salsa20 is a stream cipher submitted to eSTREAM, the ECRYPT
	  Stream Cipher Project. See <http://www.ecrypt.eu.org/stream/>
1132 1133 1134 1135 1136

	  The Salsa20 stream cipher algorithm is designed by Daniel J.
	  Bernstein <djb@cr.yp.to>. See <http://cr.yp.to/snuffle.html>

config CRYPTO_SALSA20_X86_64
1137
	tristate "Salsa20 stream cipher algorithm (x86_64)"
1138 1139 1140 1141 1142 1143 1144
	depends on (X86 || UML_X86) && 64BIT
	select CRYPTO_BLKCIPHER
	help
	  Salsa20 stream cipher algorithm.

	  Salsa20 is a stream cipher submitted to eSTREAM, the ECRYPT
	  Stream Cipher Project. See <http://www.ecrypt.eu.org/stream/>
1145 1146 1147

	  The Salsa20 stream cipher algorithm is designed by Daniel J.
	  Bernstein <djb@cr.yp.to>. See <http://cr.yp.to/snuffle.html>
L
Linus Torvalds 已提交
1148

1149 1150
config CRYPTO_SEED
	tristate "SEED cipher algorithm"
1151
	select CRYPTO_ALGAPI
L
Linus Torvalds 已提交
1152
	help
1153
	  SEED cipher algorithm (RFC4269).
L
Linus Torvalds 已提交
1154

1155 1156 1157 1158 1159 1160 1161 1162 1163 1164
	  SEED is a 128-bit symmetric key block cipher that has been
	  developed by KISA (Korea Information Security Agency) as a
	  national standard encryption algorithm of the Republic of Korea.
	  It is a 16 round block cipher with the key size of 128 bit.

	  See also:
	  <http://www.kisa.or.kr/kisa/seed/jsp/seed_eng.jsp>

config CRYPTO_SERPENT
	tristate "Serpent cipher algorithm"
1165
	select CRYPTO_ALGAPI
L
Linus Torvalds 已提交
1166
	help
1167
	  Serpent cipher algorithm, by Anderson, Biham & Knudsen.
L
Linus Torvalds 已提交
1168

1169 1170 1171 1172 1173 1174 1175
	  Keys are allowed to be from 0 to 256 bits in length, in steps
	  of 8 bits.  Also includes the 'Tnepres' algorithm, a reversed
	  variant of Serpent for compatibility with old kerneli.org code.

	  See also:
	  <http://www.cl.cam.ac.uk/~rja14/serpent.html>

1176 1177 1178 1179
config CRYPTO_SERPENT_SSE2_X86_64
	tristate "Serpent cipher algorithm (x86_64/SSE2)"
	depends on X86 && 64BIT
	select CRYPTO_ALGAPI
1180
	select CRYPTO_CRYPTD
1181
	select CRYPTO_ABLK_HELPER
1182
	select CRYPTO_GLUE_HELPER_X86
1183
	select CRYPTO_SERPENT
1184 1185
	select CRYPTO_LRW
	select CRYPTO_XTS
1186 1187 1188 1189 1190 1191
	help
	  Serpent cipher algorithm, by Anderson, Biham & Knudsen.

	  Keys are allowed to be from 0 to 256 bits in length, in steps
	  of 8 bits.

1192
	  This module provides Serpent cipher algorithm that processes eight
1193 1194 1195 1196 1197
	  blocks parallel using SSE2 instruction set.

	  See also:
	  <http://www.cl.cam.ac.uk/~rja14/serpent.html>

1198 1199 1200 1201
config CRYPTO_SERPENT_SSE2_586
	tristate "Serpent cipher algorithm (i586/SSE2)"
	depends on X86 && !64BIT
	select CRYPTO_ALGAPI
1202
	select CRYPTO_CRYPTD
1203
	select CRYPTO_ABLK_HELPER
1204
	select CRYPTO_GLUE_HELPER_X86
1205
	select CRYPTO_SERPENT
1206 1207
	select CRYPTO_LRW
	select CRYPTO_XTS
1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218
	help
	  Serpent cipher algorithm, by Anderson, Biham & Knudsen.

	  Keys are allowed to be from 0 to 256 bits in length, in steps
	  of 8 bits.

	  This module provides Serpent cipher algorithm that processes four
	  blocks parallel using SSE2 instruction set.

	  See also:
	  <http://www.cl.cam.ac.uk/~rja14/serpent.html>
1219 1220 1221 1222 1223 1224

config CRYPTO_SERPENT_AVX_X86_64
	tristate "Serpent cipher algorithm (x86_64/AVX)"
	depends on X86 && 64BIT
	select CRYPTO_ALGAPI
	select CRYPTO_CRYPTD
1225
	select CRYPTO_ABLK_HELPER
1226
	select CRYPTO_GLUE_HELPER_X86
1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240
	select CRYPTO_SERPENT
	select CRYPTO_LRW
	select CRYPTO_XTS
	help
	  Serpent cipher algorithm, by Anderson, Biham & Knudsen.

	  Keys are allowed to be from 0 to 256 bits in length, in steps
	  of 8 bits.

	  This module provides the Serpent cipher algorithm that processes
	  eight blocks parallel using the AVX instruction set.

	  See also:
	  <http://www.cl.cam.ac.uk/~rja14/serpent.html>
1241

1242 1243 1244 1245 1246
config CRYPTO_SERPENT_AVX2_X86_64
	tristate "Serpent cipher algorithm (x86_64/AVX2)"
	depends on X86 && 64BIT
	select CRYPTO_ALGAPI
	select CRYPTO_CRYPTD
1247
	select CRYPTO_ABLK_HELPER
1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264
	select CRYPTO_GLUE_HELPER_X86
	select CRYPTO_SERPENT
	select CRYPTO_SERPENT_AVX_X86_64
	select CRYPTO_LRW
	select CRYPTO_XTS
	help
	  Serpent cipher algorithm, by Anderson, Biham & Knudsen.

	  Keys are allowed to be from 0 to 256 bits in length, in steps
	  of 8 bits.

	  This module provides Serpent cipher algorithm that processes 16
	  blocks parallel using AVX2 instruction set.

	  See also:
	  <http://www.cl.cam.ac.uk/~rja14/serpent.html>

1265 1266
config CRYPTO_TEA
	tristate "TEA, XTEA and XETA cipher algorithms"
1267
	select CRYPTO_ALGAPI
L
Linus Torvalds 已提交
1268
	help
1269
	  TEA cipher algorithm.
L
Linus Torvalds 已提交
1270

1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283
	  Tiny Encryption Algorithm is a simple cipher that uses
	  many rounds for security.  It is very fast and uses
	  little memory.

	  Xtendend Tiny Encryption Algorithm is a modification to
	  the TEA algorithm to address a potential key weakness
	  in the TEA algorithm.

	  Xtendend Encryption Tiny Algorithm is a mis-implementation
	  of the XTEA algorithm for compatibility purposes.

config CRYPTO_TWOFISH
	tristate "Twofish cipher algorithm"
1284
	select CRYPTO_ALGAPI
1285
	select CRYPTO_TWOFISH_COMMON
1286
	help
1287
	  Twofish cipher algorithm.
1288

1289 1290 1291 1292
	  Twofish was submitted as an AES (Advanced Encryption Standard)
	  candidate cipher by researchers at CounterPane Systems.  It is a
	  16 round block cipher supporting key sizes of 128, 192, and 256
	  bits.
1293

1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314
	  See also:
	  <http://www.schneier.com/twofish.html>

config CRYPTO_TWOFISH_COMMON
	tristate
	help
	  Common parts of the Twofish cipher algorithm shared by the
	  generic c and the assembler implementations.

config CRYPTO_TWOFISH_586
	tristate "Twofish cipher algorithms (i586)"
	depends on (X86 || UML_X86) && !64BIT
	select CRYPTO_ALGAPI
	select CRYPTO_TWOFISH_COMMON
	help
	  Twofish cipher algorithm.

	  Twofish was submitted as an AES (Advanced Encryption Standard)
	  candidate cipher by researchers at CounterPane Systems.  It is a
	  16 round block cipher supporting key sizes of 128, 192, and 256
	  bits.
1315 1316

	  See also:
1317
	  <http://www.schneier.com/twofish.html>
1318

1319 1320 1321
config CRYPTO_TWOFISH_X86_64
	tristate "Twofish cipher algorithm (x86_64)"
	depends on (X86 || UML_X86) && 64BIT
1322
	select CRYPTO_ALGAPI
1323
	select CRYPTO_TWOFISH_COMMON
L
Linus Torvalds 已提交
1324
	help
1325
	  Twofish cipher algorithm (x86_64).
L
Linus Torvalds 已提交
1326

1327 1328 1329 1330 1331 1332 1333 1334
	  Twofish was submitted as an AES (Advanced Encryption Standard)
	  candidate cipher by researchers at CounterPane Systems.  It is a
	  16 round block cipher supporting key sizes of 128, 192, and 256
	  bits.

	  See also:
	  <http://www.schneier.com/twofish.html>

1335 1336
config CRYPTO_TWOFISH_X86_64_3WAY
	tristate "Twofish cipher algorithm (x86_64, 3-way parallel)"
1337
	depends on X86 && 64BIT
1338 1339 1340
	select CRYPTO_ALGAPI
	select CRYPTO_TWOFISH_COMMON
	select CRYPTO_TWOFISH_X86_64
1341
	select CRYPTO_GLUE_HELPER_X86
1342 1343
	select CRYPTO_LRW
	select CRYPTO_XTS
1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357
	help
	  Twofish cipher algorithm (x86_64, 3-way parallel).

	  Twofish was submitted as an AES (Advanced Encryption Standard)
	  candidate cipher by researchers at CounterPane Systems.  It is a
	  16 round block cipher supporting key sizes of 128, 192, and 256
	  bits.

	  This module provides Twofish cipher algorithm that processes three
	  blocks parallel, utilizing resources of out-of-order CPUs better.

	  See also:
	  <http://www.schneier.com/twofish.html>

1358 1359 1360 1361 1362
config CRYPTO_TWOFISH_AVX_X86_64
	tristate "Twofish cipher algorithm (x86_64/AVX)"
	depends on X86 && 64BIT
	select CRYPTO_ALGAPI
	select CRYPTO_CRYPTD
1363
	select CRYPTO_ABLK_HELPER
1364
	select CRYPTO_GLUE_HELPER_X86
1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383
	select CRYPTO_TWOFISH_COMMON
	select CRYPTO_TWOFISH_X86_64
	select CRYPTO_TWOFISH_X86_64_3WAY
	select CRYPTO_LRW
	select CRYPTO_XTS
	help
	  Twofish cipher algorithm (x86_64/AVX).

	  Twofish was submitted as an AES (Advanced Encryption Standard)
	  candidate cipher by researchers at CounterPane Systems.  It is a
	  16 round block cipher supporting key sizes of 128, 192, and 256
	  bits.

	  This module provides the Twofish cipher algorithm that processes
	  eight blocks parallel using the AVX Instruction Set.

	  See also:
	  <http://www.schneier.com/twofish.html>

1384 1385 1386 1387 1388 1389 1390
comment "Compression"

config CRYPTO_DEFLATE
	tristate "Deflate compression algorithm"
	select CRYPTO_ALGAPI
	select ZLIB_INFLATE
	select ZLIB_DEFLATE
H
Herbert Xu 已提交
1391
	help
1392 1393 1394 1395
	  This is the Deflate algorithm (RFC1951), specified for use in
	  IPSec with the IPCOMP protocol (RFC3173, RFC2394).

	  You will most probably want this if using IPSec.
H
Herbert Xu 已提交
1396

1397 1398 1399 1400 1401 1402 1403 1404 1405
config CRYPTO_ZLIB
	tristate "Zlib compression algorithm"
	select CRYPTO_PCOMP
	select ZLIB_INFLATE
	select ZLIB_DEFLATE
	select NLATTR
	help
	  This is the zlib algorithm.

1406 1407 1408 1409 1410 1411 1412 1413
config CRYPTO_LZO
	tristate "LZO compression algorithm"
	select CRYPTO_ALGAPI
	select LZO_COMPRESS
	select LZO_DECOMPRESS
	help
	  This is the LZO algorithm.

1414 1415
config CRYPTO_842
	tristate "842 compression algorithm"
1416 1417 1418
	select CRYPTO_ALGAPI
	select 842_COMPRESS
	select 842_DECOMPRESS
1419 1420
	help
	  This is the 842 algorithm.
C
Chanho Min 已提交
1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436

config CRYPTO_LZ4
	tristate "LZ4 compression algorithm"
	select CRYPTO_ALGAPI
	select LZ4_COMPRESS
	select LZ4_DECOMPRESS
	help
	  This is the LZ4 algorithm.

config CRYPTO_LZ4HC
	tristate "LZ4HC compression algorithm"
	select CRYPTO_ALGAPI
	select LZ4HC_COMPRESS
	select LZ4_DECOMPRESS
	help
	  This is the LZ4 high compression mode algorithm.
1437

1438 1439 1440 1441
comment "Random Number Generation"

config CRYPTO_ANSI_CPRNG
	tristate "Pseudo Random Number Generation for Cryptographic modules"
1442
	default m
1443 1444 1445 1446 1447
	select CRYPTO_AES
	select CRYPTO_RNG
	help
	  This option enables the generic pseudo random number generator
	  for cryptographic modules.  Uses the Algorithm specified in
1448 1449
	  ANSI X9.31 A.2.4. Note that this option must be enabled if
	  CRYPTO_FIPS is selected
1450

1451
menuconfig CRYPTO_DRBG_MENU
1452 1453 1454 1455 1456
	tristate "NIST SP800-90A DRBG"
	help
	  NIST SP800-90A compliant DRBG. In the following submenu, one or
	  more of the DRBG types must be selected.

1457
if CRYPTO_DRBG_MENU
1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477

config CRYPTO_DRBG_HMAC
	bool "Enable HMAC DRBG"
	default y
	select CRYPTO_HMAC
	help
	  Enable the HMAC DRBG variant as defined in NIST SP800-90A.

config CRYPTO_DRBG_HASH
	bool "Enable Hash DRBG"
	select CRYPTO_HASH
	help
	  Enable the Hash DRBG variant as defined in NIST SP800-90A.

config CRYPTO_DRBG_CTR
	bool "Enable CTR DRBG"
	select CRYPTO_AES
	help
	  Enable the CTR DRBG variant as defined in NIST SP800-90A.

1478 1479 1480 1481 1482 1483
config CRYPTO_DRBG
	tristate
	default CRYPTO_DRBG_MENU if (CRYPTO_DRBG_HMAC || CRYPTO_DRBG_HASH || CRYPTO_DRBG_CTR)
	select CRYPTO_RNG

endif	# if CRYPTO_DRBG_MENU
1484

1485 1486 1487
config CRYPTO_USER_API
	tristate

1488 1489
config CRYPTO_USER_API_HASH
	tristate "User-space interface for hash algorithms"
1490
	depends on NET
1491 1492 1493 1494 1495 1496
	select CRYPTO_HASH
	select CRYPTO_USER_API
	help
	  This option enables the user-spaces interface for hash
	  algorithms.

1497 1498
config CRYPTO_USER_API_SKCIPHER
	tristate "User-space interface for symmetric key cipher algorithms"
1499
	depends on NET
1500 1501 1502 1503 1504 1505
	select CRYPTO_BLKCIPHER
	select CRYPTO_USER_API
	help
	  This option enables the user-spaces interface for symmetric
	  key cipher algorithms.

1506 1507 1508 1509 1510 1511 1512 1513 1514
config CRYPTO_USER_API_RNG
	tristate "User-space interface for random number generator algorithms"
	depends on NET
	select CRYPTO_RNG
	select CRYPTO_USER_API
	help
	  This option enables the user-spaces interface for random
	  number generator algorithms.

1515 1516 1517 1518 1519 1520 1521 1522 1523
config CRYPTO_USER_API_AEAD
	tristate "User-space interface for AEAD cipher algorithms"
	depends on NET
	select CRYPTO_AEAD
	select CRYPTO_USER_API
	help
	  This option enables the user-spaces interface for AEAD
	  cipher algorithms.

1524 1525 1526
config CRYPTO_HASH_INFO
	bool

L
Linus Torvalds 已提交
1527
source "drivers/crypto/Kconfig"
1528
source crypto/asymmetric_keys/Kconfig
L
Linus Torvalds 已提交
1529

1530
endif	# if CRYPTO