blk-mq-tag.c 13.6 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12
/*
 * Fast and scalable bitmap tagging variant. Uses sparser bitmaps spread
 * over multiple cachelines to avoid ping-pong between multiple submitters
 * or submitter and completer. Uses rolling wakeups to avoid falling of
 * the scaling cliff when we run out of tags and have to start putting
 * submitters to sleep.
 *
 * Uses active queue tracking to support fairer distribution of tags
 * between multiple submitters when a shared tag map is used.
 *
 * Copyright (C) 2013-2014 Jens Axboe
 */
13 14
#include <linux/kernel.h>
#include <linux/module.h>
15
#include <linux/random.h>
16 17 18 19 20 21

#include <linux/blk-mq.h>
#include "blk.h"
#include "blk-mq.h"
#include "blk-mq-tag.h"

22 23 24 25 26
static bool bt_has_free_tags(struct blk_mq_bitmap_tags *bt)
{
	int i;

	for (i = 0; i < bt->map_nr; i++) {
27
		struct blk_align_bitmap *bm = &bt->map[i];
28 29 30 31 32 33 34 35
		int ret;

		ret = find_first_zero_bit(&bm->word, bm->depth);
		if (ret < bm->depth)
			return true;
	}

	return false;
36 37 38 39
}

bool blk_mq_has_free_tags(struct blk_mq_tags *tags)
{
40 41 42 43 44 45
	if (!tags)
		return true;

	return bt_has_free_tags(&tags->bitmap_tags);
}

46
static inline int bt_index_inc(int index)
47
{
48 49 50 51 52 53 54 55
	return (index + 1) & (BT_WAIT_QUEUES - 1);
}

static inline void bt_index_atomic_inc(atomic_t *index)
{
	int old = atomic_read(index);
	int new = bt_index_inc(old);
	atomic_cmpxchg(index, old, new);
56 57 58 59 60 61 62 63 64 65 66 67 68 69 70
}

/*
 * If a previously inactive queue goes active, bump the active user count.
 */
bool __blk_mq_tag_busy(struct blk_mq_hw_ctx *hctx)
{
	if (!test_bit(BLK_MQ_S_TAG_ACTIVE, &hctx->state) &&
	    !test_and_set_bit(BLK_MQ_S_TAG_ACTIVE, &hctx->state))
		atomic_inc(&hctx->tags->active_queues);

	return true;
}

/*
71
 * Wakeup all potentially sleeping on normal (non-reserved) tags
72
 */
73
static void blk_mq_tag_wakeup_all(struct blk_mq_tags *tags)
74 75 76 77 78
{
	struct blk_mq_bitmap_tags *bt;
	int i, wake_index;

	bt = &tags->bitmap_tags;
79
	wake_index = atomic_read(&bt->wake_index);
80 81 82 83 84 85
	for (i = 0; i < BT_WAIT_QUEUES; i++) {
		struct bt_wait_state *bs = &bt->bs[wake_index];

		if (waitqueue_active(&bs->wait))
			wake_up(&bs->wait);

86
		wake_index = bt_index_inc(wake_index);
87 88 89
	}
}

90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105
/*
 * If a previously busy queue goes inactive, potential waiters could now
 * be allowed to queue. Wake them up and check.
 */
void __blk_mq_tag_idle(struct blk_mq_hw_ctx *hctx)
{
	struct blk_mq_tags *tags = hctx->tags;

	if (!test_and_clear_bit(BLK_MQ_S_TAG_ACTIVE, &hctx->state))
		return;

	atomic_dec(&tags->active_queues);

	blk_mq_tag_wakeup_all(tags);
}

106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136
/*
 * For shared tag users, we track the number of currently active users
 * and attempt to provide a fair share of the tag depth for each of them.
 */
static inline bool hctx_may_queue(struct blk_mq_hw_ctx *hctx,
				  struct blk_mq_bitmap_tags *bt)
{
	unsigned int depth, users;

	if (!hctx || !(hctx->flags & BLK_MQ_F_TAG_SHARED))
		return true;
	if (!test_bit(BLK_MQ_S_TAG_ACTIVE, &hctx->state))
		return true;

	/*
	 * Don't try dividing an ant
	 */
	if (bt->depth == 1)
		return true;

	users = atomic_read(&hctx->tags->active_queues);
	if (!users)
		return true;

	/*
	 * Allow at least some tags
	 */
	depth = max((bt->depth + users - 1) / users, 4U);
	return atomic_read(&hctx->nr_active) < depth;
}

137
static int __bt_get_word(struct blk_align_bitmap *bm, unsigned int last_tag)
138 139 140
{
	int tag, org_last_tag, end;

141
	org_last_tag = last_tag;
142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174
	end = bm->depth;
	do {
restart:
		tag = find_next_zero_bit(&bm->word, end, last_tag);
		if (unlikely(tag >= end)) {
			/*
			 * We started with an offset, start from 0 to
			 * exhaust the map.
			 */
			if (org_last_tag && last_tag) {
				end = last_tag;
				last_tag = 0;
				goto restart;
			}
			return -1;
		}
		last_tag = tag + 1;
	} while (test_and_set_bit_lock(tag, &bm->word));

	return tag;
}

/*
 * Straight forward bitmap tag implementation, where each bit is a tag
 * (cleared == free, and set == busy). The small twist is using per-cpu
 * last_tag caches, which blk-mq stores in the blk_mq_ctx software queue
 * contexts. This enables us to drastically limit the space searched,
 * without dirtying an extra shared cacheline like we would if we stored
 * the cache value inside the shared blk_mq_bitmap_tags structure. On top
 * of that, each word of tags is in a separate cacheline. This means that
 * multiple users will tend to stick to different cachelines, at least
 * until the map is exhausted.
 */
175 176
static int __bt_get(struct blk_mq_hw_ctx *hctx, struct blk_mq_bitmap_tags *bt,
		    unsigned int *tag_cache)
177 178 179 180
{
	unsigned int last_tag, org_last_tag;
	int index, i, tag;

181 182 183
	if (!hctx_may_queue(hctx, bt))
		return -1;

184
	last_tag = org_last_tag = *tag_cache;
185
	index = TAG_TO_INDEX(bt, last_tag);
186 187

	for (i = 0; i < bt->map_nr; i++) {
188
		tag = __bt_get_word(&bt->map[index], TAG_TO_BIT(bt, last_tag));
189
		if (tag != -1) {
190
			tag += (index << bt->bits_per_word);
191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221
			goto done;
		}

		last_tag = 0;
		if (++index >= bt->map_nr)
			index = 0;
	}

	*tag_cache = 0;
	return -1;

	/*
	 * Only update the cache from the allocation path, if we ended
	 * up using the specific cached tag.
	 */
done:
	if (tag == org_last_tag) {
		last_tag = tag + 1;
		if (last_tag >= bt->depth - 1)
			last_tag = 0;

		*tag_cache = last_tag;
	}

	return tag;
}

static struct bt_wait_state *bt_wait_ptr(struct blk_mq_bitmap_tags *bt,
					 struct blk_mq_hw_ctx *hctx)
{
	struct bt_wait_state *bs;
222
	int wait_index;
223 224 225 226

	if (!hctx)
		return &bt->bs[0];

227 228 229
	wait_index = atomic_read(&hctx->wait_index);
	bs = &bt->bs[wait_index];
	bt_index_atomic_inc(&hctx->wait_index);
230
	return bs;
231 232
}

233 234 235 236
static int bt_get(struct blk_mq_alloc_data *data,
		struct blk_mq_bitmap_tags *bt,
		struct blk_mq_hw_ctx *hctx,
		unsigned int *last_tag)
237
{
238 239
	struct bt_wait_state *bs;
	DEFINE_WAIT(wait);
240 241
	int tag;

242
	tag = __bt_get(hctx, bt, last_tag);
243 244 245
	if (tag != -1)
		return tag;

246
	if (!(data->gfp & __GFP_WAIT))
247 248 249 250 251 252 253 254 255
		return -1;

	bs = bt_wait_ptr(bt, hctx);
	do {
		bool was_empty;

		was_empty = list_empty(&wait.task_list);
		prepare_to_wait(&bs->wait, &wait, TASK_UNINTERRUPTIBLE);

256
		tag = __bt_get(hctx, bt, last_tag);
257 258 259 260 261 262
		if (tag != -1)
			break;

		if (was_empty)
			atomic_set(&bs->wait_cnt, bt->wake_cnt);

263 264
		blk_mq_put_ctx(data->ctx);

265
		io_schedule();
266 267 268 269 270 271 272 273 274 275 276 277 278

		data->ctx = blk_mq_get_ctx(data->q);
		data->hctx = data->q->mq_ops->map_queue(data->q,
				data->ctx->cpu);
		if (data->reserved) {
			bt = &data->hctx->tags->breserved_tags;
		} else {
			last_tag = &data->ctx->last_tag;
			hctx = data->hctx;
			bt = &hctx->tags->bitmap_tags;
		}
		finish_wait(&bs->wait, &wait);
		bs = bt_wait_ptr(bt, hctx);
279 280 281 282 283 284
	} while (1);

	finish_wait(&bs->wait, &wait);
	return tag;
}

285
static unsigned int __blk_mq_get_tag(struct blk_mq_alloc_data *data)
286 287 288
{
	int tag;

289 290
	tag = bt_get(data, &data->hctx->tags->bitmap_tags, data->hctx,
			&data->ctx->last_tag);
291
	if (tag >= 0)
292
		return tag + data->hctx->tags->nr_reserved_tags;
293 294

	return BLK_MQ_TAG_FAIL;
295 296
}

297
static unsigned int __blk_mq_get_reserved_tag(struct blk_mq_alloc_data *data)
298
{
299
	int tag, zero = 0;
300

301
	if (unlikely(!data->hctx->tags->nr_reserved_tags)) {
302 303 304 305
		WARN_ON_ONCE(1);
		return BLK_MQ_TAG_FAIL;
	}

306
	tag = bt_get(data, &data->hctx->tags->breserved_tags, NULL, &zero);
307 308
	if (tag < 0)
		return BLK_MQ_TAG_FAIL;
309

310 311 312
	return tag;
}

313
unsigned int blk_mq_get_tag(struct blk_mq_alloc_data *data)
314
{
315 316
	if (!data->reserved)
		return __blk_mq_get_tag(data);
317

318
	return __blk_mq_get_reserved_tag(data);
319 320
}

321 322 323 324
static struct bt_wait_state *bt_wake_ptr(struct blk_mq_bitmap_tags *bt)
{
	int i, wake_index;

325
	wake_index = atomic_read(&bt->wake_index);
326 327 328 329
	for (i = 0; i < BT_WAIT_QUEUES; i++) {
		struct bt_wait_state *bs = &bt->bs[wake_index];

		if (waitqueue_active(&bs->wait)) {
330 331 332
			int o = atomic_read(&bt->wake_index);
			if (wake_index != o)
				atomic_cmpxchg(&bt->wake_index, o, wake_index);
333 334 335 336

			return bs;
		}

337
		wake_index = bt_index_inc(wake_index);
338 339 340 341 342 343 344
	}

	return NULL;
}

static void bt_clear_tag(struct blk_mq_bitmap_tags *bt, unsigned int tag)
{
345
	const int index = TAG_TO_INDEX(bt, tag);
346 347
	struct bt_wait_state *bs;

348 349 350 351 352
	/*
	 * The unlock memory barrier need to order access to req in free
	 * path and clearing tag bit
	 */
	clear_bit_unlock(TAG_TO_BIT(bt, tag), &bt->map[index].word);
353 354 355 356

	bs = bt_wake_ptr(bt);
	if (bs && atomic_dec_and_test(&bs->wait_cnt)) {
		atomic_set(&bs->wait_cnt, bt->wake_cnt);
357
		bt_index_atomic_inc(&bt->wake_index);
358 359 360 361
		wake_up(&bs->wait);
	}
}

362 363 364 365
static void __blk_mq_put_tag(struct blk_mq_tags *tags, unsigned int tag)
{
	BUG_ON(tag >= tags->nr_tags);

366
	bt_clear_tag(&tags->bitmap_tags, tag);
367 368 369 370 371 372 373
}

static void __blk_mq_put_reserved_tag(struct blk_mq_tags *tags,
				      unsigned int tag)
{
	BUG_ON(tag >= tags->nr_reserved_tags);

374
	bt_clear_tag(&tags->breserved_tags, tag);
375 376
}

377
void blk_mq_put_tag(struct blk_mq_hw_ctx *hctx, unsigned int tag,
378
		    unsigned int *last_tag)
379
{
380 381
	struct blk_mq_tags *tags = hctx->tags;

382 383 384 385 386 387
	if (tag >= tags->nr_reserved_tags) {
		const int real_tag = tag - tags->nr_reserved_tags;

		__blk_mq_put_tag(tags, real_tag);
		*last_tag = real_tag;
	} else
388 389 390
		__blk_mq_put_reserved_tag(tags, tag);
}

391 392
static void bt_for_each_free(struct blk_mq_bitmap_tags *bt,
			     unsigned long *free_map, unsigned int off)
393
{
394 395 396
	int i;

	for (i = 0; i < bt->map_nr; i++) {
397
		struct blk_align_bitmap *bm = &bt->map[i];
398 399 400 401 402 403 404 405 406 407 408
		int bit = 0;

		do {
			bit = find_next_zero_bit(&bm->word, bm->depth, bit);
			if (bit >= bm->depth)
				break;

			__set_bit(bit + off, free_map);
			bit++;
		} while (1);

409
		off += (1 << bt->bits_per_word);
410
	}
411 412 413 414 415 416 417 418 419 420 421 422 423
}

void blk_mq_tag_busy_iter(struct blk_mq_tags *tags,
			  void (*fn)(void *, unsigned long *), void *data)
{
	unsigned long *tag_map;
	size_t map_size;

	map_size = ALIGN(tags->nr_tags, BITS_PER_LONG) / BITS_PER_LONG;
	tag_map = kzalloc(map_size * sizeof(unsigned long), GFP_ATOMIC);
	if (!tag_map)
		return;

424
	bt_for_each_free(&tags->bitmap_tags, tag_map, tags->nr_reserved_tags);
425
	if (tags->nr_reserved_tags)
426
		bt_for_each_free(&tags->breserved_tags, tag_map, 0);
427 428 429 430

	fn(data, tag_map);
	kfree(tag_map);
}
431
EXPORT_SYMBOL(blk_mq_tag_busy_iter);
432

433 434 435 436 437
static unsigned int bt_unused_tags(struct blk_mq_bitmap_tags *bt)
{
	unsigned int i, used;

	for (i = 0, used = 0; i < bt->map_nr; i++) {
438
		struct blk_align_bitmap *bm = &bt->map[i];
439 440 441 442 443 444 445

		used += bitmap_weight(&bm->word, bm->depth);
	}

	return bt->depth - used;
}

446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467
static void bt_update_count(struct blk_mq_bitmap_tags *bt,
			    unsigned int depth)
{
	unsigned int tags_per_word = 1U << bt->bits_per_word;
	unsigned int map_depth = depth;

	if (depth) {
		int i;

		for (i = 0; i < bt->map_nr; i++) {
			bt->map[i].depth = min(map_depth, tags_per_word);
			map_depth -= bt->map[i].depth;
		}
	}

	bt->wake_cnt = BT_WAIT_BATCH;
	if (bt->wake_cnt > depth / 4)
		bt->wake_cnt = max(1U, depth / 4);

	bt->depth = depth;
}

468 469 470 471 472
static int bt_alloc(struct blk_mq_bitmap_tags *bt, unsigned int depth,
			int node, bool reserved)
{
	int i;

473 474
	bt->bits_per_word = ilog2(BITS_PER_LONG);

475 476 477 478 479
	/*
	 * Depth can be zero for reserved tags, that's not a failure
	 * condition.
	 */
	if (depth) {
480
		unsigned int nr, tags_per_word;
481 482 483 484 485 486 487 488 489 490 491 492 493 494 495

		tags_per_word = (1 << bt->bits_per_word);

		/*
		 * If the tag space is small, shrink the number of tags
		 * per word so we spread over a few cachelines, at least.
		 * If less than 4 tags, just forget about it, it's not
		 * going to work optimally anyway.
		 */
		if (depth >= 4) {
			while (tags_per_word * 4 > depth) {
				bt->bits_per_word--;
				tags_per_word = (1 << bt->bits_per_word);
			}
		}
496

497
		nr = ALIGN(depth, tags_per_word) / tags_per_word;
498
		bt->map = kzalloc_node(nr * sizeof(struct blk_align_bitmap),
499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514
						GFP_KERNEL, node);
		if (!bt->map)
			return -ENOMEM;

		bt->map_nr = nr;
	}

	bt->bs = kzalloc(BT_WAIT_QUEUES * sizeof(*bt->bs), GFP_KERNEL);
	if (!bt->bs) {
		kfree(bt->map);
		return -ENOMEM;
	}

	for (i = 0; i < BT_WAIT_QUEUES; i++)
		init_waitqueue_head(&bt->bs[i].wait);

515
	bt_update_count(bt, depth);
516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541
	return 0;
}

static void bt_free(struct blk_mq_bitmap_tags *bt)
{
	kfree(bt->map);
	kfree(bt->bs);
}

static struct blk_mq_tags *blk_mq_init_bitmap_tags(struct blk_mq_tags *tags,
						   int node)
{
	unsigned int depth = tags->nr_tags - tags->nr_reserved_tags;

	if (bt_alloc(&tags->bitmap_tags, depth, node, false))
		goto enomem;
	if (bt_alloc(&tags->breserved_tags, tags->nr_reserved_tags, node, true))
		goto enomem;

	return tags;
enomem:
	bt_free(&tags->bitmap_tags);
	kfree(tags);
	return NULL;
}

542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558
struct blk_mq_tags *blk_mq_init_tags(unsigned int total_tags,
				     unsigned int reserved_tags, int node)
{
	struct blk_mq_tags *tags;

	if (total_tags > BLK_MQ_TAG_MAX) {
		pr_err("blk-mq: tag depth too large\n");
		return NULL;
	}

	tags = kzalloc_node(sizeof(*tags), GFP_KERNEL, node);
	if (!tags)
		return NULL;

	tags->nr_tags = total_tags;
	tags->nr_reserved_tags = reserved_tags;

559
	return blk_mq_init_bitmap_tags(tags, node);
560 561 562 563
}

void blk_mq_free_tags(struct blk_mq_tags *tags)
{
564 565
	bt_free(&tags->bitmap_tags);
	bt_free(&tags->breserved_tags);
566 567 568
	kfree(tags);
}

569 570 571 572
void blk_mq_tag_init_last_tag(struct blk_mq_tags *tags, unsigned int *tag)
{
	unsigned int depth = tags->nr_tags - tags->nr_reserved_tags;

573
	*tag = prandom_u32() % depth;
574 575
}

576 577 578 579 580 581 582 583 584 585 586 587 588 589 590
int blk_mq_tag_update_depth(struct blk_mq_tags *tags, unsigned int tdepth)
{
	tdepth -= tags->nr_reserved_tags;
	if (tdepth > tags->nr_tags)
		return -EINVAL;

	/*
	 * Don't need (or can't) update reserved tags here, they remain
	 * static and should never need resizing.
	 */
	bt_update_count(&tags->bitmap_tags, tdepth);
	blk_mq_tag_wakeup_all(tags);
	return 0;
}

591 592 593
ssize_t blk_mq_tag_sysfs_show(struct blk_mq_tags *tags, char *page)
{
	char *orig_page = page;
594
	unsigned int free, res;
595 596 597 598

	if (!tags)
		return 0;

599 600 601 602
	page += sprintf(page, "nr_tags=%u, reserved_tags=%u, "
			"bits_per_word=%u\n",
			tags->nr_tags, tags->nr_reserved_tags,
			tags->bitmap_tags.bits_per_word);
603

604 605
	free = bt_unused_tags(&tags->bitmap_tags);
	res = bt_unused_tags(&tags->breserved_tags);
606

607
	page += sprintf(page, "nr_free=%u, nr_reserved=%u\n", free, res);
608
	page += sprintf(page, "active_queues=%u\n", atomic_read(&tags->active_queues));
609 610 611

	return page - orig_page;
}