i3000_edac.c 12.5 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493
/*
 * Intel 3000/3010 Memory Controller kernel module
 * Copyright (C) 2007 Akamai Technologies, Inc.
 * Shamelessly copied from:
 * 	Intel D82875P Memory Controller kernel module
 * 	(C) 2003 Linux Networx (http://lnxi.com)
 *
 * This file may be distributed under the terms of the
 * GNU General Public License.
 */

#include <linux/module.h>
#include <linux/init.h>
#include <linux/pci.h>
#include <linux/pci_ids.h>
#include <linux/slab.h>
#include "edac_core.h"

#define I3000_REVISION		"1.1"

#define EDAC_MOD_STR		"i3000_edac"

#define I3000_RANKS		8
#define I3000_RANKS_PER_CHANNEL	4
#define I3000_CHANNELS		2

/* Intel 3000 register addresses - device 0 function 0 - DRAM Controller */

#define I3000_MCHBAR		0x44	/* MCH Memory Mapped Register BAR */
#define I3000_MCHBAR_MASK	0xffffc000
#define I3000_MMR_WINDOW_SIZE	16384

#define I3000_EDEAP		0x70	/* Extended DRAM Error Address Pointer (8b)
					 *
					 * 7:1   reserved
					 * 0     bit 32 of address
					 */
#define I3000_DEAP		0x58	/* DRAM Error Address Pointer (32b)
					 *
					 * 31:7  address
					 * 6:1   reserved
					 * 0     Error channel 0/1
					 */
#define I3000_DEAP_GRAIN	(1 << 7)
#define I3000_DEAP_PFN(edeap, deap)	((((edeap) & 1) << (32 - PAGE_SHIFT)) | \
					((deap) >> PAGE_SHIFT))
#define I3000_DEAP_OFFSET(deap)		((deap) & ~(I3000_DEAP_GRAIN-1) & ~PAGE_MASK)
#define I3000_DEAP_CHANNEL(deap)	((deap) & 1)

#define I3000_DERRSYN		0x5c	/* DRAM Error Syndrome (8b)
					 *
					 *  7:0  DRAM ECC Syndrome
					 */

#define I3000_ERRSTS		0xc8	/* Error Status Register (16b)
					 *
					 * 15:12 reserved
					 * 11    MCH Thermal Sensor Event for SMI/SCI/SERR
					 * 10    reserved
					 *  9    LOCK to non-DRAM Memory Flag (LCKF)
					 *  8    Received Refresh Timeout Flag (RRTOF)
					 *  7:2  reserved
					 *  1    Multiple-bit DRAM ECC Error Flag (DMERR)
					 *  0    Single-bit DRAM ECC Error Flag (DSERR)
					 */
#define I3000_ERRSTS_BITS	0x0b03	/* bits which indicate errors */
#define I3000_ERRSTS_UE		0x0002
#define I3000_ERRSTS_CE		0x0001

#define I3000_ERRCMD		0xca	/* Error Command (16b)
					 *
					 * 15:12 reserved
					 * 11    SERR on MCH Thermal Sensor Event (TSESERR)
					 * 10    reserved
					 *  9    SERR on LOCK to non-DRAM Memory (LCKERR)
					 *  8    SERR on DRAM Refresh Timeout (DRTOERR)
					 *  7:2  reserved
					 *  1    SERR Multiple-Bit DRAM ECC Error (DMERR)
					 *  0    SERR on Single-Bit ECC Error (DSERR)
					 */

/* Intel  MMIO register space - device 0 function 0 - MMR space */

#define I3000_DRB_SHIFT 25	/* 32MiB grain */

#define I3000_C0DRB		0x100	/* Channel 0 DRAM Rank Boundary (8b x 4)
					 *
					 * 7:0   Channel 0 DRAM Rank Boundary Address
					 */
#define I3000_C1DRB		0x180	/* Channel 1 DRAM Rank Boundary (8b x 4)
					 *
					 * 7:0   Channel 1 DRAM Rank Boundary Address
					 */

#define I3000_C0DRA		0x108	/* Channel 0 DRAM Rank Attribute (8b x 2)
					 *
					 * 7     reserved
					 * 6:4   DRAM odd Rank Attribute
					 * 3     reserved
					 * 2:0   DRAM even Rank Attribute
					 *
					 * Each attribute defines the page
					 * size of the corresponding rank:
					 *     000: unpopulated
					 *     001: reserved
					 *     010: 4 KB
					 *     011: 8 KB
					 *     100: 16 KB
					 *     Others: reserved
					 */
#define I3000_C1DRA		0x188	/* Channel 1 DRAM Rank Attribute (8b x 2) */
#define ODD_RANK_ATTRIB(dra) (((dra) & 0x70) >> 4)
#define EVEN_RANK_ATTRIB(dra) ((dra) & 0x07)

#define I3000_C0DRC0		0x120	/* DRAM Controller Mode 0 (32b)
					 *
					 * 31:30 reserved
					 * 29    Initialization Complete (IC)
					 * 28:11 reserved
					 * 10:8  Refresh Mode Select (RMS)
					 * 7     reserved
					 * 6:4   Mode Select (SMS)
					 * 3:2   reserved
					 * 1:0   DRAM Type (DT)
					 */

#define I3000_C0DRC1		0x124	/* DRAM Controller Mode 1 (32b)
					 *
					 * 31    Enhanced Addressing Enable (ENHADE)
					 * 30:0  reserved
					 */


enum i3000p_chips {
	I3000 = 0,
};

struct i3000_dev_info {
	const char *ctl_name;
};

struct i3000_error_info {
	u16 errsts;
	u8 derrsyn;
	u8 edeap;
	u32 deap;
	u16 errsts2;
};

static const struct i3000_dev_info i3000_devs[] = {
	[I3000] = {
		     .ctl_name = "i3000"
	},
};

static struct pci_dev *mci_pdev = NULL;
static int i3000_registered = 1;

static void i3000_get_error_info(struct mem_ctl_info *mci,
		struct i3000_error_info *info)
{
	struct pci_dev *pdev;

	pdev = to_pci_dev(mci->dev);

	/*
	 * This is a mess because there is no atomic way to read all the
	 * registers at once and the registers can transition from CE being
	 * overwritten by UE.
	 */
	pci_read_config_word(pdev, I3000_ERRSTS, &info->errsts);
	if (!(info->errsts & I3000_ERRSTS_BITS))
		return;
	pci_read_config_byte(pdev, I3000_EDEAP, &info->edeap);
	pci_read_config_dword(pdev, I3000_DEAP, &info->deap);
	pci_read_config_byte(pdev, I3000_DERRSYN, &info->derrsyn);
	pci_read_config_word(pdev, I3000_ERRSTS, &info->errsts2);

	/*
	 * If the error is the same for both reads then the first set
	 * of reads is valid.  If there is a change then there is a CE
	 * with no info and the second set of reads is valid and
	 * should be UE info.
	 */
	if ((info->errsts ^ info->errsts2) & I3000_ERRSTS_BITS) {
			pci_read_config_byte(pdev, I3000_EDEAP,
					&info->edeap);
			pci_read_config_dword(pdev, I3000_DEAP,
					&info->deap);
			pci_read_config_byte(pdev, I3000_DERRSYN,
					&info->derrsyn);
	}

	/* Clear any error bits.
	 * (Yes, we really clear bits by writing 1 to them.)
	 */
	pci_write_bits16(pdev, I3000_ERRSTS, I3000_ERRSTS_BITS, I3000_ERRSTS_BITS);
}

static int i3000_process_error_info(struct mem_ctl_info *mci,
		struct i3000_error_info *info, int handle_errors)
{
	int row, multi_chan;
	int pfn, offset, channel;

	multi_chan = mci->csrows[0].nr_channels - 1;

	if (!(info->errsts & I3000_ERRSTS_BITS))
		return 0;

	if (!handle_errors)
		return 1;

	if ((info->errsts ^ info->errsts2) & I3000_ERRSTS_BITS) {
		edac_mc_handle_ce_no_info(mci, "UE overwrote CE");
		info->errsts = info->errsts2;
	}

	pfn = I3000_DEAP_PFN(info->edeap, info->deap);
	offset = I3000_DEAP_OFFSET(info->deap);
	channel = I3000_DEAP_CHANNEL(info->deap);

	row = edac_mc_find_csrow_by_page(mci, pfn);

	if (info->errsts & I3000_ERRSTS_UE)
		edac_mc_handle_ue(mci, pfn, offset, row, "i3000 UE");
	else
		edac_mc_handle_ce(mci, pfn, offset, info->derrsyn, row,
				       multi_chan ? channel : 0,
				       "i3000 CE");

	return 1;
}

static void i3000_check(struct mem_ctl_info *mci)
{
	struct i3000_error_info info;

	debugf1("MC%d: %s()\n", mci->mc_idx, __func__);
	i3000_get_error_info(mci, &info);
	i3000_process_error_info(mci, &info, 1);
}

static int i3000_is_interleaved(const unsigned char *c0dra,
				const unsigned char *c1dra,
				const unsigned char *c0drb,
				const unsigned char *c1drb)
{
	int i;

	/* If the channels aren't populated identically then
	 * we're not interleaved.
	 */
	for (i = 0; i < I3000_RANKS_PER_CHANNEL / 2; i++)
		if (ODD_RANK_ATTRIB(c0dra[i]) != ODD_RANK_ATTRIB(c1dra[i]) ||
		    EVEN_RANK_ATTRIB(c0dra[i]) != EVEN_RANK_ATTRIB(c1dra[i]))
			return 0;

	/* If the rank boundaries for the two channels are different
	 * then we're not interleaved.
	 */
	for (i = 0; i < I3000_RANKS_PER_CHANNEL; i++)
		if (c0drb[i] != c1drb[i])
			return 0;

	return 1;
}

static int i3000_probe1(struct pci_dev *pdev, int dev_idx)
{
	int rc;
	int i;
	struct mem_ctl_info *mci = NULL;
	unsigned long last_cumul_size;
	int interleaved, nr_channels;
	unsigned char dra[I3000_RANKS / 2], drb[I3000_RANKS];
	unsigned char *c0dra = dra, *c1dra = &dra[I3000_RANKS_PER_CHANNEL / 2];
	unsigned char *c0drb = drb, *c1drb = &drb[I3000_RANKS_PER_CHANNEL];
	unsigned long mchbar;
	void *window;

	debugf0("MC: %s()\n", __func__);

	pci_read_config_dword(pdev, I3000_MCHBAR, (u32 *)&mchbar);
	mchbar &= I3000_MCHBAR_MASK;
	window = ioremap_nocache(mchbar, I3000_MMR_WINDOW_SIZE);
	if (!window) {
		printk(KERN_ERR "i3000: cannot map mmio space at 0x%lx\n", mchbar);
		return -ENODEV;
	}

	c0dra[0] = readb(window + I3000_C0DRA + 0); /* ranks 0,1 */
	c0dra[1] = readb(window + I3000_C0DRA + 1); /* ranks 2,3 */
	c1dra[0] = readb(window + I3000_C1DRA + 0); /* ranks 0,1 */
	c1dra[1] = readb(window + I3000_C1DRA + 1); /* ranks 2,3 */

	for (i = 0; i < I3000_RANKS_PER_CHANNEL; i++) {
		c0drb[i] = readb(window + I3000_C0DRB + i);
		c1drb[i] = readb(window + I3000_C1DRB + i);
	}

	iounmap(window);

	/* Figure out how many channels we have.
	 *
	 * If we have what the datasheet calls "asymmetric channels"
	 * (essentially the same as what was called "virtual single
	 * channel mode" in the i82875) then it's a single channel as
	 * far as EDAC is concerned.
	 */
	interleaved = i3000_is_interleaved(c0dra, c1dra, c0drb, c1drb);
	nr_channels = interleaved ? 2 : 1;
	mci = edac_mc_alloc(0, I3000_RANKS / nr_channels, nr_channels);
	if (!mci)
		return -ENOMEM;

	debugf3("MC: %s(): init mci\n", __func__);

	mci->dev = &pdev->dev;
	mci->mtype_cap = MEM_FLAG_DDR2;

	mci->edac_ctl_cap = EDAC_FLAG_SECDED;
	mci->edac_cap = EDAC_FLAG_SECDED;

	mci->mod_name = EDAC_MOD_STR;
	mci->mod_ver = I3000_REVISION;
	mci->ctl_name = i3000_devs[dev_idx].ctl_name;
	mci->dev_name = pci_name(pdev);
	mci->edac_check = i3000_check;
	mci->ctl_page_to_phys = NULL;

	/*
	 * The dram rank boundary (DRB) reg values are boundary addresses
	 * for each DRAM rank with a granularity of 32MB.  DRB regs are
	 * cumulative; the last one will contain the total memory
	 * contained in all ranks.
	 *
	 * If we're in interleaved mode then we're only walking through
	 * the ranks of controller 0, so we double all the values we see.
	 */
	for (last_cumul_size = i = 0; i < mci->nr_csrows; i++) {
		u8 value;
		u32 cumul_size;
		struct csrow_info *csrow = &mci->csrows[i];

		value = drb[i];
		cumul_size = value << (I3000_DRB_SHIFT - PAGE_SHIFT);
		if (interleaved)
			cumul_size <<= 1;
		debugf3("MC: %s(): (%d) cumul_size 0x%x\n",
			__func__, i, cumul_size);
		if (cumul_size == last_cumul_size) {
			csrow->mtype = MEM_EMPTY;
			continue;
		}

		csrow->first_page = last_cumul_size;
		csrow->last_page = cumul_size - 1;
		csrow->nr_pages = cumul_size - last_cumul_size;
		last_cumul_size = cumul_size;
		csrow->grain = I3000_DEAP_GRAIN;
		csrow->mtype = MEM_DDR2;
		csrow->dtype = DEV_UNKNOWN;
		csrow->edac_mode = EDAC_UNKNOWN;
	}

	/* Clear any error bits.
	 * (Yes, we really clear bits by writing 1 to them.)
	 */
	pci_write_bits16(pdev, I3000_ERRSTS, I3000_ERRSTS_BITS, I3000_ERRSTS_BITS);

	rc = -ENODEV;
	if (edac_mc_add_mc(mci, 0)) {
		debugf3("MC: %s(): failed edac_mc_add_mc()\n", __func__);
		goto fail;
	}

	/* get this far and it's successful */
	debugf3("MC: %s(): success\n", __func__);
	return 0;

      fail:
	if (mci)
		edac_mc_free(mci);

	return rc;
}

/* returns count (>= 0), or negative on error */
static int __devinit i3000_init_one(struct pci_dev *pdev,
				      const struct pci_device_id *ent)
{
	int rc;

	debugf0("MC: %s()\n", __func__);

	if (pci_enable_device(pdev) < 0)
		return -EIO;

	rc = i3000_probe1(pdev, ent->driver_data);
	if (mci_pdev == NULL)
		mci_pdev = pci_dev_get(pdev);

	return rc;
}

static void __devexit i3000_remove_one(struct pci_dev *pdev)
{
	struct mem_ctl_info *mci;

	debugf0("%s()\n", __func__);

	if ((mci = edac_mc_del_mc(&pdev->dev)) == NULL)
		return;

	edac_mc_free(mci);
}

static const struct pci_device_id i3000_pci_tbl[] __devinitdata = {
	{
		PCI_VEND_DEV(INTEL, 3000_HB), PCI_ANY_ID, PCI_ANY_ID, 0, 0,
	 	I3000
	},
	{
		0,
	}	/* 0 terminated list. */
};

MODULE_DEVICE_TABLE(pci, i3000_pci_tbl);

static struct pci_driver i3000_driver = {
	.name = EDAC_MOD_STR,
	.probe = i3000_init_one,
	.remove = __devexit_p(i3000_remove_one),
	.id_table = i3000_pci_tbl,
};

static int __init i3000_init(void)
{
	int pci_rc;

	debugf3("MC: %s()\n", __func__);
	pci_rc = pci_register_driver(&i3000_driver);
	if (pci_rc < 0)
		goto fail0;

	if (mci_pdev == NULL) {
		i3000_registered = 0;
		mci_pdev = pci_get_device(PCI_VENDOR_ID_INTEL,
					  PCI_DEVICE_ID_INTEL_3000_HB, NULL);
		if (!mci_pdev) {
			debugf0("i3000 pci_get_device fail\n");
			pci_rc = -ENODEV;
			goto fail1;
		}

		pci_rc = i3000_init_one(mci_pdev, i3000_pci_tbl);
		if (pci_rc < 0) {
			debugf0("i3000 init fail\n");
			pci_rc = -ENODEV;
			goto fail1;
		}
	}

	return 0;

fail1:
	pci_unregister_driver(&i3000_driver);

fail0:
	if (mci_pdev)
		pci_dev_put(mci_pdev);

	return pci_rc;
}

static void __exit i3000_exit(void)
{
	debugf3("MC: %s()\n", __func__);

	pci_unregister_driver(&i3000_driver);
	if (!i3000_registered) {
		i3000_remove_one(mci_pdev);
		pci_dev_put(mci_pdev);
	}
}

module_init(i3000_init);
module_exit(i3000_exit);

MODULE_LICENSE("GPL");
MODULE_AUTHOR("Akamai Technologies Arthur Ulfeldt/Jason Uhlenkott");
MODULE_DESCRIPTION("MC support for Intel 3000 memory hub controllers");