sched_fair.c 25.5 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
/*
 * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH)
 *
 *  Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
 *
 *  Interactivity improvements by Mike Galbraith
 *  (C) 2007 Mike Galbraith <efault@gmx.de>
 *
 *  Various enhancements by Dmitry Adamushko.
 *  (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com>
 *
 *  Group scheduling enhancements by Srivatsa Vaddagiri
 *  Copyright IBM Corporation, 2007
 *  Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
 *
 *  Scaled math optimizations by Thomas Gleixner
 *  Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de>
18 19 20
 *
 *  Adaptive scheduling granularity, math enhancements by Peter Zijlstra
 *  Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
21 22 23
 */

/*
24 25
 * Targeted preemption latency for CPU-bound tasks:
 * (default: 20ms, units: nanoseconds)
26
 *
27 28 29 30
 * NOTE: this latency value is not the same as the concept of
 * 'timeslice length' - timeslices in CFS are of variable length.
 * (to see the precise effective timeslice length of your workload,
 *  run vmstat and monitor the context-switches field)
31 32 33 34
 *
 * On SMP systems the value of this is multiplied by the log2 of the
 * number of CPUs. (i.e. factor 2x on 2-way systems, 3x on 4-way
 * systems, 4x on 8-way systems, 5x on 16-way systems, etc.)
35
 * Targeted preemption latency for CPU-bound tasks:
36
 */
37 38 39 40 41 42 43
const_debug unsigned int sysctl_sched_latency = 20000000ULL;

/*
 * After fork, child runs first. (default) If set to 0 then
 * parent will (try to) run first.
 */
const_debug unsigned int sysctl_sched_child_runs_first = 1;
44 45 46 47 48

/*
 * Minimal preemption granularity for CPU-bound tasks:
 * (default: 2 msec, units: nanoseconds)
 */
49
unsigned int sysctl_sched_min_granularity __read_mostly = 2000000ULL;
50

51 52 53 54 55 56 57 58
/*
 * sys_sched_yield() compat mode
 *
 * This option switches the agressive yield implementation of the
 * old scheduler back on.
 */
unsigned int __read_mostly sysctl_sched_compat_yield;

59 60
/*
 * SCHED_BATCH wake-up granularity.
61
 * (default: 25 msec, units: nanoseconds)
62 63 64 65 66
 *
 * This option delays the preemption effects of decoupled workloads
 * and reduces their over-scheduling. Synchronous workloads will still
 * have immediate wakeup/sleep latencies.
 */
67
const_debug unsigned int sysctl_sched_batch_wakeup_granularity = 25000000UL;
68 69 70 71 72 73 74 75 76

/*
 * SCHED_OTHER wake-up granularity.
 * (default: 1 msec, units: nanoseconds)
 *
 * This option delays the preemption effects of decoupled workloads
 * and reduces their over-scheduling. Synchronous workloads will still
 * have immediate wakeup/sleep latencies.
 */
I
Ingo Molnar 已提交
77
const_debug unsigned int sysctl_sched_wakeup_granularity = 2000000UL;
78 79 80 81 82 83 84

extern struct sched_class fair_sched_class;

/**************************************************************
 * CFS operations on generic schedulable entities:
 */

85
#ifdef CONFIG_FAIR_GROUP_SCHED
86

87
/* cpu runqueue to which this cfs_rq is attached */
88 89
static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
{
90
	return cfs_rq->rq;
91 92
}

93 94
/* An entity is a task if it doesn't "own" a runqueue */
#define entity_is_task(se)	(!se->my_q)
95

96
#else	/* CONFIG_FAIR_GROUP_SCHED */
97

98 99 100
static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
{
	return container_of(cfs_rq, struct rq, cfs);
101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116
}

#define entity_is_task(se)	1

#endif	/* CONFIG_FAIR_GROUP_SCHED */

static inline struct task_struct *task_of(struct sched_entity *se)
{
	return container_of(se, struct task_struct, se);
}


/**************************************************************
 * Scheduling class tree data structure manipulation methods:
 */

117 118 119 120 121 122 123 124 125 126
static inline u64
max_vruntime(u64 min_vruntime, u64 vruntime)
{
	if ((vruntime > min_vruntime) ||
	    (min_vruntime > (1ULL << 61) && vruntime < (1ULL << 50)))
		min_vruntime = vruntime;

	return min_vruntime;
}

I
Ingo Molnar 已提交
127 128 129 130 131 132
static inline void
set_leftmost(struct cfs_rq *cfs_rq, struct rb_node *leftmost)
{
	struct sched_entity *se;

	cfs_rq->rb_leftmost = leftmost;
133
	if (leftmost)
I
Ingo Molnar 已提交
134 135 136
		se = rb_entry(leftmost, struct sched_entity, run_node);
}

137 138
static inline s64
entity_key(struct cfs_rq *cfs_rq, struct sched_entity *se)
139
{
140
	return se->vruntime - cfs_rq->min_vruntime;
141 142
}

143 144 145
/*
 * Enqueue an entity into the rb-tree:
 */
146
static void
147 148 149 150 151
__enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
{
	struct rb_node **link = &cfs_rq->tasks_timeline.rb_node;
	struct rb_node *parent = NULL;
	struct sched_entity *entry;
152
	s64 key = entity_key(cfs_rq, se);
153 154 155 156 157 158 159 160 161 162 163 164
	int leftmost = 1;

	/*
	 * Find the right place in the rbtree:
	 */
	while (*link) {
		parent = *link;
		entry = rb_entry(parent, struct sched_entity, run_node);
		/*
		 * We dont care about collisions. Nodes with
		 * the same key stay together.
		 */
165
		if (key < entity_key(cfs_rq, entry)) {
166 167 168 169 170 171 172 173 174 175 176 177
			link = &parent->rb_left;
		} else {
			link = &parent->rb_right;
			leftmost = 0;
		}
	}

	/*
	 * Maintain a cache of leftmost tree entries (it is frequently
	 * used):
	 */
	if (leftmost)
I
Ingo Molnar 已提交
178
		set_leftmost(cfs_rq, &se->run_node);
179 180 181 182 183

	rb_link_node(&se->run_node, parent, link);
	rb_insert_color(&se->run_node, &cfs_rq->tasks_timeline);
}

184
static void
185 186 187
__dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
{
	if (cfs_rq->rb_leftmost == &se->run_node)
I
Ingo Molnar 已提交
188 189
		set_leftmost(cfs_rq, rb_next(&se->run_node));

190 191 192 193 194 195 196 197 198 199 200 201 202
	rb_erase(&se->run_node, &cfs_rq->tasks_timeline);
}

static inline struct rb_node *first_fair(struct cfs_rq *cfs_rq)
{
	return cfs_rq->rb_leftmost;
}

static struct sched_entity *__pick_next_entity(struct cfs_rq *cfs_rq)
{
	return rb_entry(first_fair(cfs_rq), struct sched_entity, run_node);
}

203 204 205 206 207 208 209 210 211 212 213 214 215 216 217
static inline struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq)
{
	struct rb_node **link = &cfs_rq->tasks_timeline.rb_node;
	struct sched_entity *se = NULL;
	struct rb_node *parent;

	while (*link) {
		parent = *link;
		se = rb_entry(parent, struct sched_entity, run_node);
		link = &parent->rb_right;
	}

	return se;
}

218 219 220 221
/**************************************************************
 * Scheduling class statistics methods:
 */

222 223 224 225 226 227 228 229 230 231 232 233 234 235
static u64 __sched_period(unsigned long nr_running)
{
	u64 period = sysctl_sched_latency;
	unsigned long nr_latency =
		sysctl_sched_latency / sysctl_sched_min_granularity;

	if (unlikely(nr_running > nr_latency)) {
		period *= nr_running;
		do_div(period, nr_latency);
	}

	return period;
}

P
Peter Zijlstra 已提交
236
static u64 sched_slice(struct cfs_rq *cfs_rq, struct sched_entity *se)
237
{
P
Peter Zijlstra 已提交
238
	u64 period = __sched_period(cfs_rq->nr_running);
239

P
Peter Zijlstra 已提交
240 241
	period *= se->load.weight;
	do_div(period, cfs_rq->load.weight);
242

P
Peter Zijlstra 已提交
243
	return period;
244 245
}

P
Peter Zijlstra 已提交
246 247 248 249 250 251 252 253 254
static u64 __sched_vslice(unsigned long nr_running)
{
	u64 period = __sched_period(nr_running);

	do_div(period, nr_running);

	return period;
}

255 256 257 258 259
/*
 * Update the current task's runtime statistics. Skip current tasks that
 * are not in our scheduling class.
 */
static inline void
I
Ingo Molnar 已提交
260 261
__update_curr(struct cfs_rq *cfs_rq, struct sched_entity *curr,
	      unsigned long delta_exec)
262
{
263
	unsigned long delta_exec_weighted;
264
	u64 next_vruntime, min_vruntime;
265

266
	schedstat_set(curr->exec_max, max((u64)delta_exec, curr->exec_max));
267 268

	curr->sum_exec_runtime += delta_exec;
269
	schedstat_add(cfs_rq, exec_clock, delta_exec);
I
Ingo Molnar 已提交
270 271 272 273 274 275
	delta_exec_weighted = delta_exec;
	if (unlikely(curr->load.weight != NICE_0_LOAD)) {
		delta_exec_weighted = calc_delta_fair(delta_exec_weighted,
							&curr->load);
	}
	curr->vruntime += delta_exec_weighted;
276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294

	/*
	 * maintain cfs_rq->min_vruntime to be a monotonic increasing
	 * value tracking the leftmost vruntime in the tree.
	 */
	if (first_fair(cfs_rq)) {
		next_vruntime = __pick_next_entity(cfs_rq)->vruntime;

		/* min_vruntime() := !max_vruntime() */
		min_vruntime = max_vruntime(curr->vruntime, next_vruntime);
		if (min_vruntime == next_vruntime)
			min_vruntime = curr->vruntime;
		else
			min_vruntime = next_vruntime;
	} else
		min_vruntime = curr->vruntime;

	cfs_rq->min_vruntime =
		max_vruntime(cfs_rq->min_vruntime, min_vruntime);
295 296
}

297
static void update_curr(struct cfs_rq *cfs_rq)
298
{
299
	struct sched_entity *curr = cfs_rq->curr;
I
Ingo Molnar 已提交
300
	u64 now = rq_of(cfs_rq)->clock;
301 302 303 304 305 306 307 308 309 310
	unsigned long delta_exec;

	if (unlikely(!curr))
		return;

	/*
	 * Get the amount of time the current task was running
	 * since the last time we changed load (this cannot
	 * overflow on 32 bits):
	 */
I
Ingo Molnar 已提交
311
	delta_exec = (unsigned long)(now - curr->exec_start);
312

I
Ingo Molnar 已提交
313 314
	__update_curr(cfs_rq, curr, delta_exec);
	curr->exec_start = now;
315 316 317
}

static inline void
318
update_stats_wait_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
319
{
320
	schedstat_set(se->wait_start, rq_of(cfs_rq)->clock);
321 322 323
}

static inline unsigned long
I
Ingo Molnar 已提交
324
calc_weighted(unsigned long delta, struct sched_entity *se)
325
{
I
Ingo Molnar 已提交
326
	unsigned long weight = se->load.weight;
327

I
Ingo Molnar 已提交
328 329 330 331
	if (unlikely(weight != NICE_0_LOAD))
		return (u64)delta * se->load.weight >> NICE_0_SHIFT;
	else
		return delta;
332 333 334 335 336
}

/*
 * Task is being enqueued - update stats:
 */
337
static void update_stats_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
338 339 340 341 342
{
	/*
	 * Are we enqueueing a waiting task? (for current tasks
	 * a dequeue/enqueue event is a NOP)
	 */
343
	if (se != cfs_rq->curr)
344
		update_stats_wait_start(cfs_rq, se);
345 346 347
}

static void
348
update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se)
349
{
350 351
	schedstat_set(se->wait_max, max(se->wait_max,
			rq_of(cfs_rq)->clock - se->wait_start));
I
Ingo Molnar 已提交
352
	schedstat_set(se->wait_start, 0);
353 354 355
}

static inline void
356
update_stats_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
357
{
358
	update_curr(cfs_rq);
359 360 361 362
	/*
	 * Mark the end of the wait period if dequeueing a
	 * waiting task:
	 */
363
	if (se != cfs_rq->curr)
364
		update_stats_wait_end(cfs_rq, se);
365 366 367 368 369 370
}

/*
 * We are picking a new current task - update its stats:
 */
static inline void
371
update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
372 373 374 375
{
	/*
	 * We are starting a new run period:
	 */
376
	se->exec_start = rq_of(cfs_rq)->clock;
377 378 379 380 381 382
}

/*
 * We are descheduling a task - update its stats:
 */
static inline void
383
update_stats_curr_end(struct cfs_rq *cfs_rq, struct sched_entity *se)
384 385 386 387 388 389 390 391
{
	se->exec_start = 0;
}

/**************************************************
 * Scheduling class queueing methods:
 */

392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407
static void
account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
{
	update_load_add(&cfs_rq->load, se->load.weight);
	cfs_rq->nr_running++;
	se->on_rq = 1;
}

static void
account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
{
	update_load_sub(&cfs_rq->load, se->load.weight);
	cfs_rq->nr_running--;
	se->on_rq = 0;
}

408
static void enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se)
409 410 411
{
#ifdef CONFIG_SCHEDSTATS
	if (se->sleep_start) {
412
		u64 delta = rq_of(cfs_rq)->clock - se->sleep_start;
413 414 415 416 417 418 419 420 421 422 423

		if ((s64)delta < 0)
			delta = 0;

		if (unlikely(delta > se->sleep_max))
			se->sleep_max = delta;

		se->sleep_start = 0;
		se->sum_sleep_runtime += delta;
	}
	if (se->block_start) {
424
		u64 delta = rq_of(cfs_rq)->clock - se->block_start;
425 426 427 428 429 430 431 432 433

		if ((s64)delta < 0)
			delta = 0;

		if (unlikely(delta > se->block_max))
			se->block_max = delta;

		se->block_start = 0;
		se->sum_sleep_runtime += delta;
I
Ingo Molnar 已提交
434 435 436 437 438 439 440

		/*
		 * Blocking time is in units of nanosecs, so shift by 20 to
		 * get a milliseconds-range estimation of the amount of
		 * time that the task spent sleeping:
		 */
		if (unlikely(prof_on == SLEEP_PROFILING)) {
I
Ingo Molnar 已提交
441 442
			struct task_struct *tsk = task_of(se);

I
Ingo Molnar 已提交
443 444 445
			profile_hits(SLEEP_PROFILING, (void *)get_wchan(tsk),
				     delta >> 20);
		}
446 447 448 449
	}
#endif
}

P
Peter Zijlstra 已提交
450 451 452 453 454 455 456 457 458 459 460 461 462
static void check_spread(struct cfs_rq *cfs_rq, struct sched_entity *se)
{
#ifdef CONFIG_SCHED_DEBUG
	s64 d = se->vruntime - cfs_rq->min_vruntime;

	if (d < 0)
		d = -d;

	if (d > 3*sysctl_sched_latency)
		schedstat_inc(cfs_rq, nr_spread_over);
#endif
}

463 464 465
static void
place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int initial)
{
P
Peter Zijlstra 已提交
466
	u64 vruntime;
467

P
Peter Zijlstra 已提交
468
	vruntime = cfs_rq->min_vruntime;
P
Peter Zijlstra 已提交
469 470 471 472

	if (sched_feat(USE_TREE_AVG)) {
		struct sched_entity *last = __pick_last_entity(cfs_rq);
		if (last) {
P
Peter Zijlstra 已提交
473 474
			vruntime += last->vruntime;
			vruntime >>= 1;
P
Peter Zijlstra 已提交
475
		}
P
Peter Zijlstra 已提交
476 477
	} else if (sched_feat(APPROX_AVG) && cfs_rq->nr_running)
		vruntime += __sched_vslice(cfs_rq->nr_running)/2;
P
Peter Zijlstra 已提交
478 479

	if (initial && sched_feat(START_DEBIT))
P
Peter Zijlstra 已提交
480
		vruntime += __sched_vslice(cfs_rq->nr_running + 1);
481

I
Ingo Molnar 已提交
482 483 484 485 486 487 488 489 490 491
	if (!initial) {
		if (sched_feat(NEW_FAIR_SLEEPERS)) {
			s64 latency = cfs_rq->min_vruntime - se->last_min_vruntime;
			if (latency < 0 || !cfs_rq->nr_running)
				latency = 0;
			else
				latency = min_t(s64, latency, sysctl_sched_latency);
			vruntime -= latency;
		}
		vruntime = max(vruntime, se->vruntime);
492 493
	}

P
Peter Zijlstra 已提交
494 495
	se->vruntime = vruntime;

496 497
}

498
static void
499
enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int wakeup)
500 501 502 503
{
	/*
	 * Update the fair clock.
	 */
504
	update_curr(cfs_rq);
505

I
Ingo Molnar 已提交
506
	if (wakeup) {
P
Peter Zijlstra 已提交
507
		/* se->vruntime += cfs_rq->min_vruntime; */
508
		place_entity(cfs_rq, se, 0);
509
		enqueue_sleeper(cfs_rq, se);
I
Ingo Molnar 已提交
510
	}
511

512
	update_stats_enqueue(cfs_rq, se);
P
Peter Zijlstra 已提交
513
	check_spread(cfs_rq, se);
514 515
	if (se != cfs_rq->curr)
		__enqueue_entity(cfs_rq, se);
516
	account_entity_enqueue(cfs_rq, se);
517 518 519
}

static void
520
dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int sleep)
521
{
522
	update_stats_dequeue(cfs_rq, se);
523
	if (sleep) {
P
Peter Zijlstra 已提交
524
#ifdef CONFIG_SCHEDSTATS
525 526 527 528
		if (entity_is_task(se)) {
			struct task_struct *tsk = task_of(se);

			if (tsk->state & TASK_INTERRUPTIBLE)
529
				se->sleep_start = rq_of(cfs_rq)->clock;
530
			if (tsk->state & TASK_UNINTERRUPTIBLE)
531
				se->block_start = rq_of(cfs_rq)->clock;
532
		}
533
#endif
P
Peter Zijlstra 已提交
534 535 536 537
		/* se->vruntime = entity_key(cfs_rq, se); */
		se->last_min_vruntime = cfs_rq->min_vruntime;
	}

538
	if (se != cfs_rq->curr)
539 540
		__dequeue_entity(cfs_rq, se);
	account_entity_dequeue(cfs_rq, se);
541 542 543 544 545
}

/*
 * Preempt the current task with a newly woken task if needed:
 */
546
static void
I
Ingo Molnar 已提交
547
check_preempt_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr)
548
{
549 550
	unsigned long ideal_runtime, delta_exec;

P
Peter Zijlstra 已提交
551
	ideal_runtime = sched_slice(cfs_rq, curr);
552 553
	delta_exec = curr->sum_exec_runtime - curr->prev_sum_exec_runtime;
	if (delta_exec > ideal_runtime)
554 555 556
		resched_task(rq_of(cfs_rq)->curr);
}

557
static void
558
set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
559
{
560 561 562 563 564 565 566 567 568 569 570
	/* 'current' is not kept within the tree. */
	if (se->on_rq) {
		/*
		 * Any task has to be enqueued before it get to execute on
		 * a CPU. So account for the time it spent waiting on the
		 * runqueue.
		 */
		update_stats_wait_end(cfs_rq, se);
		__dequeue_entity(cfs_rq, se);
	}

571
	update_stats_curr_start(cfs_rq, se);
572
	cfs_rq->curr = se;
I
Ingo Molnar 已提交
573 574 575 576 577 578
#ifdef CONFIG_SCHEDSTATS
	/*
	 * Track our maximum slice length, if the CPU's load is at
	 * least twice that of our own weight (i.e. dont track it
	 * when there are only lesser-weight tasks around):
	 */
579
	if (rq_of(cfs_rq)->load.weight >= 2*se->load.weight) {
I
Ingo Molnar 已提交
580 581 582 583
		se->slice_max = max(se->slice_max,
			se->sum_exec_runtime - se->prev_sum_exec_runtime);
	}
#endif
584
	se->prev_sum_exec_runtime = se->sum_exec_runtime;
585 586
}

587
static struct sched_entity *pick_next_entity(struct cfs_rq *cfs_rq)
588 589 590
{
	struct sched_entity *se = __pick_next_entity(cfs_rq);

591
	set_next_entity(cfs_rq, se);
592 593 594 595

	return se;
}

596
static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev)
597 598 599 600 601 602
{
	/*
	 * If still on the runqueue then deactivate_task()
	 * was not called and update_curr() has to be done:
	 */
	if (prev->on_rq)
603
		update_curr(cfs_rq);
604

605
	update_stats_curr_end(cfs_rq, prev);
606

P
Peter Zijlstra 已提交
607
	check_spread(cfs_rq, prev);
608
	if (prev->on_rq) {
609
		update_stats_wait_start(cfs_rq, prev);
610 611 612
		/* Put 'current' back into the tree. */
		__enqueue_entity(cfs_rq, prev);
	}
613
	cfs_rq->curr = NULL;
614 615 616 617 618
}

static void entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr)
{
	/*
619
	 * Update run-time statistics of the 'current'.
620
	 */
621
	update_curr(cfs_rq);
622

I
Ingo Molnar 已提交
623 624
	if (cfs_rq->nr_running > 1)
		check_preempt_tick(cfs_rq, curr);
625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658
}

/**************************************************
 * CFS operations on tasks:
 */

#ifdef CONFIG_FAIR_GROUP_SCHED

/* Walk up scheduling entities hierarchy */
#define for_each_sched_entity(se) \
		for (; se; se = se->parent)

static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
{
	return p->se.cfs_rq;
}

/* runqueue on which this entity is (to be) queued */
static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
{
	return se->cfs_rq;
}

/* runqueue "owned" by this group */
static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
{
	return grp->my_q;
}

/* Given a group's cfs_rq on one cpu, return its corresponding cfs_rq on
 * another cpu ('this_cpu')
 */
static inline struct cfs_rq *cpu_cfs_rq(struct cfs_rq *cfs_rq, int this_cpu)
{
S
Srivatsa Vaddagiri 已提交
659
	return cfs_rq->tg->cfs_rq[this_cpu];
660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718
}

/* Iterate thr' all leaf cfs_rq's on a runqueue */
#define for_each_leaf_cfs_rq(rq, cfs_rq) \
	list_for_each_entry(cfs_rq, &rq->leaf_cfs_rq_list, leaf_cfs_rq_list)

/* Do the two (enqueued) tasks belong to the same group ? */
static inline int is_same_group(struct task_struct *curr, struct task_struct *p)
{
	if (curr->se.cfs_rq == p->se.cfs_rq)
		return 1;

	return 0;
}

#else	/* CONFIG_FAIR_GROUP_SCHED */

#define for_each_sched_entity(se) \
		for (; se; se = NULL)

static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
{
	return &task_rq(p)->cfs;
}

static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
{
	struct task_struct *p = task_of(se);
	struct rq *rq = task_rq(p);

	return &rq->cfs;
}

/* runqueue "owned" by this group */
static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
{
	return NULL;
}

static inline struct cfs_rq *cpu_cfs_rq(struct cfs_rq *cfs_rq, int this_cpu)
{
	return &cpu_rq(this_cpu)->cfs;
}

#define for_each_leaf_cfs_rq(rq, cfs_rq) \
		for (cfs_rq = &rq->cfs; cfs_rq; cfs_rq = NULL)

static inline int is_same_group(struct task_struct *curr, struct task_struct *p)
{
	return 1;
}

#endif	/* CONFIG_FAIR_GROUP_SCHED */

/*
 * The enqueue_task method is called before nr_running is
 * increased. Here we update the fair scheduling stats and
 * then put the task into the rbtree:
 */
719
static void enqueue_task_fair(struct rq *rq, struct task_struct *p, int wakeup)
720 721 722 723 724 725 726 727
{
	struct cfs_rq *cfs_rq;
	struct sched_entity *se = &p->se;

	for_each_sched_entity(se) {
		if (se->on_rq)
			break;
		cfs_rq = cfs_rq_of(se);
728
		enqueue_entity(cfs_rq, se, wakeup);
729 730 731 732 733 734 735 736
	}
}

/*
 * The dequeue_task method is called before nr_running is
 * decreased. We remove the task from the rbtree and
 * update the fair scheduling stats:
 */
737
static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int sleep)
738 739 740 741 742 743
{
	struct cfs_rq *cfs_rq;
	struct sched_entity *se = &p->se;

	for_each_sched_entity(se) {
		cfs_rq = cfs_rq_of(se);
744
		dequeue_entity(cfs_rq, se, sleep);
745 746 747 748 749 750 751
		/* Don't dequeue parent if it has other entities besides us */
		if (cfs_rq->load.weight)
			break;
	}
}

/*
752 753 754
 * sched_yield() support is very simple - we dequeue and enqueue.
 *
 * If compat_yield is turned on then we requeue to the end of the tree.
755
 */
756
static void yield_task_fair(struct rq *rq)
757
{
S
Srivatsa Vaddagiri 已提交
758
	struct cfs_rq *cfs_rq = task_cfs_rq(rq->curr);
759
	struct rb_node **link = &cfs_rq->tasks_timeline.rb_node;
760
	struct sched_entity *rightmost, *se = &rq->curr->se;
761
	struct rb_node *parent;
762 763

	/*
764 765 766 767 768 769 770 771 772 773 774
	 * Are we the only task in the tree?
	 */
	if (unlikely(cfs_rq->nr_running == 1))
		return;

	if (likely(!sysctl_sched_compat_yield)) {
		__update_rq_clock(rq);
		/*
		 * Dequeue and enqueue the task to update its
		 * position within the tree:
		 */
775
		dequeue_entity(cfs_rq, se, 0);
776
		enqueue_entity(cfs_rq, se, 0);
777 778 779 780 781

		return;
	}
	/*
	 * Find the rightmost entry in the rbtree:
782
	 */
783 784 785 786 787 788 789 790 791 792 793 794 795 796 797
	do {
		parent = *link;
		link = &parent->rb_right;
	} while (*link);

	rightmost = rb_entry(parent, struct sched_entity, run_node);
	/*
	 * Already in the rightmost position?
	 */
	if (unlikely(rightmost == se))
		return;

	/*
	 * Minimally necessary key value to be last in the tree:
	 */
798
	se->vruntime = rightmost->vruntime + 1;
799 800 801 802 803 804 805 806 807

	if (cfs_rq->rb_leftmost == &se->run_node)
		cfs_rq->rb_leftmost = rb_next(&se->run_node);
	/*
	 * Relink the task to the rightmost position:
	 */
	rb_erase(&se->run_node, &cfs_rq->tasks_timeline);
	rb_link_node(&se->run_node, parent, link);
	rb_insert_color(&se->run_node, &cfs_rq->tasks_timeline);
808 809 810 811 812
}

/*
 * Preempt the current task with a newly woken task if needed:
 */
I
Ingo Molnar 已提交
813
static void check_preempt_wakeup(struct rq *rq, struct task_struct *p)
814 815 816 817 818
{
	struct task_struct *curr = rq->curr;
	struct cfs_rq *cfs_rq = task_cfs_rq(curr);

	if (unlikely(rt_prio(p->prio))) {
I
Ingo Molnar 已提交
819
		update_rq_clock(rq);
820
		update_curr(cfs_rq);
821 822 823
		resched_task(curr);
		return;
	}
I
Ingo Molnar 已提交
824 825
	if (is_same_group(curr, p)) {
		s64 delta = curr->se.vruntime - p->se.vruntime;
826

I
Ingo Molnar 已提交
827 828 829
		if (delta > (s64)sysctl_sched_wakeup_granularity)
			resched_task(curr);
	}
830 831
}

832
static struct task_struct *pick_next_task_fair(struct rq *rq)
833 834 835 836 837 838 839 840
{
	struct cfs_rq *cfs_rq = &rq->cfs;
	struct sched_entity *se;

	if (unlikely(!cfs_rq->nr_running))
		return NULL;

	do {
841
		se = pick_next_entity(cfs_rq);
842 843 844 845 846 847 848 849 850
		cfs_rq = group_cfs_rq(se);
	} while (cfs_rq);

	return task_of(se);
}

/*
 * Account for a descheduled task:
 */
851
static void put_prev_task_fair(struct rq *rq, struct task_struct *prev)
852 853 854 855 856 857
{
	struct sched_entity *se = &prev->se;
	struct cfs_rq *cfs_rq;

	for_each_sched_entity(se) {
		cfs_rq = cfs_rq_of(se);
858
		put_prev_entity(cfs_rq, se);
859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900
	}
}

/**************************************************
 * Fair scheduling class load-balancing methods:
 */

/*
 * Load-balancing iterator. Note: while the runqueue stays locked
 * during the whole iteration, the current task might be
 * dequeued so the iterator has to be dequeue-safe. Here we
 * achieve that by always pre-iterating before returning
 * the current task:
 */
static inline struct task_struct *
__load_balance_iterator(struct cfs_rq *cfs_rq, struct rb_node *curr)
{
	struct task_struct *p;

	if (!curr)
		return NULL;

	p = rb_entry(curr, struct task_struct, se.run_node);
	cfs_rq->rb_load_balance_curr = rb_next(curr);

	return p;
}

static struct task_struct *load_balance_start_fair(void *arg)
{
	struct cfs_rq *cfs_rq = arg;

	return __load_balance_iterator(cfs_rq, first_fair(cfs_rq));
}

static struct task_struct *load_balance_next_fair(void *arg)
{
	struct cfs_rq *cfs_rq = arg;

	return __load_balance_iterator(cfs_rq, cfs_rq->rb_load_balance_curr);
}

901
#ifdef CONFIG_FAIR_GROUP_SCHED
902 903 904 905 906 907 908 909
static int cfs_rq_best_prio(struct cfs_rq *cfs_rq)
{
	struct sched_entity *curr;
	struct task_struct *p;

	if (!cfs_rq->nr_running)
		return MAX_PRIO;

910 911 912 913
	curr = cfs_rq->curr;
	if (!curr)
		curr = __pick_next_entity(cfs_rq);

914 915 916 917
	p = task_of(curr);

	return p->prio;
}
918
#endif
919

P
Peter Williams 已提交
920
static unsigned long
921
load_balance_fair(struct rq *this_rq, int this_cpu, struct rq *busiest,
922 923 924
		  unsigned long max_nr_move, unsigned long max_load_move,
		  struct sched_domain *sd, enum cpu_idle_type idle,
		  int *all_pinned, int *this_best_prio)
925 926 927 928 929 930 931 932 933 934
{
	struct cfs_rq *busy_cfs_rq;
	unsigned long load_moved, total_nr_moved = 0, nr_moved;
	long rem_load_move = max_load_move;
	struct rq_iterator cfs_rq_iterator;

	cfs_rq_iterator.start = load_balance_start_fair;
	cfs_rq_iterator.next = load_balance_next_fair;

	for_each_leaf_cfs_rq(busiest, busy_cfs_rq) {
935
#ifdef CONFIG_FAIR_GROUP_SCHED
936
		struct cfs_rq *this_cfs_rq;
937
		long imbalance;
938 939 940 941
		unsigned long maxload;

		this_cfs_rq = cpu_cfs_rq(busy_cfs_rq, this_cpu);

942
		imbalance = busy_cfs_rq->load.weight - this_cfs_rq->load.weight;
943 944 945 946 947 948 949 950
		/* Don't pull if this_cfs_rq has more load than busy_cfs_rq */
		if (imbalance <= 0)
			continue;

		/* Don't pull more than imbalance/2 */
		imbalance /= 2;
		maxload = min(rem_load_move, imbalance);

951 952
		*this_best_prio = cfs_rq_best_prio(this_cfs_rq);
#else
953
# define maxload rem_load_move
954
#endif
955 956 957 958 959 960
		/* pass busy_cfs_rq argument into
		 * load_balance_[start|next]_fair iterators
		 */
		cfs_rq_iterator.arg = busy_cfs_rq;
		nr_moved = balance_tasks(this_rq, this_cpu, busiest,
				max_nr_move, maxload, sd, idle, all_pinned,
961
				&load_moved, this_best_prio, &cfs_rq_iterator);
962 963 964 965 966 967 968 969 970

		total_nr_moved += nr_moved;
		max_nr_move -= nr_moved;
		rem_load_move -= load_moved;

		if (max_nr_move <= 0 || rem_load_move <= 0)
			break;
	}

P
Peter Williams 已提交
971
	return max_load_move - rem_load_move;
972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987
}

/*
 * scheduler tick hitting a task of our scheduling class:
 */
static void task_tick_fair(struct rq *rq, struct task_struct *curr)
{
	struct cfs_rq *cfs_rq;
	struct sched_entity *se = &curr->se;

	for_each_sched_entity(se) {
		cfs_rq = cfs_rq_of(se);
		entity_tick(cfs_rq, se);
	}
}

988 989
#define swap(a,b) do { typeof(a) tmp = (a); (a) = (b); (b) = tmp; } while (0)

990 991 992 993 994 995 996
/*
 * Share the fairness runtime between parent and child, thus the
 * total amount of pressure for CPU stays equal - new tasks
 * get a chance to run but frequent forkers are not allowed to
 * monopolize the CPU. Note: the parent runqueue is locked,
 * the child is not running yet.
 */
997
static void task_new_fair(struct rq *rq, struct task_struct *p)
998 999
{
	struct cfs_rq *cfs_rq = task_cfs_rq(p);
1000
	struct sched_entity *se = &p->se, *curr = cfs_rq->curr;
1001 1002 1003

	sched_info_queued(p);

1004
	update_curr(cfs_rq);
1005
	place_entity(cfs_rq, se, 1);
1006 1007 1008

	if (sysctl_sched_child_runs_first &&
			curr->vruntime < se->vruntime) {
D
Dmitry Adamushko 已提交
1009
		/*
1010 1011 1012
		 * Upon rescheduling, sched_class::put_prev_task() will place
		 * 'current' within the tree based on its new key value.
		 */
1013 1014
		swap(curr->vruntime, se->vruntime);
	}
1015

I
Ingo Molnar 已提交
1016
	update_stats_enqueue(cfs_rq, se);
P
Peter Zijlstra 已提交
1017 1018
	check_spread(cfs_rq, se);
	check_spread(cfs_rq, curr);
1019
	__enqueue_entity(cfs_rq, se);
1020
	account_entity_enqueue(cfs_rq, se);
1021
	resched_task(rq->curr);
1022 1023
}

1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036
/* Account for a task changing its policy or group.
 *
 * This routine is mostly called to set cfs_rq->curr field when a task
 * migrates between groups/classes.
 */
static void set_curr_task_fair(struct rq *rq)
{
	struct sched_entity *se = &rq->curr->se;

	for_each_sched_entity(se)
		set_next_entity(cfs_rq_of(se), se);
}

1037 1038 1039 1040 1041 1042 1043 1044
/*
 * All the scheduling class methods:
 */
struct sched_class fair_sched_class __read_mostly = {
	.enqueue_task		= enqueue_task_fair,
	.dequeue_task		= dequeue_task_fair,
	.yield_task		= yield_task_fair,

I
Ingo Molnar 已提交
1045
	.check_preempt_curr	= check_preempt_wakeup,
1046 1047 1048 1049 1050 1051

	.pick_next_task		= pick_next_task_fair,
	.put_prev_task		= put_prev_task_fair,

	.load_balance		= load_balance_fair,

1052
	.set_curr_task          = set_curr_task_fair,
1053 1054 1055 1056 1057
	.task_tick		= task_tick_fair,
	.task_new		= task_new_fair,
};

#ifdef CONFIG_SCHED_DEBUG
1058
static void print_cfs_stats(struct seq_file *m, int cpu)
1059 1060 1061
{
	struct cfs_rq *cfs_rq;

S
Srivatsa Vaddagiri 已提交
1062 1063 1064
#ifdef CONFIG_FAIR_GROUP_SCHED
	print_cfs_rq(m, cpu, &cpu_rq(cpu)->cfs);
#endif
1065
	for_each_leaf_cfs_rq(cpu_rq(cpu), cfs_rq)
1066
		print_cfs_rq(m, cpu, cfs_rq);
1067 1068
}
#endif