atmel_nand.c 58.9 KB
Newer Older
A
Andrew Victor 已提交
1
/*
2
 *  Copyright © 2003 Rick Bronson
A
Andrew Victor 已提交
3 4
 *
 *  Derived from drivers/mtd/nand/autcpu12.c
5
 *	 Copyright © 2001 Thomas Gleixner (gleixner@autronix.de)
A
Andrew Victor 已提交
6 7
 *
 *  Derived from drivers/mtd/spia.c
8
 *	 Copyright © 2000 Steven J. Hill (sjhill@cotw.com)
A
Andrew Victor 已提交
9
 *
10 11
 *
 *  Add Hardware ECC support for AT91SAM9260 / AT91SAM9263
12
 *     Richard Genoud (richard.genoud@gmail.com), Adeneo Copyright © 2007
13 14 15
 *
 *     Derived from Das U-Boot source code
 *     		(u-boot-1.1.5/board/atmel/at91sam9263ek/nand.c)
16
 *     © Copyright 2006 ATMEL Rousset, Lacressonniere Nicolas
17
 *
18 19
 *  Add Programmable Multibit ECC support for various AT91 SoC
 *     © Copyright 2012 ATMEL, Hong Xu
20
 *
21 22 23
 *  Add Nand Flash Controller support for SAMA5 SoC
 *     © Copyright 2013 ATMEL, Josh Wu (josh.wu@atmel.com)
 *
A
Andrew Victor 已提交
24 25 26 27 28 29
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License version 2 as
 * published by the Free Software Foundation.
 *
 */

30
#include <linux/dma-mapping.h>
A
Andrew Victor 已提交
31 32
#include <linux/slab.h>
#include <linux/module.h>
33
#include <linux/moduleparam.h>
A
Andrew Victor 已提交
34
#include <linux/platform_device.h>
35 36 37 38
#include <linux/of.h>
#include <linux/of_device.h>
#include <linux/of_gpio.h>
#include <linux/of_mtd.h>
A
Andrew Victor 已提交
39 40 41 42
#include <linux/mtd/mtd.h>
#include <linux/mtd/nand.h>
#include <linux/mtd/partitions.h>

43
#include <linux/delay.h>
44
#include <linux/dmaengine.h>
45
#include <linux/gpio.h>
46
#include <linux/interrupt.h>
47
#include <linux/io.h>
48
#include <linux/platform_data/atmel.h>
A
Andrew Victor 已提交
49

50 51 52
static int use_dma = 1;
module_param(use_dma, int, 0);

53 54 55
static int on_flash_bbt = 0;
module_param(on_flash_bbt, int, 0);

56 57
/* Register access macros */
#define ecc_readl(add, reg)				\
58
	__raw_readl(add + ATMEL_ECC_##reg)
59
#define ecc_writel(add, reg, value)			\
60
	__raw_writel((value), add + ATMEL_ECC_##reg)
61

62
#include "atmel_nand_ecc.h"	/* Hardware ECC registers */
63
#include "atmel_nand_nfc.h"	/* Nand Flash Controller definition */
64 65 66 67 68 69

/* oob layout for large page size
 * bad block info is on bytes 0 and 1
 * the bytes have to be consecutives to avoid
 * several NAND_CMD_RNDOUT during read
 */
70
static struct nand_ecclayout atmel_oobinfo_large = {
71 72 73 74 75 76 77 78 79 80 81 82
	.eccbytes = 4,
	.eccpos = {60, 61, 62, 63},
	.oobfree = {
		{2, 58}
	},
};

/* oob layout for small page size
 * bad block info is on bytes 4 and 5
 * the bytes have to be consecutives to avoid
 * several NAND_CMD_RNDOUT during read
 */
83
static struct nand_ecclayout atmel_oobinfo_small = {
84 85 86 87 88 89 90
	.eccbytes = 4,
	.eccpos = {0, 1, 2, 3},
	.oobfree = {
		{6, 10}
	},
};

91 92 93 94 95
struct atmel_nfc {
	void __iomem		*base_cmd_regs;
	void __iomem		*hsmc_regs;
	void __iomem		*sram_bank0;
	dma_addr_t		sram_bank0_phys;
96
	bool			use_nfc_sram;
97
	bool			write_by_sram;
98 99 100

	bool			is_initialized;
	struct completion	comp_nfc;
101 102 103

	/* Point to the sram bank which include readed data via NFC */
	void __iomem		*data_in_sram;
104
	bool			will_write_sram;
105 106 107
};
static struct atmel_nfc	nand_nfc;

108
struct atmel_nand_host {
A
Andrew Victor 已提交
109 110 111
	struct nand_chip	nand_chip;
	struct mtd_info		mtd;
	void __iomem		*io_base;
112
	dma_addr_t		io_phys;
113
	struct atmel_nand_data	board;
114 115
	struct device		*dev;
	void __iomem		*ecc;
116 117 118

	struct completion	comp;
	struct dma_chan		*dma_chan;
119

120 121
	struct atmel_nfc	*nfc;

122 123 124 125
	bool			has_pmecc;
	u8			pmecc_corr_cap;
	u16			pmecc_sector_size;
	u32			pmecc_lookup_table_offset;
126 127
	u32			pmecc_lookup_table_offset_512;
	u32			pmecc_lookup_table_offset_1024;
128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148

	int			pmecc_bytes_per_sector;
	int			pmecc_sector_number;
	int			pmecc_degree;	/* Degree of remainders */
	int			pmecc_cw_len;	/* Length of codeword */

	void __iomem		*pmerrloc_base;
	void __iomem		*pmecc_rom_base;

	/* lookup table for alpha_to and index_of */
	void __iomem		*pmecc_alpha_to;
	void __iomem		*pmecc_index_of;

	/* data for pmecc computation */
	int16_t			*pmecc_partial_syn;
	int16_t			*pmecc_si;
	int16_t			*pmecc_smu;	/* Sigma table */
	int16_t			*pmecc_lmu;	/* polynomal order */
	int			*pmecc_mu;
	int			*pmecc_dmu;
	int			*pmecc_delta;
A
Andrew Victor 已提交
149 150
};

151 152
static struct nand_ecclayout atmel_pmecc_oobinfo;

153 154 155
/*
 * Enable NAND.
 */
156
static void atmel_nand_enable(struct atmel_nand_host *host)
157
{
158 159
	if (gpio_is_valid(host->board.enable_pin))
		gpio_set_value(host->board.enable_pin, 0);
160 161 162 163 164
}

/*
 * Disable NAND.
 */
165
static void atmel_nand_disable(struct atmel_nand_host *host)
166
{
167 168
	if (gpio_is_valid(host->board.enable_pin))
		gpio_set_value(host->board.enable_pin, 1);
169 170
}

A
Andrew Victor 已提交
171 172 173
/*
 * Hardware specific access to control-lines
 */
174
static void atmel_nand_cmd_ctrl(struct mtd_info *mtd, int cmd, unsigned int ctrl)
A
Andrew Victor 已提交
175 176
{
	struct nand_chip *nand_chip = mtd->priv;
177
	struct atmel_nand_host *host = nand_chip->priv;
A
Andrew Victor 已提交
178

179
	if (ctrl & NAND_CTRL_CHANGE) {
180
		if (ctrl & NAND_NCE)
181
			atmel_nand_enable(host);
182
		else
183
			atmel_nand_disable(host);
184
	}
A
Andrew Victor 已提交
185 186 187 188
	if (cmd == NAND_CMD_NONE)
		return;

	if (ctrl & NAND_CLE)
189
		writeb(cmd, host->io_base + (1 << host->board.cle));
A
Andrew Victor 已提交
190
	else
191
		writeb(cmd, host->io_base + (1 << host->board.ale));
A
Andrew Victor 已提交
192 193 194 195 196
}

/*
 * Read the Device Ready pin.
 */
197
static int atmel_nand_device_ready(struct mtd_info *mtd)
A
Andrew Victor 已提交
198 199
{
	struct nand_chip *nand_chip = mtd->priv;
200
	struct atmel_nand_host *host = nand_chip->priv;
A
Andrew Victor 已提交
201

202 203
	return gpio_get_value(host->board.rdy_pin) ^
                !!host->board.rdy_pin_active_low;
A
Andrew Victor 已提交
204 205
}

206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255
/* Set up for hardware ready pin and enable pin. */
static int atmel_nand_set_enable_ready_pins(struct mtd_info *mtd)
{
	struct nand_chip *chip = mtd->priv;
	struct atmel_nand_host *host = chip->priv;
	int res = 0;

	if (gpio_is_valid(host->board.rdy_pin)) {
		res = devm_gpio_request(host->dev,
				host->board.rdy_pin, "nand_rdy");
		if (res < 0) {
			dev_err(host->dev,
				"can't request rdy gpio %d\n",
				host->board.rdy_pin);
			return res;
		}

		res = gpio_direction_input(host->board.rdy_pin);
		if (res < 0) {
			dev_err(host->dev,
				"can't request input direction rdy gpio %d\n",
				host->board.rdy_pin);
			return res;
		}

		chip->dev_ready = atmel_nand_device_ready;
	}

	if (gpio_is_valid(host->board.enable_pin)) {
		res = devm_gpio_request(host->dev,
				host->board.enable_pin, "nand_enable");
		if (res < 0) {
			dev_err(host->dev,
				"can't request enable gpio %d\n",
				host->board.enable_pin);
			return res;
		}

		res = gpio_direction_output(host->board.enable_pin, 1);
		if (res < 0) {
			dev_err(host->dev,
				"can't request output direction enable gpio %d\n",
				host->board.enable_pin);
			return res;
		}
	}

	return res;
}

256 257 258 259 260 261 262 263 264 265
static void memcpy32_fromio(void *trg, const void __iomem  *src, size_t size)
{
	int i;
	u32 *t = trg;
	const __iomem u32 *s = src;

	for (i = 0; i < (size >> 2); i++)
		*t++ = readl_relaxed(s++);
}

266 267 268 269 270 271 272 273 274 275
static void memcpy32_toio(void __iomem *trg, const void *src, int size)
{
	int i;
	u32 __iomem *t = trg;
	const u32 *s = src;

	for (i = 0; i < (size >> 2); i++)
		writel_relaxed(*s++, t++);
}

276 277 278 279 280 281
/*
 * Minimal-overhead PIO for data access.
 */
static void atmel_read_buf8(struct mtd_info *mtd, u8 *buf, int len)
{
	struct nand_chip	*nand_chip = mtd->priv;
282
	struct atmel_nand_host *host = nand_chip->priv;
283

284 285 286 287 288 289
	if (host->nfc && host->nfc->use_nfc_sram && host->nfc->data_in_sram) {
		memcpy32_fromio(buf, host->nfc->data_in_sram, len);
		host->nfc->data_in_sram += len;
	} else {
		__raw_readsb(nand_chip->IO_ADDR_R, buf, len);
	}
290 291 292 293 294
}

static void atmel_read_buf16(struct mtd_info *mtd, u8 *buf, int len)
{
	struct nand_chip	*nand_chip = mtd->priv;
295
	struct atmel_nand_host *host = nand_chip->priv;
296

297 298 299 300 301 302
	if (host->nfc && host->nfc->use_nfc_sram && host->nfc->data_in_sram) {
		memcpy32_fromio(buf, host->nfc->data_in_sram, len);
		host->nfc->data_in_sram += len;
	} else {
		__raw_readsw(nand_chip->IO_ADDR_R, buf, len / 2);
	}
303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318
}

static void atmel_write_buf8(struct mtd_info *mtd, const u8 *buf, int len)
{
	struct nand_chip	*nand_chip = mtd->priv;

	__raw_writesb(nand_chip->IO_ADDR_W, buf, len);
}

static void atmel_write_buf16(struct mtd_info *mtd, const u8 *buf, int len)
{
	struct nand_chip	*nand_chip = mtd->priv;

	__raw_writesw(nand_chip->IO_ADDR_W, buf, len / 2);
}

319 320 321 322 323
static void dma_complete_func(void *completion)
{
	complete(completion);
}

324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357
static int nfc_set_sram_bank(struct atmel_nand_host *host, unsigned int bank)
{
	/* NFC only has two banks. Must be 0 or 1 */
	if (bank > 1)
		return -EINVAL;

	if (bank) {
		/* Only for a 2k-page or lower flash, NFC can handle 2 banks */
		if (host->mtd.writesize > 2048)
			return -EINVAL;
		nfc_writel(host->nfc->hsmc_regs, BANK, ATMEL_HSMC_NFC_BANK1);
	} else {
		nfc_writel(host->nfc->hsmc_regs, BANK, ATMEL_HSMC_NFC_BANK0);
	}

	return 0;
}

static uint nfc_get_sram_off(struct atmel_nand_host *host)
{
	if (nfc_readl(host->nfc->hsmc_regs, BANK) & ATMEL_HSMC_NFC_BANK1)
		return NFC_SRAM_BANK1_OFFSET;
	else
		return 0;
}

static dma_addr_t nfc_sram_phys(struct atmel_nand_host *host)
{
	if (nfc_readl(host->nfc->hsmc_regs, BANK) & ATMEL_HSMC_NFC_BANK1)
		return host->nfc->sram_bank0_phys + NFC_SRAM_BANK1_OFFSET;
	else
		return host->nfc->sram_bank0_phys;
}

358 359 360 361 362 363 364 365 366 367 368 369 370
static int atmel_nand_dma_op(struct mtd_info *mtd, void *buf, int len,
			       int is_read)
{
	struct dma_device *dma_dev;
	enum dma_ctrl_flags flags;
	dma_addr_t dma_src_addr, dma_dst_addr, phys_addr;
	struct dma_async_tx_descriptor *tx = NULL;
	dma_cookie_t cookie;
	struct nand_chip *chip = mtd->priv;
	struct atmel_nand_host *host = chip->priv;
	void *p = buf;
	int err = -EIO;
	enum dma_data_direction dir = is_read ? DMA_FROM_DEVICE : DMA_TO_DEVICE;
371
	struct atmel_nfc *nfc = host->nfc;
372

373 374
	if (buf >= high_memory)
		goto err_buf;
375 376 377 378 379 380 381 382 383 384 385 386 387

	dma_dev = host->dma_chan->device;

	flags = DMA_CTRL_ACK | DMA_PREP_INTERRUPT | DMA_COMPL_SKIP_SRC_UNMAP |
		DMA_COMPL_SKIP_DEST_UNMAP;

	phys_addr = dma_map_single(dma_dev->dev, p, len, dir);
	if (dma_mapping_error(dma_dev->dev, phys_addr)) {
		dev_err(host->dev, "Failed to dma_map_single\n");
		goto err_buf;
	}

	if (is_read) {
388 389 390 391 392 393
		if (nfc && nfc->data_in_sram)
			dma_src_addr = nfc_sram_phys(host) + (nfc->data_in_sram
				- (nfc->sram_bank0 + nfc_get_sram_off(host)));
		else
			dma_src_addr = host->io_phys;

394 395 396
		dma_dst_addr = phys_addr;
	} else {
		dma_src_addr = phys_addr;
397 398 399 400 401

		if (nfc && nfc->write_by_sram)
			dma_dst_addr = nfc_sram_phys(host);
		else
			dma_dst_addr = host->io_phys;
402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423
	}

	tx = dma_dev->device_prep_dma_memcpy(host->dma_chan, dma_dst_addr,
					     dma_src_addr, len, flags);
	if (!tx) {
		dev_err(host->dev, "Failed to prepare DMA memcpy\n");
		goto err_dma;
	}

	init_completion(&host->comp);
	tx->callback = dma_complete_func;
	tx->callback_param = &host->comp;

	cookie = tx->tx_submit(tx);
	if (dma_submit_error(cookie)) {
		dev_err(host->dev, "Failed to do DMA tx_submit\n");
		goto err_dma;
	}

	dma_async_issue_pending(host->dma_chan);
	wait_for_completion(&host->comp);

424 425 426 427
	if (is_read && nfc && nfc->data_in_sram)
		/* After read data from SRAM, need to increase the position */
		nfc->data_in_sram += len;

428 429 430 431 432 433 434 435 436 437 438 439 440
	err = 0;

err_dma:
	dma_unmap_single(dma_dev->dev, phys_addr, len, dir);
err_buf:
	if (err != 0)
		dev_warn(host->dev, "Fall back to CPU I/O\n");
	return err;
}

static void atmel_read_buf(struct mtd_info *mtd, u8 *buf, int len)
{
	struct nand_chip *chip = mtd->priv;
441
	struct atmel_nand_host *host = chip->priv;
442

443 444
	if (use_dma && len > mtd->oobsize)
		/* only use DMA for bigger than oob size: better performances */
445 446 447
		if (atmel_nand_dma_op(mtd, buf, len, 1) == 0)
			return;

448
	if (host->board.bus_width_16)
449 450 451
		atmel_read_buf16(mtd, buf, len);
	else
		atmel_read_buf8(mtd, buf, len);
452 453 454 455 456
}

static void atmel_write_buf(struct mtd_info *mtd, const u8 *buf, int len)
{
	struct nand_chip *chip = mtd->priv;
457
	struct atmel_nand_host *host = chip->priv;
458

459 460
	if (use_dma && len > mtd->oobsize)
		/* only use DMA for bigger than oob size: better performances */
461 462 463
		if (atmel_nand_dma_op(mtd, (void *)buf, len, 0) == 0)
			return;

464
	if (host->board.bus_width_16)
465 466 467
		atmel_write_buf16(mtd, buf, len);
	else
		atmel_write_buf8(mtd, buf, len);
468 469
}

470 471 472 473 474 475 476 477 478 479 480 481 482
/*
 * Return number of ecc bytes per sector according to sector size and
 * correction capability
 *
 * Following table shows what at91 PMECC supported:
 * Correction Capability	Sector_512_bytes	Sector_1024_bytes
 * =====================	================	=================
 *                2-bits                 4-bytes                  4-bytes
 *                4-bits                 7-bytes                  7-bytes
 *                8-bits                13-bytes                 14-bytes
 *               12-bits                20-bytes                 21-bytes
 *               24-bits                39-bytes                 42-bytes
 */
B
Bill Pemberton 已提交
483
static int pmecc_get_ecc_bytes(int cap, int sector_size)
484 485 486 487 488
{
	int m = 12 + sector_size / 512;
	return (m * cap + 7) / 8;
}

B
Bill Pemberton 已提交
489
static void pmecc_config_ecc_layout(struct nand_ecclayout *layout,
490
				    int oobsize, int ecc_len)
491 492 493 494 495 496 497 498 499 500 501 502 503 504
{
	int i;

	layout->eccbytes = ecc_len;

	/* ECC will occupy the last ecc_len bytes continuously */
	for (i = 0; i < ecc_len; i++)
		layout->eccpos[i] = oobsize - ecc_len + i;

	layout->oobfree[0].offset = 2;
	layout->oobfree[0].length =
		oobsize - ecc_len - layout->oobfree[0].offset;
}

B
Bill Pemberton 已提交
505
static void __iomem *pmecc_get_alpha_to(struct atmel_nand_host *host)
506 507 508 509 510 511 512 513 514 515
{
	int table_size;

	table_size = host->pmecc_sector_size == 512 ?
		PMECC_LOOKUP_TABLE_SIZE_512 : PMECC_LOOKUP_TABLE_SIZE_1024;

	return host->pmecc_rom_base + host->pmecc_lookup_table_offset +
			table_size * sizeof(int16_t);
}

B
Bill Pemberton 已提交
516
static int pmecc_data_alloc(struct atmel_nand_host *host)
517 518
{
	const int cap = host->pmecc_corr_cap;
519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541
	int size;

	size = (2 * cap + 1) * sizeof(int16_t);
	host->pmecc_partial_syn = devm_kzalloc(host->dev, size, GFP_KERNEL);
	host->pmecc_si = devm_kzalloc(host->dev, size, GFP_KERNEL);
	host->pmecc_lmu = devm_kzalloc(host->dev,
			(cap + 1) * sizeof(int16_t), GFP_KERNEL);
	host->pmecc_smu = devm_kzalloc(host->dev,
			(cap + 2) * size, GFP_KERNEL);

	size = (cap + 1) * sizeof(int);
	host->pmecc_mu = devm_kzalloc(host->dev, size, GFP_KERNEL);
	host->pmecc_dmu = devm_kzalloc(host->dev, size, GFP_KERNEL);
	host->pmecc_delta = devm_kzalloc(host->dev, size, GFP_KERNEL);

	if (!host->pmecc_partial_syn ||
		!host->pmecc_si ||
		!host->pmecc_lmu ||
		!host->pmecc_smu ||
		!host->pmecc_mu ||
		!host->pmecc_dmu ||
		!host->pmecc_delta)
		return -ENOMEM;
542

543
	return 0;
544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866
}

static void pmecc_gen_syndrome(struct mtd_info *mtd, int sector)
{
	struct nand_chip *nand_chip = mtd->priv;
	struct atmel_nand_host *host = nand_chip->priv;
	int i;
	uint32_t value;

	/* Fill odd syndromes */
	for (i = 0; i < host->pmecc_corr_cap; i++) {
		value = pmecc_readl_rem_relaxed(host->ecc, sector, i / 2);
		if (i & 1)
			value >>= 16;
		value &= 0xffff;
		host->pmecc_partial_syn[(2 * i) + 1] = (int16_t)value;
	}
}

static void pmecc_substitute(struct mtd_info *mtd)
{
	struct nand_chip *nand_chip = mtd->priv;
	struct atmel_nand_host *host = nand_chip->priv;
	int16_t __iomem *alpha_to = host->pmecc_alpha_to;
	int16_t __iomem *index_of = host->pmecc_index_of;
	int16_t *partial_syn = host->pmecc_partial_syn;
	const int cap = host->pmecc_corr_cap;
	int16_t *si;
	int i, j;

	/* si[] is a table that holds the current syndrome value,
	 * an element of that table belongs to the field
	 */
	si = host->pmecc_si;

	memset(&si[1], 0, sizeof(int16_t) * (2 * cap - 1));

	/* Computation 2t syndromes based on S(x) */
	/* Odd syndromes */
	for (i = 1; i < 2 * cap; i += 2) {
		for (j = 0; j < host->pmecc_degree; j++) {
			if (partial_syn[i] & ((unsigned short)0x1 << j))
				si[i] = readw_relaxed(alpha_to + i * j) ^ si[i];
		}
	}
	/* Even syndrome = (Odd syndrome) ** 2 */
	for (i = 2, j = 1; j <= cap; i = ++j << 1) {
		if (si[j] == 0) {
			si[i] = 0;
		} else {
			int16_t tmp;

			tmp = readw_relaxed(index_of + si[j]);
			tmp = (tmp * 2) % host->pmecc_cw_len;
			si[i] = readw_relaxed(alpha_to + tmp);
		}
	}

	return;
}

static void pmecc_get_sigma(struct mtd_info *mtd)
{
	struct nand_chip *nand_chip = mtd->priv;
	struct atmel_nand_host *host = nand_chip->priv;

	int16_t *lmu = host->pmecc_lmu;
	int16_t *si = host->pmecc_si;
	int *mu = host->pmecc_mu;
	int *dmu = host->pmecc_dmu;	/* Discrepancy */
	int *delta = host->pmecc_delta; /* Delta order */
	int cw_len = host->pmecc_cw_len;
	const int16_t cap = host->pmecc_corr_cap;
	const int num = 2 * cap + 1;
	int16_t __iomem	*index_of = host->pmecc_index_of;
	int16_t __iomem	*alpha_to = host->pmecc_alpha_to;
	int i, j, k;
	uint32_t dmu_0_count, tmp;
	int16_t *smu = host->pmecc_smu;

	/* index of largest delta */
	int ro;
	int largest;
	int diff;

	dmu_0_count = 0;

	/* First Row */

	/* Mu */
	mu[0] = -1;

	memset(smu, 0, sizeof(int16_t) * num);
	smu[0] = 1;

	/* discrepancy set to 1 */
	dmu[0] = 1;
	/* polynom order set to 0 */
	lmu[0] = 0;
	delta[0] = (mu[0] * 2 - lmu[0]) >> 1;

	/* Second Row */

	/* Mu */
	mu[1] = 0;
	/* Sigma(x) set to 1 */
	memset(&smu[num], 0, sizeof(int16_t) * num);
	smu[num] = 1;

	/* discrepancy set to S1 */
	dmu[1] = si[1];

	/* polynom order set to 0 */
	lmu[1] = 0;

	delta[1] = (mu[1] * 2 - lmu[1]) >> 1;

	/* Init the Sigma(x) last row */
	memset(&smu[(cap + 1) * num], 0, sizeof(int16_t) * num);

	for (i = 1; i <= cap; i++) {
		mu[i + 1] = i << 1;
		/* Begin Computing Sigma (Mu+1) and L(mu) */
		/* check if discrepancy is set to 0 */
		if (dmu[i] == 0) {
			dmu_0_count++;

			tmp = ((cap - (lmu[i] >> 1) - 1) / 2);
			if ((cap - (lmu[i] >> 1) - 1) & 0x1)
				tmp += 2;
			else
				tmp += 1;

			if (dmu_0_count == tmp) {
				for (j = 0; j <= (lmu[i] >> 1) + 1; j++)
					smu[(cap + 1) * num + j] =
							smu[i * num + j];

				lmu[cap + 1] = lmu[i];
				return;
			}

			/* copy polynom */
			for (j = 0; j <= lmu[i] >> 1; j++)
				smu[(i + 1) * num + j] = smu[i * num + j];

			/* copy previous polynom order to the next */
			lmu[i + 1] = lmu[i];
		} else {
			ro = 0;
			largest = -1;
			/* find largest delta with dmu != 0 */
			for (j = 0; j < i; j++) {
				if ((dmu[j]) && (delta[j] > largest)) {
					largest = delta[j];
					ro = j;
				}
			}

			/* compute difference */
			diff = (mu[i] - mu[ro]);

			/* Compute degree of the new smu polynomial */
			if ((lmu[i] >> 1) > ((lmu[ro] >> 1) + diff))
				lmu[i + 1] = lmu[i];
			else
				lmu[i + 1] = ((lmu[ro] >> 1) + diff) * 2;

			/* Init smu[i+1] with 0 */
			for (k = 0; k < num; k++)
				smu[(i + 1) * num + k] = 0;

			/* Compute smu[i+1] */
			for (k = 0; k <= lmu[ro] >> 1; k++) {
				int16_t a, b, c;

				if (!(smu[ro * num + k] && dmu[i]))
					continue;
				a = readw_relaxed(index_of + dmu[i]);
				b = readw_relaxed(index_of + dmu[ro]);
				c = readw_relaxed(index_of + smu[ro * num + k]);
				tmp = a + (cw_len - b) + c;
				a = readw_relaxed(alpha_to + tmp % cw_len);
				smu[(i + 1) * num + (k + diff)] = a;
			}

			for (k = 0; k <= lmu[i] >> 1; k++)
				smu[(i + 1) * num + k] ^= smu[i * num + k];
		}

		/* End Computing Sigma (Mu+1) and L(mu) */
		/* In either case compute delta */
		delta[i + 1] = (mu[i + 1] * 2 - lmu[i + 1]) >> 1;

		/* Do not compute discrepancy for the last iteration */
		if (i >= cap)
			continue;

		for (k = 0; k <= (lmu[i + 1] >> 1); k++) {
			tmp = 2 * (i - 1);
			if (k == 0) {
				dmu[i + 1] = si[tmp + 3];
			} else if (smu[(i + 1) * num + k] && si[tmp + 3 - k]) {
				int16_t a, b, c;
				a = readw_relaxed(index_of +
						smu[(i + 1) * num + k]);
				b = si[2 * (i - 1) + 3 - k];
				c = readw_relaxed(index_of + b);
				tmp = a + c;
				tmp %= cw_len;
				dmu[i + 1] = readw_relaxed(alpha_to + tmp) ^
					dmu[i + 1];
			}
		}
	}

	return;
}

static int pmecc_err_location(struct mtd_info *mtd)
{
	struct nand_chip *nand_chip = mtd->priv;
	struct atmel_nand_host *host = nand_chip->priv;
	unsigned long end_time;
	const int cap = host->pmecc_corr_cap;
	const int num = 2 * cap + 1;
	int sector_size = host->pmecc_sector_size;
	int err_nbr = 0;	/* number of error */
	int roots_nbr;		/* number of roots */
	int i;
	uint32_t val;
	int16_t *smu = host->pmecc_smu;

	pmerrloc_writel(host->pmerrloc_base, ELDIS, PMERRLOC_DISABLE);

	for (i = 0; i <= host->pmecc_lmu[cap + 1] >> 1; i++) {
		pmerrloc_writel_sigma_relaxed(host->pmerrloc_base, i,
				      smu[(cap + 1) * num + i]);
		err_nbr++;
	}

	val = (err_nbr - 1) << 16;
	if (sector_size == 1024)
		val |= 1;

	pmerrloc_writel(host->pmerrloc_base, ELCFG, val);
	pmerrloc_writel(host->pmerrloc_base, ELEN,
			sector_size * 8 + host->pmecc_degree * cap);

	end_time = jiffies + msecs_to_jiffies(PMECC_MAX_TIMEOUT_MS);
	while (!(pmerrloc_readl_relaxed(host->pmerrloc_base, ELISR)
		 & PMERRLOC_CALC_DONE)) {
		if (unlikely(time_after(jiffies, end_time))) {
			dev_err(host->dev, "PMECC: Timeout to calculate error location.\n");
			return -1;
		}
		cpu_relax();
	}

	roots_nbr = (pmerrloc_readl_relaxed(host->pmerrloc_base, ELISR)
		& PMERRLOC_ERR_NUM_MASK) >> 8;
	/* Number of roots == degree of smu hence <= cap */
	if (roots_nbr == host->pmecc_lmu[cap + 1] >> 1)
		return err_nbr - 1;

	/* Number of roots does not match the degree of smu
	 * unable to correct error */
	return -1;
}

static void pmecc_correct_data(struct mtd_info *mtd, uint8_t *buf, uint8_t *ecc,
		int sector_num, int extra_bytes, int err_nbr)
{
	struct nand_chip *nand_chip = mtd->priv;
	struct atmel_nand_host *host = nand_chip->priv;
	int i = 0;
	int byte_pos, bit_pos, sector_size, pos;
	uint32_t tmp;
	uint8_t err_byte;

	sector_size = host->pmecc_sector_size;

	while (err_nbr) {
		tmp = pmerrloc_readl_el_relaxed(host->pmerrloc_base, i) - 1;
		byte_pos = tmp / 8;
		bit_pos  = tmp % 8;

		if (byte_pos >= (sector_size + extra_bytes))
			BUG();	/* should never happen */

		if (byte_pos < sector_size) {
			err_byte = *(buf + byte_pos);
			*(buf + byte_pos) ^= (1 << bit_pos);

			pos = sector_num * host->pmecc_sector_size + byte_pos;
			dev_info(host->dev, "Bit flip in data area, byte_pos: %d, bit_pos: %d, 0x%02x -> 0x%02x\n",
				pos, bit_pos, err_byte, *(buf + byte_pos));
		} else {
			/* Bit flip in OOB area */
			tmp = sector_num * host->pmecc_bytes_per_sector
					+ (byte_pos - sector_size);
			err_byte = ecc[tmp];
			ecc[tmp] ^= (1 << bit_pos);

			pos = tmp + nand_chip->ecc.layout->eccpos[0];
			dev_info(host->dev, "Bit flip in OOB, oob_byte_pos: %d, bit_pos: %d, 0x%02x -> 0x%02x\n",
				pos, bit_pos, err_byte, ecc[tmp]);
		}

		i++;
		err_nbr--;
	}

	return;
}

static int pmecc_correction(struct mtd_info *mtd, u32 pmecc_stat, uint8_t *buf,
	u8 *ecc)
{
	struct nand_chip *nand_chip = mtd->priv;
	struct atmel_nand_host *host = nand_chip->priv;
	int i, err_nbr, eccbytes;
	uint8_t *buf_pos;
867
	int total_err = 0;
868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894

	eccbytes = nand_chip->ecc.bytes;
	for (i = 0; i < eccbytes; i++)
		if (ecc[i] != 0xff)
			goto normal_check;
	/* Erased page, return OK */
	return 0;

normal_check:
	for (i = 0; i < host->pmecc_sector_number; i++) {
		err_nbr = 0;
		if (pmecc_stat & 0x1) {
			buf_pos = buf + i * host->pmecc_sector_size;

			pmecc_gen_syndrome(mtd, i);
			pmecc_substitute(mtd);
			pmecc_get_sigma(mtd);

			err_nbr = pmecc_err_location(mtd);
			if (err_nbr == -1) {
				dev_err(host->dev, "PMECC: Too many errors\n");
				mtd->ecc_stats.failed++;
				return -EIO;
			} else {
				pmecc_correct_data(mtd, buf_pos, ecc, i,
					host->pmecc_bytes_per_sector, err_nbr);
				mtd->ecc_stats.corrected += err_nbr;
895
				total_err += err_nbr;
896 897 898 899 900
			}
		}
		pmecc_stat >>= 1;
	}

901
	return total_err;
902 903
}

904 905 906 907 908 909 910 911 912
static void pmecc_enable(struct atmel_nand_host *host, int ecc_op)
{
	u32 val;

	if (ecc_op != NAND_ECC_READ && ecc_op != NAND_ECC_WRITE) {
		dev_err(host->dev, "atmel_nand: wrong pmecc operation type!");
		return;
	}

913 914 915 916
	pmecc_writel(host->ecc, CTRL, PMECC_CTRL_RST);
	pmecc_writel(host->ecc, CTRL, PMECC_CTRL_DISABLE);
	val = pmecc_readl_relaxed(host->ecc, CFG);

917 918 919 920 921 922 923 924 925 926 927
	if (ecc_op == NAND_ECC_READ)
		pmecc_writel(host->ecc, CFG, (val & ~PMECC_CFG_WRITE_OP)
			| PMECC_CFG_AUTO_ENABLE);
	else
		pmecc_writel(host->ecc, CFG, (val | PMECC_CFG_WRITE_OP)
			& ~PMECC_CFG_AUTO_ENABLE);

	pmecc_writel(host->ecc, CTRL, PMECC_CTRL_ENABLE);
	pmecc_writel(host->ecc, CTRL, PMECC_CTRL_DATA);
}

928 929 930 931 932 933 934 935 936
static int atmel_nand_pmecc_read_page(struct mtd_info *mtd,
	struct nand_chip *chip, uint8_t *buf, int oob_required, int page)
{
	struct atmel_nand_host *host = chip->priv;
	int eccsize = chip->ecc.size;
	uint8_t *oob = chip->oob_poi;
	uint32_t *eccpos = chip->ecc.layout->eccpos;
	uint32_t stat;
	unsigned long end_time;
937
	int bitflips = 0;
938

939 940
	if (!host->nfc || !host->nfc->use_nfc_sram)
		pmecc_enable(host, NAND_ECC_READ);
941 942 943 944 945 946 947 948 949 950 951 952 953 954

	chip->read_buf(mtd, buf, eccsize);
	chip->read_buf(mtd, oob, mtd->oobsize);

	end_time = jiffies + msecs_to_jiffies(PMECC_MAX_TIMEOUT_MS);
	while ((pmecc_readl_relaxed(host->ecc, SR) & PMECC_SR_BUSY)) {
		if (unlikely(time_after(jiffies, end_time))) {
			dev_err(host->dev, "PMECC: Timeout to get error status.\n");
			return -EIO;
		}
		cpu_relax();
	}

	stat = pmecc_readl_relaxed(host->ecc, ISR);
955 956 957 958 959 960
	if (stat != 0) {
		bitflips = pmecc_correction(mtd, stat, buf, &oob[eccpos[0]]);
		if (bitflips < 0)
			/* uncorrectable errors */
			return 0;
	}
961

962
	return bitflips;
963 964 965 966 967 968 969 970 971 972
}

static int atmel_nand_pmecc_write_page(struct mtd_info *mtd,
		struct nand_chip *chip, const uint8_t *buf, int oob_required)
{
	struct atmel_nand_host *host = chip->priv;
	uint32_t *eccpos = chip->ecc.layout->eccpos;
	int i, j;
	unsigned long end_time;

973 974 975 976
	if (!host->nfc || !host->nfc->write_by_sram) {
		pmecc_enable(host, NAND_ECC_WRITE);
		chip->write_buf(mtd, (u8 *)buf, mtd->writesize);
	}
977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063

	end_time = jiffies + msecs_to_jiffies(PMECC_MAX_TIMEOUT_MS);
	while ((pmecc_readl_relaxed(host->ecc, SR) & PMECC_SR_BUSY)) {
		if (unlikely(time_after(jiffies, end_time))) {
			dev_err(host->dev, "PMECC: Timeout to get ECC value.\n");
			return -EIO;
		}
		cpu_relax();
	}

	for (i = 0; i < host->pmecc_sector_number; i++) {
		for (j = 0; j < host->pmecc_bytes_per_sector; j++) {
			int pos;

			pos = i * host->pmecc_bytes_per_sector + j;
			chip->oob_poi[eccpos[pos]] =
				pmecc_readb_ecc_relaxed(host->ecc, i, j);
		}
	}
	chip->write_buf(mtd, chip->oob_poi, mtd->oobsize);

	return 0;
}

static void atmel_pmecc_core_init(struct mtd_info *mtd)
{
	struct nand_chip *nand_chip = mtd->priv;
	struct atmel_nand_host *host = nand_chip->priv;
	uint32_t val = 0;
	struct nand_ecclayout *ecc_layout;

	pmecc_writel(host->ecc, CTRL, PMECC_CTRL_RST);
	pmecc_writel(host->ecc, CTRL, PMECC_CTRL_DISABLE);

	switch (host->pmecc_corr_cap) {
	case 2:
		val = PMECC_CFG_BCH_ERR2;
		break;
	case 4:
		val = PMECC_CFG_BCH_ERR4;
		break;
	case 8:
		val = PMECC_CFG_BCH_ERR8;
		break;
	case 12:
		val = PMECC_CFG_BCH_ERR12;
		break;
	case 24:
		val = PMECC_CFG_BCH_ERR24;
		break;
	}

	if (host->pmecc_sector_size == 512)
		val |= PMECC_CFG_SECTOR512;
	else if (host->pmecc_sector_size == 1024)
		val |= PMECC_CFG_SECTOR1024;

	switch (host->pmecc_sector_number) {
	case 1:
		val |= PMECC_CFG_PAGE_1SECTOR;
		break;
	case 2:
		val |= PMECC_CFG_PAGE_2SECTORS;
		break;
	case 4:
		val |= PMECC_CFG_PAGE_4SECTORS;
		break;
	case 8:
		val |= PMECC_CFG_PAGE_8SECTORS;
		break;
	}

	val |= (PMECC_CFG_READ_OP | PMECC_CFG_SPARE_DISABLE
		| PMECC_CFG_AUTO_DISABLE);
	pmecc_writel(host->ecc, CFG, val);

	ecc_layout = nand_chip->ecc.layout;
	pmecc_writel(host->ecc, SAREA, mtd->oobsize - 1);
	pmecc_writel(host->ecc, SADDR, ecc_layout->eccpos[0]);
	pmecc_writel(host->ecc, EADDR,
			ecc_layout->eccpos[ecc_layout->eccbytes - 1]);
	/* See datasheet about PMECC Clock Control Register */
	pmecc_writel(host->ecc, CLK, 2);
	pmecc_writel(host->ecc, IDR, 0xff);
	pmecc_writel(host->ecc, CTRL, PMECC_CTRL_ENABLE);
}

1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120
/*
 * Get ECC requirement in ONFI parameters, returns -1 if ONFI
 * parameters is not supported.
 * return 0 if success to get the ECC requirement.
 */
static int get_onfi_ecc_param(struct nand_chip *chip,
		int *ecc_bits, int *sector_size)
{
	*ecc_bits = *sector_size = 0;

	if (chip->onfi_params.ecc_bits == 0xff)
		/* TODO: the sector_size and ecc_bits need to be find in
		 * extended ecc parameter, currently we don't support it.
		 */
		return -1;

	*ecc_bits = chip->onfi_params.ecc_bits;

	/* The default sector size (ecc codeword size) is 512 */
	*sector_size = 512;

	return 0;
}

/*
 * Get ecc requirement from ONFI parameters ecc requirement.
 * If pmecc-cap, pmecc-sector-size in DTS are not specified, this function
 * will set them according to ONFI ecc requirement. Otherwise, use the
 * value in DTS file.
 * return 0 if success. otherwise return error code.
 */
static int pmecc_choose_ecc(struct atmel_nand_host *host,
		int *cap, int *sector_size)
{
	/* Get ECC requirement from ONFI parameters */
	*cap = *sector_size = 0;
	if (host->nand_chip.onfi_version) {
		if (!get_onfi_ecc_param(&host->nand_chip, cap, sector_size))
			dev_info(host->dev, "ONFI params, minimum required ECC: %d bits in %d bytes\n",
				*cap, *sector_size);
		else
			dev_info(host->dev, "NAND chip ECC reqirement is in Extended ONFI parameter, we don't support yet.\n");
	} else {
		dev_info(host->dev, "NAND chip is not ONFI compliant, assume ecc_bits is 2 in 512 bytes");
	}
	if (*cap == 0 && *sector_size == 0) {
		*cap = 2;
		*sector_size = 512;
	}

	/* If dts file doesn't specify then use the one in ONFI parameters */
	if (host->pmecc_corr_cap == 0) {
		/* use the most fitable ecc bits (the near bigger one ) */
		if (*cap <= 2)
			host->pmecc_corr_cap = 2;
		else if (*cap <= 4)
			host->pmecc_corr_cap = 4;
1121
		else if (*cap <= 8)
1122
			host->pmecc_corr_cap = 8;
1123
		else if (*cap <= 12)
1124
			host->pmecc_corr_cap = 12;
1125
		else if (*cap <= 24)
1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141
			host->pmecc_corr_cap = 24;
		else
			return -EINVAL;
	}
	if (host->pmecc_sector_size == 0) {
		/* use the most fitable sector size (the near smaller one ) */
		if (*sector_size >= 1024)
			host->pmecc_sector_size = 1024;
		else if (*sector_size >= 512)
			host->pmecc_sector_size = 512;
		else
			return -EINVAL;
	}
	return 0;
}

1142 1143 1144 1145 1146 1147 1148 1149
static int __init atmel_pmecc_nand_init_params(struct platform_device *pdev,
					 struct atmel_nand_host *host)
{
	struct mtd_info *mtd = &host->mtd;
	struct nand_chip *nand_chip = &host->nand_chip;
	struct resource *regs, *regs_pmerr, *regs_rom;
	int cap, sector_size, err_no;

1150 1151 1152 1153 1154 1155
	err_no = pmecc_choose_ecc(host, &cap, &sector_size);
	if (err_no) {
		dev_err(host->dev, "The NAND flash's ECC requirement are not support!");
		return err_no;
	}

1156
	if (cap > host->pmecc_corr_cap ||
1157 1158
			sector_size != host->pmecc_sector_size)
		dev_info(host->dev, "WARNING: Be Caution! Using different PMECC parameters from Nand ONFI ECC reqirement.\n");
1159

1160 1161
	cap = host->pmecc_corr_cap;
	sector_size = host->pmecc_sector_size;
1162 1163 1164 1165
	host->pmecc_lookup_table_offset = (sector_size == 512) ?
			host->pmecc_lookup_table_offset_512 :
			host->pmecc_lookup_table_offset_1024;

1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176
	dev_info(host->dev, "Initialize PMECC params, cap: %d, sector: %d\n",
		 cap, sector_size);

	regs = platform_get_resource(pdev, IORESOURCE_MEM, 1);
	if (!regs) {
		dev_warn(host->dev,
			"Can't get I/O resource regs for PMECC controller, rolling back on software ECC\n");
		nand_chip->ecc.mode = NAND_ECC_SOFT;
		return 0;
	}

1177 1178
	host->ecc = devm_ioremap_resource(&pdev->dev, regs);
	if (IS_ERR(host->ecc)) {
1179
		dev_err(host->dev, "ioremap failed\n");
1180 1181
		err_no = PTR_ERR(host->ecc);
		goto err;
1182 1183 1184
	}

	regs_pmerr = platform_get_resource(pdev, IORESOURCE_MEM, 2);
1185 1186 1187 1188 1189 1190
	host->pmerrloc_base = devm_ioremap_resource(&pdev->dev, regs_pmerr);
	if (IS_ERR(host->pmerrloc_base)) {
		dev_err(host->dev,
			"Can not get I/O resource for PMECC ERRLOC controller!\n");
		err_no = PTR_ERR(host->pmerrloc_base);
		goto err;
1191 1192
	}

1193 1194 1195 1196 1197 1198
	regs_rom = platform_get_resource(pdev, IORESOURCE_MEM, 3);
	host->pmecc_rom_base = devm_ioremap_resource(&pdev->dev, regs_rom);
	if (IS_ERR(host->pmecc_rom_base)) {
		dev_err(host->dev, "Can not get I/O resource for ROM!\n");
		err_no = PTR_ERR(host->pmecc_rom_base);
		goto err;
1199 1200 1201 1202 1203 1204 1205 1206
	}

	/* ECC is calculated for the whole page (1 step) */
	nand_chip->ecc.size = mtd->writesize;

	/* set ECC page size and oob layout */
	switch (mtd->writesize) {
	case 2048:
1207 1208
		host->pmecc_degree = (sector_size == 512) ?
			PMECC_GF_DIMENSION_13 : PMECC_GF_DIMENSION_14;
1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223
		host->pmecc_cw_len = (1 << host->pmecc_degree) - 1;
		host->pmecc_sector_number = mtd->writesize / sector_size;
		host->pmecc_bytes_per_sector = pmecc_get_ecc_bytes(
			cap, sector_size);
		host->pmecc_alpha_to = pmecc_get_alpha_to(host);
		host->pmecc_index_of = host->pmecc_rom_base +
			host->pmecc_lookup_table_offset;

		nand_chip->ecc.steps = 1;
		nand_chip->ecc.strength = cap;
		nand_chip->ecc.bytes = host->pmecc_bytes_per_sector *
				       host->pmecc_sector_number;
		if (nand_chip->ecc.bytes > mtd->oobsize - 2) {
			dev_err(host->dev, "No room for ECC bytes\n");
			err_no = -EINVAL;
1224
			goto err;
1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248
		}
		pmecc_config_ecc_layout(&atmel_pmecc_oobinfo,
					mtd->oobsize,
					nand_chip->ecc.bytes);
		nand_chip->ecc.layout = &atmel_pmecc_oobinfo;
		break;
	case 512:
	case 1024:
	case 4096:
		/* TODO */
		dev_warn(host->dev,
			"Unsupported page size for PMECC, use Software ECC\n");
	default:
		/* page size not handled by HW ECC */
		/* switching back to soft ECC */
		nand_chip->ecc.mode = NAND_ECC_SOFT;
		return 0;
	}

	/* Allocate data for PMECC computation */
	err_no = pmecc_data_alloc(host);
	if (err_no) {
		dev_err(host->dev,
				"Cannot allocate memory for PMECC computation!\n");
1249
		goto err;
1250 1251 1252 1253 1254 1255 1256 1257 1258
	}

	nand_chip->ecc.read_page = atmel_nand_pmecc_read_page;
	nand_chip->ecc.write_page = atmel_nand_pmecc_write_page;

	atmel_pmecc_core_init(mtd);

	return 0;

1259
err:
1260 1261 1262
	return err_no;
}

1263 1264 1265 1266 1267 1268 1269 1270 1271
/*
 * Calculate HW ECC
 *
 * function called after a write
 *
 * mtd:        MTD block structure
 * dat:        raw data (unused)
 * ecc_code:   buffer for ECC
 */
1272
static int atmel_nand_calculate(struct mtd_info *mtd,
1273 1274 1275
		const u_char *dat, unsigned char *ecc_code)
{
	struct nand_chip *nand_chip = mtd->priv;
1276
	struct atmel_nand_host *host = nand_chip->priv;
1277 1278 1279
	unsigned int ecc_value;

	/* get the first 2 ECC bytes */
1280
	ecc_value = ecc_readl(host->ecc, PR);
1281

1282 1283
	ecc_code[0] = ecc_value & 0xFF;
	ecc_code[1] = (ecc_value >> 8) & 0xFF;
1284 1285

	/* get the last 2 ECC bytes */
1286
	ecc_value = ecc_readl(host->ecc, NPR) & ATMEL_ECC_NPARITY;
1287

1288 1289
	ecc_code[2] = ecc_value & 0xFF;
	ecc_code[3] = (ecc_value >> 8) & 0xFF;
1290 1291 1292 1293 1294 1295 1296 1297 1298 1299

	return 0;
}

/*
 * HW ECC read page function
 *
 * mtd:        mtd info structure
 * chip:       nand chip info structure
 * buf:        buffer to store read data
1300
 * oob_required:    caller expects OOB data read to chip->oob_poi
1301
 */
1302 1303
static int atmel_nand_read_page(struct mtd_info *mtd, struct nand_chip *chip,
				uint8_t *buf, int oob_required, int page)
1304 1305 1306 1307 1308 1309 1310 1311
{
	int eccsize = chip->ecc.size;
	int eccbytes = chip->ecc.bytes;
	uint32_t *eccpos = chip->ecc.layout->eccpos;
	uint8_t *p = buf;
	uint8_t *oob = chip->oob_poi;
	uint8_t *ecc_pos;
	int stat;
1312
	unsigned int max_bitflips = 0;
1313

1314 1315 1316 1317 1318 1319 1320 1321
	/*
	 * Errata: ALE is incorrectly wired up to the ECC controller
	 * on the AP7000, so it will include the address cycles in the
	 * ECC calculation.
	 *
	 * Workaround: Reset the parity registers before reading the
	 * actual data.
	 */
1322 1323
	struct atmel_nand_host *host = chip->priv;
	if (host->board.need_reset_workaround)
1324 1325
		ecc_writel(host->ecc, CR, ATMEL_ECC_RST);

1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347
	/* read the page */
	chip->read_buf(mtd, p, eccsize);

	/* move to ECC position if needed */
	if (eccpos[0] != 0) {
		/* This only works on large pages
		 * because the ECC controller waits for
		 * NAND_CMD_RNDOUTSTART after the
		 * NAND_CMD_RNDOUT.
		 * anyway, for small pages, the eccpos[0] == 0
		 */
		chip->cmdfunc(mtd, NAND_CMD_RNDOUT,
				mtd->writesize + eccpos[0], -1);
	}

	/* the ECC controller needs to read the ECC just after the data */
	ecc_pos = oob + eccpos[0];
	chip->read_buf(mtd, ecc_pos, eccbytes);

	/* check if there's an error */
	stat = chip->ecc.correct(mtd, p, oob, NULL);

1348
	if (stat < 0) {
1349
		mtd->ecc_stats.failed++;
1350
	} else {
1351
		mtd->ecc_stats.corrected += stat;
1352 1353
		max_bitflips = max_t(unsigned int, max_bitflips, stat);
	}
1354 1355 1356 1357 1358 1359 1360

	/* get back to oob start (end of page) */
	chip->cmdfunc(mtd, NAND_CMD_RNDOUT, mtd->writesize, -1);

	/* read the oob */
	chip->read_buf(mtd, oob, mtd->oobsize);

1361
	return max_bitflips;
1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375
}

/*
 * HW ECC Correction
 *
 * function called after a read
 *
 * mtd:        MTD block structure
 * dat:        raw data read from the chip
 * read_ecc:   ECC from the chip (unused)
 * isnull:     unused
 *
 * Detect and correct a 1 bit error for a page
 */
1376
static int atmel_nand_correct(struct mtd_info *mtd, u_char *dat,
1377 1378 1379
		u_char *read_ecc, u_char *isnull)
{
	struct nand_chip *nand_chip = mtd->priv;
1380
	struct atmel_nand_host *host = nand_chip->priv;
1381 1382 1383 1384 1385 1386 1387
	unsigned int ecc_status;
	unsigned int ecc_word, ecc_bit;

	/* get the status from the Status Register */
	ecc_status = ecc_readl(host->ecc, SR);

	/* if there's no error */
1388
	if (likely(!(ecc_status & ATMEL_ECC_RECERR)))
1389 1390 1391
		return 0;

	/* get error bit offset (4 bits) */
1392
	ecc_bit = ecc_readl(host->ecc, PR) & ATMEL_ECC_BITADDR;
1393
	/* get word address (12 bits) */
1394
	ecc_word = ecc_readl(host->ecc, PR) & ATMEL_ECC_WORDADDR;
1395 1396 1397
	ecc_word >>= 4;

	/* if there are multiple errors */
1398
	if (ecc_status & ATMEL_ECC_MULERR) {
1399 1400
		/* check if it is a freshly erased block
		 * (filled with 0xff) */
1401 1402
		if ((ecc_bit == ATMEL_ECC_BITADDR)
				&& (ecc_word == (ATMEL_ECC_WORDADDR >> 4))) {
1403 1404 1405 1406 1407 1408
			/* the block has just been erased, return OK */
			return 0;
		}
		/* it doesn't seems to be a freshly
		 * erased block.
		 * We can't correct so many errors */
1409
		dev_dbg(host->dev, "atmel_nand : multiple errors detected."
1410 1411 1412 1413 1414
				" Unable to correct.\n");
		return -EIO;
	}

	/* if there's a single bit error : we can correct it */
1415
	if (ecc_status & ATMEL_ECC_ECCERR) {
1416 1417 1418
		/* there's nothing much to do here.
		 * the bit error is on the ECC itself.
		 */
1419
		dev_dbg(host->dev, "atmel_nand : one bit error on ECC code."
1420 1421 1422 1423
				" Nothing to correct\n");
		return 0;
	}

1424
	dev_dbg(host->dev, "atmel_nand : one bit error on data."
1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435
			" (word offset in the page :"
			" 0x%x bit offset : 0x%x)\n",
			ecc_word, ecc_bit);
	/* correct the error */
	if (nand_chip->options & NAND_BUSWIDTH_16) {
		/* 16 bits words */
		((unsigned short *) dat)[ecc_word] ^= (1 << ecc_bit);
	} else {
		/* 8 bits words */
		dat[ecc_word] ^= (1 << ecc_bit);
	}
1436
	dev_dbg(host->dev, "atmel_nand : error corrected\n");
1437 1438 1439 1440
	return 1;
}

/*
1441
 * Enable HW ECC : unused on most chips
1442
 */
1443 1444
static void atmel_nand_hwctl(struct mtd_info *mtd, int mode)
{
1445 1446 1447 1448
	struct nand_chip *nand_chip = mtd->priv;
	struct atmel_nand_host *host = nand_chip->priv;

	if (host->board.need_reset_workaround)
1449 1450
		ecc_writel(host->ecc, CR, ATMEL_ECC_RST);
}
1451

B
Bill Pemberton 已提交
1452
static int atmel_of_init_port(struct atmel_nand_host *host,
1453
			      struct device_node *np)
1454
{
1455
	u32 val;
1456
	u32 offset[2];
1457 1458
	int ecc_mode;
	struct atmel_nand_data *board = &host->board;
1459
	enum of_gpio_flags flags = 0;
1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482

	if (of_property_read_u32(np, "atmel,nand-addr-offset", &val) == 0) {
		if (val >= 32) {
			dev_err(host->dev, "invalid addr-offset %u\n", val);
			return -EINVAL;
		}
		board->ale = val;
	}

	if (of_property_read_u32(np, "atmel,nand-cmd-offset", &val) == 0) {
		if (val >= 32) {
			dev_err(host->dev, "invalid cmd-offset %u\n", val);
			return -EINVAL;
		}
		board->cle = val;
	}

	ecc_mode = of_get_nand_ecc_mode(np);

	board->ecc_mode = ecc_mode < 0 ? NAND_ECC_SOFT : ecc_mode;

	board->on_flash_bbt = of_get_nand_on_flash_bbt(np);

1483 1484
	board->has_dma = of_property_read_bool(np, "atmel,nand-has-dma");

1485 1486 1487 1488 1489 1490 1491 1492 1493
	if (of_get_nand_bus_width(np) == 16)
		board->bus_width_16 = 1;

	board->rdy_pin = of_get_gpio_flags(np, 0, &flags);
	board->rdy_pin_active_low = (flags == OF_GPIO_ACTIVE_LOW);

	board->enable_pin = of_get_gpio(np, 1);
	board->det_pin = of_get_gpio(np, 2);

1494 1495
	host->has_pmecc = of_property_read_bool(np, "atmel,has-pmecc");

1496 1497 1498
	/* load the nfc driver if there is */
	of_platform_populate(np, NULL, NULL, host->dev);

1499 1500 1501 1502 1503
	if (!(board->ecc_mode == NAND_ECC_HW) || !host->has_pmecc)
		return 0;	/* Not using PMECC */

	/* use PMECC, get correction capability, sector size and lookup
	 * table offset.
1504 1505
	 * If correction bits and sector size are not specified, then find
	 * them from NAND ONFI parameters.
1506
	 */
1507 1508 1509 1510 1511 1512 1513 1514 1515
	if (of_property_read_u32(np, "atmel,pmecc-cap", &val) == 0) {
		if ((val != 2) && (val != 4) && (val != 8) && (val != 12) &&
				(val != 24)) {
			dev_err(host->dev,
				"Unsupported PMECC correction capability: %d; should be 2, 4, 8, 12 or 24\n",
				val);
			return -EINVAL;
		}
		host->pmecc_corr_cap = (u8)val;
1516 1517
	}

1518 1519 1520 1521 1522 1523 1524 1525
	if (of_property_read_u32(np, "atmel,pmecc-sector-size", &val) == 0) {
		if ((val != 512) && (val != 1024)) {
			dev_err(host->dev,
				"Unsupported PMECC sector size: %d; should be 512 or 1024 bytes\n",
				val);
			return -EINVAL;
		}
		host->pmecc_sector_size = (u16)val;
1526 1527 1528 1529 1530 1531 1532
	}

	if (of_property_read_u32_array(np, "atmel,pmecc-lookup-table-offset",
			offset, 2) != 0) {
		dev_err(host->dev, "Cannot get PMECC lookup table offset\n");
		return -EINVAL;
	}
1533
	if (!offset[0] && !offset[1]) {
1534 1535 1536
		dev_err(host->dev, "Invalid PMECC lookup table offset\n");
		return -EINVAL;
	}
1537 1538
	host->pmecc_lookup_table_offset_512 = offset[0];
	host->pmecc_lookup_table_offset_1024 = offset[1];
1539

1540 1541 1542
	return 0;
}

1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557
static int __init atmel_hw_nand_init_params(struct platform_device *pdev,
					 struct atmel_nand_host *host)
{
	struct mtd_info *mtd = &host->mtd;
	struct nand_chip *nand_chip = &host->nand_chip;
	struct resource		*regs;

	regs = platform_get_resource(pdev, IORESOURCE_MEM, 1);
	if (!regs) {
		dev_err(host->dev,
			"Can't get I/O resource regs, use software ECC\n");
		nand_chip->ecc.mode = NAND_ECC_SOFT;
		return 0;
	}

1558 1559
	host->ecc = devm_ioremap_resource(&pdev->dev, regs);
	if (IS_ERR(host->ecc)) {
1560
		dev_err(host->dev, "ioremap failed\n");
1561
		return PTR_ERR(host->ecc);
1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602
	}

	/* ECC is calculated for the whole page (1 step) */
	nand_chip->ecc.size = mtd->writesize;

	/* set ECC page size and oob layout */
	switch (mtd->writesize) {
	case 512:
		nand_chip->ecc.layout = &atmel_oobinfo_small;
		ecc_writel(host->ecc, MR, ATMEL_ECC_PAGESIZE_528);
		break;
	case 1024:
		nand_chip->ecc.layout = &atmel_oobinfo_large;
		ecc_writel(host->ecc, MR, ATMEL_ECC_PAGESIZE_1056);
		break;
	case 2048:
		nand_chip->ecc.layout = &atmel_oobinfo_large;
		ecc_writel(host->ecc, MR, ATMEL_ECC_PAGESIZE_2112);
		break;
	case 4096:
		nand_chip->ecc.layout = &atmel_oobinfo_large;
		ecc_writel(host->ecc, MR, ATMEL_ECC_PAGESIZE_4224);
		break;
	default:
		/* page size not handled by HW ECC */
		/* switching back to soft ECC */
		nand_chip->ecc.mode = NAND_ECC_SOFT;
		return 0;
	}

	/* set up for HW ECC */
	nand_chip->ecc.calculate = atmel_nand_calculate;
	nand_chip->ecc.correct = atmel_nand_correct;
	nand_chip->ecc.hwctl = atmel_nand_hwctl;
	nand_chip->ecc.read_page = atmel_nand_read_page;
	nand_chip->ecc.bytes = 4;
	nand_chip->ecc.strength = 1;

	return 0;
}

1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749
/* SMC interrupt service routine */
static irqreturn_t hsmc_interrupt(int irq, void *dev_id)
{
	struct atmel_nand_host *host = dev_id;
	u32 status, mask, pending;
	irqreturn_t ret = IRQ_HANDLED;

	status = nfc_readl(host->nfc->hsmc_regs, SR);
	mask = nfc_readl(host->nfc->hsmc_regs, IMR);
	pending = status & mask;

	if (pending & NFC_SR_XFR_DONE) {
		complete(&host->nfc->comp_nfc);
		nfc_writel(host->nfc->hsmc_regs, IDR, NFC_SR_XFR_DONE);
	} else if (pending & NFC_SR_RB_EDGE) {
		complete(&host->nfc->comp_nfc);
		nfc_writel(host->nfc->hsmc_regs, IDR, NFC_SR_RB_EDGE);
	} else if (pending & NFC_SR_CMD_DONE) {
		complete(&host->nfc->comp_nfc);
		nfc_writel(host->nfc->hsmc_regs, IDR, NFC_SR_CMD_DONE);
	} else {
		ret = IRQ_NONE;
	}

	return ret;
}

/* NFC(Nand Flash Controller) related functions */
static int nfc_wait_interrupt(struct atmel_nand_host *host, u32 flag)
{
	unsigned long timeout;
	init_completion(&host->nfc->comp_nfc);

	/* Enable interrupt that need to wait for */
	nfc_writel(host->nfc->hsmc_regs, IER, flag);

	timeout = wait_for_completion_timeout(&host->nfc->comp_nfc,
			msecs_to_jiffies(NFC_TIME_OUT_MS));
	if (timeout)
		return 0;

	/* Time out to wait for the interrupt */
	dev_err(host->dev, "Time out to wait for interrupt: 0x%08x\n", flag);
	return -ETIMEDOUT;
}

static int nfc_send_command(struct atmel_nand_host *host,
	unsigned int cmd, unsigned int addr, unsigned char cycle0)
{
	unsigned long timeout;
	dev_dbg(host->dev,
		"nfc_cmd: 0x%08x, addr1234: 0x%08x, cycle0: 0x%02x\n",
		cmd, addr, cycle0);

	timeout = jiffies + msecs_to_jiffies(NFC_TIME_OUT_MS);
	while (nfc_cmd_readl(NFCADDR_CMD_NFCBUSY, host->nfc->base_cmd_regs)
			& NFCADDR_CMD_NFCBUSY) {
		if (time_after(jiffies, timeout)) {
			dev_err(host->dev,
				"Time out to wait CMD_NFCBUSY ready!\n");
			return -ETIMEDOUT;
		}
	}
	nfc_writel(host->nfc->hsmc_regs, CYCLE0, cycle0);
	nfc_cmd_addr1234_writel(cmd, addr, host->nfc->base_cmd_regs);
	return nfc_wait_interrupt(host, NFC_SR_CMD_DONE);
}

static int nfc_device_ready(struct mtd_info *mtd)
{
	struct nand_chip *nand_chip = mtd->priv;
	struct atmel_nand_host *host = nand_chip->priv;
	if (!nfc_wait_interrupt(host, NFC_SR_RB_EDGE))
		return 1;
	return 0;
}

static void nfc_select_chip(struct mtd_info *mtd, int chip)
{
	struct nand_chip *nand_chip = mtd->priv;
	struct atmel_nand_host *host = nand_chip->priv;

	if (chip == -1)
		nfc_writel(host->nfc->hsmc_regs, CTRL, NFC_CTRL_DISABLE);
	else
		nfc_writel(host->nfc->hsmc_regs, CTRL, NFC_CTRL_ENABLE);
}

static int nfc_make_addr(struct mtd_info *mtd, int column, int page_addr,
		unsigned int *addr1234, unsigned int *cycle0)
{
	struct nand_chip *chip = mtd->priv;

	int acycle = 0;
	unsigned char addr_bytes[8];
	int index = 0, bit_shift;

	BUG_ON(addr1234 == NULL || cycle0 == NULL);

	*cycle0 = 0;
	*addr1234 = 0;

	if (column != -1) {
		if (chip->options & NAND_BUSWIDTH_16)
			column >>= 1;
		addr_bytes[acycle++] = column & 0xff;
		if (mtd->writesize > 512)
			addr_bytes[acycle++] = (column >> 8) & 0xff;
	}

	if (page_addr != -1) {
		addr_bytes[acycle++] = page_addr & 0xff;
		addr_bytes[acycle++] = (page_addr >> 8) & 0xff;
		if (chip->chipsize > (128 << 20))
			addr_bytes[acycle++] = (page_addr >> 16) & 0xff;
	}

	if (acycle > 4)
		*cycle0 = addr_bytes[index++];

	for (bit_shift = 0; index < acycle; bit_shift += 8)
		*addr1234 += addr_bytes[index++] << bit_shift;

	/* return acycle in cmd register */
	return acycle << NFCADDR_CMD_ACYCLE_BIT_POS;
}

static void nfc_nand_command(struct mtd_info *mtd, unsigned int command,
				int column, int page_addr)
{
	struct nand_chip *chip = mtd->priv;
	struct atmel_nand_host *host = chip->priv;
	unsigned long timeout;
	unsigned int nfc_addr_cmd = 0;

	unsigned int cmd1 = command << NFCADDR_CMD_CMD1_BIT_POS;

	/* Set default settings: no cmd2, no addr cycle. read from nand */
	unsigned int cmd2 = 0;
	unsigned int vcmd2 = 0;
	int acycle = NFCADDR_CMD_ACYCLE_NONE;
	int csid = NFCADDR_CMD_CSID_3;
	int dataen = NFCADDR_CMD_DATADIS;
	int nfcwr = NFCADDR_CMD_NFCRD;
	unsigned int addr1234 = 0;
	unsigned int cycle0 = 0;
	bool do_addr = true;
1750
	host->nfc->data_in_sram = NULL;
1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791

	dev_dbg(host->dev, "%s: cmd = 0x%02x, col = 0x%08x, page = 0x%08x\n",
	     __func__, command, column, page_addr);

	switch (command) {
	case NAND_CMD_RESET:
		nfc_addr_cmd = cmd1 | acycle | csid | dataen | nfcwr;
		nfc_send_command(host, nfc_addr_cmd, addr1234, cycle0);
		udelay(chip->chip_delay);

		nfc_nand_command(mtd, NAND_CMD_STATUS, -1, -1);
		timeout = jiffies + msecs_to_jiffies(NFC_TIME_OUT_MS);
		while (!(chip->read_byte(mtd) & NAND_STATUS_READY)) {
			if (time_after(jiffies, timeout)) {
				dev_err(host->dev,
					"Time out to wait status ready!\n");
				break;
			}
		}
		return;
	case NAND_CMD_STATUS:
		do_addr = false;
		break;
	case NAND_CMD_PARAM:
	case NAND_CMD_READID:
		do_addr = false;
		acycle = NFCADDR_CMD_ACYCLE_1;
		if (column != -1)
			addr1234 = column;
		break;
	case NAND_CMD_RNDOUT:
		cmd2 = NAND_CMD_RNDOUTSTART << NFCADDR_CMD_CMD2_BIT_POS;
		vcmd2 = NFCADDR_CMD_VCMD2;
		break;
	case NAND_CMD_READ0:
	case NAND_CMD_READOOB:
		if (command == NAND_CMD_READOOB) {
			column += mtd->writesize;
			command = NAND_CMD_READ0; /* only READ0 is valid */
			cmd1 = command << NFCADDR_CMD_CMD1_BIT_POS;
		}
1792 1793 1794 1795 1796 1797 1798 1799 1800 1801
		if (host->nfc->use_nfc_sram) {
			/* Enable Data transfer to sram */
			dataen = NFCADDR_CMD_DATAEN;

			/* Need enable PMECC now, since NFC will transfer
			 * data in bus after sending nfc read command.
			 */
			if (chip->ecc.mode == NAND_ECC_HW && host->has_pmecc)
				pmecc_enable(host, NAND_ECC_READ);
		}
1802 1803 1804 1805 1806 1807 1808 1809 1810

		cmd2 = NAND_CMD_READSTART << NFCADDR_CMD_CMD2_BIT_POS;
		vcmd2 = NFCADDR_CMD_VCMD2;
		break;
	/* For prgramming command, the cmd need set to write enable */
	case NAND_CMD_PAGEPROG:
	case NAND_CMD_SEQIN:
	case NAND_CMD_RNDIN:
		nfcwr = NFCADDR_CMD_NFCWR;
1811 1812
		if (host->nfc->will_write_sram && command == NAND_CMD_SEQIN)
			dataen = NFCADDR_CMD_DATAEN;
1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824
		break;
	default:
		break;
	}

	if (do_addr)
		acycle = nfc_make_addr(mtd, column, page_addr, &addr1234,
				&cycle0);

	nfc_addr_cmd = cmd1 | cmd2 | vcmd2 | acycle | csid | dataen | nfcwr;
	nfc_send_command(host, nfc_addr_cmd, addr1234, cycle0);

1825 1826 1827 1828
	if (dataen == NFCADDR_CMD_DATAEN)
		if (nfc_wait_interrupt(host, NFC_SR_XFR_DONE))
			dev_err(host->dev, "something wrong, No XFR_DONE interrupt comes.\n");

1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845
	/*
	 * Program and erase have their own busy handlers status, sequential
	 * in, and deplete1 need no delay.
	 */
	switch (command) {
	case NAND_CMD_CACHEDPROG:
	case NAND_CMD_PAGEPROG:
	case NAND_CMD_ERASE1:
	case NAND_CMD_ERASE2:
	case NAND_CMD_RNDIN:
	case NAND_CMD_STATUS:
	case NAND_CMD_RNDOUT:
	case NAND_CMD_SEQIN:
	case NAND_CMD_READID:
		return;

	case NAND_CMD_READ0:
1846 1847 1848 1849 1850
		if (dataen == NFCADDR_CMD_DATAEN) {
			host->nfc->data_in_sram = host->nfc->sram_bank0 +
				nfc_get_sram_off(host);
			return;
		}
1851 1852 1853 1854 1855 1856
		/* fall through */
	default:
		nfc_wait_interrupt(host, NFC_SR_RB_EDGE);
	}
}

1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918
static int nfc_sram_write_page(struct mtd_info *mtd, struct nand_chip *chip,
			uint32_t offset, int data_len, const uint8_t *buf,
			int oob_required, int page, int cached, int raw)
{
	int cfg, len;
	int status = 0;
	struct atmel_nand_host *host = chip->priv;
	void __iomem *sram = host->nfc->sram_bank0 + nfc_get_sram_off(host);

	/* Subpage write is not supported */
	if (offset || (data_len < mtd->writesize))
		return -EINVAL;

	cfg = nfc_readl(host->nfc->hsmc_regs, CFG);
	len = mtd->writesize;

	if (unlikely(raw)) {
		len += mtd->oobsize;
		nfc_writel(host->nfc->hsmc_regs, CFG, cfg | NFC_CFG_WSPARE);
	} else
		nfc_writel(host->nfc->hsmc_regs, CFG, cfg & ~NFC_CFG_WSPARE);

	/* Copy page data to sram that will write to nand via NFC */
	if (use_dma) {
		if (atmel_nand_dma_op(mtd, (void *)buf, len, 0) != 0)
			/* Fall back to use cpu copy */
			memcpy32_toio(sram, buf, len);
	} else {
		memcpy32_toio(sram, buf, len);
	}

	if (chip->ecc.mode == NAND_ECC_HW && host->has_pmecc)
		/*
		 * When use NFC sram, need set up PMECC before send
		 * NAND_CMD_SEQIN command. Since when the nand command
		 * is sent, nfc will do transfer from sram and nand.
		 */
		pmecc_enable(host, NAND_ECC_WRITE);

	host->nfc->will_write_sram = true;
	chip->cmdfunc(mtd, NAND_CMD_SEQIN, 0x00, page);
	host->nfc->will_write_sram = false;

	if (likely(!raw))
		/* Need to write ecc into oob */
		status = chip->ecc.write_page(mtd, chip, buf, oob_required);

	if (status < 0)
		return status;

	chip->cmdfunc(mtd, NAND_CMD_PAGEPROG, -1, -1);
	status = chip->waitfunc(mtd, chip);

	if ((status & NAND_STATUS_FAIL) && (chip->errstat))
		status = chip->errstat(mtd, chip, FL_WRITING, status, page);

	if (status & NAND_STATUS_FAIL)
		return -EIO;

	return 0;
}

1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960
static int nfc_sram_init(struct mtd_info *mtd)
{
	struct nand_chip *chip = mtd->priv;
	struct atmel_nand_host *host = chip->priv;
	int res = 0;

	/* Initialize the NFC CFG register */
	unsigned int cfg_nfc = 0;

	/* set page size and oob layout */
	switch (mtd->writesize) {
	case 512:
		cfg_nfc = NFC_CFG_PAGESIZE_512;
		break;
	case 1024:
		cfg_nfc = NFC_CFG_PAGESIZE_1024;
		break;
	case 2048:
		cfg_nfc = NFC_CFG_PAGESIZE_2048;
		break;
	case 4096:
		cfg_nfc = NFC_CFG_PAGESIZE_4096;
		break;
	case 8192:
		cfg_nfc = NFC_CFG_PAGESIZE_8192;
		break;
	default:
		dev_err(host->dev, "Unsupported page size for NFC.\n");
		res = -ENXIO;
		return res;
	}

	/* oob bytes size = (NFCSPARESIZE + 1) * 4
	 * Max support spare size is 512 bytes. */
	cfg_nfc |= (((mtd->oobsize / 4) - 1) << NFC_CFG_NFC_SPARESIZE_BIT_POS
		& NFC_CFG_NFC_SPARESIZE);
	/* default set a max timeout */
	cfg_nfc |= NFC_CFG_RSPARE |
			NFC_CFG_NFC_DTOCYC | NFC_CFG_NFC_DTOMUL;

	nfc_writel(host->nfc->hsmc_regs, CFG, cfg_nfc);

1961
	host->nfc->will_write_sram = false;
1962 1963
	nfc_set_sram_bank(host, 0);

1964 1965 1966 1967 1968 1969 1970 1971
	/* Use Write page with NFC SRAM only for PMECC or ECC NONE. */
	if (host->nfc->write_by_sram) {
		if ((chip->ecc.mode == NAND_ECC_HW && host->has_pmecc) ||
				chip->ecc.mode == NAND_ECC_NONE)
			chip->write_page = nfc_sram_write_page;
		else
			host->nfc->write_by_sram = false;
	}
1972

1973 1974
	dev_info(host->dev, "Using NFC Sram read %s\n",
			host->nfc->write_by_sram ? "and write" : "");
1975 1976 1977
	return 0;
}

1978
static struct platform_driver atmel_nand_nfc_driver;
A
Andrew Victor 已提交
1979 1980 1981
/*
 * Probe for the NAND device.
 */
1982
static int __init atmel_nand_probe(struct platform_device *pdev)
A
Andrew Victor 已提交
1983
{
1984
	struct atmel_nand_host *host;
A
Andrew Victor 已提交
1985 1986
	struct mtd_info *mtd;
	struct nand_chip *nand_chip;
1987
	struct resource *mem;
1988
	struct mtd_part_parser_data ppdata = {};
1989
	int res, irq;
A
Andrew Victor 已提交
1990 1991

	/* Allocate memory for the device structure (and zero it) */
1992
	host = devm_kzalloc(&pdev->dev, sizeof(*host), GFP_KERNEL);
A
Andrew Victor 已提交
1993
	if (!host) {
1994
		printk(KERN_ERR "atmel_nand: failed to allocate device structure.\n");
A
Andrew Victor 已提交
1995 1996 1997
		return -ENOMEM;
	}

1998 1999 2000 2001
	res = platform_driver_register(&atmel_nand_nfc_driver);
	if (res)
		dev_err(&pdev->dev, "atmel_nand: can't register NFC driver\n");

2002 2003 2004 2005 2006
	mem = platform_get_resource(pdev, IORESOURCE_MEM, 0);
	host->io_base = devm_ioremap_resource(&pdev->dev, mem);
	if (IS_ERR(host->io_base)) {
		dev_err(&pdev->dev, "atmel_nand: ioremap resource failed\n");
		res = PTR_ERR(host->io_base);
2007
		goto err_nand_ioremap;
A
Andrew Victor 已提交
2008
	}
2009
	host->io_phys = (dma_addr_t)mem->start;
A
Andrew Victor 已提交
2010 2011 2012

	mtd = &host->mtd;
	nand_chip = &host->nand_chip;
2013
	host->dev = &pdev->dev;
2014 2015
	if (IS_ENABLED(CONFIG_OF) && pdev->dev.of_node) {
		/* Only when CONFIG_OF is enabled of_node can be parsed */
2016 2017
		res = atmel_of_init_port(host, pdev->dev.of_node);
		if (res)
2018
			goto err_nand_ioremap;
2019
	} else {
J
Jingoo Han 已提交
2020
		memcpy(&host->board, dev_get_platdata(&pdev->dev),
2021 2022
		       sizeof(struct atmel_nand_data));
	}
A
Andrew Victor 已提交
2023 2024 2025 2026 2027 2028 2029 2030

	nand_chip->priv = host;		/* link the private data structures */
	mtd->priv = nand_chip;
	mtd->owner = THIS_MODULE;

	/* Set address of NAND IO lines */
	nand_chip->IO_ADDR_R = host->io_base;
	nand_chip->IO_ADDR_W = host->io_base;
2031

2032 2033 2034
	if (nand_nfc.is_initialized) {
		/* NFC driver is probed and initialized */
		host->nfc = &nand_nfc;
2035

2036 2037 2038
		nand_chip->select_chip = nfc_select_chip;
		nand_chip->dev_ready = nfc_device_ready;
		nand_chip->cmdfunc = nfc_nand_command;
2039

2040 2041 2042 2043
		/* Initialize the interrupt for NFC */
		irq = platform_get_irq(pdev, 0);
		if (irq < 0) {
			dev_err(host->dev, "Cannot get HSMC irq!\n");
2044
			res = irq;
2045
			goto err_nand_ioremap;
2046 2047
		}

2048 2049 2050 2051 2052
		res = devm_request_irq(&pdev->dev, irq, hsmc_interrupt,
				0, "hsmc", host);
		if (res) {
			dev_err(&pdev->dev, "Unable to request HSMC irq %d\n",
				irq);
2053
			goto err_nand_ioremap;
2054
		}
2055 2056 2057 2058 2059 2060
	} else {
		res = atmel_nand_set_enable_ready_pins(mtd);
		if (res)
			goto err_nand_ioremap;

		nand_chip->cmd_ctrl = atmel_nand_cmd_ctrl;
2061
	}
I
Ivan Kuten 已提交
2062

2063
	nand_chip->ecc.mode = host->board.ecc_mode;
A
Andrew Victor 已提交
2064 2065
	nand_chip->chip_delay = 20;		/* 20us command delay time */

2066
	if (host->board.bus_width_16)	/* 16-bit bus width */
2067
		nand_chip->options |= NAND_BUSWIDTH_16;
2068 2069 2070

	nand_chip->read_buf = atmel_read_buf;
	nand_chip->write_buf = atmel_write_buf;
2071

A
Andrew Victor 已提交
2072
	platform_set_drvdata(pdev, host);
2073
	atmel_nand_enable(host);
A
Andrew Victor 已提交
2074

2075
	if (gpio_is_valid(host->board.det_pin)) {
2076 2077
		res = devm_gpio_request(&pdev->dev,
				host->board.det_pin, "nand_det");
2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092
		if (res < 0) {
			dev_err(&pdev->dev,
				"can't request det gpio %d\n",
				host->board.det_pin);
			goto err_no_card;
		}

		res = gpio_direction_input(host->board.det_pin);
		if (res < 0) {
			dev_err(&pdev->dev,
				"can't request input direction det gpio %d\n",
				host->board.det_pin);
			goto err_no_card;
		}

2093
		if (gpio_get_value(host->board.det_pin)) {
2094
			printk(KERN_INFO "No SmartMedia card inserted.\n");
R
Roel Kluin 已提交
2095
			res = -ENXIO;
2096
			goto err_no_card;
A
Andrew Victor 已提交
2097 2098 2099
		}
	}

2100
	if (host->board.on_flash_bbt || on_flash_bbt) {
2101
		printk(KERN_INFO "atmel_nand: Use On Flash BBT\n");
2102
		nand_chip->bbt_options |= NAND_BBT_USE_FLASH;
2103 2104
	}

2105
	if (!host->board.has_dma)
2106 2107 2108
		use_dma = 0;

	if (use_dma) {
2109 2110 2111 2112
		dma_cap_mask_t mask;

		dma_cap_zero(mask);
		dma_cap_set(DMA_MEMCPY, mask);
2113
		host->dma_chan = dma_request_channel(mask, NULL, NULL);
2114 2115 2116 2117 2118 2119
		if (!host->dma_chan) {
			dev_err(host->dev, "Failed to request DMA channel\n");
			use_dma = 0;
		}
	}
	if (use_dma)
2120 2121
		dev_info(host->dev, "Using %s for DMA transfers.\n",
					dma_chan_name(host->dma_chan));
2122 2123 2124
	else
		dev_info(host->dev, "No DMA support for NAND access.\n");

2125
	/* first scan to find the device and get the page size */
2126
	if (nand_scan_ident(mtd, 1, NULL)) {
2127
		res = -ENXIO;
2128
		goto err_scan_ident;
2129 2130
	}

2131
	if (nand_chip->ecc.mode == NAND_ECC_HW) {
2132 2133 2134 2135 2136
		if (host->has_pmecc)
			res = atmel_pmecc_nand_init_params(pdev, host);
		else
			res = atmel_hw_nand_init_params(pdev, host);

2137 2138
		if (res != 0)
			goto err_hw_ecc;
2139 2140
	}

2141 2142 2143 2144 2145 2146 2147 2148 2149
	/* initialize the nfc configuration register */
	if (host->nfc && host->nfc->use_nfc_sram) {
		res = nfc_sram_init(mtd);
		if (res) {
			host->nfc->use_nfc_sram = false;
			dev_err(host->dev, "Disable use nfc sram for data transfer.\n");
		}
	}

2150 2151
	/* second phase scan */
	if (nand_scan_tail(mtd)) {
A
Andrew Victor 已提交
2152
		res = -ENXIO;
2153
		goto err_scan_tail;
A
Andrew Victor 已提交
2154 2155
	}

2156
	mtd->name = "atmel_nand";
2157 2158 2159
	ppdata.of_node = pdev->dev.of_node;
	res = mtd_device_parse_register(mtd, NULL, &ppdata,
			host->board.parts, host->board.num_parts);
A
Andrew Victor 已提交
2160 2161 2162
	if (!res)
		return res;

2163
err_scan_tail:
2164
	if (host->has_pmecc && host->nand_chip.ecc.mode == NAND_ECC_HW)
2165
		pmecc_writel(host->ecc, CTRL, PMECC_CTRL_DISABLE);
2166
err_hw_ecc:
2167 2168
err_scan_ident:
err_no_card:
2169
	atmel_nand_disable(host);
2170 2171
	if (host->dma_chan)
		dma_release_channel(host->dma_chan);
2172
err_nand_ioremap:
2173
	platform_driver_unregister(&atmel_nand_nfc_driver);
A
Andrew Victor 已提交
2174 2175 2176 2177 2178 2179
	return res;
}

/*
 * Remove a NAND device.
 */
2180
static int __exit atmel_nand_remove(struct platform_device *pdev)
A
Andrew Victor 已提交
2181
{
2182
	struct atmel_nand_host *host = platform_get_drvdata(pdev);
A
Andrew Victor 已提交
2183 2184 2185 2186
	struct mtd_info *mtd = &host->mtd;

	nand_release(mtd);

2187
	atmel_nand_disable(host);
A
Andrew Victor 已提交
2188

2189 2190 2191 2192 2193 2194
	if (host->has_pmecc && host->nand_chip.ecc.mode == NAND_ECC_HW) {
		pmecc_writel(host->ecc, CTRL, PMECC_CTRL_DISABLE);
		pmerrloc_writel(host->pmerrloc_base, ELDIS,
				PMERRLOC_DISABLE);
	}

2195 2196 2197
	if (host->dma_chan)
		dma_release_channel(host->dma_chan);

2198 2199
	platform_driver_unregister(&atmel_nand_nfc_driver);

A
Andrew Victor 已提交
2200 2201 2202
	return 0;
}

2203 2204 2205 2206 2207 2208 2209
static const struct of_device_id atmel_nand_dt_ids[] = {
	{ .compatible = "atmel,at91rm9200-nand" },
	{ /* sentinel */ }
};

MODULE_DEVICE_TABLE(of, atmel_nand_dt_ids);

2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227
static int atmel_nand_nfc_probe(struct platform_device *pdev)
{
	struct atmel_nfc *nfc = &nand_nfc;
	struct resource *nfc_cmd_regs, *nfc_hsmc_regs, *nfc_sram;

	nfc_cmd_regs = platform_get_resource(pdev, IORESOURCE_MEM, 0);
	nfc->base_cmd_regs = devm_ioremap_resource(&pdev->dev, nfc_cmd_regs);
	if (IS_ERR(nfc->base_cmd_regs))
		return PTR_ERR(nfc->base_cmd_regs);

	nfc_hsmc_regs = platform_get_resource(pdev, IORESOURCE_MEM, 1);
	nfc->hsmc_regs = devm_ioremap_resource(&pdev->dev, nfc_hsmc_regs);
	if (IS_ERR(nfc->hsmc_regs))
		return PTR_ERR(nfc->hsmc_regs);

	nfc_sram = platform_get_resource(pdev, IORESOURCE_MEM, 2);
	if (nfc_sram) {
		nfc->sram_bank0 = devm_ioremap_resource(&pdev->dev, nfc_sram);
2228
		if (IS_ERR(nfc->sram_bank0)) {
2229 2230
			dev_warn(&pdev->dev, "Fail to ioremap the NFC sram with error: %ld. So disable NFC sram.\n",
					PTR_ERR(nfc->sram_bank0));
2231 2232
		} else {
			nfc->use_nfc_sram = true;
2233
			nfc->sram_bank0_phys = (dma_addr_t)nfc_sram->start;
2234 2235 2236 2237 2238

			if (pdev->dev.of_node)
				nfc->write_by_sram = of_property_read_bool(
						pdev->dev.of_node,
						"atmel,write-by-sram");
2239
		}
2240 2241 2242 2243 2244 2245 2246
	}

	nfc->is_initialized = true;
	dev_info(&pdev->dev, "NFC is probed.\n");
	return 0;
}

2247
static const struct of_device_id atmel_nand_nfc_match[] = {
2248 2249 2250
	{ .compatible = "atmel,sama5d3-nfc" },
	{ /* sentinel */ }
};
2251
MODULE_DEVICE_TABLE(of, atmel_nand_nfc_match);
2252 2253 2254 2255 2256 2257 2258 2259 2260 2261

static struct platform_driver atmel_nand_nfc_driver = {
	.driver = {
		.name = "atmel_nand_nfc",
		.owner = THIS_MODULE,
		.of_match_table = of_match_ptr(atmel_nand_nfc_match),
	},
	.probe = atmel_nand_nfc_probe,
};

2262
static struct platform_driver atmel_nand_driver = {
2263
	.remove		= __exit_p(atmel_nand_remove),
A
Andrew Victor 已提交
2264
	.driver		= {
2265
		.name	= "atmel_nand",
A
Andrew Victor 已提交
2266
		.owner	= THIS_MODULE,
2267
		.of_match_table	= of_match_ptr(atmel_nand_dt_ids),
A
Andrew Victor 已提交
2268 2269 2270
	},
};

2271
module_platform_driver_probe(atmel_nand_driver, atmel_nand_probe);
A
Andrew Victor 已提交
2272 2273 2274

MODULE_LICENSE("GPL");
MODULE_AUTHOR("Rick Bronson");
2275
MODULE_DESCRIPTION("NAND/SmartMedia driver for AT91 / AVR32");
2276
MODULE_ALIAS("platform:atmel_nand");