core.c 33.3 KB
Newer Older
L
Linus Torvalds 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
/*
 *  Kernel Probes (KProbes)
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
 *
 * Copyright (C) IBM Corporation, 2002, 2004
 *
 * 2002-Oct	Created by Vamsi Krishna S <vamsi_krishna@in.ibm.com> Kernel
 *		Probes initial implementation ( includes contributions from
 *		Rusty Russell).
 * 2004-July	Suparna Bhattacharya <suparna@in.ibm.com> added jumper probes
 *		interface to access function arguments.
25 26
 * 2004-Oct	Jim Keniston <jkenisto@us.ibm.com> and Prasanna S Panchamukhi
 *		<prasanna@in.ibm.com> adapted for x86_64 from i386.
L
Linus Torvalds 已提交
27 28
 * 2005-Mar	Roland McGrath <roland@redhat.com>
 *		Fixed to handle %rip-relative addressing mode correctly.
29 30 31 32
 * 2005-May	Hien Nguyen <hien@us.ibm.com>, Jim Keniston
 *		<jkenisto@us.ibm.com> and Prasanna S Panchamukhi
 *		<prasanna@in.ibm.com> added function-return probes.
 * 2005-May	Rusty Lynch <rusty.lynch@intel.com>
33
 *		Added function return probes functionality
34
 * 2006-Feb	Masami Hiramatsu <hiramatu@sdl.hitachi.co.jp> added
35
 *		kprobe-booster and kretprobe-booster for i386.
36
 * 2007-Dec	Masami Hiramatsu <mhiramat@redhat.com> added kprobe-booster
37
 *		and kretprobe-booster for x86-64
38
 * 2007-Dec	Masami Hiramatsu <mhiramat@redhat.com>, Arjan van de Ven
39 40
 *		<arjan@infradead.org> and Jim Keniston <jkenisto@us.ibm.com>
 *		unified x86 kprobes code.
L
Linus Torvalds 已提交
41 42 43 44 45
 */
#include <linux/kprobes.h>
#include <linux/ptrace.h>
#include <linux/string.h>
#include <linux/slab.h>
46
#include <linux/hardirq.h>
L
Linus Torvalds 已提交
47
#include <linux/preempt.h>
48
#include <linux/sched/debug.h>
49
#include <linux/extable.h>
50
#include <linux/kdebug.h>
51
#include <linux/kallsyms.h>
52
#include <linux/ftrace.h>
53
#include <linux/frame.h>
54
#include <linux/kasan.h>
55

56
#include <asm/text-patching.h>
57 58
#include <asm/cacheflush.h>
#include <asm/desc.h>
L
Linus Torvalds 已提交
59
#include <asm/pgtable.h>
60
#include <linux/uaccess.h>
61
#include <asm/alternative.h>
62
#include <asm/insn.h>
63
#include <asm/debugreg.h>
L
Linus Torvalds 已提交
64

65
#include "common.h"
66

L
Linus Torvalds 已提交
67 68
void jprobe_return_end(void);

69 70
DEFINE_PER_CPU(struct kprobe *, current_kprobe) = NULL;
DEFINE_PER_CPU(struct kprobe_ctlblk, kprobe_ctlblk);
L
Linus Torvalds 已提交
71

72
#define stack_addr(regs) ((unsigned long *)kernel_stack_pointer(regs))
73 74 75 76 77 78 79 80 81 82

#define W(row, b0, b1, b2, b3, b4, b5, b6, b7, b8, b9, ba, bb, bc, bd, be, bf)\
	(((b0##UL << 0x0)|(b1##UL << 0x1)|(b2##UL << 0x2)|(b3##UL << 0x3) |   \
	  (b4##UL << 0x4)|(b5##UL << 0x5)|(b6##UL << 0x6)|(b7##UL << 0x7) |   \
	  (b8##UL << 0x8)|(b9##UL << 0x9)|(ba##UL << 0xa)|(bb##UL << 0xb) |   \
	  (bc##UL << 0xc)|(bd##UL << 0xd)|(be##UL << 0xe)|(bf##UL << 0xf))    \
	 << (row % 32))
	/*
	 * Undefined/reserved opcodes, conditional jump, Opcode Extension
	 * Groups, and some special opcodes can not boost.
83 84
	 * This is non-const and volatile to keep gcc from statically
	 * optimizing it out, as variable_test_bit makes gcc think only
85
	 * *(unsigned long*) is used.
86
	 */
87
static volatile u32 twobyte_is_boostable[256 / 32] = {
88 89 90
	/*      0  1  2  3  4  5  6  7  8  9  a  b  c  d  e  f          */
	/*      ----------------------------------------------          */
	W(0x00, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0, 0, 0, 0, 0, 0) | /* 00 */
91
	W(0x10, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1) , /* 10 */
92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110
	W(0x20, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) | /* 20 */
	W(0x30, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) , /* 30 */
	W(0x40, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* 40 */
	W(0x50, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) , /* 50 */
	W(0x60, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1) | /* 60 */
	W(0x70, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1) , /* 70 */
	W(0x80, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) | /* 80 */
	W(0x90, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* 90 */
	W(0xa0, 1, 1, 0, 1, 1, 1, 0, 0, 1, 1, 0, 1, 1, 1, 0, 1) | /* a0 */
	W(0xb0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 1, 1, 1, 1, 1) , /* b0 */
	W(0xc0, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1) | /* c0 */
	W(0xd0, 0, 1, 1, 1, 0, 1, 0, 0, 1, 1, 0, 1, 1, 1, 0, 1) , /* d0 */
	W(0xe0, 0, 1, 1, 0, 0, 1, 0, 0, 1, 1, 0, 1, 1, 1, 0, 1) | /* e0 */
	W(0xf0, 0, 1, 1, 1, 0, 1, 0, 0, 1, 1, 1, 0, 1, 1, 1, 0)   /* f0 */
	/*      -----------------------------------------------         */
	/*      0  1  2  3  4  5  6  7  8  9  a  b  c  d  e  f          */
};
#undef W

111 112 113 114 115
struct kretprobe_blackpoint kretprobe_blacklist[] = {
	{"__switch_to", }, /* This function switches only current task, but
			      doesn't switch kernel stack.*/
	{NULL, NULL}	/* Terminator */
};
116

117 118
const int kretprobe_blacklist_size = ARRAY_SIZE(kretprobe_blacklist);

119 120
static nokprobe_inline void
__synthesize_relative_insn(void *from, void *to, u8 op)
121
{
122 123
	struct __arch_relative_insn {
		u8 op;
124
		s32 raddr;
125
	} __packed *insn;
126 127 128 129 130 131 132

	insn = (struct __arch_relative_insn *)from;
	insn->raddr = (s32)((long)(to) - ((long)(from) + 5));
	insn->op = op;
}

/* Insert a jump instruction at address 'from', which jumps to address 'to'.*/
133
void synthesize_reljump(void *from, void *to)
134 135
{
	__synthesize_relative_insn(from, to, RELATIVEJUMP_OPCODE);
136
}
137
NOKPROBE_SYMBOL(synthesize_reljump);
138

139
/* Insert a call instruction at address 'from', which calls address 'to'.*/
140
void synthesize_relcall(void *from, void *to)
141 142 143
{
	__synthesize_relative_insn(from, to, RELATIVECALL_OPCODE);
}
144
NOKPROBE_SYMBOL(synthesize_relcall);
145

146
/*
147
 * Skip the prefixes of the instruction.
148
 */
149
static kprobe_opcode_t *skip_prefixes(kprobe_opcode_t *insn)
150
{
151 152 153 154 155 156 157
	insn_attr_t attr;

	attr = inat_get_opcode_attribute((insn_byte_t)*insn);
	while (inat_is_legacy_prefix(attr)) {
		insn++;
		attr = inat_get_opcode_attribute((insn_byte_t)*insn);
	}
158
#ifdef CONFIG_X86_64
159 160
	if (inat_is_rex_prefix(attr))
		insn++;
161
#endif
162
	return insn;
163
}
164
NOKPROBE_SYMBOL(skip_prefixes);
165

166
/*
167 168
 * Returns non-zero if opcode is boostable.
 * RIP relative instructions are adjusted at copying time in 64 bits mode
169
 */
170
int can_boost(kprobe_opcode_t *opcodes, void *addr)
171
{
172
	struct insn insn;
173 174
	kprobe_opcode_t opcode;

175
	if (search_exception_tables((unsigned long)addr))
176 177
		return 0;	/* Page fault may occur on this address. */

178 179
	kernel_insn_init(&insn, (void *)opcodes, MAX_INSN_SIZE);
	insn_get_opcode(&insn);
180 181

	/* 2nd-byte opcode */
182 183
	if (insn.opcode.nbytes == 2)
		return test_bit(insn.opcode.bytes[1],
184
				(unsigned long *)twobyte_is_boostable);
185 186 187 188 189 190 191 192 193

	if (insn.opcode.nbytes != 1)
		return 0;

	/* Can't boost Address-size override prefix */
	if (unlikely(inat_is_address_size_prefix(insn.attr)))
		return 0;

	opcode = insn.opcode.bytes[0];
194 195 196

	switch (opcode & 0xf0) {
	case 0x60:
197 198
		/* can't boost "bound" */
		return (opcode != 0x62);
199 200
	case 0x70:
		return 0; /* can't boost conditional jump */
201 202
	case 0x90:
		return opcode != 0x9a;	/* can't boost call far */
203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220
	case 0xc0:
		/* can't boost software-interruptions */
		return (0xc1 < opcode && opcode < 0xcc) || opcode == 0xcf;
	case 0xd0:
		/* can boost AA* and XLAT */
		return (opcode == 0xd4 || opcode == 0xd5 || opcode == 0xd7);
	case 0xe0:
		/* can boost in/out and absolute jmps */
		return ((opcode & 0x04) || opcode == 0xea);
	case 0xf0:
		/* clear and set flags are boostable */
		return (opcode == 0xf5 || (0xf7 < opcode && opcode < 0xfe));
	default:
		/* CS override prefix and call are not boostable */
		return (opcode != 0x2e && opcode != 0x9a);
	}
}

221 222
static unsigned long
__recover_probed_insn(kprobe_opcode_t *buf, unsigned long addr)
223 224
{
	struct kprobe *kp;
225
	unsigned long faddr;
226

227
	kp = get_kprobe((void *)addr);
228
	faddr = ftrace_location(addr);
229 230 231 232 233 234 235
	/*
	 * Addresses inside the ftrace location are refused by
	 * arch_check_ftrace_location(). Something went terribly wrong
	 * if such an address is checked here.
	 */
	if (WARN_ON(faddr && faddr != addr))
		return 0UL;
236 237 238 239 240
	/*
	 * Use the current code if it is not modified by Kprobe
	 * and it cannot be modified by ftrace.
	 */
	if (!kp && !faddr)
241
		return addr;
242 243

	/*
244 245 246 247 248 249 250 251 252 253 254
	 * Basically, kp->ainsn.insn has an original instruction.
	 * However, RIP-relative instruction can not do single-stepping
	 * at different place, __copy_instruction() tweaks the displacement of
	 * that instruction. In that case, we can't recover the instruction
	 * from the kp->ainsn.insn.
	 *
	 * On the other hand, in case on normal Kprobe, kp->opcode has a copy
	 * of the first byte of the probed instruction, which is overwritten
	 * by int3. And the instruction at kp->addr is not modified by kprobes
	 * except for the first byte, we can recover the original instruction
	 * from it and kp->opcode.
255
	 *
256 257 258 259 260
	 * In case of Kprobes using ftrace, we do not have a copy of
	 * the original instruction. In fact, the ftrace location might
	 * be modified at anytime and even could be in an inconsistent state.
	 * Fortunately, we know that the original code is the ideal 5-byte
	 * long NOP.
261
	 */
262 263 264 265 266
	memcpy(buf, (void *)addr, MAX_INSN_SIZE * sizeof(kprobe_opcode_t));
	if (faddr)
		memcpy(buf, ideal_nops[NOP_ATOMIC5], 5);
	else
		buf[0] = kp->opcode;
267 268 269 270 271 272 273
	return (unsigned long)buf;
}

/*
 * Recover the probed instruction at addr for further analysis.
 * Caller must lock kprobes by kprobe_mutex, or disable preemption
 * for preventing to release referencing kprobes.
274
 * Returns zero if the instruction can not get recovered.
275
 */
276
unsigned long recover_probed_instruction(kprobe_opcode_t *buf, unsigned long addr)
277 278 279 280 281 282 283 284
{
	unsigned long __addr;

	__addr = __recover_optprobed_insn(buf, addr);
	if (__addr != addr)
		return __addr;

	return __recover_probed_insn(buf, addr);
285 286 287
}

/* Check if paddr is at an instruction boundary */
288
static int can_probe(unsigned long paddr)
289
{
290
	unsigned long addr, __addr, offset = 0;
291 292 293
	struct insn insn;
	kprobe_opcode_t buf[MAX_INSN_SIZE];

N
Namhyung Kim 已提交
294
	if (!kallsyms_lookup_size_offset(paddr, NULL, &offset))
295 296 297 298 299 300 301 302 303
		return 0;

	/* Decode instructions */
	addr = paddr - offset;
	while (addr < paddr) {
		/*
		 * Check if the instruction has been modified by another
		 * kprobe, in which case we replace the breakpoint by the
		 * original instruction in our buffer.
304 305 306
		 * Also, jump optimization will change the breakpoint to
		 * relative-jump. Since the relative-jump itself is
		 * normally used, we just go through if there is no kprobe.
307
		 */
308
		__addr = recover_probed_instruction(buf, addr);
309 310
		if (!__addr)
			return 0;
311
		kernel_insn_init(&insn, (void *)__addr, MAX_INSN_SIZE);
312
		insn_get_length(&insn);
313 314 315 316 317 318 319

		/*
		 * Another debugging subsystem might insert this breakpoint.
		 * In that case, we can't recover it.
		 */
		if (insn.opcode.bytes[0] == BREAKPOINT_INSTRUCTION)
			return 0;
320 321 322 323 324 325
		addr += insn.length;
	}

	return (addr == paddr);
}

L
Linus Torvalds 已提交
326
/*
327
 * Returns non-zero if opcode modifies the interrupt flag.
L
Linus Torvalds 已提交
328
 */
329
static int is_IF_modifier(kprobe_opcode_t *insn)
L
Linus Torvalds 已提交
330
{
331 332 333
	/* Skip prefixes */
	insn = skip_prefixes(insn);

L
Linus Torvalds 已提交
334 335 336 337 338 339 340
	switch (*insn) {
	case 0xfa:		/* cli */
	case 0xfb:		/* sti */
	case 0xcf:		/* iret/iretd */
	case 0x9d:		/* popf/popfd */
		return 1;
	}
341

L
Linus Torvalds 已提交
342 343 344 345
	return 0;
}

/*
346 347 348 349
 * Copy an instruction with recovering modified instruction by kprobes
 * and adjust the displacement if the instruction uses the %rip-relative
 * addressing mode.
 * This returns the length of copied instruction, or 0 if it has an error.
L
Linus Torvalds 已提交
350
 */
351
int __copy_instruction(u8 *dest, u8 *src)
L
Linus Torvalds 已提交
352
{
353
	struct insn insn;
354
	kprobe_opcode_t buf[MAX_INSN_SIZE];
355
	int length;
356 357
	unsigned long recovered_insn =
		recover_probed_instruction(buf, (unsigned long)src);
358

359 360
	if (!recovered_insn)
		return 0;
361
	kernel_insn_init(&insn, (void *)recovered_insn, MAX_INSN_SIZE);
362
	insn_get_length(&insn);
363 364
	length = insn.length;

365
	/* Another subsystem puts a breakpoint, failed to recover */
366
	if (insn.opcode.bytes[0] == BREAKPOINT_INSTRUCTION)
367
		return 0;
368
	memcpy(dest, insn.kaddr, length);
369 370

#ifdef CONFIG_X86_64
371
	/* Only x86_64 has RIP relative instructions */
372 373 374
	if (insn_rip_relative(&insn)) {
		s64 newdisp;
		u8 *disp;
375
		kernel_insn_init(&insn, dest, length);
376 377 378 379 380 381 382 383 384 385 386 387 388
		insn_get_displacement(&insn);
		/*
		 * The copied instruction uses the %rip-relative addressing
		 * mode.  Adjust the displacement for the difference between
		 * the original location of this instruction and the location
		 * of the copy that will actually be run.  The tricky bit here
		 * is making sure that the sign extension happens correctly in
		 * this calculation, since we need a signed 32-bit result to
		 * be sign-extended to 64 bits when it's added to the %rip
		 * value and yield the same 64-bit result that the sign-
		 * extension of the original signed 32-bit displacement would
		 * have given.
		 */
389
		newdisp = (u8 *) src + (s64) insn.displacement.value - (u8 *) dest;
390 391 392 393 394
		if ((s64) (s32) newdisp != newdisp) {
			pr_err("Kprobes error: new displacement does not fit into s32 (%llx)\n", newdisp);
			pr_err("\tSrc: %p, Dest: %p, old disp: %x\n", src, dest, insn.displacement.value);
			return 0;
		}
395
		disp = (u8 *) dest + insn_offset_displacement(&insn);
396
		*(s32 *) disp = (s32) newdisp;
L
Linus Torvalds 已提交
397
	}
398
#endif
399
	return length;
400
}
L
Linus Torvalds 已提交
401

402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417
/* Prepare reljump right after instruction to boost */
static void prepare_boost(struct kprobe *p, int length)
{
	if (can_boost(p->ainsn.insn, p->addr) &&
	    MAX_INSN_SIZE - length >= RELATIVEJUMP_SIZE) {
		/*
		 * These instructions can be executed directly if it
		 * jumps back to correct address.
		 */
		synthesize_reljump(p->ainsn.insn + length, p->addr + length);
		p->ainsn.boostable = 1;
	} else {
		p->ainsn.boostable = -1;
	}
}

418
static int arch_copy_kprobe(struct kprobe *p)
L
Linus Torvalds 已提交
419
{
420
	int len;
421

422
	/* Copy an instruction with recovering if other optprobe modifies it.*/
423 424
	len = __copy_instruction(p->ainsn.insn, p->addr);
	if (!len)
425
		return -EINVAL;
426

427
	/*
428 429
	 * __copy_instruction can modify the displacement of the instruction,
	 * but it doesn't affect boostable check.
430
	 */
431
	prepare_boost(p, len);
432

433 434 435
	/* Check whether the instruction modifies Interrupt Flag or not */
	p->ainsn.if_modifier = is_IF_modifier(p->ainsn.insn);

436 437
	/* Also, displacement change doesn't affect the first byte */
	p->opcode = p->ainsn.insn[0];
438 439

	return 0;
L
Linus Torvalds 已提交
440 441
}

442
int arch_prepare_kprobe(struct kprobe *p)
443
{
444 445 446
	if (alternatives_text_reserved(p->addr, p->addr))
		return -EINVAL;

447 448
	if (!can_probe((unsigned long)p->addr))
		return -EILSEQ;
449 450 451 452
	/* insn: must be on special executable page on x86. */
	p->ainsn.insn = get_insn_slot();
	if (!p->ainsn.insn)
		return -ENOMEM;
453 454

	return arch_copy_kprobe(p);
455 456
}

457
void arch_arm_kprobe(struct kprobe *p)
L
Linus Torvalds 已提交
458
{
459
	text_poke(p->addr, ((unsigned char []){BREAKPOINT_INSTRUCTION}), 1);
L
Linus Torvalds 已提交
460 461
}

462
void arch_disarm_kprobe(struct kprobe *p)
L
Linus Torvalds 已提交
463
{
464
	text_poke(p->addr, &p->opcode, 1);
465 466
}

467
void arch_remove_kprobe(struct kprobe *p)
468
{
469 470 471 472
	if (p->ainsn.insn) {
		free_insn_slot(p->ainsn.insn, (p->ainsn.boostable == 1));
		p->ainsn.insn = NULL;
	}
L
Linus Torvalds 已提交
473 474
}

475 476
static nokprobe_inline void
save_previous_kprobe(struct kprobe_ctlblk *kcb)
477
{
478 479
	kcb->prev_kprobe.kp = kprobe_running();
	kcb->prev_kprobe.status = kcb->kprobe_status;
480 481
	kcb->prev_kprobe.old_flags = kcb->kprobe_old_flags;
	kcb->prev_kprobe.saved_flags = kcb->kprobe_saved_flags;
482 483
}

484 485
static nokprobe_inline void
restore_previous_kprobe(struct kprobe_ctlblk *kcb)
486
{
C
Christoph Lameter 已提交
487
	__this_cpu_write(current_kprobe, kcb->prev_kprobe.kp);
488
	kcb->kprobe_status = kcb->prev_kprobe.status;
489 490
	kcb->kprobe_old_flags = kcb->prev_kprobe.old_flags;
	kcb->kprobe_saved_flags = kcb->prev_kprobe.saved_flags;
491 492
}

493 494 495
static nokprobe_inline void
set_current_kprobe(struct kprobe *p, struct pt_regs *regs,
		   struct kprobe_ctlblk *kcb)
496
{
C
Christoph Lameter 已提交
497
	__this_cpu_write(current_kprobe, p);
498
	kcb->kprobe_saved_flags = kcb->kprobe_old_flags
499
		= (regs->flags & (X86_EFLAGS_TF | X86_EFLAGS_IF));
500
	if (p->ainsn.if_modifier)
501
		kcb->kprobe_saved_flags &= ~X86_EFLAGS_IF;
502 503
}

504
static nokprobe_inline void clear_btf(void)
R
Roland McGrath 已提交
505
{
P
Peter Zijlstra 已提交
506 507 508 509 510 511
	if (test_thread_flag(TIF_BLOCKSTEP)) {
		unsigned long debugctl = get_debugctlmsr();

		debugctl &= ~DEBUGCTLMSR_BTF;
		update_debugctlmsr(debugctl);
	}
R
Roland McGrath 已提交
512 513
}

514
static nokprobe_inline void restore_btf(void)
R
Roland McGrath 已提交
515
{
P
Peter Zijlstra 已提交
516 517 518 519 520 521
	if (test_thread_flag(TIF_BLOCKSTEP)) {
		unsigned long debugctl = get_debugctlmsr();

		debugctl |= DEBUGCTLMSR_BTF;
		update_debugctlmsr(debugctl);
	}
R
Roland McGrath 已提交
522 523
}

524
void arch_prepare_kretprobe(struct kretprobe_instance *ri, struct pt_regs *regs)
525
{
526
	unsigned long *sara = stack_addr(regs);
527

528
	ri->ret_addr = (kprobe_opcode_t *) *sara;
529

530 531
	/* Replace the return addr with trampoline addr */
	*sara = (unsigned long) &kretprobe_trampoline;
532
}
533
NOKPROBE_SYMBOL(arch_prepare_kretprobe);
534

535 536
static void setup_singlestep(struct kprobe *p, struct pt_regs *regs,
			     struct kprobe_ctlblk *kcb, int reenter)
537
{
538 539 540
	if (setup_detour_execution(p, regs, reenter))
		return;

541
#if !defined(CONFIG_PREEMPT)
542 543
	if (p->ainsn.boostable == 1 && !p->post_handler) {
		/* Boost up -- we can execute copied instructions directly */
544 545 546 547 548 549 550
		if (!reenter)
			reset_current_kprobe();
		/*
		 * Reentering boosted probe doesn't reset current_kprobe,
		 * nor set current_kprobe, because it doesn't use single
		 * stepping.
		 */
551 552 553 554 555
		regs->ip = (unsigned long)p->ainsn.insn;
		preempt_enable_no_resched();
		return;
	}
#endif
556 557 558 559 560 561 562 563 564 565 566 567 568 569 570
	if (reenter) {
		save_previous_kprobe(kcb);
		set_current_kprobe(p, regs, kcb);
		kcb->kprobe_status = KPROBE_REENTER;
	} else
		kcb->kprobe_status = KPROBE_HIT_SS;
	/* Prepare real single stepping */
	clear_btf();
	regs->flags |= X86_EFLAGS_TF;
	regs->flags &= ~X86_EFLAGS_IF;
	/* single step inline if the instruction is an int3 */
	if (p->opcode == BREAKPOINT_INSTRUCTION)
		regs->ip = (unsigned long)p->addr;
	else
		regs->ip = (unsigned long)p->ainsn.insn;
571
}
572
NOKPROBE_SYMBOL(setup_singlestep);
573

H
Harvey Harrison 已提交
574 575 576 577 578
/*
 * We have reentered the kprobe_handler(), since another probe was hit while
 * within the handler. We save the original kprobes variables and just single
 * step on the instruction of the new probe without calling any user handlers.
 */
579 580
static int reenter_kprobe(struct kprobe *p, struct pt_regs *regs,
			  struct kprobe_ctlblk *kcb)
H
Harvey Harrison 已提交
581
{
582 583 584
	switch (kcb->kprobe_status) {
	case KPROBE_HIT_SSDONE:
	case KPROBE_HIT_ACTIVE:
585
	case KPROBE_HIT_SS:
586
		kprobes_inc_nmissed_count(p);
587
		setup_singlestep(p, regs, kcb, 1);
588
		break;
589
	case KPROBE_REENTER:
590 591 592 593 594 595 596 597 598 599
		/* A probe has been hit in the codepath leading up to, or just
		 * after, single-stepping of a probed instruction. This entire
		 * codepath should strictly reside in .kprobes.text section.
		 * Raise a BUG or we'll continue in an endless reentering loop
		 * and eventually a stack overflow.
		 */
		printk(KERN_WARNING "Unrecoverable kprobe detected at %p.\n",
		       p->addr);
		dump_kprobe(p);
		BUG();
600 601 602
	default:
		/* impossible cases */
		WARN_ON(1);
603
		return 0;
604
	}
605

606
	return 1;
H
Harvey Harrison 已提交
607
}
608
NOKPROBE_SYMBOL(reenter_kprobe);
609

610 611
/*
 * Interrupts are disabled on entry as trap3 is an interrupt gate and they
612
 * remain disabled throughout this function.
613
 */
614
int kprobe_int3_handler(struct pt_regs *regs)
L
Linus Torvalds 已提交
615
{
616
	kprobe_opcode_t *addr;
617
	struct kprobe *p;
618 619
	struct kprobe_ctlblk *kcb;

620
	if (user_mode(regs))
621 622
		return 0;

623
	addr = (kprobe_opcode_t *)(regs->ip - sizeof(kprobe_opcode_t));
624 625
	/*
	 * We don't want to be preempted for the entire
626 627 628
	 * duration of kprobe processing. We conditionally
	 * re-enable preemption at the end of this function,
	 * and also in reenter_kprobe() and setup_singlestep().
629 630
	 */
	preempt_disable();
L
Linus Torvalds 已提交
631

632
	kcb = get_kprobe_ctlblk();
633
	p = get_kprobe(addr);
634

635 636
	if (p) {
		if (kprobe_running()) {
637 638
			if (reenter_kprobe(p, regs, kcb))
				return 1;
L
Linus Torvalds 已提交
639
		} else {
640 641
			set_current_kprobe(p, regs, kcb);
			kcb->kprobe_status = KPROBE_HIT_ACTIVE;
642

L
Linus Torvalds 已提交
643
			/*
644 645 646 647 648 649
			 * If we have no pre-handler or it returned 0, we
			 * continue with normal processing.  If we have a
			 * pre-handler and it returned non-zero, it prepped
			 * for calling the break_handler below on re-entry
			 * for jprobe processing, so get out doing nothing
			 * more here.
L
Linus Torvalds 已提交
650
			 */
651
			if (!p->pre_handler || !p->pre_handler(p, regs))
652
				setup_singlestep(p, regs, kcb, 0);
653
			return 1;
654
		}
655 656 657 658 659 660 661 662 663 664 665 666 667
	} else if (*addr != BREAKPOINT_INSTRUCTION) {
		/*
		 * The breakpoint instruction was removed right
		 * after we hit it.  Another cpu has removed
		 * either a probepoint or a debugger breakpoint
		 * at this address.  In either case, no further
		 * handling of this interrupt is appropriate.
		 * Back up over the (now missing) int3 and run
		 * the original instruction.
		 */
		regs->ip = (unsigned long)addr;
		preempt_enable_no_resched();
		return 1;
668
	} else if (kprobe_running()) {
C
Christoph Lameter 已提交
669
		p = __this_cpu_read(current_kprobe);
670
		if (p->break_handler && p->break_handler(p, regs)) {
671 672
			if (!skip_singlestep(p, regs, kcb))
				setup_singlestep(p, regs, kcb, 0);
673
			return 1;
L
Linus Torvalds 已提交
674
		}
675
	} /* else: not a kprobe fault; let the kernel handle it */
L
Linus Torvalds 已提交
676

677
	preempt_enable_no_resched();
678
	return 0;
L
Linus Torvalds 已提交
679
}
680
NOKPROBE_SYMBOL(kprobe_int3_handler);
L
Linus Torvalds 已提交
681

682
/*
683 684
 * When a retprobed function returns, this code saves registers and
 * calls trampoline_handler() runs, which calls the kretprobe's handler.
685
 */
686 687 688 689
asm(
	".global kretprobe_trampoline\n"
	".type kretprobe_trampoline, @function\n"
	"kretprobe_trampoline:\n"
690
#ifdef CONFIG_X86_64
691 692 693 694 695 696 697 698 699 700
	/* We don't bother saving the ss register */
	"	pushq %rsp\n"
	"	pushfq\n"
	SAVE_REGS_STRING
	"	movq %rsp, %rdi\n"
	"	call trampoline_handler\n"
	/* Replace saved sp with true return address. */
	"	movq %rax, 152(%rsp)\n"
	RESTORE_REGS_STRING
	"	popfq\n"
701
#else
702 703 704 705 706 707 708 709 710 711 712
	"	pushf\n"
	SAVE_REGS_STRING
	"	movl %esp, %eax\n"
	"	call trampoline_handler\n"
	/* Move flags to cs */
	"	movl 56(%esp), %edx\n"
	"	movl %edx, 52(%esp)\n"
	/* Replace saved flags with true return address. */
	"	movl %eax, 56(%esp)\n"
	RESTORE_REGS_STRING
	"	popf\n"
713
#endif
714 715 716
	"	ret\n"
	".size kretprobe_trampoline, .-kretprobe_trampoline\n"
);
717
NOKPROBE_SYMBOL(kretprobe_trampoline);
718
STACK_FRAME_NON_STANDARD(kretprobe_trampoline);
719 720

/*
721
 * Called from kretprobe_trampoline
722
 */
723
__visible __used void *trampoline_handler(struct pt_regs *regs)
724
{
B
bibo,mao 已提交
725
	struct kretprobe_instance *ri = NULL;
726
	struct hlist_head *head, empty_rp;
727
	struct hlist_node *tmp;
728
	unsigned long flags, orig_ret_address = 0;
729
	unsigned long trampoline_address = (unsigned long)&kretprobe_trampoline;
730
	kprobe_opcode_t *correct_ret_addr = NULL;
731

732
	INIT_HLIST_HEAD(&empty_rp);
733
	kretprobe_hash_lock(current, &head, &flags);
734
	/* fixup registers */
735
#ifdef CONFIG_X86_64
736
	regs->cs = __KERNEL_CS;
737 738
#else
	regs->cs = __KERNEL_CS | get_kernel_rpl();
739
	regs->gs = 0;
740
#endif
741
	regs->ip = trampoline_address;
742
	regs->orig_ax = ~0UL;
743

744 745
	/*
	 * It is possible to have multiple instances associated with a given
746
	 * task either because multiple functions in the call path have
747
	 * return probes installed on them, and/or more than one
748 749 750
	 * return probe was registered for a target function.
	 *
	 * We can handle this because:
751
	 *     - instances are always pushed into the head of the list
752
	 *     - when multiple return probes are registered for the same
753 754 755
	 *	 function, the (chronologically) first instance's ret_addr
	 *	 will be the real return address, and all the rest will
	 *	 point to kretprobe_trampoline.
756
	 */
757
	hlist_for_each_entry(ri, head, hlist) {
B
bibo,mao 已提交
758
		if (ri->task != current)
759
			/* another task is sharing our hash bucket */
B
bibo,mao 已提交
760
			continue;
761

762 763 764 765 766 767 768 769 770 771 772 773 774 775
		orig_ret_address = (unsigned long)ri->ret_addr;

		if (orig_ret_address != trampoline_address)
			/*
			 * This is the real return address. Any other
			 * instances associated with this task are for
			 * other calls deeper on the call stack
			 */
			break;
	}

	kretprobe_assert(ri, orig_ret_address, trampoline_address);

	correct_ret_addr = ri->ret_addr;
776
	hlist_for_each_entry_safe(ri, tmp, head, hlist) {
777 778 779 780 781
		if (ri->task != current)
			/* another task is sharing our hash bucket */
			continue;

		orig_ret_address = (unsigned long)ri->ret_addr;
782
		if (ri->rp && ri->rp->handler) {
C
Christoph Lameter 已提交
783
			__this_cpu_write(current_kprobe, &ri->rp->kp);
784
			get_kprobe_ctlblk()->kprobe_status = KPROBE_HIT_ACTIVE;
785
			ri->ret_addr = correct_ret_addr;
786
			ri->rp->handler(ri, regs);
C
Christoph Lameter 已提交
787
			__this_cpu_write(current_kprobe, NULL);
788
		}
789

790
		recycle_rp_inst(ri, &empty_rp);
791 792 793 794 795 796 797 798

		if (orig_ret_address != trampoline_address)
			/*
			 * This is the real return address. Any other
			 * instances associated with this task are for
			 * other calls deeper on the call stack
			 */
			break;
799
	}
800

801
	kretprobe_hash_unlock(current, &flags);
802

803
	hlist_for_each_entry_safe(ri, tmp, &empty_rp, hlist) {
804 805 806
		hlist_del(&ri->hlist);
		kfree(ri);
	}
807
	return (void *)orig_ret_address;
808
}
809
NOKPROBE_SYMBOL(trampoline_handler);
810

L
Linus Torvalds 已提交
811 812 813 814 815 816 817 818 819 820 821 822
/*
 * Called after single-stepping.  p->addr is the address of the
 * instruction whose first byte has been replaced by the "int 3"
 * instruction.  To avoid the SMP problems that can occur when we
 * temporarily put back the original opcode to single-step, we
 * single-stepped a copy of the instruction.  The address of this
 * copy is p->ainsn.insn.
 *
 * This function prepares to return from the post-single-step
 * interrupt.  We have to fix up the stack as follows:
 *
 * 0) Except in the case of absolute or indirect jump or call instructions,
823
 * the new ip is relative to the copied instruction.  We need to make
L
Linus Torvalds 已提交
824 825 826
 * it relative to the original instruction.
 *
 * 1) If the single-stepped instruction was pushfl, then the TF and IF
827
 * flags are set in the just-pushed flags, and may need to be cleared.
L
Linus Torvalds 已提交
828 829 830 831
 *
 * 2) If the single-stepped instruction was a call, the return address
 * that is atop the stack is the address following the copied instruction.
 * We need to make it the address following the original instruction.
832 833 834 835 836
 *
 * If this is the first time we've single-stepped the instruction at
 * this probepoint, and the instruction is boostable, boost it: add a
 * jump instruction after the copied instruction, that jumps to the next
 * instruction after the probepoint.
L
Linus Torvalds 已提交
837
 */
838 839
static void resume_execution(struct kprobe *p, struct pt_regs *regs,
			     struct kprobe_ctlblk *kcb)
L
Linus Torvalds 已提交
840
{
841 842 843
	unsigned long *tos = stack_addr(regs);
	unsigned long copy_ip = (unsigned long)p->ainsn.insn;
	unsigned long orig_ip = (unsigned long)p->addr;
L
Linus Torvalds 已提交
844 845
	kprobe_opcode_t *insn = p->ainsn.insn;

846 847
	/* Skip prefixes */
	insn = skip_prefixes(insn);
L
Linus Torvalds 已提交
848

849
	regs->flags &= ~X86_EFLAGS_TF;
L
Linus Torvalds 已提交
850
	switch (*insn) {
M
Masami Hiramatsu 已提交
851
	case 0x9c:	/* pushfl */
852
		*tos &= ~(X86_EFLAGS_TF | X86_EFLAGS_IF);
853
		*tos |= kcb->kprobe_old_flags;
L
Linus Torvalds 已提交
854
		break;
M
Masami Hiramatsu 已提交
855 856
	case 0xc2:	/* iret/ret/lret */
	case 0xc3:
857
	case 0xca:
M
Masami Hiramatsu 已提交
858 859 860 861
	case 0xcb:
	case 0xcf:
	case 0xea:	/* jmp absolute -- ip is correct */
		/* ip is already adjusted, no more changes required */
862
		p->ainsn.boostable = 1;
M
Masami Hiramatsu 已提交
863 864
		goto no_change;
	case 0xe8:	/* call relative - Fix return addr */
865
		*tos = orig_ip + (*tos - copy_ip);
L
Linus Torvalds 已提交
866
		break;
H
Harvey Harrison 已提交
867
#ifdef CONFIG_X86_32
868 869 870 871
	case 0x9a:	/* call absolute -- same as call absolute, indirect */
		*tos = orig_ip + (*tos - copy_ip);
		goto no_change;
#endif
L
Linus Torvalds 已提交
872
	case 0xff:
873
		if ((insn[1] & 0x30) == 0x10) {
874 875 876 877 878 879
			/*
			 * call absolute, indirect
			 * Fix return addr; ip is correct.
			 * But this is not boostable
			 */
			*tos = orig_ip + (*tos - copy_ip);
M
Masami Hiramatsu 已提交
880
			goto no_change;
881 882 883 884 885 886
		} else if (((insn[1] & 0x31) == 0x20) ||
			   ((insn[1] & 0x31) == 0x21)) {
			/*
			 * jmp near and far, absolute indirect
			 * ip is correct. And this is boostable
			 */
887
			p->ainsn.boostable = 1;
M
Masami Hiramatsu 已提交
888
			goto no_change;
L
Linus Torvalds 已提交
889 890 891 892 893
		}
	default:
		break;
	}

894
	regs->ip += orig_ip - copy_ip;
895

M
Masami Hiramatsu 已提交
896
no_change:
R
Roland McGrath 已提交
897
	restore_btf();
L
Linus Torvalds 已提交
898
}
899
NOKPROBE_SYMBOL(resume_execution);
L
Linus Torvalds 已提交
900

901 902
/*
 * Interrupts are disabled on entry as trap1 is an interrupt gate and they
903
 * remain disabled throughout this function.
904
 */
905
int kprobe_debug_handler(struct pt_regs *regs)
L
Linus Torvalds 已提交
906
{
907 908 909 910
	struct kprobe *cur = kprobe_running();
	struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();

	if (!cur)
L
Linus Torvalds 已提交
911 912
		return 0;

913 914 915
	resume_execution(cur, regs, kcb);
	regs->flags |= kcb->kprobe_saved_flags;

916 917 918
	if ((kcb->kprobe_status != KPROBE_REENTER) && cur->post_handler) {
		kcb->kprobe_status = KPROBE_HIT_SSDONE;
		cur->post_handler(cur, regs, 0);
919
	}
L
Linus Torvalds 已提交
920

921
	/* Restore back the original saved kprobes variables and continue. */
922 923
	if (kcb->kprobe_status == KPROBE_REENTER) {
		restore_previous_kprobe(kcb);
924 925
		goto out;
	}
926
	reset_current_kprobe();
927
out:
L
Linus Torvalds 已提交
928 929 930
	preempt_enable_no_resched();

	/*
931
	 * if somebody else is singlestepping across a probe point, flags
L
Linus Torvalds 已提交
932 933 934
	 * will have TF set, in which case, continue the remaining processing
	 * of do_debug, as if this is not a probe hit.
	 */
935
	if (regs->flags & X86_EFLAGS_TF)
L
Linus Torvalds 已提交
936 937 938 939
		return 0;

	return 1;
}
940
NOKPROBE_SYMBOL(kprobe_debug_handler);
L
Linus Torvalds 已提交
941

942
int kprobe_fault_handler(struct pt_regs *regs, int trapnr)
L
Linus Torvalds 已提交
943
{
944 945 946
	struct kprobe *cur = kprobe_running();
	struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();

947 948 949 950
	if (unlikely(regs->ip == (unsigned long)cur->ainsn.insn)) {
		/* This must happen on single-stepping */
		WARN_ON(kcb->kprobe_status != KPROBE_HIT_SS &&
			kcb->kprobe_status != KPROBE_REENTER);
951 952 953
		/*
		 * We are here because the instruction being single
		 * stepped caused a page fault. We reset the current
954
		 * kprobe and the ip points back to the probe address
955 956 957
		 * and allow the page fault handler to continue as a
		 * normal page fault.
		 */
958
		regs->ip = (unsigned long)cur->addr;
959 960 961 962 963 964 965 966 967 968 969
		/*
		 * Trap flag (TF) has been set here because this fault
		 * happened where the single stepping will be done.
		 * So clear it by resetting the current kprobe:
		 */
		regs->flags &= ~X86_EFLAGS_TF;

		/*
		 * If the TF flag was set before the kprobe hit,
		 * don't touch it:
		 */
970
		regs->flags |= kcb->kprobe_old_flags;
971

972 973 974 975
		if (kcb->kprobe_status == KPROBE_REENTER)
			restore_previous_kprobe(kcb);
		else
			reset_current_kprobe();
L
Linus Torvalds 已提交
976
		preempt_enable_no_resched();
977 978
	} else if (kcb->kprobe_status == KPROBE_HIT_ACTIVE ||
		   kcb->kprobe_status == KPROBE_HIT_SSDONE) {
979 980
		/*
		 * We increment the nmissed count for accounting,
981
		 * we can also use npre/npostfault count for accounting
982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999
		 * these specific fault cases.
		 */
		kprobes_inc_nmissed_count(cur);

		/*
		 * We come here because instructions in the pre/post
		 * handler caused the page_fault, this could happen
		 * if handler tries to access user space by
		 * copy_from_user(), get_user() etc. Let the
		 * user-specified handler try to fix it first.
		 */
		if (cur->fault_handler && cur->fault_handler(cur, regs, trapnr))
			return 1;

		/*
		 * In case the user-specified fault handler returned
		 * zero, try to fix up.
		 */
1000
		if (fixup_exception(regs, trapnr))
1001
			return 1;
H
Harvey Harrison 已提交
1002

1003
		/*
1004
		 * fixup routine could not handle it,
1005 1006
		 * Let do_page_fault() fix it.
		 */
L
Linus Torvalds 已提交
1007
	}
1008

L
Linus Torvalds 已提交
1009 1010
	return 0;
}
1011
NOKPROBE_SYMBOL(kprobe_fault_handler);
L
Linus Torvalds 已提交
1012 1013 1014 1015

/*
 * Wrapper routine for handling exceptions.
 */
1016 1017
int kprobe_exceptions_notify(struct notifier_block *self, unsigned long val,
			     void *data)
L
Linus Torvalds 已提交
1018
{
J
Jan Engelhardt 已提交
1019
	struct die_args *args = data;
1020 1021
	int ret = NOTIFY_DONE;

1022
	if (args->regs && user_mode(args->regs))
1023 1024
		return ret;

1025
	if (val == DIE_GPF) {
1026 1027 1028 1029 1030 1031
		/*
		 * To be potentially processing a kprobe fault and to
		 * trust the result from kprobe_running(), we have
		 * be non-preemptible.
		 */
		if (!preemptible() && kprobe_running() &&
L
Linus Torvalds 已提交
1032
		    kprobe_fault_handler(args->regs, args->trapnr))
1033
			ret = NOTIFY_STOP;
L
Linus Torvalds 已提交
1034
	}
1035
	return ret;
L
Linus Torvalds 已提交
1036
}
1037
NOKPROBE_SYMBOL(kprobe_exceptions_notify);
L
Linus Torvalds 已提交
1038

1039
int setjmp_pre_handler(struct kprobe *p, struct pt_regs *regs)
L
Linus Torvalds 已提交
1040 1041 1042
{
	struct jprobe *jp = container_of(p, struct jprobe, kp);
	unsigned long addr;
1043
	struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
L
Linus Torvalds 已提交
1044

1045
	kcb->jprobe_saved_regs = *regs;
1046 1047 1048
	kcb->jprobe_saved_sp = stack_addr(regs);
	addr = (unsigned long)(kcb->jprobe_saved_sp);

L
Linus Torvalds 已提交
1049 1050 1051 1052 1053 1054
	/*
	 * As Linus pointed out, gcc assumes that the callee
	 * owns the argument space and could overwrite it, e.g.
	 * tailcall optimization. So, to be absolutely safe
	 * we also save and restore enough stack bytes to cover
	 * the argument area.
1055 1056
	 * Use __memcpy() to avoid KASAN stack out-of-bounds reports as we copy
	 * raw stack chunk with redzones:
L
Linus Torvalds 已提交
1057
	 */
1058
	__memcpy(kcb->jprobes_stack, (kprobe_opcode_t *)addr, MIN_STACK_SIZE(addr));
1059
	regs->flags &= ~X86_EFLAGS_IF;
1060
	trace_hardirqs_off();
1061
	regs->ip = (unsigned long)(jp->entry);
1062 1063 1064 1065 1066 1067 1068 1069 1070

	/*
	 * jprobes use jprobe_return() which skips the normal return
	 * path of the function, and this messes up the accounting of the
	 * function graph tracer to get messed up.
	 *
	 * Pause function graph tracing while performing the jprobe function.
	 */
	pause_graph_tracing();
L
Linus Torvalds 已提交
1071 1072
	return 1;
}
1073
NOKPROBE_SYMBOL(setjmp_pre_handler);
L
Linus Torvalds 已提交
1074

1075
void jprobe_return(void)
L
Linus Torvalds 已提交
1076
{
1077 1078
	struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();

1079 1080 1081
	/* Unpoison stack redzones in the frames we are going to jump over. */
	kasan_unpoison_stack_above_sp_to(kcb->jprobe_saved_sp);

1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092
	asm volatile (
#ifdef CONFIG_X86_64
			"       xchg   %%rbx,%%rsp	\n"
#else
			"       xchgl   %%ebx,%%esp	\n"
#endif
			"       int3			\n"
			"       .globl jprobe_return_end\n"
			"       jprobe_return_end:	\n"
			"       nop			\n"::"b"
			(kcb->jprobe_saved_sp):"memory");
L
Linus Torvalds 已提交
1093
}
1094 1095
NOKPROBE_SYMBOL(jprobe_return);
NOKPROBE_SYMBOL(jprobe_return_end);
L
Linus Torvalds 已提交
1096

1097
int longjmp_break_handler(struct kprobe *p, struct pt_regs *regs)
L
Linus Torvalds 已提交
1098
{
1099
	struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
1100
	u8 *addr = (u8 *) (regs->ip - 1);
L
Linus Torvalds 已提交
1101
	struct jprobe *jp = container_of(p, struct jprobe, kp);
1102
	void *saved_sp = kcb->jprobe_saved_sp;
L
Linus Torvalds 已提交
1103

1104 1105
	if ((addr > (u8 *) jprobe_return) &&
	    (addr < (u8 *) jprobe_return_end)) {
1106
		if (stack_addr(regs) != saved_sp) {
M
Masami Hiramatsu 已提交
1107
			struct pt_regs *saved_regs = &kcb->jprobe_saved_regs;
1108 1109
			printk(KERN_ERR
			       "current sp %p does not match saved sp %p\n",
1110
			       stack_addr(regs), saved_sp);
1111
			printk(KERN_ERR "Saved registers for jprobe %p\n", jp);
1112
			show_regs(saved_regs);
1113
			printk(KERN_ERR "Current registers\n");
1114
			show_regs(regs);
L
Linus Torvalds 已提交
1115 1116
			BUG();
		}
1117 1118
		/* It's OK to start function graph tracing again */
		unpause_graph_tracing();
1119
		*regs = kcb->jprobe_saved_regs;
1120
		__memcpy(saved_sp, kcb->jprobes_stack, MIN_STACK_SIZE(saved_sp));
1121
		preempt_enable_no_resched();
L
Linus Torvalds 已提交
1122 1123 1124 1125
		return 1;
	}
	return 0;
}
1126
NOKPROBE_SYMBOL(longjmp_break_handler);
1127

1128 1129 1130 1131 1132 1133 1134 1135
bool arch_within_kprobe_blacklist(unsigned long addr)
{
	return  (addr >= (unsigned long)__kprobes_text_start &&
		 addr < (unsigned long)__kprobes_text_end) ||
		(addr >= (unsigned long)__entry_text_start &&
		 addr < (unsigned long)__entry_text_end);
}

1136
int __init arch_init_kprobes(void)
1137
{
1138
	return 0;
1139
}
1140

1141
int arch_trampoline_kprobe(struct kprobe *p)
1142 1143 1144
{
	return 0;
}