uprobes.c 47.6 KB
Newer Older
1
/*
2
 * User-space Probes (UProbes)
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
 *
I
Ingo Molnar 已提交
18
 * Copyright (C) IBM Corporation, 2008-2012
19 20 21
 * Authors:
 *	Srikar Dronamraju
 *	Jim Keniston
I
Ingo Molnar 已提交
22
 * Copyright (C) 2011-2012 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
23 24 25 26 27 28 29
 */

#include <linux/kernel.h>
#include <linux/highmem.h>
#include <linux/pagemap.h>	/* read_mapping_page */
#include <linux/slab.h>
#include <linux/sched.h>
J
Josh Stone 已提交
30
#include <linux/export.h>
31 32 33
#include <linux/rmap.h>		/* anon_vma_prepare */
#include <linux/mmu_notifier.h>	/* set_pte_at_notify */
#include <linux/swap.h>		/* try_to_free_swap */
34 35
#include <linux/ptrace.h>	/* user_enable_single_step */
#include <linux/kdebug.h>	/* notifier mechanism */
36
#include "../../mm/internal.h"	/* munlock_vma_page */
37
#include <linux/percpu-rwsem.h>
38
#include <linux/task_work.h>
39

40 41
#include <linux/uprobes.h>

42 43 44
#define UINSNS_PER_PAGE			(PAGE_SIZE/UPROBE_XOL_SLOT_BYTES)
#define MAX_UPROBE_XOL_SLOTS		UINSNS_PER_PAGE

45
static struct rb_root uprobes_tree = RB_ROOT;
46 47 48 49 50
/*
 * allows us to skip the uprobe_mmap if there are no uprobe events active
 * at this time.  Probably a fine grained per inode count is better?
 */
#define no_uprobe_events()	RB_EMPTY_ROOT(&uprobes_tree)
51

52 53 54 55 56
static DEFINE_SPINLOCK(uprobes_treelock);	/* serialize rbtree access */

#define UPROBES_HASH_SZ	13
/* serialize uprobe->pending_list */
static struct mutex uprobes_mmap_mutex[UPROBES_HASH_SZ];
57
#define uprobes_mmap_hash(v)	(&uprobes_mmap_mutex[((unsigned long)(v)) % UPROBES_HASH_SZ])
58

59 60
static struct percpu_rw_semaphore dup_mmap_sem;

61
/* Have a copy of original instruction */
62
#define UPROBE_COPY_INSN	0
63

64 65 66
struct uprobe {
	struct rb_node		rb_node;	/* node in the rb tree */
	atomic_t		ref;
67
	struct rw_semaphore	register_rwsem;
68 69 70 71 72
	struct rw_semaphore	consumer_rwsem;
	struct list_head	pending_list;
	struct uprobe_consumer	*consumers;
	struct inode		*inode;		/* Also hold a ref to inode */
	loff_t			offset;
73
	unsigned long		flags;
74 75 76 77 78 79 80 81 82 83 84

	/*
	 * The generic code assumes that it has two members of unknown type
	 * owned by the arch-specific code:
	 *
	 * 	insn -	copy_insn() saves the original instruction here for
	 *		arch_uprobe_analyze_insn().
	 *
	 *	ixol -	potentially modified instruction to execute out of
	 *		line, copied to xol_area by xol_get_insn_slot().
	 */
85 86 87
	struct arch_uprobe	arch;
};

88 89 90 91 92 93 94 95 96
struct return_instance {
	struct uprobe		*uprobe;
	unsigned long		func;
	unsigned long		orig_ret_vaddr; /* original return address */
	bool			chained;	/* true, if instance is nested */

	struct return_instance	*next;		/* keep as stack */
};

97
/*
98 99 100 101
 * Execute out of line area: anonymous executable mapping installed
 * by the probed task to execute the copy of the original instruction
 * mangled by set_swbp().
 *
102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119
 * On a breakpoint hit, thread contests for a slot.  It frees the
 * slot after singlestep. Currently a fixed number of slots are
 * allocated.
 */
struct xol_area {
	wait_queue_head_t 	wq;		/* if all slots are busy */
	atomic_t 		slot_count;	/* number of in-use slots */
	unsigned long 		*bitmap;	/* 0 = free slot */
	struct page 		*page;

	/*
	 * We keep the vma's vm_start rather than a pointer to the vma
	 * itself.  The probed process or a naughty kernel module could make
	 * the vma go away, and we must handle that reasonably gracefully.
	 */
	unsigned long 		vaddr;		/* Page(s) of instruction slots */
};

120 121 122 123 124 125 126 127 128 129
/*
 * valid_vma: Verify if the specified vma is an executable vma
 * Relax restrictions while unregistering: vm_flags might have
 * changed after breakpoint was inserted.
 *	- is_register: indicates if we are in register context.
 *	- Return 1 if the specified virtual address is in an
 *	  executable vma.
 */
static bool valid_vma(struct vm_area_struct *vma, bool is_register)
{
130
	vm_flags_t flags = VM_HUGETLB | VM_MAYEXEC | VM_MAYSHARE;
131

132 133
	if (is_register)
		flags |= VM_WRITE;
134

135
	return vma->vm_file && (vma->vm_flags & flags) == VM_MAYEXEC;
136 137
}

138
static unsigned long offset_to_vaddr(struct vm_area_struct *vma, loff_t offset)
139
{
140
	return vma->vm_start + offset - ((loff_t)vma->vm_pgoff << PAGE_SHIFT);
141 142
}

143 144 145 146 147
static loff_t vaddr_to_offset(struct vm_area_struct *vma, unsigned long vaddr)
{
	return ((loff_t)vma->vm_pgoff << PAGE_SHIFT) + (vaddr - vma->vm_start);
}

148 149 150 151 152
/**
 * __replace_page - replace page in vma by new page.
 * based on replace_page in mm/ksm.c
 *
 * @vma:      vma that holds the pte pointing to page
153
 * @addr:     address the old @page is mapped at
154 155 156 157 158
 * @page:     the cowed page we are replacing by kpage
 * @kpage:    the modified page we replace page by
 *
 * Returns 0 on success, -EFAULT on failure.
 */
159 160
static int __replace_page(struct vm_area_struct *vma, unsigned long addr,
				struct page *page, struct page *kpage)
161 162
{
	struct mm_struct *mm = vma->vm_mm;
163 164
	spinlock_t *ptl;
	pte_t *ptep;
165
	int err;
166 167 168
	/* For mmu_notifiers */
	const unsigned long mmun_start = addr;
	const unsigned long mmun_end   = addr + PAGE_SIZE;
169

170
	/* For try_to_free_swap() and munlock_vma_page() below */
171 172
	lock_page(page);

173
	mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
174
	err = -EAGAIN;
175
	ptep = page_check_address(page, mm, addr, &ptl, 0);
176
	if (!ptep)
177
		goto unlock;
178 179 180 181

	get_page(kpage);
	page_add_new_anon_rmap(kpage, vma, addr);

182 183 184 185 186
	if (!PageAnon(page)) {
		dec_mm_counter(mm, MM_FILEPAGES);
		inc_mm_counter(mm, MM_ANONPAGES);
	}

187 188 189 190 191 192 193 194 195
	flush_cache_page(vma, addr, pte_pfn(*ptep));
	ptep_clear_flush(vma, addr, ptep);
	set_pte_at_notify(mm, addr, ptep, mk_pte(kpage, vma->vm_page_prot));

	page_remove_rmap(page);
	if (!page_mapped(page))
		try_to_free_swap(page);
	pte_unmap_unlock(ptep, ptl);

196 197 198 199
	if (vma->vm_flags & VM_LOCKED)
		munlock_vma_page(page);
	put_page(page);

200 201
	err = 0;
 unlock:
202
	mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
203 204
	unlock_page(page);
	return err;
205 206 207
}

/**
208
 * is_swbp_insn - check if instruction is breakpoint instruction.
209
 * @insn: instruction to be checked.
210
 * Default implementation of is_swbp_insn
211 212
 * Returns true if @insn is a breakpoint instruction.
 */
213
bool __weak is_swbp_insn(uprobe_opcode_t *insn)
214
{
215
	return *insn == UPROBE_SWBP_INSN;
216 217
}

218 219 220 221 222 223 224 225 226 227 228 229 230 231
/**
 * is_trap_insn - check if instruction is breakpoint instruction.
 * @insn: instruction to be checked.
 * Default implementation of is_trap_insn
 * Returns true if @insn is a breakpoint instruction.
 *
 * This function is needed for the case where an architecture has multiple
 * trap instructions (like powerpc).
 */
bool __weak is_trap_insn(uprobe_opcode_t *insn)
{
	return is_swbp_insn(insn);
}

232
static void copy_from_page(struct page *page, unsigned long vaddr, void *dst, int len)
233 234
{
	void *kaddr = kmap_atomic(page);
235
	memcpy(dst, kaddr + (vaddr & ~PAGE_MASK), len);
236 237 238
	kunmap_atomic(kaddr);
}

239 240 241 242 243 244 245
static void copy_to_page(struct page *page, unsigned long vaddr, const void *src, int len)
{
	void *kaddr = kmap_atomic(page);
	memcpy(kaddr + (vaddr & ~PAGE_MASK), src, len);
	kunmap_atomic(kaddr);
}

246 247 248 249 250
static int verify_opcode(struct page *page, unsigned long vaddr, uprobe_opcode_t *new_opcode)
{
	uprobe_opcode_t old_opcode;
	bool is_swbp;

251 252 253 254 255 256 257 258 259
	/*
	 * Note: We only check if the old_opcode is UPROBE_SWBP_INSN here.
	 * We do not check if it is any other 'trap variant' which could
	 * be conditional trap instruction such as the one powerpc supports.
	 *
	 * The logic is that we do not care if the underlying instruction
	 * is a trap variant; uprobes always wins over any other (gdb)
	 * breakpoint.
	 */
260
	copy_from_page(page, vaddr, &old_opcode, UPROBE_SWBP_INSN_SIZE);
261 262 263 264 265 266 267
	is_swbp = is_swbp_insn(&old_opcode);

	if (is_swbp_insn(new_opcode)) {
		if (is_swbp)		/* register: already installed? */
			return 0;
	} else {
		if (!is_swbp)		/* unregister: was it changed by us? */
268
			return 0;
269 270 271 272 273
	}

	return 1;
}

274 275 276 277 278
/*
 * NOTE:
 * Expect the breakpoint instruction to be the smallest size instruction for
 * the architecture. If an arch has variable length instruction and the
 * breakpoint instruction is not of the smallest length instruction
279
 * supported by that architecture then we need to modify is_trap_at_addr and
280 281
 * uprobe_write_opcode accordingly. This would never be a problem for archs
 * that have fixed length instructions.
282
 *
283
 * uprobe_write_opcode - write the opcode at a given virtual address.
284 285 286 287
 * @mm: the probed process address space.
 * @vaddr: the virtual address to store the opcode.
 * @opcode: opcode to be written at @vaddr.
 *
288
 * Called with mm->mmap_sem held for write.
289 290
 * Return 0 (success) or a negative errno.
 */
291
int uprobe_write_opcode(struct mm_struct *mm, unsigned long vaddr,
292
			uprobe_opcode_t opcode)
293 294 295 296
{
	struct page *old_page, *new_page;
	struct vm_area_struct *vma;
	int ret;
297

298
retry:
299
	/* Read the page with vaddr into memory */
300
	ret = get_user_pages(NULL, mm, vaddr, 1, 0, 1, &old_page, &vma);
301 302
	if (ret <= 0)
		return ret;
303

304 305 306 307
	ret = verify_opcode(old_page, vaddr, &opcode);
	if (ret <= 0)
		goto put_old;

308 309 310 311
	ret = anon_vma_prepare(vma);
	if (ret)
		goto put_old;

312 313 314
	ret = -ENOMEM;
	new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, vaddr);
	if (!new_page)
315
		goto put_old;
316

317 318
	if (mem_cgroup_charge_anon(new_page, mm, GFP_KERNEL))
		goto put_new;
319

320
	__SetPageUptodate(new_page);
321 322
	copy_highpage(new_page, old_page);
	copy_to_page(new_page, vaddr, &opcode, UPROBE_SWBP_INSN_SIZE);
323

324
	ret = __replace_page(vma, vaddr, old_page, new_page);
325 326
	if (ret)
		mem_cgroup_uncharge_page(new_page);
327

328
put_new:
329
	page_cache_release(new_page);
330
put_old:
331 332
	put_page(old_page);

333 334
	if (unlikely(ret == -EAGAIN))
		goto retry;
335 336 337 338
	return ret;
}

/**
339
 * set_swbp - store breakpoint at a given address.
340
 * @auprobe: arch specific probepoint information.
341 342 343 344 345 346
 * @mm: the probed process address space.
 * @vaddr: the virtual address to insert the opcode.
 *
 * For mm @mm, store the breakpoint instruction at @vaddr.
 * Return 0 (success) or a negative errno.
 */
347
int __weak set_swbp(struct arch_uprobe *auprobe, struct mm_struct *mm, unsigned long vaddr)
348
{
349
	return uprobe_write_opcode(mm, vaddr, UPROBE_SWBP_INSN);
350 351 352 353 354
}

/**
 * set_orig_insn - Restore the original instruction.
 * @mm: the probed process address space.
355
 * @auprobe: arch specific probepoint information.
356 357 358 359 360
 * @vaddr: the virtual address to insert the opcode.
 *
 * For mm @mm, restore the original opcode (opcode) at @vaddr.
 * Return 0 (success) or a negative errno.
 */
361
int __weak
362
set_orig_insn(struct arch_uprobe *auprobe, struct mm_struct *mm, unsigned long vaddr)
363
{
364
	return uprobe_write_opcode(mm, vaddr, *(uprobe_opcode_t *)&auprobe->insn);
365 366 367 368 369 370
}

static int match_uprobe(struct uprobe *l, struct uprobe *r)
{
	if (l->inode < r->inode)
		return -1;
371

372 373 374
	if (l->inode > r->inode)
		return 1;

375 376 377 378 379
	if (l->offset < r->offset)
		return -1;

	if (l->offset > r->offset)
		return 1;
380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397

	return 0;
}

static struct uprobe *__find_uprobe(struct inode *inode, loff_t offset)
{
	struct uprobe u = { .inode = inode, .offset = offset };
	struct rb_node *n = uprobes_tree.rb_node;
	struct uprobe *uprobe;
	int match;

	while (n) {
		uprobe = rb_entry(n, struct uprobe, rb_node);
		match = match_uprobe(&u, uprobe);
		if (!match) {
			atomic_inc(&uprobe->ref);
			return uprobe;
		}
398

399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414
		if (match < 0)
			n = n->rb_left;
		else
			n = n->rb_right;
	}
	return NULL;
}

/*
 * Find a uprobe corresponding to a given inode:offset
 * Acquires uprobes_treelock
 */
static struct uprobe *find_uprobe(struct inode *inode, loff_t offset)
{
	struct uprobe *uprobe;

415
	spin_lock(&uprobes_treelock);
416
	uprobe = __find_uprobe(inode, offset);
417
	spin_unlock(&uprobes_treelock);
418

419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443
	return uprobe;
}

static struct uprobe *__insert_uprobe(struct uprobe *uprobe)
{
	struct rb_node **p = &uprobes_tree.rb_node;
	struct rb_node *parent = NULL;
	struct uprobe *u;
	int match;

	while (*p) {
		parent = *p;
		u = rb_entry(parent, struct uprobe, rb_node);
		match = match_uprobe(uprobe, u);
		if (!match) {
			atomic_inc(&u->ref);
			return u;
		}

		if (match < 0)
			p = &parent->rb_left;
		else
			p = &parent->rb_right;

	}
444

445 446 447 448 449
	u = NULL;
	rb_link_node(&uprobe->rb_node, parent, p);
	rb_insert_color(&uprobe->rb_node, &uprobes_tree);
	/* get access + creation ref */
	atomic_set(&uprobe->ref, 2);
450

451 452 453 454
	return u;
}

/*
455
 * Acquire uprobes_treelock.
456 457 458 459 460 461 462 463 464 465
 * Matching uprobe already exists in rbtree;
 *	increment (access refcount) and return the matching uprobe.
 *
 * No matching uprobe; insert the uprobe in rb_tree;
 *	get a double refcount (access + creation) and return NULL.
 */
static struct uprobe *insert_uprobe(struct uprobe *uprobe)
{
	struct uprobe *u;

466
	spin_lock(&uprobes_treelock);
467
	u = __insert_uprobe(uprobe);
468
	spin_unlock(&uprobes_treelock);
469

470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488
	return u;
}

static void put_uprobe(struct uprobe *uprobe)
{
	if (atomic_dec_and_test(&uprobe->ref))
		kfree(uprobe);
}

static struct uprobe *alloc_uprobe(struct inode *inode, loff_t offset)
{
	struct uprobe *uprobe, *cur_uprobe;

	uprobe = kzalloc(sizeof(struct uprobe), GFP_KERNEL);
	if (!uprobe)
		return NULL;

	uprobe->inode = igrab(inode);
	uprobe->offset = offset;
489
	init_rwsem(&uprobe->register_rwsem);
490 491 492 493 494 495 496 497 498
	init_rwsem(&uprobe->consumer_rwsem);

	/* add to uprobes_tree, sorted on inode:offset */
	cur_uprobe = insert_uprobe(uprobe);
	/* a uprobe exists for this inode:offset combination */
	if (cur_uprobe) {
		kfree(uprobe);
		uprobe = cur_uprobe;
		iput(inode);
499 500
	}

501 502 503
	return uprobe;
}

504
static void consumer_add(struct uprobe *uprobe, struct uprobe_consumer *uc)
505 506
{
	down_write(&uprobe->consumer_rwsem);
507 508
	uc->next = uprobe->consumers;
	uprobe->consumers = uc;
509 510 511 512
	up_write(&uprobe->consumer_rwsem);
}

/*
513 514
 * For uprobe @uprobe, delete the consumer @uc.
 * Return true if the @uc is deleted successfully
515 516
 * or return false.
 */
517
static bool consumer_del(struct uprobe *uprobe, struct uprobe_consumer *uc)
518 519 520 521 522 523
{
	struct uprobe_consumer **con;
	bool ret = false;

	down_write(&uprobe->consumer_rwsem);
	for (con = &uprobe->consumers; *con; con = &(*con)->next) {
524 525
		if (*con == uc) {
			*con = uc->next;
526 527 528 529 530
			ret = true;
			break;
		}
	}
	up_write(&uprobe->consumer_rwsem);
531

532 533 534
	return ret;
}

535 536
static int __copy_insn(struct address_space *mapping, struct file *filp,
			void *insn, int nbytes, loff_t offset)
537 538 539 540 541 542
{
	struct page *page;
	/*
	 * Ensure that the page that has the original instruction is
	 * populated and in page-cache.
	 */
543
	page = read_mapping_page(mapping, offset >> PAGE_CACHE_SHIFT, filp);
544 545 546
	if (IS_ERR(page))
		return PTR_ERR(page);

547
	copy_from_page(page, offset, insn, nbytes);
548
	page_cache_release(page);
549

550 551 552
	return 0;
}

553
static int copy_insn(struct uprobe *uprobe, struct file *filp)
554
{
555 556
	struct address_space *mapping = uprobe->inode->i_mapping;
	loff_t offs = uprobe->offset;
557 558
	void *insn = &uprobe->arch.insn;
	int size = sizeof(uprobe->arch.insn);
559 560 561 562 563 564 565 566 567
	int len, err = -EIO;

	/* Copy only available bytes, -EIO if nothing was read */
	do {
		if (offs >= i_size_read(uprobe->inode))
			break;

		len = min_t(int, size, PAGE_SIZE - (offs & ~PAGE_MASK));
		err = __copy_insn(mapping, filp, insn, len, offs);
568
		if (err)
569 570 571 572 573 574 575 576
			break;

		insn += len;
		offs += len;
		size -= len;
	} while (size);

	return err;
577 578
}

579 580 581 582 583
static int prepare_uprobe(struct uprobe *uprobe, struct file *file,
				struct mm_struct *mm, unsigned long vaddr)
{
	int ret = 0;

584
	if (test_bit(UPROBE_COPY_INSN, &uprobe->flags))
585 586
		return ret;

O
Oleg Nesterov 已提交
587 588
	/* TODO: move this into _register, until then we abuse this sem. */
	down_write(&uprobe->consumer_rwsem);
589
	if (test_bit(UPROBE_COPY_INSN, &uprobe->flags))
590 591
		goto out;

592 593 594 595 596
	ret = copy_insn(uprobe, file);
	if (ret)
		goto out;

	ret = -ENOTSUPP;
597
	if (is_trap_insn((uprobe_opcode_t *)&uprobe->arch.insn))
598 599 600 601 602 603
		goto out;

	ret = arch_uprobe_analyze_insn(&uprobe->arch, mm, vaddr);
	if (ret)
		goto out;

604
	/* uprobe_write_opcode() assumes we don't cross page boundary */
605 606 607 608
	BUG_ON((uprobe->offset & ~PAGE_MASK) +
			UPROBE_SWBP_INSN_SIZE > PAGE_SIZE);

	smp_wmb(); /* pairs with rmb() in find_active_uprobe() */
609
	set_bit(UPROBE_COPY_INSN, &uprobe->flags);
610 611

 out:
O
Oleg Nesterov 已提交
612
	up_write(&uprobe->consumer_rwsem);
613

614 615 616
	return ret;
}

617 618
static inline bool consumer_filter(struct uprobe_consumer *uc,
				   enum uprobe_filter_ctx ctx, struct mm_struct *mm)
619
{
620
	return !uc->filter || uc->filter(uc, ctx, mm);
621 622
}

623 624
static bool filter_chain(struct uprobe *uprobe,
			 enum uprobe_filter_ctx ctx, struct mm_struct *mm)
625
{
626 627 628 629 630
	struct uprobe_consumer *uc;
	bool ret = false;

	down_read(&uprobe->consumer_rwsem);
	for (uc = uprobe->consumers; uc; uc = uc->next) {
631
		ret = consumer_filter(uc, ctx, mm);
632 633 634 635 636 637
		if (ret)
			break;
	}
	up_read(&uprobe->consumer_rwsem);

	return ret;
638 639
}

640 641
static int
install_breakpoint(struct uprobe *uprobe, struct mm_struct *mm,
642
			struct vm_area_struct *vma, unsigned long vaddr)
643
{
644
	bool first_uprobe;
645 646
	int ret;

647 648 649
	ret = prepare_uprobe(uprobe, vma->vm_file, mm, vaddr);
	if (ret)
		return ret;
650

651 652 653 654 655 656 657 658
	/*
	 * set MMF_HAS_UPROBES in advance for uprobe_pre_sstep_notifier(),
	 * the task can hit this breakpoint right after __replace_page().
	 */
	first_uprobe = !test_bit(MMF_HAS_UPROBES, &mm->flags);
	if (first_uprobe)
		set_bit(MMF_HAS_UPROBES, &mm->flags);

659
	ret = set_swbp(&uprobe->arch, mm, vaddr);
660 661 662
	if (!ret)
		clear_bit(MMF_RECALC_UPROBES, &mm->flags);
	else if (first_uprobe)
663
		clear_bit(MMF_HAS_UPROBES, &mm->flags);
664 665 666 667

	return ret;
}

668
static int
669
remove_breakpoint(struct uprobe *uprobe, struct mm_struct *mm, unsigned long vaddr)
670
{
671
	set_bit(MMF_RECALC_UPROBES, &mm->flags);
672
	return set_orig_insn(&uprobe->arch, mm, vaddr);
673 674
}

675 676 677 678
static inline bool uprobe_is_active(struct uprobe *uprobe)
{
	return !RB_EMPTY_NODE(&uprobe->rb_node);
}
679
/*
680 681 682
 * There could be threads that have already hit the breakpoint. They
 * will recheck the current insn and restart if find_uprobe() fails.
 * See find_active_uprobe().
683
 */
684 685
static void delete_uprobe(struct uprobe *uprobe)
{
686 687 688
	if (WARN_ON(!uprobe_is_active(uprobe)))
		return;

689
	spin_lock(&uprobes_treelock);
690
	rb_erase(&uprobe->rb_node, &uprobes_tree);
691
	spin_unlock(&uprobes_treelock);
692
	RB_CLEAR_NODE(&uprobe->rb_node); /* for uprobe_is_active() */
693 694 695 696
	iput(uprobe->inode);
	put_uprobe(uprobe);
}

697 698 699
struct map_info {
	struct map_info *next;
	struct mm_struct *mm;
700
	unsigned long vaddr;
701 702 703
};

static inline struct map_info *free_map_info(struct map_info *info)
704
{
705 706 707 708 709 710 711 712 713
	struct map_info *next = info->next;
	kfree(info);
	return next;
}

static struct map_info *
build_map_info(struct address_space *mapping, loff_t offset, bool is_register)
{
	unsigned long pgoff = offset >> PAGE_SHIFT;
714
	struct vm_area_struct *vma;
715 716 717 718
	struct map_info *curr = NULL;
	struct map_info *prev = NULL;
	struct map_info *info;
	int more = 0;
719

720 721
 again:
	mutex_lock(&mapping->i_mmap_mutex);
722
	vma_interval_tree_foreach(vma, &mapping->i_mmap, pgoff, pgoff) {
723 724 725
		if (!valid_vma(vma, is_register))
			continue;

726 727 728 729 730 731 732 733 734 735
		if (!prev && !more) {
			/*
			 * Needs GFP_NOWAIT to avoid i_mmap_mutex recursion through
			 * reclaim. This is optimistic, no harm done if it fails.
			 */
			prev = kmalloc(sizeof(struct map_info),
					GFP_NOWAIT | __GFP_NOMEMALLOC | __GFP_NOWARN);
			if (prev)
				prev->next = NULL;
		}
736 737 738
		if (!prev) {
			more++;
			continue;
739 740
		}

741 742
		if (!atomic_inc_not_zero(&vma->vm_mm->mm_users))
			continue;
743

744 745 746 747
		info = prev;
		prev = prev->next;
		info->next = curr;
		curr = info;
748

749
		info->mm = vma->vm_mm;
750
		info->vaddr = offset_to_vaddr(vma, offset);
751
	}
752 753
	mutex_unlock(&mapping->i_mmap_mutex);

754 755 756 757 758 759 760 761
	if (!more)
		goto out;

	prev = curr;
	while (curr) {
		mmput(curr->mm);
		curr = curr->next;
	}
762

763 764 765 766 767 768 769 770 771 772 773 774 775 776 777
	do {
		info = kmalloc(sizeof(struct map_info), GFP_KERNEL);
		if (!info) {
			curr = ERR_PTR(-ENOMEM);
			goto out;
		}
		info->next = prev;
		prev = info;
	} while (--more);

	goto again;
 out:
	while (prev)
		prev = free_map_info(prev);
	return curr;
778 779
}

780 781
static int
register_for_each_vma(struct uprobe *uprobe, struct uprobe_consumer *new)
782
{
783
	bool is_register = !!new;
784 785
	struct map_info *info;
	int err = 0;
786

787
	percpu_down_write(&dup_mmap_sem);
788 789
	info = build_map_info(uprobe->inode->i_mapping,
					uprobe->offset, is_register);
790 791 792 793
	if (IS_ERR(info)) {
		err = PTR_ERR(info);
		goto out;
	}
794

795 796 797
	while (info) {
		struct mm_struct *mm = info->mm;
		struct vm_area_struct *vma;
798

799
		if (err && is_register)
800
			goto free;
801

802
		down_write(&mm->mmap_sem);
803 804
		vma = find_vma(mm, info->vaddr);
		if (!vma || !valid_vma(vma, is_register) ||
O
Oleg Nesterov 已提交
805
		    file_inode(vma->vm_file) != uprobe->inode)
806 807
			goto unlock;

808 809
		if (vma->vm_start > info->vaddr ||
		    vaddr_to_offset(vma, info->vaddr) != uprobe->offset)
810
			goto unlock;
811

812 813
		if (is_register) {
			/* consult only the "caller", new consumer. */
814
			if (consumer_filter(new,
815
					UPROBE_FILTER_REGISTER, mm))
816 817
				err = install_breakpoint(uprobe, mm, vma, info->vaddr);
		} else if (test_bit(MMF_HAS_UPROBES, &mm->flags)) {
818 819
			if (!filter_chain(uprobe,
					UPROBE_FILTER_UNREGISTER, mm))
820 821
				err |= remove_breakpoint(uprobe, mm, info->vaddr);
		}
822

823 824 825 826 827
 unlock:
		up_write(&mm->mmap_sem);
 free:
		mmput(mm);
		info = free_map_info(info);
828
	}
829 830
 out:
	percpu_up_write(&dup_mmap_sem);
831
	return err;
832 833
}

834
static int __uprobe_register(struct uprobe *uprobe, struct uprobe_consumer *uc)
835
{
836
	consumer_add(uprobe, uc);
837
	return register_for_each_vma(uprobe, uc);
838 839
}

840
static void __uprobe_unregister(struct uprobe *uprobe, struct uprobe_consumer *uc)
841
{
842 843 844 845
	int err;

	if (!consumer_del(uprobe, uc))	/* WARN? */
		return;
846

847
	err = register_for_each_vma(uprobe, NULL);
848 849 850
	/* TODO : cant unregister? schedule a worker thread */
	if (!uprobe->consumers && !err)
		delete_uprobe(uprobe);
851 852 853
}

/*
854
 * uprobe_register - register a probe
855 856
 * @inode: the file in which the probe has to be placed.
 * @offset: offset from the start of the file.
857
 * @uc: information on howto handle the probe..
858
 *
859
 * Apart from the access refcount, uprobe_register() takes a creation
860 861
 * refcount (thro alloc_uprobe) if and only if this @uprobe is getting
 * inserted into the rbtree (i.e first consumer for a @inode:@offset
862
 * tuple).  Creation refcount stops uprobe_unregister from freeing the
863
 * @uprobe even before the register operation is complete. Creation
864
 * refcount is released when the last @uc for the @uprobe
865 866 867 868 869
 * unregisters.
 *
 * Return errno if it cannot successully install probes
 * else return 0 (success)
 */
870
int uprobe_register(struct inode *inode, loff_t offset, struct uprobe_consumer *uc)
871 872
{
	struct uprobe *uprobe;
873
	int ret;
874

875 876 877 878
	/* Uprobe must have at least one set consumer */
	if (!uc->handler && !uc->ret_handler)
		return -EINVAL;

879 880 881
	/* copy_insn()->read_mapping_page() needs ->readpage() */
	if (!inode->i_mapping->a_ops->readpage)
		return -EIO;
882
	/* Racy, just to catch the obvious mistakes */
883
	if (offset > i_size_read(inode))
884
		return -EINVAL;
885

886
 retry:
887
	uprobe = alloc_uprobe(inode, offset);
888 889 890 891 892 893 894 895 896
	if (!uprobe)
		return -ENOMEM;
	/*
	 * We can race with uprobe_unregister()->delete_uprobe().
	 * Check uprobe_is_active() and retry if it is false.
	 */
	down_write(&uprobe->register_rwsem);
	ret = -EAGAIN;
	if (likely(uprobe_is_active(uprobe))) {
897 898
		ret = __uprobe_register(uprobe, uc);
		if (ret)
899
			__uprobe_unregister(uprobe, uc);
900
	}
901 902
	up_write(&uprobe->register_rwsem);
	put_uprobe(uprobe);
903

904 905
	if (unlikely(ret == -EAGAIN))
		goto retry;
906 907
	return ret;
}
J
Josh Stone 已提交
908
EXPORT_SYMBOL_GPL(uprobe_register);
909

910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938
/*
 * uprobe_apply - unregister a already registered probe.
 * @inode: the file in which the probe has to be removed.
 * @offset: offset from the start of the file.
 * @uc: consumer which wants to add more or remove some breakpoints
 * @add: add or remove the breakpoints
 */
int uprobe_apply(struct inode *inode, loff_t offset,
			struct uprobe_consumer *uc, bool add)
{
	struct uprobe *uprobe;
	struct uprobe_consumer *con;
	int ret = -ENOENT;

	uprobe = find_uprobe(inode, offset);
	if (!uprobe)
		return ret;

	down_write(&uprobe->register_rwsem);
	for (con = uprobe->consumers; con && con != uc ; con = con->next)
		;
	if (con)
		ret = register_for_each_vma(uprobe, add ? uc : NULL);
	up_write(&uprobe->register_rwsem);
	put_uprobe(uprobe);

	return ret;
}

939
/*
940
 * uprobe_unregister - unregister a already registered probe.
941 942
 * @inode: the file in which the probe has to be removed.
 * @offset: offset from the start of the file.
943
 * @uc: identify which probe if multiple probes are colocated.
944
 */
945
void uprobe_unregister(struct inode *inode, loff_t offset, struct uprobe_consumer *uc)
946
{
947
	struct uprobe *uprobe;
948 949 950 951 952

	uprobe = find_uprobe(inode, offset);
	if (!uprobe)
		return;

953
	down_write(&uprobe->register_rwsem);
954
	__uprobe_unregister(uprobe, uc);
955
	up_write(&uprobe->register_rwsem);
S
Sasha Levin 已提交
956
	put_uprobe(uprobe);
957
}
J
Josh Stone 已提交
958
EXPORT_SYMBOL_GPL(uprobe_unregister);
959

960 961 962 963 964 965 966 967 968 969 970
static int unapply_uprobe(struct uprobe *uprobe, struct mm_struct *mm)
{
	struct vm_area_struct *vma;
	int err = 0;

	down_read(&mm->mmap_sem);
	for (vma = mm->mmap; vma; vma = vma->vm_next) {
		unsigned long vaddr;
		loff_t offset;

		if (!valid_vma(vma, false) ||
O
Oleg Nesterov 已提交
971
		    file_inode(vma->vm_file) != uprobe->inode)
972 973 974 975 976 977 978 979 980 981 982 983 984 985 986
			continue;

		offset = (loff_t)vma->vm_pgoff << PAGE_SHIFT;
		if (uprobe->offset <  offset ||
		    uprobe->offset >= offset + vma->vm_end - vma->vm_start)
			continue;

		vaddr = offset_to_vaddr(vma, uprobe->offset);
		err |= remove_breakpoint(uprobe, mm, vaddr);
	}
	up_read(&mm->mmap_sem);

	return err;
}

987 988
static struct rb_node *
find_node_in_range(struct inode *inode, loff_t min, loff_t max)
989 990 991 992
{
	struct rb_node *n = uprobes_tree.rb_node;

	while (n) {
993
		struct uprobe *u = rb_entry(n, struct uprobe, rb_node);
994

995
		if (inode < u->inode) {
996
			n = n->rb_left;
997
		} else if (inode > u->inode) {
998
			n = n->rb_right;
999 1000 1001 1002 1003 1004 1005 1006
		} else {
			if (max < u->offset)
				n = n->rb_left;
			else if (min > u->offset)
				n = n->rb_right;
			else
				break;
		}
1007
	}
1008

1009
	return n;
1010 1011 1012
}

/*
1013
 * For a given range in vma, build a list of probes that need to be inserted.
1014
 */
1015 1016 1017 1018
static void build_probe_list(struct inode *inode,
				struct vm_area_struct *vma,
				unsigned long start, unsigned long end,
				struct list_head *head)
1019
{
1020 1021 1022
	loff_t min, max;
	struct rb_node *n, *t;
	struct uprobe *u;
1023

1024
	INIT_LIST_HEAD(head);
1025
	min = vaddr_to_offset(vma, start);
1026
	max = min + (end - start) - 1;
1027

1028
	spin_lock(&uprobes_treelock);
1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044
	n = find_node_in_range(inode, min, max);
	if (n) {
		for (t = n; t; t = rb_prev(t)) {
			u = rb_entry(t, struct uprobe, rb_node);
			if (u->inode != inode || u->offset < min)
				break;
			list_add(&u->pending_list, head);
			atomic_inc(&u->ref);
		}
		for (t = n; (t = rb_next(t)); ) {
			u = rb_entry(t, struct uprobe, rb_node);
			if (u->inode != inode || u->offset > max)
				break;
			list_add(&u->pending_list, head);
			atomic_inc(&u->ref);
		}
1045
	}
1046
	spin_unlock(&uprobes_treelock);
1047 1048 1049
}

/*
1050
 * Called from mmap_region/vma_adjust with mm->mmap_sem acquired.
1051
 *
1052 1053
 * Currently we ignore all errors and always return 0, the callers
 * can't handle the failure anyway.
1054
 */
1055
int uprobe_mmap(struct vm_area_struct *vma)
1056 1057
{
	struct list_head tmp_list;
1058
	struct uprobe *uprobe, *u;
1059 1060
	struct inode *inode;

1061
	if (no_uprobe_events() || !valid_vma(vma, true))
1062
		return 0;
1063

O
Oleg Nesterov 已提交
1064
	inode = file_inode(vma->vm_file);
1065
	if (!inode)
1066
		return 0;
1067 1068

	mutex_lock(uprobes_mmap_hash(inode));
1069
	build_probe_list(inode, vma, vma->vm_start, vma->vm_end, &tmp_list);
1070 1071 1072 1073 1074
	/*
	 * We can race with uprobe_unregister(), this uprobe can be already
	 * removed. But in this case filter_chain() must return false, all
	 * consumers have gone away.
	 */
1075
	list_for_each_entry_safe(uprobe, u, &tmp_list, pending_list) {
1076
		if (!fatal_signal_pending(current) &&
1077
		    filter_chain(uprobe, UPROBE_FILTER_MMAP, vma->vm_mm)) {
1078
			unsigned long vaddr = offset_to_vaddr(vma, uprobe->offset);
1079
			install_breakpoint(uprobe, vma->vm_mm, vma, vaddr);
1080 1081 1082 1083 1084
		}
		put_uprobe(uprobe);
	}
	mutex_unlock(uprobes_mmap_hash(inode));

1085
	return 0;
1086 1087
}

1088 1089 1090 1091 1092 1093 1094
static bool
vma_has_uprobes(struct vm_area_struct *vma, unsigned long start, unsigned long end)
{
	loff_t min, max;
	struct inode *inode;
	struct rb_node *n;

O
Oleg Nesterov 已提交
1095
	inode = file_inode(vma->vm_file);
1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106

	min = vaddr_to_offset(vma, start);
	max = min + (end - start) - 1;

	spin_lock(&uprobes_treelock);
	n = find_node_in_range(inode, min, max);
	spin_unlock(&uprobes_treelock);

	return !!n;
}

1107 1108 1109
/*
 * Called in context of a munmap of a vma.
 */
1110
void uprobe_munmap(struct vm_area_struct *vma, unsigned long start, unsigned long end)
1111
{
1112
	if (no_uprobe_events() || !valid_vma(vma, false))
1113 1114
		return;

1115 1116 1117
	if (!atomic_read(&vma->vm_mm->mm_users)) /* called by mmput() ? */
		return;

1118 1119
	if (!test_bit(MMF_HAS_UPROBES, &vma->vm_mm->flags) ||
	     test_bit(MMF_RECALC_UPROBES, &vma->vm_mm->flags))
1120 1121
		return;

1122 1123
	if (vma_has_uprobes(vma, start, end))
		set_bit(MMF_RECALC_UPROBES, &vma->vm_mm->flags);
1124 1125
}

1126
/* Slot allocation for XOL */
1127
static int xol_add_vma(struct mm_struct *mm, struct xol_area *area)
1128
{
1129
	int ret = -EALREADY;
1130 1131 1132 1133 1134

	down_write(&mm->mmap_sem);
	if (mm->uprobes_state.xol_area)
		goto fail;

1135 1136 1137 1138 1139 1140 1141 1142
	if (!area->vaddr) {
		/* Try to map as high as possible, this is only a hint. */
		area->vaddr = get_unmapped_area(NULL, TASK_SIZE - PAGE_SIZE,
						PAGE_SIZE, 0, 0);
		if (area->vaddr & ~PAGE_MASK) {
			ret = area->vaddr;
			goto fail;
		}
1143 1144 1145 1146 1147 1148 1149 1150 1151
	}

	ret = install_special_mapping(mm, area->vaddr, PAGE_SIZE,
				VM_EXEC|VM_MAYEXEC|VM_DONTCOPY|VM_IO, &area->page);
	if (ret)
		goto fail;

	smp_wmb();	/* pairs with get_xol_area() */
	mm->uprobes_state.xol_area = area;
1152
 fail:
1153 1154 1155 1156 1157
	up_write(&mm->mmap_sem);

	return ret;
}

1158
static struct xol_area *__create_xol_area(unsigned long vaddr)
1159
{
1160
	struct mm_struct *mm = current->mm;
1161
	uprobe_opcode_t insn = UPROBE_SWBP_INSN;
1162
	struct xol_area *area;
1163

1164
	area = kmalloc(sizeof(*area), GFP_KERNEL);
1165
	if (unlikely(!area))
1166
		goto out;
1167 1168 1169

	area->bitmap = kzalloc(BITS_TO_LONGS(UINSNS_PER_PAGE) * sizeof(long), GFP_KERNEL);
	if (!area->bitmap)
1170 1171 1172 1173 1174
		goto free_area;

	area->page = alloc_page(GFP_HIGHUSER);
	if (!area->page)
		goto free_bitmap;
1175

1176
	area->vaddr = vaddr;
1177 1178
	init_waitqueue_head(&area->wq);
	/* Reserve the 1st slot for get_trampoline_vaddr() */
1179 1180
	set_bit(0, area->bitmap);
	atomic_set(&area->slot_count, 1);
1181
	copy_to_page(area->page, 0, &insn, UPROBE_SWBP_INSN_SIZE);
1182

1183
	if (!xol_add_vma(mm, area))
1184 1185
		return area;

1186 1187
	__free_page(area->page);
 free_bitmap:
1188
	kfree(area->bitmap);
1189
 free_area:
1190
	kfree(area);
1191
 out:
1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206
	return NULL;
}

/*
 * get_xol_area - Allocate process's xol_area if necessary.
 * This area will be used for storing instructions for execution out of line.
 *
 * Returns the allocated area or NULL.
 */
static struct xol_area *get_xol_area(void)
{
	struct mm_struct *mm = current->mm;
	struct xol_area *area;

	if (!mm->uprobes_state.xol_area)
1207
		__create_xol_area(0);
1208

1209
	area = mm->uprobes_state.xol_area;
1210
	smp_read_barrier_depends();	/* pairs with wmb in xol_add_vma() */
1211
	return area;
1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228
}

/*
 * uprobe_clear_state - Free the area allocated for slots.
 */
void uprobe_clear_state(struct mm_struct *mm)
{
	struct xol_area *area = mm->uprobes_state.xol_area;

	if (!area)
		return;

	put_page(area->page);
	kfree(area->bitmap);
	kfree(area);
}

1229 1230 1231 1232 1233 1234 1235 1236 1237 1238
void uprobe_start_dup_mmap(void)
{
	percpu_down_read(&dup_mmap_sem);
}

void uprobe_end_dup_mmap(void)
{
	percpu_up_read(&dup_mmap_sem);
}

1239 1240
void uprobe_dup_mmap(struct mm_struct *oldmm, struct mm_struct *newmm)
{
1241 1242
	newmm->uprobes_state.xol_area = NULL;

1243
	if (test_bit(MMF_HAS_UPROBES, &oldmm->flags)) {
1244
		set_bit(MMF_HAS_UPROBES, &newmm->flags);
1245 1246 1247
		/* unconditionally, dup_mmap() skips VM_DONTCOPY vmas */
		set_bit(MMF_RECALC_UPROBES, &newmm->flags);
	}
1248 1249
}

1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276
/*
 *  - search for a free slot.
 */
static unsigned long xol_take_insn_slot(struct xol_area *area)
{
	unsigned long slot_addr;
	int slot_nr;

	do {
		slot_nr = find_first_zero_bit(area->bitmap, UINSNS_PER_PAGE);
		if (slot_nr < UINSNS_PER_PAGE) {
			if (!test_and_set_bit(slot_nr, area->bitmap))
				break;

			slot_nr = UINSNS_PER_PAGE;
			continue;
		}
		wait_event(area->wq, (atomic_read(&area->slot_count) < UINSNS_PER_PAGE));
	} while (slot_nr >= UINSNS_PER_PAGE);

	slot_addr = area->vaddr + (slot_nr * UPROBE_XOL_SLOT_BYTES);
	atomic_inc(&area->slot_count);

	return slot_addr;
}

/*
1277
 * xol_get_insn_slot - allocate a slot for xol.
1278 1279
 * Returns the allocated slot address or 0.
 */
1280
static unsigned long xol_get_insn_slot(struct uprobe *uprobe)
1281 1282
{
	struct xol_area *area;
1283
	unsigned long xol_vaddr;
1284

1285 1286 1287
	area = get_xol_area();
	if (!area)
		return 0;
1288

1289 1290
	xol_vaddr = xol_take_insn_slot(area);
	if (unlikely(!xol_vaddr))
1291 1292
		return 0;

1293
	/* Initialize the slot */
1294
	copy_to_page(area->page, xol_vaddr,
1295
			&uprobe->arch.ixol, sizeof(uprobe->arch.ixol));
1296 1297 1298 1299 1300
	/*
	 * We probably need flush_icache_user_range() but it needs vma.
	 * This should work on supported architectures too.
	 */
	flush_dcache_page(area->page);
1301

1302
	return xol_vaddr;
1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319
}

/*
 * xol_free_insn_slot - If slot was earlier allocated by
 * @xol_get_insn_slot(), make the slot available for
 * subsequent requests.
 */
static void xol_free_insn_slot(struct task_struct *tsk)
{
	struct xol_area *area;
	unsigned long vma_end;
	unsigned long slot_addr;

	if (!tsk->mm || !tsk->mm->uprobes_state.xol_area || !tsk->utask)
		return;

	slot_addr = tsk->utask->xol_vaddr;
1320
	if (unlikely(!slot_addr))
1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342
		return;

	area = tsk->mm->uprobes_state.xol_area;
	vma_end = area->vaddr + PAGE_SIZE;
	if (area->vaddr <= slot_addr && slot_addr < vma_end) {
		unsigned long offset;
		int slot_nr;

		offset = slot_addr - area->vaddr;
		slot_nr = offset / UPROBE_XOL_SLOT_BYTES;
		if (slot_nr >= UINSNS_PER_PAGE)
			return;

		clear_bit(slot_nr, area->bitmap);
		atomic_dec(&area->slot_count);
		if (waitqueue_active(&area->wq))
			wake_up(&area->wq);

		tsk->utask->xol_vaddr = 0;
	}
}

1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353
/**
 * uprobe_get_swbp_addr - compute address of swbp given post-swbp regs
 * @regs: Reflects the saved state of the task after it has hit a breakpoint
 * instruction.
 * Return the address of the breakpoint instruction.
 */
unsigned long __weak uprobe_get_swbp_addr(struct pt_regs *regs)
{
	return instruction_pointer(regs) - UPROBE_SWBP_INSN_SIZE;
}

1354 1355 1356 1357 1358 1359 1360 1361 1362 1363
unsigned long uprobe_get_trap_addr(struct pt_regs *regs)
{
	struct uprobe_task *utask = current->utask;

	if (unlikely(utask && utask->active_uprobe))
		return utask->vaddr;

	return instruction_pointer(regs);
}

1364 1365 1366 1367 1368 1369 1370
/*
 * Called with no locks held.
 * Called in context of a exiting or a exec-ing thread.
 */
void uprobe_free_utask(struct task_struct *t)
{
	struct uprobe_task *utask = t->utask;
1371
	struct return_instance *ri, *tmp;
1372 1373 1374 1375 1376 1377 1378

	if (!utask)
		return;

	if (utask->active_uprobe)
		put_uprobe(utask->active_uprobe);

1379 1380 1381 1382 1383 1384 1385 1386 1387
	ri = utask->return_instances;
	while (ri) {
		tmp = ri;
		ri = ri->next;

		put_uprobe(tmp->uprobe);
		kfree(tmp);
	}

1388
	xol_free_insn_slot(t);
1389 1390 1391 1392 1393
	kfree(utask);
	t->utask = NULL;
}

/*
1394 1395
 * Allocate a uprobe_task object for the task if if necessary.
 * Called when the thread hits a breakpoint.
1396 1397 1398 1399 1400
 *
 * Returns:
 * - pointer to new uprobe_task on success
 * - NULL otherwise
 */
1401
static struct uprobe_task *get_utask(void)
1402
{
1403 1404 1405
	if (!current->utask)
		current->utask = kzalloc(sizeof(struct uprobe_task), GFP_KERNEL);
	return current->utask;
1406 1407
}

1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441
static int dup_utask(struct task_struct *t, struct uprobe_task *o_utask)
{
	struct uprobe_task *n_utask;
	struct return_instance **p, *o, *n;

	n_utask = kzalloc(sizeof(struct uprobe_task), GFP_KERNEL);
	if (!n_utask)
		return -ENOMEM;
	t->utask = n_utask;

	p = &n_utask->return_instances;
	for (o = o_utask->return_instances; o; o = o->next) {
		n = kmalloc(sizeof(struct return_instance), GFP_KERNEL);
		if (!n)
			return -ENOMEM;

		*n = *o;
		atomic_inc(&n->uprobe->ref);
		n->next = NULL;

		*p = n;
		p = &n->next;
		n_utask->depth++;
	}

	return 0;
}

static void uprobe_warn(struct task_struct *t, const char *msg)
{
	pr_warn("uprobe: %s:%d failed to %s\n",
			current->comm, current->pid, msg);
}

1442 1443 1444 1445 1446
static void dup_xol_work(struct callback_head *work)
{
	if (current->flags & PF_EXITING)
		return;

1447
	if (!__create_xol_area(current->utask->dup_xol_addr))
1448 1449 1450
		uprobe_warn(current, "dup xol area");
}

1451 1452 1453
/*
 * Called in context of a new clone/fork from copy_process.
 */
1454
void uprobe_copy_process(struct task_struct *t, unsigned long flags)
1455
{
1456 1457
	struct uprobe_task *utask = current->utask;
	struct mm_struct *mm = current->mm;
1458
	struct xol_area *area;
1459

1460
	t->utask = NULL;
1461

1462 1463 1464 1465
	if (!utask || !utask->return_instances)
		return;

	if (mm == t->mm && !(flags & CLONE_VFORK))
1466 1467 1468 1469
		return;

	if (dup_utask(t, utask))
		return uprobe_warn(t, "dup ret instances");
1470 1471 1472 1473 1474 1475

	/* The task can fork() after dup_xol_work() fails */
	area = mm->uprobes_state.xol_area;
	if (!area)
		return uprobe_warn(t, "dup xol area");

1476 1477 1478
	if (mm == t->mm)
		return;

1479 1480 1481
	t->utask->dup_xol_addr = area->vaddr;
	init_task_work(&t->utask->dup_xol_work, dup_xol_work);
	task_work_add(t, &t->utask->dup_xol_work, true);
1482 1483
}

1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502
/*
 * Current area->vaddr notion assume the trampoline address is always
 * equal area->vaddr.
 *
 * Returns -1 in case the xol_area is not allocated.
 */
static unsigned long get_trampoline_vaddr(void)
{
	struct xol_area *area;
	unsigned long trampoline_vaddr = -1;

	area = current->mm->uprobes_state.xol_area;
	smp_read_barrier_depends();
	if (area)
		trampoline_vaddr = area->vaddr;

	return trampoline_vaddr;
}

1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516
static void prepare_uretprobe(struct uprobe *uprobe, struct pt_regs *regs)
{
	struct return_instance *ri;
	struct uprobe_task *utask;
	unsigned long orig_ret_vaddr, trampoline_vaddr;
	bool chained = false;

	if (!get_xol_area())
		return;

	utask = get_utask();
	if (!utask)
		return;

1517 1518 1519 1520 1521 1522 1523
	if (utask->depth >= MAX_URETPROBE_DEPTH) {
		printk_ratelimited(KERN_INFO "uprobe: omit uretprobe due to"
				" nestedness limit pid/tgid=%d/%d\n",
				current->pid, current->tgid);
		return;
	}

1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558
	ri = kzalloc(sizeof(struct return_instance), GFP_KERNEL);
	if (!ri)
		goto fail;

	trampoline_vaddr = get_trampoline_vaddr();
	orig_ret_vaddr = arch_uretprobe_hijack_return_addr(trampoline_vaddr, regs);
	if (orig_ret_vaddr == -1)
		goto fail;

	/*
	 * We don't want to keep trampoline address in stack, rather keep the
	 * original return address of first caller thru all the consequent
	 * instances. This also makes breakpoint unwrapping easier.
	 */
	if (orig_ret_vaddr == trampoline_vaddr) {
		if (!utask->return_instances) {
			/*
			 * This situation is not possible. Likely we have an
			 * attack from user-space.
			 */
			pr_warn("uprobe: unable to set uretprobe pid/tgid=%d/%d\n",
						current->pid, current->tgid);
			goto fail;
		}

		chained = true;
		orig_ret_vaddr = utask->return_instances->orig_ret_vaddr;
	}

	atomic_inc(&uprobe->ref);
	ri->uprobe = uprobe;
	ri->func = instruction_pointer(regs);
	ri->orig_ret_vaddr = orig_ret_vaddr;
	ri->chained = chained;

1559 1560
	utask->depth++;

1561 1562 1563 1564 1565 1566 1567 1568 1569 1570
	/* add instance to the stack */
	ri->next = utask->return_instances;
	utask->return_instances = ri;

	return;

 fail:
	kfree(ri);
}

1571 1572
/* Prepare to single-step probed instruction out of line. */
static int
1573
pre_ssout(struct uprobe *uprobe, struct pt_regs *regs, unsigned long bp_vaddr)
1574
{
1575 1576
	struct uprobe_task *utask;
	unsigned long xol_vaddr;
1577
	int err;
1578

1579 1580 1581
	utask = get_utask();
	if (!utask)
		return -ENOMEM;
1582 1583 1584 1585 1586 1587 1588

	xol_vaddr = xol_get_insn_slot(uprobe);
	if (!xol_vaddr)
		return -ENOMEM;

	utask->xol_vaddr = xol_vaddr;
	utask->vaddr = bp_vaddr;
1589

1590 1591 1592 1593 1594 1595
	err = arch_uprobe_pre_xol(&uprobe->arch, regs);
	if (unlikely(err)) {
		xol_free_insn_slot(current);
		return err;
	}

1596 1597
	utask->active_uprobe = uprobe;
	utask->state = UTASK_SSTEP;
1598
	return 0;
1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634
}

/*
 * If we are singlestepping, then ensure this thread is not connected to
 * non-fatal signals until completion of singlestep.  When xol insn itself
 * triggers the signal,  restart the original insn even if the task is
 * already SIGKILL'ed (since coredump should report the correct ip).  This
 * is even more important if the task has a handler for SIGSEGV/etc, The
 * _same_ instruction should be repeated again after return from the signal
 * handler, and SSTEP can never finish in this case.
 */
bool uprobe_deny_signal(void)
{
	struct task_struct *t = current;
	struct uprobe_task *utask = t->utask;

	if (likely(!utask || !utask->active_uprobe))
		return false;

	WARN_ON_ONCE(utask->state != UTASK_SSTEP);

	if (signal_pending(t)) {
		spin_lock_irq(&t->sighand->siglock);
		clear_tsk_thread_flag(t, TIF_SIGPENDING);
		spin_unlock_irq(&t->sighand->siglock);

		if (__fatal_signal_pending(t) || arch_uprobe_xol_was_trapped(t)) {
			utask->state = UTASK_SSTEP_TRAPPED;
			set_tsk_thread_flag(t, TIF_UPROBE);
			set_tsk_thread_flag(t, TIF_NOTIFY_RESUME);
		}
	}

	return true;
}

1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645
static void mmf_recalc_uprobes(struct mm_struct *mm)
{
	struct vm_area_struct *vma;

	for (vma = mm->mmap; vma; vma = vma->vm_next) {
		if (!valid_vma(vma, false))
			continue;
		/*
		 * This is not strictly accurate, we can race with
		 * uprobe_unregister() and see the already removed
		 * uprobe if delete_uprobe() was not yet called.
1646
		 * Or this uprobe can be filtered out.
1647 1648 1649 1650 1651 1652 1653 1654
		 */
		if (vma_has_uprobes(vma, vma->vm_start, vma->vm_end))
			return;
	}

	clear_bit(MMF_HAS_UPROBES, &mm->flags);
}

1655
static int is_trap_at_addr(struct mm_struct *mm, unsigned long vaddr)
1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672
{
	struct page *page;
	uprobe_opcode_t opcode;
	int result;

	pagefault_disable();
	result = __copy_from_user_inatomic(&opcode, (void __user*)vaddr,
							sizeof(opcode));
	pagefault_enable();

	if (likely(result == 0))
		goto out;

	result = get_user_pages(NULL, mm, vaddr, 1, 0, 1, &page, NULL);
	if (result < 0)
		return result;

1673
	copy_from_page(page, vaddr, &opcode, UPROBE_SWBP_INSN_SIZE);
1674 1675
	put_page(page);
 out:
1676 1677
	/* This needs to return true for any variant of the trap insn */
	return is_trap_insn(&opcode);
1678 1679
}

1680
static struct uprobe *find_active_uprobe(unsigned long bp_vaddr, int *is_swbp)
1681
{
1682 1683
	struct mm_struct *mm = current->mm;
	struct uprobe *uprobe = NULL;
1684 1685 1686 1687
	struct vm_area_struct *vma;

	down_read(&mm->mmap_sem);
	vma = find_vma(mm, bp_vaddr);
1688 1689
	if (vma && vma->vm_start <= bp_vaddr) {
		if (valid_vma(vma, false)) {
O
Oleg Nesterov 已提交
1690
			struct inode *inode = file_inode(vma->vm_file);
1691
			loff_t offset = vaddr_to_offset(vma, bp_vaddr);
1692

1693 1694
			uprobe = find_uprobe(inode, offset);
		}
1695 1696

		if (!uprobe)
1697
			*is_swbp = is_trap_at_addr(mm, bp_vaddr);
1698 1699
	} else {
		*is_swbp = -EFAULT;
1700
	}
1701 1702 1703

	if (!uprobe && test_and_clear_bit(MMF_RECALC_UPROBES, &mm->flags))
		mmf_recalc_uprobes(mm);
1704 1705
	up_read(&mm->mmap_sem);

1706 1707 1708
	return uprobe;
}

1709 1710 1711 1712
static void handler_chain(struct uprobe *uprobe, struct pt_regs *regs)
{
	struct uprobe_consumer *uc;
	int remove = UPROBE_HANDLER_REMOVE;
1713
	bool need_prep = false; /* prepare return uprobe, when needed */
1714 1715 1716

	down_read(&uprobe->register_rwsem);
	for (uc = uprobe->consumers; uc; uc = uc->next) {
1717
		int rc = 0;
1718

1719 1720 1721 1722 1723
		if (uc->handler) {
			rc = uc->handler(uc, regs);
			WARN(rc & ~UPROBE_HANDLER_MASK,
				"bad rc=0x%x from %pf()\n", rc, uc->handler);
		}
1724 1725 1726 1727

		if (uc->ret_handler)
			need_prep = true;

1728 1729 1730
		remove &= rc;
	}

1731 1732 1733
	if (need_prep && !remove)
		prepare_uretprobe(uprobe, regs); /* put bp at return */

1734 1735 1736 1737 1738 1739 1740
	if (remove && uprobe->consumers) {
		WARN_ON(!uprobe_is_active(uprobe));
		unapply_uprobe(uprobe, current->mm);
	}
	up_read(&uprobe->register_rwsem);
}

1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784
static void
handle_uretprobe_chain(struct return_instance *ri, struct pt_regs *regs)
{
	struct uprobe *uprobe = ri->uprobe;
	struct uprobe_consumer *uc;

	down_read(&uprobe->register_rwsem);
	for (uc = uprobe->consumers; uc; uc = uc->next) {
		if (uc->ret_handler)
			uc->ret_handler(uc, ri->func, regs);
	}
	up_read(&uprobe->register_rwsem);
}

static bool handle_trampoline(struct pt_regs *regs)
{
	struct uprobe_task *utask;
	struct return_instance *ri, *tmp;
	bool chained;

	utask = current->utask;
	if (!utask)
		return false;

	ri = utask->return_instances;
	if (!ri)
		return false;

	/*
	 * TODO: we should throw out return_instance's invalidated by
	 * longjmp(), currently we assume that the probed function always
	 * returns.
	 */
	instruction_pointer_set(regs, ri->orig_ret_vaddr);

	for (;;) {
		handle_uretprobe_chain(ri, regs);

		chained = ri->chained;
		put_uprobe(ri->uprobe);

		tmp = ri;
		ri = ri->next;
		kfree(tmp);
1785
		utask->depth--;
1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796

		if (!chained)
			break;
		BUG_ON(!ri);
	}

	utask->return_instances = ri;

	return true;
}

1797 1798 1799 1800 1801
bool __weak arch_uprobe_ignore(struct arch_uprobe *aup, struct pt_regs *regs)
{
	return false;
}

1802 1803 1804 1805 1806 1807 1808 1809
/*
 * Run handler and ask thread to singlestep.
 * Ensure all non-fatal signals cannot interrupt thread while it singlesteps.
 */
static void handle_swbp(struct pt_regs *regs)
{
	struct uprobe *uprobe;
	unsigned long bp_vaddr;
1810
	int uninitialized_var(is_swbp);
1811 1812

	bp_vaddr = uprobe_get_swbp_addr(regs);
1813 1814 1815
	if (bp_vaddr == get_trampoline_vaddr()) {
		if (handle_trampoline(regs))
			return;
1816

1817 1818 1819 1820 1821
		pr_warn("uprobe: unable to handle uretprobe pid/tgid=%d/%d\n",
						current->pid, current->tgid);
	}

	uprobe = find_active_uprobe(bp_vaddr, &is_swbp);
1822
	if (!uprobe) {
1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836
		if (is_swbp > 0) {
			/* No matching uprobe; signal SIGTRAP. */
			send_sig(SIGTRAP, current, 0);
		} else {
			/*
			 * Either we raced with uprobe_unregister() or we can't
			 * access this memory. The latter is only possible if
			 * another thread plays with our ->mm. In both cases
			 * we can simply restart. If this vma was unmapped we
			 * can pretend this insn was not executed yet and get
			 * the (correct) SIGSEGV after restart.
			 */
			instruction_pointer_set(regs, bp_vaddr);
		}
1837 1838
		return;
	}
1839 1840 1841 1842

	/* change it in advance for ->handler() and restart */
	instruction_pointer_set(regs, bp_vaddr);

1843 1844 1845 1846 1847 1848
	/*
	 * TODO: move copy_insn/etc into _register and remove this hack.
	 * After we hit the bp, _unregister + _register can install the
	 * new and not-yet-analyzed uprobe at the same address, restart.
	 */
	smp_rmb(); /* pairs with wmb() in install_breakpoint() */
1849
	if (unlikely(!test_bit(UPROBE_COPY_INSN, &uprobe->flags)))
1850
		goto out;
1851

1852 1853 1854 1855
	/* Tracing handlers use ->utask to communicate with fetch methods */
	if (!get_utask())
		goto out;

1856 1857 1858
	if (arch_uprobe_ignore(&uprobe->arch, regs))
		goto out;

1859
	handler_chain(uprobe, regs);
1860

1861
	if (arch_uprobe_skip_sstep(&uprobe->arch, regs))
1862
		goto out;
1863

1864
	if (!pre_ssout(uprobe, regs, bp_vaddr))
1865 1866
		return;

1867
	/* arch_uprobe_skip_sstep() succeeded, or restart if can't singlestep */
1868
out:
1869
	put_uprobe(uprobe);
1870 1871 1872 1873 1874 1875 1876 1877 1878
}

/*
 * Perform required fix-ups and disable singlestep.
 * Allow pending signals to take effect.
 */
static void handle_singlestep(struct uprobe_task *utask, struct pt_regs *regs)
{
	struct uprobe *uprobe;
1879
	int err = 0;
1880 1881 1882

	uprobe = utask->active_uprobe;
	if (utask->state == UTASK_SSTEP_ACK)
1883
		err = arch_uprobe_post_xol(&uprobe->arch, regs);
1884 1885 1886 1887 1888 1889 1890 1891
	else if (utask->state == UTASK_SSTEP_TRAPPED)
		arch_uprobe_abort_xol(&uprobe->arch, regs);
	else
		WARN_ON_ONCE(1);

	put_uprobe(uprobe);
	utask->active_uprobe = NULL;
	utask->state = UTASK_RUNNING;
1892
	xol_free_insn_slot(current);
1893 1894 1895 1896

	spin_lock_irq(&current->sighand->siglock);
	recalc_sigpending(); /* see uprobe_deny_signal() */
	spin_unlock_irq(&current->sighand->siglock);
1897 1898 1899 1900 1901

	if (unlikely(err)) {
		uprobe_warn(current, "execute the probed insn, sending SIGILL.");
		force_sig_info(SIGILL, SEND_SIG_FORCED, current);
	}
1902 1903 1904
}

/*
O
Oleg Nesterov 已提交
1905 1906 1907
 * On breakpoint hit, breakpoint notifier sets the TIF_UPROBE flag and
 * allows the thread to return from interrupt. After that handle_swbp()
 * sets utask->active_uprobe.
1908
 *
O
Oleg Nesterov 已提交
1909 1910
 * On singlestep exception, singlestep notifier sets the TIF_UPROBE flag
 * and allows the thread to return from interrupt.
1911 1912 1913 1914 1915 1916 1917 1918
 *
 * While returning to userspace, thread notices the TIF_UPROBE flag and calls
 * uprobe_notify_resume().
 */
void uprobe_notify_resume(struct pt_regs *regs)
{
	struct uprobe_task *utask;

1919 1920
	clear_thread_flag(TIF_UPROBE);

1921
	utask = current->utask;
O
Oleg Nesterov 已提交
1922
	if (utask && utask->active_uprobe)
1923
		handle_singlestep(utask, regs);
O
Oleg Nesterov 已提交
1924 1925
	else
		handle_swbp(regs);
1926 1927 1928 1929 1930 1931 1932 1933
}

/*
 * uprobe_pre_sstep_notifier gets called from interrupt context as part of
 * notifier mechanism. Set TIF_UPROBE flag and indicate breakpoint hit.
 */
int uprobe_pre_sstep_notifier(struct pt_regs *regs)
{
1934 1935 1936 1937 1938
	if (!current->mm)
		return 0;

	if (!test_bit(MMF_HAS_UPROBES, &current->mm->flags) &&
	    (!current->utask || !current->utask->return_instances))
1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966
		return 0;

	set_thread_flag(TIF_UPROBE);
	return 1;
}

/*
 * uprobe_post_sstep_notifier gets called in interrupt context as part of notifier
 * mechanism. Set TIF_UPROBE flag and indicate completion of singlestep.
 */
int uprobe_post_sstep_notifier(struct pt_regs *regs)
{
	struct uprobe_task *utask = current->utask;

	if (!current->mm || !utask || !utask->active_uprobe)
		/* task is currently not uprobed */
		return 0;

	utask->state = UTASK_SSTEP_ACK;
	set_thread_flag(TIF_UPROBE);
	return 1;
}

static struct notifier_block uprobe_exception_nb = {
	.notifier_call		= arch_uprobe_exception_notify,
	.priority		= INT_MAX-1,	/* notified after kprobes, kgdb */
};

1967 1968 1969 1970
static int __init init_uprobes(void)
{
	int i;

1971
	for (i = 0; i < UPROBES_HASH_SZ; i++)
1972
		mutex_init(&uprobes_mmap_mutex[i]);
1973

1974 1975 1976
	if (percpu_init_rwsem(&dup_mmap_sem))
		return -ENOMEM;

1977
	return register_die_notifier(&uprobe_exception_nb);
1978
}
1979
__initcall(init_uprobes);