sc-rm7k.c 4.3 KB
Newer Older
L
Linus Torvalds 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193
/*
 * sc-rm7k.c: RM7000 cache management functions.
 *
 * Copyright (C) 1997, 2001, 2003, 2004 Ralf Baechle (ralf@linux-mips.org)
 */

#undef DEBUG

#include <linux/init.h>
#include <linux/kernel.h>
#include <linux/mm.h>

#include <asm/addrspace.h>
#include <asm/bcache.h>
#include <asm/cacheops.h>
#include <asm/mipsregs.h>
#include <asm/processor.h>

/* Primary cache parameters. */
#define sc_lsize	32
#define tc_pagesize	(32*128)

/* Secondary cache parameters. */
#define scache_size	(256*1024)	/* Fixed to 256KiB on RM7000 */

extern unsigned long icache_way_size, dcache_way_size;

#include <asm/r4kcache.h>

int rm7k_tcache_enabled;

/*
 * Writeback and invalidate the primary cache dcache before DMA.
 * (XXX These need to be fixed ...)
 */
static void rm7k_sc_wback_inv(unsigned long addr, unsigned long size)
{
	unsigned long end, a;

	pr_debug("rm7k_sc_wback_inv[%08lx,%08lx]", addr, size);

	/* Catch bad driver code */
	BUG_ON(size == 0);

	a = addr & ~(sc_lsize - 1);
	end = (addr + size - 1) & ~(sc_lsize - 1);
	while (1) {
		flush_scache_line(a);	/* Hit_Writeback_Inv_SD */
		if (a == end)
			break;
		a += sc_lsize;
	}

	if (!rm7k_tcache_enabled)
		return;

	a = addr & ~(tc_pagesize - 1);
	end = (addr + size - 1) & ~(tc_pagesize - 1);
	while(1) {
		invalidate_tcache_page(a);	/* Page_Invalidate_T */
		if (a == end)
			break;
		a += tc_pagesize;
	}
}

static void rm7k_sc_inv(unsigned long addr, unsigned long size)
{
	unsigned long end, a;

	pr_debug("rm7k_sc_inv[%08lx,%08lx]", addr, size);

	/* Catch bad driver code */
	BUG_ON(size == 0);

	a = addr & ~(sc_lsize - 1);
	end = (addr + size - 1) & ~(sc_lsize - 1);
	while (1) {
		invalidate_scache_line(a);	/* Hit_Invalidate_SD */
		if (a == end)
			break;
		a += sc_lsize;
	}

	if (!rm7k_tcache_enabled)
		return;

	a = addr & ~(tc_pagesize - 1);
	end = (addr + size - 1) & ~(tc_pagesize - 1);
	while(1) {
		invalidate_tcache_page(a);	/* Page_Invalidate_T */
		if (a == end)
			break;
		a += tc_pagesize;
	}
}

/*
 * This function is executed in the uncached segment CKSEG1.
 * It must not touch the stack, because the stack pointer still points
 * into CKSEG0.
 *
 * Three options:
 *	- Write it in assembly and guarantee that we don't use the stack.
 *	- Disable caching for CKSEG0 before calling it.
 *	- Pray that GCC doesn't randomly start using the stack.
 *
 * This being Linux, we obviously take the least sane of those options -
 * following DaveM's lead in c-r4k.c
 *
 * It seems we get our kicks from relying on unguaranteed behaviour in GCC
 */
static __init void __rm7k_sc_enable(void)
{
	int i;

	set_c0_config(1 << 3);				/* CONF_SE */

	write_c0_taglo(0);
	write_c0_taghi(0);

	for (i = 0; i < scache_size; i += sc_lsize) {
		__asm__ __volatile__ (
		      ".set noreorder\n\t"
		      ".set mips3\n\t"
		      "cache %1, (%0)\n\t"
		      ".set mips0\n\t"
		      ".set reorder"
		      :
		      : "r" (KSEG0ADDR(i)), "i" (Index_Store_Tag_SD));
	}
}

static __init void rm7k_sc_enable(void)
{
	void (*func)(void) = (void *) KSEG1ADDR(&__rm7k_sc_enable);

	if (read_c0_config() & 0x08)			/* CONF_SE */
		return;

	printk(KERN_INFO "Enabling secondary cache...");
	func();
}

static void rm7k_sc_disable(void)
{
	clear_c0_config(1<<3);				/* CONF_SE */
}

struct bcache_ops rm7k_sc_ops = {
	.bc_enable = rm7k_sc_enable,
	.bc_disable = rm7k_sc_disable,
	.bc_wback_inv = rm7k_sc_wback_inv,
	.bc_inv = rm7k_sc_inv
};

void __init rm7k_sc_init(void)
{
	unsigned int config = read_c0_config();

	if ((config >> 31) & 1)		/* Bit 31 set -> no S-Cache */
		return;

	printk(KERN_INFO "Secondary cache size %dK, linesize %d bytes.\n",
	       (scache_size >> 10), sc_lsize);

	if (!((config >> 3) & 1))	/* CONF_SE */
		rm7k_sc_enable();

	/*
	 * While we're at it let's deal with the tertiary cache.
	 */
	if (!((config >> 17) & 1)) {

		/*
		 * We can't enable the L3 cache yet. There may be board-specific
		 * magic necessary to turn it on, and blindly asking the CPU to
		 * start using it would may give cache errors.
		 *
		 * Also, board-specific knowledge may allow us to use the
		 * CACHE Flash_Invalidate_T instruction if the tag RAM supports
		 * it, and may specify the size of the L3 cache so we don't have
		 * to probe it.
		 */
		printk(KERN_INFO "Tertiary cache present, %s enabled\n",
		       config&(1<<12) ? "already" : "not (yet)");

		if ((config >> 12) & 1)
			rm7k_tcache_enabled = 1;
	}

	bcops = &rm7k_sc_ops;
}