intc-5272.c 5.9 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
/*
 * intc.c  --  interrupt controller or ColdFire 5272 SoC
 *
 * (C) Copyright 2009, Greg Ungerer <gerg@snapgear.com>
 *
 * This file is subject to the terms and conditions of the GNU General Public
 * License.  See the file COPYING in the main directory of this archive
 * for more details.
 */

#include <linux/types.h>
#include <linux/init.h>
#include <linux/kernel.h>
#include <linux/interrupt.h>
15
#include <linux/kernel_stat.h>
16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32
#include <linux/irq.h>
#include <linux/io.h>
#include <asm/coldfire.h>
#include <asm/mcfsim.h>
#include <asm/traps.h>

/*
 * The 5272 ColdFire interrupt controller is nothing like any other
 * ColdFire interrupt controller - it truly is completely different.
 * Given its age it is unlikely to be used on any other ColdFire CPU.
 */

/*
 * The masking and priproty setting of interrupts on the 5272 is done
 * via a set of 4 "Interrupt Controller Registers" (ICR). There is a
 * loose mapping of vector number to register and internal bits, but
 * a table is the easiest and quickest way to map them.
33 34 35
 *
 * Note that the external interrupts are edge triggered (unlike the
 * internal interrupt sources which are level triggered). Which means
L
Lucas De Marchi 已提交
36
 * they also need acknowledging via acknowledge bits.
37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75
 */
struct irqmap {
	unsigned char	icr;
	unsigned char	index;
	unsigned char	ack;
};

static struct irqmap intc_irqmap[MCFINT_VECMAX - MCFINT_VECBASE] = {
	/*MCF_IRQ_SPURIOUS*/	{ .icr = 0,           .index = 0,  .ack = 0, },
	/*MCF_IRQ_EINT1*/	{ .icr = MCFSIM_ICR1, .index = 28, .ack = 1, },
	/*MCF_IRQ_EINT2*/	{ .icr = MCFSIM_ICR1, .index = 24, .ack = 1, },
	/*MCF_IRQ_EINT3*/	{ .icr = MCFSIM_ICR1, .index = 20, .ack = 1, },
	/*MCF_IRQ_EINT4*/	{ .icr = MCFSIM_ICR1, .index = 16, .ack = 1, },
	/*MCF_IRQ_TIMER1*/	{ .icr = MCFSIM_ICR1, .index = 12, .ack = 0, },
	/*MCF_IRQ_TIMER2*/	{ .icr = MCFSIM_ICR1, .index = 8,  .ack = 0, },
	/*MCF_IRQ_TIMER3*/	{ .icr = MCFSIM_ICR1, .index = 4,  .ack = 0, },
	/*MCF_IRQ_TIMER4*/	{ .icr = MCFSIM_ICR1, .index = 0,  .ack = 0, },
	/*MCF_IRQ_UART1*/	{ .icr = MCFSIM_ICR2, .index = 28, .ack = 0, },
	/*MCF_IRQ_UART2*/	{ .icr = MCFSIM_ICR2, .index = 24, .ack = 0, },
	/*MCF_IRQ_PLIP*/	{ .icr = MCFSIM_ICR2, .index = 20, .ack = 0, },
	/*MCF_IRQ_PLIA*/	{ .icr = MCFSIM_ICR2, .index = 16, .ack = 0, },
	/*MCF_IRQ_USB0*/	{ .icr = MCFSIM_ICR2, .index = 12, .ack = 0, },
	/*MCF_IRQ_USB1*/	{ .icr = MCFSIM_ICR2, .index = 8,  .ack = 0, },
	/*MCF_IRQ_USB2*/	{ .icr = MCFSIM_ICR2, .index = 4,  .ack = 0, },
	/*MCF_IRQ_USB3*/	{ .icr = MCFSIM_ICR2, .index = 0,  .ack = 0, },
	/*MCF_IRQ_USB4*/	{ .icr = MCFSIM_ICR3, .index = 28, .ack = 0, },
	/*MCF_IRQ_USB5*/	{ .icr = MCFSIM_ICR3, .index = 24, .ack = 0, },
	/*MCF_IRQ_USB6*/	{ .icr = MCFSIM_ICR3, .index = 20, .ack = 0, },
	/*MCF_IRQ_USB7*/	{ .icr = MCFSIM_ICR3, .index = 16, .ack = 0, },
	/*MCF_IRQ_DMA*/		{ .icr = MCFSIM_ICR3, .index = 12, .ack = 0, },
	/*MCF_IRQ_ERX*/		{ .icr = MCFSIM_ICR3, .index = 8,  .ack = 0, },
	/*MCF_IRQ_ETX*/		{ .icr = MCFSIM_ICR3, .index = 4,  .ack = 0, },
	/*MCF_IRQ_ENTC*/	{ .icr = MCFSIM_ICR3, .index = 0,  .ack = 0, },
	/*MCF_IRQ_QSPI*/	{ .icr = MCFSIM_ICR4, .index = 28, .ack = 0, },
	/*MCF_IRQ_EINT5*/	{ .icr = MCFSIM_ICR4, .index = 24, .ack = 1, },
	/*MCF_IRQ_EINT6*/	{ .icr = MCFSIM_ICR4, .index = 20, .ack = 1, },
	/*MCF_IRQ_SWTO*/	{ .icr = MCFSIM_ICR4, .index = 16, .ack = 0, },
};

76 77 78 79 80
/*
 * The act of masking the interrupt also has a side effect of 'ack'ing
 * an interrupt on this irq (for the external irqs). So this mask function
 * is also an ack_mask function.
 */
81
static void intc_irq_mask(struct irq_data *d)
82
{
83 84
	unsigned int irq = d->irq;

85 86 87 88
	if ((irq >= MCFINT_VECBASE) && (irq <= MCFINT_VECMAX)) {
		u32 v;
		irq -= MCFINT_VECBASE;
		v = 0x8 << intc_irqmap[irq].index;
89
		writel(v, intc_irqmap[irq].icr);
90 91 92
	}
}

93
static void intc_irq_unmask(struct irq_data *d)
94
{
95 96
	unsigned int irq = d->irq;

97 98 99 100
	if ((irq >= MCFINT_VECBASE) && (irq <= MCFINT_VECMAX)) {
		u32 v;
		irq -= MCFINT_VECBASE;
		v = 0xd << intc_irqmap[irq].index;
101
		writel(v, intc_irqmap[irq].icr);
102 103 104
	}
}

105
static void intc_irq_ack(struct irq_data *d)
106
{
107 108
	unsigned int irq = d->irq;

109 110 111 112 113
	/* Only external interrupts are acked */
	if ((irq >= MCFINT_VECBASE) && (irq <= MCFINT_VECMAX)) {
		irq -= MCFINT_VECBASE;
		if (intc_irqmap[irq].ack) {
			u32 v;
114
			v = readl(intc_irqmap[irq].icr);
115 116
			v &= (0x7 << intc_irqmap[irq].index);
			v |= (0x8 << intc_irqmap[irq].index);
117
			writel(v, intc_irqmap[irq].icr);
118 119 120 121
		}
	}
}

122
static int intc_irq_set_type(struct irq_data *d, unsigned int type)
123
{
124 125
	unsigned int irq = d->irq;

126 127 128 129
	if ((irq >= MCFINT_VECBASE) && (irq <= MCFINT_VECMAX)) {
		irq -= MCFINT_VECBASE;
		if (intc_irqmap[irq].ack) {
			u32 v;
130
			v = readl(MCFSIM_PITR);
131 132 133 134
			if (type == IRQ_TYPE_EDGE_FALLING)
				v &= ~(0x1 << (32 - irq));
			else
				v |= (0x1 << (32 - irq));
135
			writel(v, MCFSIM_PITR);
136 137
		}
	}
138 139 140
	return 0;
}

141 142 143 144 145 146 147
/*
 * Simple flow handler to deal with the external edge triggered interrupts.
 * We need to be careful with the masking/acking due to the side effects
 * of masking an interrupt.
 */
static void intc_external_irq(unsigned int irq, struct irq_desc *desc)
{
148
	irq_desc_get_chip(desc)->irq_ack(&desc->irq_data);
149
	handle_simple_irq(irq, desc);
150 151
}

152 153
static struct irq_chip intc_irq_chip = {
	.name		= "CF-INTC",
154 155 156 157 158
	.irq_mask	= intc_irq_mask,
	.irq_unmask	= intc_irq_unmask,
	.irq_mask_ack	= intc_irq_mask,
	.irq_ack	= intc_irq_ack,
	.irq_set_type	= intc_irq_set_type,
159 160 161 162
};

void __init init_IRQ(void)
{
163
	int irq, edge;
164 165

	/* Mask all interrupt sources */
166 167 168 169
	writel(0x88888888, MCFSIM_ICR1);
	writel(0x88888888, MCFSIM_ICR2);
	writel(0x88888888, MCFSIM_ICR3);
	writel(0x88888888, MCFSIM_ICR4);
170 171

	for (irq = 0; (irq < NR_IRQS); irq++) {
172
		irq_set_chip(irq, &intc_irq_chip);
173 174 175 176
		edge = 0;
		if ((irq >= MCFINT_VECBASE) && (irq <= MCFINT_VECMAX))
			edge = intc_irqmap[irq - MCFINT_VECBASE].ack;
		if (edge) {
177 178
			irq_set_irq_type(irq, IRQ_TYPE_EDGE_RISING);
			irq_set_handler(irq, intc_external_irq);
179
		} else {
180 181
			irq_set_irq_type(irq, IRQ_TYPE_LEVEL_HIGH);
			irq_set_handler(irq, handle_level_irq);
182
		}
183 184 185
	}
}