mvneta.c 114.3 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13
/*
 * Driver for Marvell NETA network card for Armada XP and Armada 370 SoCs.
 *
 * Copyright (C) 2012 Marvell
 *
 * Rami Rosen <rosenr@marvell.com>
 * Thomas Petazzoni <thomas.petazzoni@free-electrons.com>
 *
 * This file is licensed under the terms of the GNU General Public
 * License version 2. This program is licensed "as is" without any
 * warranty of any kind, whether express or implied.
 */

14 15
#include <linux/clk.h>
#include <linux/cpu.h>
16
#include <linux/etherdevice.h>
17
#include <linux/if_vlan.h>
18 19
#include <linux/inetdevice.h>
#include <linux/interrupt.h>
20
#include <linux/io.h>
21 22 23 24
#include <linux/kernel.h>
#include <linux/mbus.h>
#include <linux/module.h>
#include <linux/netdevice.h>
25
#include <linux/of.h>
26
#include <linux/of_address.h>
27 28 29 30
#include <linux/of_irq.h>
#include <linux/of_mdio.h>
#include <linux/of_net.h>
#include <linux/phy.h>
31 32
#include <linux/platform_device.h>
#include <linux/skbuff.h>
33
#include <net/hwbm.h>
34
#include "mvneta_bm.h"
35 36 37
#include <net/ip.h>
#include <net/ipv6.h>
#include <net/tso.h>
38 39 40

/* Registers */
#define MVNETA_RXQ_CONFIG_REG(q)                (0x1400 + ((q) << 2))
41
#define      MVNETA_RXQ_HW_BUF_ALLOC            BIT(0)
42 43 44 45
#define      MVNETA_RXQ_SHORT_POOL_ID_SHIFT	4
#define      MVNETA_RXQ_SHORT_POOL_ID_MASK	0x30
#define      MVNETA_RXQ_LONG_POOL_ID_SHIFT	6
#define      MVNETA_RXQ_LONG_POOL_ID_MASK	0xc0
46 47 48 49 50 51 52 53 54 55 56 57 58
#define      MVNETA_RXQ_PKT_OFFSET_ALL_MASK     (0xf    << 8)
#define      MVNETA_RXQ_PKT_OFFSET_MASK(offs)   ((offs) << 8)
#define MVNETA_RXQ_THRESHOLD_REG(q)             (0x14c0 + ((q) << 2))
#define      MVNETA_RXQ_NON_OCCUPIED(v)         ((v) << 16)
#define MVNETA_RXQ_BASE_ADDR_REG(q)             (0x1480 + ((q) << 2))
#define MVNETA_RXQ_SIZE_REG(q)                  (0x14a0 + ((q) << 2))
#define      MVNETA_RXQ_BUF_SIZE_SHIFT          19
#define      MVNETA_RXQ_BUF_SIZE_MASK           (0x1fff << 19)
#define MVNETA_RXQ_STATUS_REG(q)                (0x14e0 + ((q) << 2))
#define      MVNETA_RXQ_OCCUPIED_ALL_MASK       0x3fff
#define MVNETA_RXQ_STATUS_UPDATE_REG(q)         (0x1500 + ((q) << 2))
#define      MVNETA_RXQ_ADD_NON_OCCUPIED_SHIFT  16
#define      MVNETA_RXQ_ADD_NON_OCCUPIED_MAX    255
59 60 61
#define MVNETA_PORT_POOL_BUFFER_SZ_REG(pool)	(0x1700 + ((pool) << 2))
#define      MVNETA_PORT_POOL_BUFFER_SZ_SHIFT	3
#define      MVNETA_PORT_POOL_BUFFER_SZ_MASK	0xfff8
62 63 64 65 66 67 68 69 70 71 72 73
#define MVNETA_PORT_RX_RESET                    0x1cc0
#define      MVNETA_PORT_RX_DMA_RESET           BIT(0)
#define MVNETA_PHY_ADDR                         0x2000
#define      MVNETA_PHY_ADDR_MASK               0x1f
#define MVNETA_MBUS_RETRY                       0x2010
#define MVNETA_UNIT_INTR_CAUSE                  0x2080
#define MVNETA_UNIT_CONTROL                     0x20B0
#define      MVNETA_PHY_POLLING_ENABLE          BIT(1)
#define MVNETA_WIN_BASE(w)                      (0x2200 + ((w) << 3))
#define MVNETA_WIN_SIZE(w)                      (0x2204 + ((w) << 3))
#define MVNETA_WIN_REMAP(w)                     (0x2280 + ((w) << 2))
#define MVNETA_BASE_ADDR_ENABLE                 0x2290
74
#define MVNETA_ACCESS_PROTECT_ENABLE            0x2294
75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98
#define MVNETA_PORT_CONFIG                      0x2400
#define      MVNETA_UNI_PROMISC_MODE            BIT(0)
#define      MVNETA_DEF_RXQ(q)                  ((q) << 1)
#define      MVNETA_DEF_RXQ_ARP(q)              ((q) << 4)
#define      MVNETA_TX_UNSET_ERR_SUM            BIT(12)
#define      MVNETA_DEF_RXQ_TCP(q)              ((q) << 16)
#define      MVNETA_DEF_RXQ_UDP(q)              ((q) << 19)
#define      MVNETA_DEF_RXQ_BPDU(q)             ((q) << 22)
#define      MVNETA_RX_CSUM_WITH_PSEUDO_HDR     BIT(25)
#define      MVNETA_PORT_CONFIG_DEFL_VALUE(q)   (MVNETA_DEF_RXQ(q)       | \
						 MVNETA_DEF_RXQ_ARP(q)	 | \
						 MVNETA_DEF_RXQ_TCP(q)	 | \
						 MVNETA_DEF_RXQ_UDP(q)	 | \
						 MVNETA_DEF_RXQ_BPDU(q)	 | \
						 MVNETA_TX_UNSET_ERR_SUM | \
						 MVNETA_RX_CSUM_WITH_PSEUDO_HDR)
#define MVNETA_PORT_CONFIG_EXTEND                0x2404
#define MVNETA_MAC_ADDR_LOW                      0x2414
#define MVNETA_MAC_ADDR_HIGH                     0x2418
#define MVNETA_SDMA_CONFIG                       0x241c
#define      MVNETA_SDMA_BRST_SIZE_16            4
#define      MVNETA_RX_BRST_SZ_MASK(burst)       ((burst) << 1)
#define      MVNETA_RX_NO_DATA_SWAP              BIT(4)
#define      MVNETA_TX_NO_DATA_SWAP              BIT(5)
99
#define      MVNETA_DESC_SWAP                    BIT(6)
100 101 102 103 104
#define      MVNETA_TX_BRST_SZ_MASK(burst)       ((burst) << 22)
#define MVNETA_PORT_STATUS                       0x2444
#define      MVNETA_TX_IN_PRGRS                  BIT(1)
#define      MVNETA_TX_FIFO_EMPTY                BIT(8)
#define MVNETA_RX_MIN_FRAME_SIZE                 0x247c
105
#define MVNETA_SERDES_CFG			 0x24A0
106
#define      MVNETA_SGMII_SERDES_PROTO		 0x0cc7
107
#define      MVNETA_QSGMII_SERDES_PROTO		 0x0667
108 109 110 111 112 113
#define MVNETA_TYPE_PRIO                         0x24bc
#define      MVNETA_FORCE_UNI                    BIT(21)
#define MVNETA_TXQ_CMD_1                         0x24e4
#define MVNETA_TXQ_CMD                           0x2448
#define      MVNETA_TXQ_DISABLE_SHIFT            8
#define      MVNETA_TXQ_ENABLE_MASK              0x000000ff
114 115
#define MVNETA_RX_DISCARD_FRAME_COUNT		 0x2484
#define MVNETA_OVERRUN_FRAME_COUNT		 0x2488
116 117
#define MVNETA_GMAC_CLOCK_DIVIDER                0x24f4
#define      MVNETA_GMAC_1MS_CLOCK_ENABLE        BIT(31)
118
#define MVNETA_ACC_MODE                          0x2500
119
#define MVNETA_BM_ADDRESS                        0x2504
120 121 122
#define MVNETA_CPU_MAP(cpu)                      (0x2540 + ((cpu) << 2))
#define      MVNETA_CPU_RXQ_ACCESS_ALL_MASK      0x000000ff
#define      MVNETA_CPU_TXQ_ACCESS_ALL_MASK      0x0000ff00
123
#define      MVNETA_CPU_RXQ_ACCESS(rxq)		 BIT(rxq)
124
#define      MVNETA_CPU_TXQ_ACCESS(txq)		 BIT(txq + 8)
125
#define MVNETA_RXQ_TIME_COAL_REG(q)              (0x2580 + ((q) << 2))
126

127 128 129 130 131 132 133
/* Exception Interrupt Port/Queue Cause register
 *
 * Their behavior depend of the mapping done using the PCPX2Q
 * registers. For a given CPU if the bit associated to a queue is not
 * set, then for the register a read from this CPU will always return
 * 0 and a write won't do anything
 */
134

135 136
#define MVNETA_INTR_NEW_CAUSE                    0x25a0
#define MVNETA_INTR_NEW_MASK                     0x25a4
137 138 139 140 141 142 143 144 145 146 147 148

/* bits  0..7  = TXQ SENT, one bit per queue.
 * bits  8..15 = RXQ OCCUP, one bit per queue.
 * bits 16..23 = RXQ FREE, one bit per queue.
 * bit  29 = OLD_REG_SUM, see old reg ?
 * bit  30 = TX_ERR_SUM, one bit for 4 ports
 * bit  31 = MISC_SUM,   one bit for 4 ports
 */
#define      MVNETA_TX_INTR_MASK(nr_txqs)        (((1 << nr_txqs) - 1) << 0)
#define      MVNETA_TX_INTR_MASK_ALL             (0xff << 0)
#define      MVNETA_RX_INTR_MASK(nr_rxqs)        (((1 << nr_rxqs) - 1) << 8)
#define      MVNETA_RX_INTR_MASK_ALL             (0xff << 8)
149
#define      MVNETA_MISCINTR_INTR_MASK           BIT(31)
150

151 152
#define MVNETA_INTR_OLD_CAUSE                    0x25a8
#define MVNETA_INTR_OLD_MASK                     0x25ac
153 154

/* Data Path Port/Queue Cause Register */
155 156
#define MVNETA_INTR_MISC_CAUSE                   0x25b0
#define MVNETA_INTR_MISC_MASK                    0x25b4
157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178

#define      MVNETA_CAUSE_PHY_STATUS_CHANGE      BIT(0)
#define      MVNETA_CAUSE_LINK_CHANGE            BIT(1)
#define      MVNETA_CAUSE_PTP                    BIT(4)

#define      MVNETA_CAUSE_INTERNAL_ADDR_ERR      BIT(7)
#define      MVNETA_CAUSE_RX_OVERRUN             BIT(8)
#define      MVNETA_CAUSE_RX_CRC_ERROR           BIT(9)
#define      MVNETA_CAUSE_RX_LARGE_PKT           BIT(10)
#define      MVNETA_CAUSE_TX_UNDERUN             BIT(11)
#define      MVNETA_CAUSE_PRBS_ERR               BIT(12)
#define      MVNETA_CAUSE_PSC_SYNC_CHANGE        BIT(13)
#define      MVNETA_CAUSE_SERDES_SYNC_ERR        BIT(14)

#define      MVNETA_CAUSE_BMU_ALLOC_ERR_SHIFT    16
#define      MVNETA_CAUSE_BMU_ALLOC_ERR_ALL_MASK   (0xF << MVNETA_CAUSE_BMU_ALLOC_ERR_SHIFT)
#define      MVNETA_CAUSE_BMU_ALLOC_ERR_MASK(pool) (1 << (MVNETA_CAUSE_BMU_ALLOC_ERR_SHIFT + (pool)))

#define      MVNETA_CAUSE_TXQ_ERROR_SHIFT        24
#define      MVNETA_CAUSE_TXQ_ERROR_ALL_MASK     (0xFF << MVNETA_CAUSE_TXQ_ERROR_SHIFT)
#define      MVNETA_CAUSE_TXQ_ERROR_MASK(q)      (1 << (MVNETA_CAUSE_TXQ_ERROR_SHIFT + (q)))

179 180
#define MVNETA_INTR_ENABLE                       0x25b8
#define      MVNETA_TXQ_INTR_ENABLE_ALL_MASK     0x0000ff00
181
#define      MVNETA_RXQ_INTR_ENABLE_ALL_MASK     0x000000ff
182

183 184 185 186 187 188 189 190 191 192
#define MVNETA_RXQ_CMD                           0x2680
#define      MVNETA_RXQ_DISABLE_SHIFT            8
#define      MVNETA_RXQ_ENABLE_MASK              0x000000ff
#define MVETH_TXQ_TOKEN_COUNT_REG(q)             (0x2700 + ((q) << 4))
#define MVETH_TXQ_TOKEN_CFG_REG(q)               (0x2704 + ((q) << 4))
#define MVNETA_GMAC_CTRL_0                       0x2c00
#define      MVNETA_GMAC_MAX_RX_SIZE_SHIFT       2
#define      MVNETA_GMAC_MAX_RX_SIZE_MASK        0x7ffc
#define      MVNETA_GMAC0_PORT_ENABLE            BIT(0)
#define MVNETA_GMAC_CTRL_2                       0x2c08
193
#define      MVNETA_GMAC2_INBAND_AN_ENABLE       BIT(0)
194
#define      MVNETA_GMAC2_PCS_ENABLE             BIT(3)
195 196 197 198 199 200 201 202 203 204 205 206 207 208
#define      MVNETA_GMAC2_PORT_RGMII             BIT(4)
#define      MVNETA_GMAC2_PORT_RESET             BIT(6)
#define MVNETA_GMAC_STATUS                       0x2c10
#define      MVNETA_GMAC_LINK_UP                 BIT(0)
#define      MVNETA_GMAC_SPEED_1000              BIT(1)
#define      MVNETA_GMAC_SPEED_100               BIT(2)
#define      MVNETA_GMAC_FULL_DUPLEX             BIT(3)
#define      MVNETA_GMAC_RX_FLOW_CTRL_ENABLE     BIT(4)
#define      MVNETA_GMAC_TX_FLOW_CTRL_ENABLE     BIT(5)
#define      MVNETA_GMAC_RX_FLOW_CTRL_ACTIVE     BIT(6)
#define      MVNETA_GMAC_TX_FLOW_CTRL_ACTIVE     BIT(7)
#define MVNETA_GMAC_AUTONEG_CONFIG               0x2c0c
#define      MVNETA_GMAC_FORCE_LINK_DOWN         BIT(0)
#define      MVNETA_GMAC_FORCE_LINK_PASS         BIT(1)
209
#define      MVNETA_GMAC_INBAND_AN_ENABLE        BIT(2)
210 211
#define      MVNETA_GMAC_CONFIG_MII_SPEED        BIT(5)
#define      MVNETA_GMAC_CONFIG_GMII_SPEED       BIT(6)
212
#define      MVNETA_GMAC_AN_SPEED_EN             BIT(7)
213
#define      MVNETA_GMAC_AN_FLOW_CTRL_EN         BIT(11)
214
#define      MVNETA_GMAC_CONFIG_FULL_DUPLEX      BIT(12)
215
#define      MVNETA_GMAC_AN_DUPLEX_EN            BIT(13)
216
#define MVNETA_MIB_COUNTERS_BASE                 0x3000
217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246
#define      MVNETA_MIB_LATE_COLLISION           0x7c
#define MVNETA_DA_FILT_SPEC_MCAST                0x3400
#define MVNETA_DA_FILT_OTH_MCAST                 0x3500
#define MVNETA_DA_FILT_UCAST_BASE                0x3600
#define MVNETA_TXQ_BASE_ADDR_REG(q)              (0x3c00 + ((q) << 2))
#define MVNETA_TXQ_SIZE_REG(q)                   (0x3c20 + ((q) << 2))
#define      MVNETA_TXQ_SENT_THRESH_ALL_MASK     0x3fff0000
#define      MVNETA_TXQ_SENT_THRESH_MASK(coal)   ((coal) << 16)
#define MVNETA_TXQ_UPDATE_REG(q)                 (0x3c60 + ((q) << 2))
#define      MVNETA_TXQ_DEC_SENT_SHIFT           16
#define MVNETA_TXQ_STATUS_REG(q)                 (0x3c40 + ((q) << 2))
#define      MVNETA_TXQ_SENT_DESC_SHIFT          16
#define      MVNETA_TXQ_SENT_DESC_MASK           0x3fff0000
#define MVNETA_PORT_TX_RESET                     0x3cf0
#define      MVNETA_PORT_TX_DMA_RESET            BIT(0)
#define MVNETA_TX_MTU                            0x3e0c
#define MVNETA_TX_TOKEN_SIZE                     0x3e14
#define      MVNETA_TX_TOKEN_SIZE_MAX            0xffffffff
#define MVNETA_TXQ_TOKEN_SIZE_REG(q)             (0x3e40 + ((q) << 2))
#define      MVNETA_TXQ_TOKEN_SIZE_MAX           0x7fffffff

#define MVNETA_CAUSE_TXQ_SENT_DESC_ALL_MASK	 0xff

/* Descriptor ring Macros */
#define MVNETA_QUEUE_NEXT_DESC(q, index)	\
	(((index) < (q)->last_desc) ? ((index) + 1) : 0)

/* Various constants */

/* Coalescing */
247
#define MVNETA_TXDONE_COAL_PKTS		1
248 249 250
#define MVNETA_RX_COAL_PKTS		32
#define MVNETA_RX_COAL_USEC		100

251
/* The two bytes Marvell header. Either contains a special value used
252 253 254 255 256 257 258 259 260 261 262 263
 * by Marvell switches when a specific hardware mode is enabled (not
 * supported by this driver) or is filled automatically by zeroes on
 * the RX side. Those two bytes being at the front of the Ethernet
 * header, they allow to have the IP header aligned on a 4 bytes
 * boundary automatically: the hardware skips those two bytes on its
 * own.
 */
#define MVNETA_MH_SIZE			2

#define MVNETA_VLAN_TAG_LEN             4

#define MVNETA_CPU_D_CACHE_LINE_SIZE    32
264
#define MVNETA_TX_CSUM_DEF_SIZE		1600
265
#define MVNETA_TX_CSUM_MAX_SIZE		9800
266 267 268 269
#define MVNETA_ACC_MODE_EXT1		1
#define MVNETA_ACC_MODE_EXT2		2

#define MVNETA_MAX_DECODE_WIN		6
270 271 272 273 274 275 276 277

/* Timeout constants */
#define MVNETA_TX_DISABLE_TIMEOUT_MSEC	1000
#define MVNETA_RX_DISABLE_TIMEOUT_MSEC	1000
#define MVNETA_TX_FIFO_EMPTY_TIMEOUT	10000

#define MVNETA_TX_MTU_MAX		0x3ffff

278 279 280 281 282
/* The RSS lookup table actually has 256 entries but we do not use
 * them yet
 */
#define MVNETA_RSS_LU_TABLE_SIZE	1

283 284 285
/* TSO header size */
#define TSO_HEADER_SIZE 128

286 287 288 289 290 291
/* Max number of Rx descriptors */
#define MVNETA_MAX_RXD 128

/* Max number of Tx descriptors */
#define MVNETA_MAX_TXD 532

292 293 294 295 296
/* Max number of allowed TCP segments for software TSO */
#define MVNETA_MAX_TSO_SEGS 100

#define MVNETA_MAX_SKB_DESCS (MVNETA_MAX_TSO_SEGS * 2 + MAX_SKB_FRAGS)

297 298 299 300 301 302 303 304
/* descriptor aligned size */
#define MVNETA_DESC_ALIGNED_SIZE	32

#define MVNETA_RX_PKT_SIZE(mtu) \
	ALIGN((mtu) + MVNETA_MH_SIZE + MVNETA_VLAN_TAG_LEN + \
	      ETH_HLEN + ETH_FCS_LEN,			     \
	      MVNETA_CPU_D_CACHE_LINE_SIZE)

305 306 307 308
#define IS_TSO_HEADER(txq, addr) \
	((addr >= txq->tso_hdrs_phys) && \
	 (addr < txq->tso_hdrs_phys + txq->size * TSO_HEADER_SIZE))

309 310
#define MVNETA_RX_GET_BM_POOL_ID(rxd) \
	(((rxd)->status & MVNETA_RXD_BM_POOL_MASK) >> MVNETA_RXD_BM_POOL_SHIFT)
311

R
Russell King 已提交
312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355
struct mvneta_statistic {
	unsigned short offset;
	unsigned short type;
	const char name[ETH_GSTRING_LEN];
};

#define T_REG_32	32
#define T_REG_64	64

static const struct mvneta_statistic mvneta_statistics[] = {
	{ 0x3000, T_REG_64, "good_octets_received", },
	{ 0x3010, T_REG_32, "good_frames_received", },
	{ 0x3008, T_REG_32, "bad_octets_received", },
	{ 0x3014, T_REG_32, "bad_frames_received", },
	{ 0x3018, T_REG_32, "broadcast_frames_received", },
	{ 0x301c, T_REG_32, "multicast_frames_received", },
	{ 0x3050, T_REG_32, "unrec_mac_control_received", },
	{ 0x3058, T_REG_32, "good_fc_received", },
	{ 0x305c, T_REG_32, "bad_fc_received", },
	{ 0x3060, T_REG_32, "undersize_received", },
	{ 0x3064, T_REG_32, "fragments_received", },
	{ 0x3068, T_REG_32, "oversize_received", },
	{ 0x306c, T_REG_32, "jabber_received", },
	{ 0x3070, T_REG_32, "mac_receive_error", },
	{ 0x3074, T_REG_32, "bad_crc_event", },
	{ 0x3078, T_REG_32, "collision", },
	{ 0x307c, T_REG_32, "late_collision", },
	{ 0x2484, T_REG_32, "rx_discard", },
	{ 0x2488, T_REG_32, "rx_overrun", },
	{ 0x3020, T_REG_32, "frames_64_octets", },
	{ 0x3024, T_REG_32, "frames_65_to_127_octets", },
	{ 0x3028, T_REG_32, "frames_128_to_255_octets", },
	{ 0x302c, T_REG_32, "frames_256_to_511_octets", },
	{ 0x3030, T_REG_32, "frames_512_to_1023_octets", },
	{ 0x3034, T_REG_32, "frames_1024_to_max_octets", },
	{ 0x3038, T_REG_64, "good_octets_sent", },
	{ 0x3040, T_REG_32, "good_frames_sent", },
	{ 0x3044, T_REG_32, "excessive_collision", },
	{ 0x3048, T_REG_32, "multicast_frames_sent", },
	{ 0x304c, T_REG_32, "broadcast_frames_sent", },
	{ 0x3054, T_REG_32, "fc_sent", },
	{ 0x300c, T_REG_32, "internal_mac_transmit_err", },
};

356
struct mvneta_pcpu_stats {
357
	struct	u64_stats_sync syncp;
358 359 360 361
	u64	rx_packets;
	u64	rx_bytes;
	u64	tx_packets;
	u64	tx_bytes;
362 363
};

364 365 366 367 368 369 370 371 372 373 374
struct mvneta_pcpu_port {
	/* Pointer to the shared port */
	struct mvneta_port	*pp;

	/* Pointer to the CPU-local NAPI struct */
	struct napi_struct	napi;

	/* Cause of the previous interrupt */
	u32			cause_rx_tx;
};

375
struct mvneta_port {
376
	u8 id;
377 378 379
	struct mvneta_pcpu_port __percpu	*ports;
	struct mvneta_pcpu_stats __percpu	*stats;

380
	int pkt_size;
381
	unsigned int frag_size;
382 383 384 385
	void __iomem *base;
	struct mvneta_rx_queue *rxqs;
	struct mvneta_tx_queue *txqs;
	struct net_device *dev;
386
	struct notifier_block cpu_notifier;
387
	int rxq_def;
388 389 390 391
	/* Protect the access to the percpu interrupt registers,
	 * ensuring that the configuration remains coherent.
	 */
	spinlock_t lock;
392
	bool is_stopped;
393 394

	/* Core clock */
T
Thomas Petazzoni 已提交
395
	struct clk *clk;
396 397
	/* AXI clock */
	struct clk *clk_bus;
398 399 400 401 402 403 404 405 406 407 408
	u8 mcast_count[256];
	u16 tx_ring_size;
	u16 rx_ring_size;

	struct mii_bus *mii_bus;
	struct phy_device *phy_dev;
	phy_interface_t phy_interface;
	struct device_node *phy_node;
	unsigned int link;
	unsigned int duplex;
	unsigned int speed;
409
	unsigned int tx_csum_limit;
410
	unsigned int use_inband_status:1;
R
Russell King 已提交
411

412 413 414 415 416
	struct mvneta_bm *bm_priv;
	struct mvneta_bm_pool *pool_long;
	struct mvneta_bm_pool *pool_short;
	int bm_win_id;

R
Russell King 已提交
417
	u64 ethtool_stats[ARRAY_SIZE(mvneta_statistics)];
418 419

	u32 indir[MVNETA_RSS_LU_TABLE_SIZE];
420 421
};

422
/* The mvneta_tx_desc and mvneta_rx_desc structures describe the
423 424 425
 * layout of the transmit and reception DMA descriptors, and their
 * layout is therefore defined by the hardware design
 */
426

427 428 429 430 431 432 433 434 435 436 437 438 439 440 441
#define MVNETA_TX_L3_OFF_SHIFT	0
#define MVNETA_TX_IP_HLEN_SHIFT	8
#define MVNETA_TX_L4_UDP	BIT(16)
#define MVNETA_TX_L3_IP6	BIT(17)
#define MVNETA_TXD_IP_CSUM	BIT(18)
#define MVNETA_TXD_Z_PAD	BIT(19)
#define MVNETA_TXD_L_DESC	BIT(20)
#define MVNETA_TXD_F_DESC	BIT(21)
#define MVNETA_TXD_FLZ_DESC	(MVNETA_TXD_Z_PAD  | \
				 MVNETA_TXD_L_DESC | \
				 MVNETA_TXD_F_DESC)
#define MVNETA_TX_L4_CSUM_FULL	BIT(30)
#define MVNETA_TX_L4_CSUM_NOT	BIT(31)

#define MVNETA_RXD_ERR_CRC		0x0
442 443
#define MVNETA_RXD_BM_POOL_SHIFT	13
#define MVNETA_RXD_BM_POOL_MASK		(BIT(13) | BIT(14))
444 445 446 447 448 449 450 451 452
#define MVNETA_RXD_ERR_SUMMARY		BIT(16)
#define MVNETA_RXD_ERR_OVERRUN		BIT(17)
#define MVNETA_RXD_ERR_LEN		BIT(18)
#define MVNETA_RXD_ERR_RESOURCE		(BIT(17) | BIT(18))
#define MVNETA_RXD_ERR_CODE_MASK	(BIT(17) | BIT(18))
#define MVNETA_RXD_L3_IP4		BIT(25)
#define MVNETA_RXD_FIRST_LAST_DESC	(BIT(26) | BIT(27))
#define MVNETA_RXD_L4_CSUM_OK		BIT(30)

453
#if defined(__LITTLE_ENDIAN)
454 455 456 457 458 459 460 461 462 463 464
struct mvneta_tx_desc {
	u32  command;		/* Options used by HW for packet transmitting.*/
	u16  reserverd1;	/* csum_l4 (for future use)		*/
	u16  data_size;		/* Data size of transmitted packet in bytes */
	u32  buf_phys_addr;	/* Physical addr of transmitted buffer	*/
	u32  reserved2;		/* hw_cmd - (for future use, PMT)	*/
	u32  reserved3[4];	/* Reserved - (for future use)		*/
};

struct mvneta_rx_desc {
	u32  status;		/* Info about received packet		*/
465 466
	u16  reserved1;		/* pnc_info - (for future use, PnC)	*/
	u16  data_size;		/* Size of received packet in bytes	*/
467

468 469
	u32  buf_phys_addr;	/* Physical address of the buffer	*/
	u32  reserved2;		/* pnc_flow_id  (for future use, PnC)	*/
470

471 472 473
	u32  buf_cookie;	/* cookie for access to RX buffer in rx path */
	u16  reserved3;		/* prefetch_cmd, for future use		*/
	u16  reserved4;		/* csum_l4 - (for future use, PnC)	*/
474

475 476 477
	u32  reserved5;		/* pnc_extra PnC (for future use, PnC)	*/
	u32  reserved6;		/* hw_cmd (for future use, PnC and HWF)	*/
};
478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503
#else
struct mvneta_tx_desc {
	u16  data_size;		/* Data size of transmitted packet in bytes */
	u16  reserverd1;	/* csum_l4 (for future use)		*/
	u32  command;		/* Options used by HW for packet transmitting.*/
	u32  reserved2;		/* hw_cmd - (for future use, PMT)	*/
	u32  buf_phys_addr;	/* Physical addr of transmitted buffer	*/
	u32  reserved3[4];	/* Reserved - (for future use)		*/
};

struct mvneta_rx_desc {
	u16  data_size;		/* Size of received packet in bytes	*/
	u16  reserved1;		/* pnc_info - (for future use, PnC)	*/
	u32  status;		/* Info about received packet		*/

	u32  reserved2;		/* pnc_flow_id  (for future use, PnC)	*/
	u32  buf_phys_addr;	/* Physical address of the buffer	*/

	u16  reserved4;		/* csum_l4 - (for future use, PnC)	*/
	u16  reserved3;		/* prefetch_cmd, for future use		*/
	u32  buf_cookie;	/* cookie for access to RX buffer in rx path */

	u32  reserved5;		/* pnc_extra PnC (for future use, PnC)	*/
	u32  reserved6;		/* hw_cmd (for future use, PnC and HWF)	*/
};
#endif
504 505 506 507 508 509 510 511 512

struct mvneta_tx_queue {
	/* Number of this TX queue, in the range 0-7 */
	u8 id;

	/* Number of TX DMA descriptors in the descriptor ring */
	int size;

	/* Number of currently used TX DMA descriptor in the
513 514
	 * descriptor ring
	 */
515
	int count;
516 517
	int tx_stop_threshold;
	int tx_wake_threshold;
518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540

	/* Array of transmitted skb */
	struct sk_buff **tx_skb;

	/* Index of last TX DMA descriptor that was inserted */
	int txq_put_index;

	/* Index of the TX DMA descriptor to be cleaned up */
	int txq_get_index;

	u32 done_pkts_coal;

	/* Virtual address of the TX DMA descriptors array */
	struct mvneta_tx_desc *descs;

	/* DMA address of the TX DMA descriptors array */
	dma_addr_t descs_phys;

	/* Index of the last TX DMA descriptor */
	int last_desc;

	/* Index of the next TX DMA descriptor to process */
	int next_desc_to_proc;
541 542 543 544 545 546

	/* DMA buffers for TSO headers */
	char *tso_hdrs;

	/* DMA address of TSO headers */
	dma_addr_t tso_hdrs_phys;
547 548 549

	/* Affinity mask for CPUs*/
	cpumask_t affinity_mask;
550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577
};

struct mvneta_rx_queue {
	/* rx queue number, in the range 0-7 */
	u8 id;

	/* num of rx descriptors in the rx descriptor ring */
	int size;

	/* counter of times when mvneta_refill() failed */
	int missed;

	u32 pkts_coal;
	u32 time_coal;

	/* Virtual address of the RX DMA descriptors array */
	struct mvneta_rx_desc *descs;

	/* DMA address of the RX DMA descriptors array */
	dma_addr_t descs_phys;

	/* Index of the last RX DMA descriptor */
	int last_desc;

	/* Index of the next RX DMA descriptor to process */
	int next_desc_to_proc;
};

578 579 580
/* The hardware supports eight (8) rx queues, but we are only allowing
 * the first one to be used. Therefore, let's just allocate one queue.
 */
581
static int rxq_number = 8;
582 583 584 585
static int txq_number = 8;

static int rxq_def;

586 587
static int rx_copybreak __read_mostly = 256;

588 589 590
/* HW BM need that each port be identify by a unique ID */
static int global_port_id;

591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633
#define MVNETA_DRIVER_NAME "mvneta"
#define MVNETA_DRIVER_VERSION "1.0"

/* Utility/helper methods */

/* Write helper method */
static void mvreg_write(struct mvneta_port *pp, u32 offset, u32 data)
{
	writel(data, pp->base + offset);
}

/* Read helper method */
static u32 mvreg_read(struct mvneta_port *pp, u32 offset)
{
	return readl(pp->base + offset);
}

/* Increment txq get counter */
static void mvneta_txq_inc_get(struct mvneta_tx_queue *txq)
{
	txq->txq_get_index++;
	if (txq->txq_get_index == txq->size)
		txq->txq_get_index = 0;
}

/* Increment txq put counter */
static void mvneta_txq_inc_put(struct mvneta_tx_queue *txq)
{
	txq->txq_put_index++;
	if (txq->txq_put_index == txq->size)
		txq->txq_put_index = 0;
}


/* Clear all MIB counters */
static void mvneta_mib_counters_clear(struct mvneta_port *pp)
{
	int i;
	u32 dummy;

	/* Perform dummy reads from MIB counters */
	for (i = 0; i < MVNETA_MIB_LATE_COLLISION; i += 4)
		dummy = mvreg_read(pp, (MVNETA_MIB_COUNTERS_BASE + i));
634 635
	dummy = mvreg_read(pp, MVNETA_RX_DISCARD_FRAME_COUNT);
	dummy = mvreg_read(pp, MVNETA_OVERRUN_FRAME_COUNT);
636 637 638 639 640 641 642 643
}

/* Get System Network Statistics */
struct rtnl_link_stats64 *mvneta_get_stats64(struct net_device *dev,
					     struct rtnl_link_stats64 *stats)
{
	struct mvneta_port *pp = netdev_priv(dev);
	unsigned int start;
644
	int cpu;
645

646 647 648 649 650 651
	for_each_possible_cpu(cpu) {
		struct mvneta_pcpu_stats *cpu_stats;
		u64 rx_packets;
		u64 rx_bytes;
		u64 tx_packets;
		u64 tx_bytes;
652

653 654
		cpu_stats = per_cpu_ptr(pp->stats, cpu);
		do {
655
			start = u64_stats_fetch_begin_irq(&cpu_stats->syncp);
656 657 658 659
			rx_packets = cpu_stats->rx_packets;
			rx_bytes   = cpu_stats->rx_bytes;
			tx_packets = cpu_stats->tx_packets;
			tx_bytes   = cpu_stats->tx_bytes;
660
		} while (u64_stats_fetch_retry_irq(&cpu_stats->syncp, start));
661

662 663 664 665 666
		stats->rx_packets += rx_packets;
		stats->rx_bytes   += rx_bytes;
		stats->tx_packets += tx_packets;
		stats->tx_bytes   += tx_bytes;
	}
667 668 669 670 671 672 673 674 675 676 677

	stats->rx_errors	= dev->stats.rx_errors;
	stats->rx_dropped	= dev->stats.rx_dropped;

	stats->tx_dropped	= dev->stats.tx_dropped;

	return stats;
}

/* Rx descriptors helper methods */

678 679
/* Checks whether the RX descriptor having this status is both the first
 * and the last descriptor for the RX packet. Each RX packet is currently
680 681 682
 * received through a single RX descriptor, so not having each RX
 * descriptor with its first and last bits set is an error
 */
683
static int mvneta_rxq_desc_is_first_last(u32 status)
684
{
685
	return (status & MVNETA_RXD_FIRST_LAST_DESC) ==
686 687 688 689 690 691 692 693 694
		MVNETA_RXD_FIRST_LAST_DESC;
}

/* Add number of descriptors ready to receive new packets */
static void mvneta_rxq_non_occup_desc_add(struct mvneta_port *pp,
					  struct mvneta_rx_queue *rxq,
					  int ndescs)
{
	/* Only MVNETA_RXQ_ADD_NON_OCCUPIED_MAX (255) descriptors can
695 696
	 * be added at once
	 */
697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717
	while (ndescs > MVNETA_RXQ_ADD_NON_OCCUPIED_MAX) {
		mvreg_write(pp, MVNETA_RXQ_STATUS_UPDATE_REG(rxq->id),
			    (MVNETA_RXQ_ADD_NON_OCCUPIED_MAX <<
			     MVNETA_RXQ_ADD_NON_OCCUPIED_SHIFT));
		ndescs -= MVNETA_RXQ_ADD_NON_OCCUPIED_MAX;
	}

	mvreg_write(pp, MVNETA_RXQ_STATUS_UPDATE_REG(rxq->id),
		    (ndescs << MVNETA_RXQ_ADD_NON_OCCUPIED_SHIFT));
}

/* Get number of RX descriptors occupied by received packets */
static int mvneta_rxq_busy_desc_num_get(struct mvneta_port *pp,
					struct mvneta_rx_queue *rxq)
{
	u32 val;

	val = mvreg_read(pp, MVNETA_RXQ_STATUS_REG(rxq->id));
	return val & MVNETA_RXQ_OCCUPIED_ALL_MASK;
}

718
/* Update num of rx desc called upon return from rx path or
719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760
 * from mvneta_rxq_drop_pkts().
 */
static void mvneta_rxq_desc_num_update(struct mvneta_port *pp,
				       struct mvneta_rx_queue *rxq,
				       int rx_done, int rx_filled)
{
	u32 val;

	if ((rx_done <= 0xff) && (rx_filled <= 0xff)) {
		val = rx_done |
		  (rx_filled << MVNETA_RXQ_ADD_NON_OCCUPIED_SHIFT);
		mvreg_write(pp, MVNETA_RXQ_STATUS_UPDATE_REG(rxq->id), val);
		return;
	}

	/* Only 255 descriptors can be added at once */
	while ((rx_done > 0) || (rx_filled > 0)) {
		if (rx_done <= 0xff) {
			val = rx_done;
			rx_done = 0;
		} else {
			val = 0xff;
			rx_done -= 0xff;
		}
		if (rx_filled <= 0xff) {
			val |= rx_filled << MVNETA_RXQ_ADD_NON_OCCUPIED_SHIFT;
			rx_filled = 0;
		} else {
			val |= 0xff << MVNETA_RXQ_ADD_NON_OCCUPIED_SHIFT;
			rx_filled -= 0xff;
		}
		mvreg_write(pp, MVNETA_RXQ_STATUS_UPDATE_REG(rxq->id), val);
	}
}

/* Get pointer to next RX descriptor to be processed by SW */
static struct mvneta_rx_desc *
mvneta_rxq_next_desc_get(struct mvneta_rx_queue *rxq)
{
	int rx_desc = rxq->next_desc_to_proc;

	rxq->next_desc_to_proc = MVNETA_QUEUE_NEXT_DESC(rxq, rx_desc);
761
	prefetch(rxq->descs + rxq->next_desc_to_proc);
762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803
	return rxq->descs + rx_desc;
}

/* Change maximum receive size of the port. */
static void mvneta_max_rx_size_set(struct mvneta_port *pp, int max_rx_size)
{
	u32 val;

	val =  mvreg_read(pp, MVNETA_GMAC_CTRL_0);
	val &= ~MVNETA_GMAC_MAX_RX_SIZE_MASK;
	val |= ((max_rx_size - MVNETA_MH_SIZE) / 2) <<
		MVNETA_GMAC_MAX_RX_SIZE_SHIFT;
	mvreg_write(pp, MVNETA_GMAC_CTRL_0, val);
}


/* Set rx queue offset */
static void mvneta_rxq_offset_set(struct mvneta_port *pp,
				  struct mvneta_rx_queue *rxq,
				  int offset)
{
	u32 val;

	val = mvreg_read(pp, MVNETA_RXQ_CONFIG_REG(rxq->id));
	val &= ~MVNETA_RXQ_PKT_OFFSET_ALL_MASK;

	/* Offset is in */
	val |= MVNETA_RXQ_PKT_OFFSET_MASK(offset >> 3);
	mvreg_write(pp, MVNETA_RXQ_CONFIG_REG(rxq->id), val);
}


/* Tx descriptors helper methods */

/* Update HW with number of TX descriptors to be sent */
static void mvneta_txq_pend_desc_add(struct mvneta_port *pp,
				     struct mvneta_tx_queue *txq,
				     int pend_desc)
{
	u32 val;

	/* Only 255 descriptors can be added at once ; Assume caller
804 805
	 * process TX desriptors in quanta less than 256
	 */
806 807 808 809 810 811 812 813 814 815 816 817 818 819 820
	val = pend_desc;
	mvreg_write(pp, MVNETA_TXQ_UPDATE_REG(txq->id), val);
}

/* Get pointer to next TX descriptor to be processed (send) by HW */
static struct mvneta_tx_desc *
mvneta_txq_next_desc_get(struct mvneta_tx_queue *txq)
{
	int tx_desc = txq->next_desc_to_proc;

	txq->next_desc_to_proc = MVNETA_QUEUE_NEXT_DESC(txq, tx_desc);
	return txq->descs + tx_desc;
}

/* Release the last allocated TX descriptor. Useful to handle DMA
821 822
 * mapping failures in the TX path.
 */
823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856
static void mvneta_txq_desc_put(struct mvneta_tx_queue *txq)
{
	if (txq->next_desc_to_proc == 0)
		txq->next_desc_to_proc = txq->last_desc - 1;
	else
		txq->next_desc_to_proc--;
}

/* Set rxq buf size */
static void mvneta_rxq_buf_size_set(struct mvneta_port *pp,
				    struct mvneta_rx_queue *rxq,
				    int buf_size)
{
	u32 val;

	val = mvreg_read(pp, MVNETA_RXQ_SIZE_REG(rxq->id));

	val &= ~MVNETA_RXQ_BUF_SIZE_MASK;
	val |= ((buf_size >> 3) << MVNETA_RXQ_BUF_SIZE_SHIFT);

	mvreg_write(pp, MVNETA_RXQ_SIZE_REG(rxq->id), val);
}

/* Disable buffer management (BM) */
static void mvneta_rxq_bm_disable(struct mvneta_port *pp,
				  struct mvneta_rx_queue *rxq)
{
	u32 val;

	val = mvreg_read(pp, MVNETA_RXQ_CONFIG_REG(rxq->id));
	val &= ~MVNETA_RXQ_HW_BUF_ALLOC;
	mvreg_write(pp, MVNETA_RXQ_CONFIG_REG(rxq->id), val);
}

857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029
/* Enable buffer management (BM) */
static void mvneta_rxq_bm_enable(struct mvneta_port *pp,
				 struct mvneta_rx_queue *rxq)
{
	u32 val;

	val = mvreg_read(pp, MVNETA_RXQ_CONFIG_REG(rxq->id));
	val |= MVNETA_RXQ_HW_BUF_ALLOC;
	mvreg_write(pp, MVNETA_RXQ_CONFIG_REG(rxq->id), val);
}

/* Notify HW about port's assignment of pool for bigger packets */
static void mvneta_rxq_long_pool_set(struct mvneta_port *pp,
				     struct mvneta_rx_queue *rxq)
{
	u32 val;

	val = mvreg_read(pp, MVNETA_RXQ_CONFIG_REG(rxq->id));
	val &= ~MVNETA_RXQ_LONG_POOL_ID_MASK;
	val |= (pp->pool_long->id << MVNETA_RXQ_LONG_POOL_ID_SHIFT);

	mvreg_write(pp, MVNETA_RXQ_CONFIG_REG(rxq->id), val);
}

/* Notify HW about port's assignment of pool for smaller packets */
static void mvneta_rxq_short_pool_set(struct mvneta_port *pp,
				      struct mvneta_rx_queue *rxq)
{
	u32 val;

	val = mvreg_read(pp, MVNETA_RXQ_CONFIG_REG(rxq->id));
	val &= ~MVNETA_RXQ_SHORT_POOL_ID_MASK;
	val |= (pp->pool_short->id << MVNETA_RXQ_SHORT_POOL_ID_SHIFT);

	mvreg_write(pp, MVNETA_RXQ_CONFIG_REG(rxq->id), val);
}

/* Set port's receive buffer size for assigned BM pool */
static inline void mvneta_bm_pool_bufsize_set(struct mvneta_port *pp,
					      int buf_size,
					      u8 pool_id)
{
	u32 val;

	if (!IS_ALIGNED(buf_size, 8)) {
		dev_warn(pp->dev->dev.parent,
			 "illegal buf_size value %d, round to %d\n",
			 buf_size, ALIGN(buf_size, 8));
		buf_size = ALIGN(buf_size, 8);
	}

	val = mvreg_read(pp, MVNETA_PORT_POOL_BUFFER_SZ_REG(pool_id));
	val |= buf_size & MVNETA_PORT_POOL_BUFFER_SZ_MASK;
	mvreg_write(pp, MVNETA_PORT_POOL_BUFFER_SZ_REG(pool_id), val);
}

/* Configure MBUS window in order to enable access BM internal SRAM */
static int mvneta_mbus_io_win_set(struct mvneta_port *pp, u32 base, u32 wsize,
				  u8 target, u8 attr)
{
	u32 win_enable, win_protect;
	int i;

	win_enable = mvreg_read(pp, MVNETA_BASE_ADDR_ENABLE);

	if (pp->bm_win_id < 0) {
		/* Find first not occupied window */
		for (i = 0; i < MVNETA_MAX_DECODE_WIN; i++) {
			if (win_enable & (1 << i)) {
				pp->bm_win_id = i;
				break;
			}
		}
		if (i == MVNETA_MAX_DECODE_WIN)
			return -ENOMEM;
	} else {
		i = pp->bm_win_id;
	}

	mvreg_write(pp, MVNETA_WIN_BASE(i), 0);
	mvreg_write(pp, MVNETA_WIN_SIZE(i), 0);

	if (i < 4)
		mvreg_write(pp, MVNETA_WIN_REMAP(i), 0);

	mvreg_write(pp, MVNETA_WIN_BASE(i), (base & 0xffff0000) |
		    (attr << 8) | target);

	mvreg_write(pp, MVNETA_WIN_SIZE(i), (wsize - 1) & 0xffff0000);

	win_protect = mvreg_read(pp, MVNETA_ACCESS_PROTECT_ENABLE);
	win_protect |= 3 << (2 * i);
	mvreg_write(pp, MVNETA_ACCESS_PROTECT_ENABLE, win_protect);

	win_enable &= ~(1 << i);
	mvreg_write(pp, MVNETA_BASE_ADDR_ENABLE, win_enable);

	return 0;
}

/* Assign and initialize pools for port. In case of fail
 * buffer manager will remain disabled for current port.
 */
static int mvneta_bm_port_init(struct platform_device *pdev,
			       struct mvneta_port *pp)
{
	struct device_node *dn = pdev->dev.of_node;
	u32 long_pool_id, short_pool_id, wsize;
	u8 target, attr;
	int err;

	/* Get BM window information */
	err = mvebu_mbus_get_io_win_info(pp->bm_priv->bppi_phys_addr, &wsize,
					 &target, &attr);
	if (err < 0)
		return err;

	pp->bm_win_id = -1;

	/* Open NETA -> BM window */
	err = mvneta_mbus_io_win_set(pp, pp->bm_priv->bppi_phys_addr, wsize,
				     target, attr);
	if (err < 0) {
		netdev_info(pp->dev, "fail to configure mbus window to BM\n");
		return err;
	}

	if (of_property_read_u32(dn, "bm,pool-long", &long_pool_id)) {
		netdev_info(pp->dev, "missing long pool id\n");
		return -EINVAL;
	}

	/* Create port's long pool depending on mtu */
	pp->pool_long = mvneta_bm_pool_use(pp->bm_priv, long_pool_id,
					   MVNETA_BM_LONG, pp->id,
					   MVNETA_RX_PKT_SIZE(pp->dev->mtu));
	if (!pp->pool_long) {
		netdev_info(pp->dev, "fail to obtain long pool for port\n");
		return -ENOMEM;
	}

	pp->pool_long->port_map |= 1 << pp->id;

	mvneta_bm_pool_bufsize_set(pp, pp->pool_long->buf_size,
				   pp->pool_long->id);

	/* If short pool id is not defined, assume using single pool */
	if (of_property_read_u32(dn, "bm,pool-short", &short_pool_id))
		short_pool_id = long_pool_id;

	/* Create port's short pool */
	pp->pool_short = mvneta_bm_pool_use(pp->bm_priv, short_pool_id,
					    MVNETA_BM_SHORT, pp->id,
					    MVNETA_BM_SHORT_PKT_SIZE);
	if (!pp->pool_short) {
		netdev_info(pp->dev, "fail to obtain short pool for port\n");
		mvneta_bm_pool_destroy(pp->bm_priv, pp->pool_long, 1 << pp->id);
		return -ENOMEM;
	}

	if (short_pool_id != long_pool_id) {
		pp->pool_short->port_map |= 1 << pp->id;
		mvneta_bm_pool_bufsize_set(pp, pp->pool_short->buf_size,
					   pp->pool_short->id);
	}

	return 0;
}

/* Update settings of a pool for bigger packets */
static void mvneta_bm_update_mtu(struct mvneta_port *pp, int mtu)
{
	struct mvneta_bm_pool *bm_pool = pp->pool_long;
1030
	struct hwbm_pool *hwbm_pool = &bm_pool->hwbm_pool;
1031 1032 1033 1034
	int num;

	/* Release all buffers from long pool */
	mvneta_bm_bufs_free(pp->bm_priv, bm_pool, 1 << pp->id);
1035
	if (hwbm_pool->buf_num) {
1036 1037 1038 1039 1040 1041 1042
		WARN(1, "cannot free all buffers in pool %d\n",
		     bm_pool->id);
		goto bm_mtu_err;
	}

	bm_pool->pkt_size = MVNETA_RX_PKT_SIZE(mtu);
	bm_pool->buf_size = MVNETA_RX_BUF_SIZE(bm_pool->pkt_size);
1043 1044
	hwbm_pool->frag_size = SKB_DATA_ALIGN(sizeof(struct skb_shared_info)) +
			SKB_DATA_ALIGN(MVNETA_RX_BUF_SIZE(bm_pool->pkt_size));
1045 1046

	/* Fill entire long pool */
1047 1048
	num = hwbm_pool_add(hwbm_pool, hwbm_pool->size, GFP_ATOMIC);
	if (num != hwbm_pool->size) {
1049
		WARN(1, "pool %d: %d of %d allocated\n",
1050
		     bm_pool->id, num, hwbm_pool->size);
1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065
		goto bm_mtu_err;
	}
	mvneta_bm_pool_bufsize_set(pp, bm_pool->buf_size, bm_pool->id);

	return;

bm_mtu_err:
	mvneta_bm_pool_destroy(pp->bm_priv, pp->pool_long, 1 << pp->id);
	mvneta_bm_pool_destroy(pp->bm_priv, pp->pool_short, 1 << pp->id);

	pp->bm_priv = NULL;
	mvreg_write(pp, MVNETA_ACC_MODE, MVNETA_ACC_MODE_EXT1);
	netdev_info(pp->dev, "fail to update MTU, fall back to software BM\n");
}

1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081
/* Start the Ethernet port RX and TX activity */
static void mvneta_port_up(struct mvneta_port *pp)
{
	int queue;
	u32 q_map;

	/* Enable all initialized TXs. */
	q_map = 0;
	for (queue = 0; queue < txq_number; queue++) {
		struct mvneta_tx_queue *txq = &pp->txqs[queue];
		if (txq->descs != NULL)
			q_map |= (1 << queue);
	}
	mvreg_write(pp, MVNETA_TXQ_CMD, q_map);

	/* Enable all initialized RXQs. */
1082 1083 1084 1085 1086 1087 1088
	for (queue = 0; queue < rxq_number; queue++) {
		struct mvneta_rx_queue *rxq = &pp->rxqs[queue];

		if (rxq->descs != NULL)
			q_map |= (1 << queue);
	}
	mvreg_write(pp, MVNETA_RXQ_CMD, q_map);
1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119
}

/* Stop the Ethernet port activity */
static void mvneta_port_down(struct mvneta_port *pp)
{
	u32 val;
	int count;

	/* Stop Rx port activity. Check port Rx activity. */
	val = mvreg_read(pp, MVNETA_RXQ_CMD) & MVNETA_RXQ_ENABLE_MASK;

	/* Issue stop command for active channels only */
	if (val != 0)
		mvreg_write(pp, MVNETA_RXQ_CMD,
			    val << MVNETA_RXQ_DISABLE_SHIFT);

	/* Wait for all Rx activity to terminate. */
	count = 0;
	do {
		if (count++ >= MVNETA_RX_DISABLE_TIMEOUT_MSEC) {
			netdev_warn(pp->dev,
				    "TIMEOUT for RX stopped ! rx_queue_cmd: 0x08%x\n",
				    val);
			break;
		}
		mdelay(1);

		val = mvreg_read(pp, MVNETA_RXQ_CMD);
	} while (val & 0xff);

	/* Stop Tx port activity. Check port Tx activity. Issue stop
1120 1121
	 * command for active channels only
	 */
1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241
	val = (mvreg_read(pp, MVNETA_TXQ_CMD)) & MVNETA_TXQ_ENABLE_MASK;

	if (val != 0)
		mvreg_write(pp, MVNETA_TXQ_CMD,
			    (val << MVNETA_TXQ_DISABLE_SHIFT));

	/* Wait for all Tx activity to terminate. */
	count = 0;
	do {
		if (count++ >= MVNETA_TX_DISABLE_TIMEOUT_MSEC) {
			netdev_warn(pp->dev,
				    "TIMEOUT for TX stopped status=0x%08x\n",
				    val);
			break;
		}
		mdelay(1);

		/* Check TX Command reg that all Txqs are stopped */
		val = mvreg_read(pp, MVNETA_TXQ_CMD);

	} while (val & 0xff);

	/* Double check to verify that TX FIFO is empty */
	count = 0;
	do {
		if (count++ >= MVNETA_TX_FIFO_EMPTY_TIMEOUT) {
			netdev_warn(pp->dev,
				    "TX FIFO empty timeout status=0x08%x\n",
				    val);
			break;
		}
		mdelay(1);

		val = mvreg_read(pp, MVNETA_PORT_STATUS);
	} while (!(val & MVNETA_TX_FIFO_EMPTY) &&
		 (val & MVNETA_TX_IN_PRGRS));

	udelay(200);
}

/* Enable the port by setting the port enable bit of the MAC control register */
static void mvneta_port_enable(struct mvneta_port *pp)
{
	u32 val;

	/* Enable port */
	val = mvreg_read(pp, MVNETA_GMAC_CTRL_0);
	val |= MVNETA_GMAC0_PORT_ENABLE;
	mvreg_write(pp, MVNETA_GMAC_CTRL_0, val);
}

/* Disable the port and wait for about 200 usec before retuning */
static void mvneta_port_disable(struct mvneta_port *pp)
{
	u32 val;

	/* Reset the Enable bit in the Serial Control Register */
	val = mvreg_read(pp, MVNETA_GMAC_CTRL_0);
	val &= ~MVNETA_GMAC0_PORT_ENABLE;
	mvreg_write(pp, MVNETA_GMAC_CTRL_0, val);

	udelay(200);
}

/* Multicast tables methods */

/* Set all entries in Unicast MAC Table; queue==-1 means reject all */
static void mvneta_set_ucast_table(struct mvneta_port *pp, int queue)
{
	int offset;
	u32 val;

	if (queue == -1) {
		val = 0;
	} else {
		val = 0x1 | (queue << 1);
		val |= (val << 24) | (val << 16) | (val << 8);
	}

	for (offset = 0; offset <= 0xc; offset += 4)
		mvreg_write(pp, MVNETA_DA_FILT_UCAST_BASE + offset, val);
}

/* Set all entries in Special Multicast MAC Table; queue==-1 means reject all */
static void mvneta_set_special_mcast_table(struct mvneta_port *pp, int queue)
{
	int offset;
	u32 val;

	if (queue == -1) {
		val = 0;
	} else {
		val = 0x1 | (queue << 1);
		val |= (val << 24) | (val << 16) | (val << 8);
	}

	for (offset = 0; offset <= 0xfc; offset += 4)
		mvreg_write(pp, MVNETA_DA_FILT_SPEC_MCAST + offset, val);

}

/* Set all entries in Other Multicast MAC Table. queue==-1 means reject all */
static void mvneta_set_other_mcast_table(struct mvneta_port *pp, int queue)
{
	int offset;
	u32 val;

	if (queue == -1) {
		memset(pp->mcast_count, 0, sizeof(pp->mcast_count));
		val = 0;
	} else {
		memset(pp->mcast_count, 1, sizeof(pp->mcast_count));
		val = 0x1 | (queue << 1);
		val |= (val << 24) | (val << 16) | (val << 8);
	}

	for (offset = 0; offset <= 0xfc; offset += 4)
		mvreg_write(pp, MVNETA_DA_FILT_OTH_MCAST + offset, val);
}

1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279
static void mvneta_set_autoneg(struct mvneta_port *pp, int enable)
{
	u32 val;

	if (enable) {
		val = mvreg_read(pp, MVNETA_GMAC_AUTONEG_CONFIG);
		val &= ~(MVNETA_GMAC_FORCE_LINK_PASS |
			 MVNETA_GMAC_FORCE_LINK_DOWN |
			 MVNETA_GMAC_AN_FLOW_CTRL_EN);
		val |= MVNETA_GMAC_INBAND_AN_ENABLE |
		       MVNETA_GMAC_AN_SPEED_EN |
		       MVNETA_GMAC_AN_DUPLEX_EN;
		mvreg_write(pp, MVNETA_GMAC_AUTONEG_CONFIG, val);

		val = mvreg_read(pp, MVNETA_GMAC_CLOCK_DIVIDER);
		val |= MVNETA_GMAC_1MS_CLOCK_ENABLE;
		mvreg_write(pp, MVNETA_GMAC_CLOCK_DIVIDER, val);

		val = mvreg_read(pp, MVNETA_GMAC_CTRL_2);
		val |= MVNETA_GMAC2_INBAND_AN_ENABLE;
		mvreg_write(pp, MVNETA_GMAC_CTRL_2, val);
	} else {
		val = mvreg_read(pp, MVNETA_GMAC_AUTONEG_CONFIG);
		val &= ~(MVNETA_GMAC_INBAND_AN_ENABLE |
		       MVNETA_GMAC_AN_SPEED_EN |
		       MVNETA_GMAC_AN_DUPLEX_EN);
		mvreg_write(pp, MVNETA_GMAC_AUTONEG_CONFIG, val);

		val = mvreg_read(pp, MVNETA_GMAC_CLOCK_DIVIDER);
		val &= ~MVNETA_GMAC_1MS_CLOCK_ENABLE;
		mvreg_write(pp, MVNETA_GMAC_CLOCK_DIVIDER, val);

		val = mvreg_read(pp, MVNETA_GMAC_CTRL_2);
		val &= ~MVNETA_GMAC2_INBAND_AN_ENABLE;
		mvreg_write(pp, MVNETA_GMAC_CTRL_2, val);
	}
}

1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316
static void mvneta_percpu_unmask_interrupt(void *arg)
{
	struct mvneta_port *pp = arg;

	/* All the queue are unmasked, but actually only the ones
	 * mapped to this CPU will be unmasked
	 */
	mvreg_write(pp, MVNETA_INTR_NEW_MASK,
		    MVNETA_RX_INTR_MASK_ALL |
		    MVNETA_TX_INTR_MASK_ALL |
		    MVNETA_MISCINTR_INTR_MASK);
}

static void mvneta_percpu_mask_interrupt(void *arg)
{
	struct mvneta_port *pp = arg;

	/* All the queue are masked, but actually only the ones
	 * mapped to this CPU will be masked
	 */
	mvreg_write(pp, MVNETA_INTR_NEW_MASK, 0);
	mvreg_write(pp, MVNETA_INTR_OLD_MASK, 0);
	mvreg_write(pp, MVNETA_INTR_MISC_MASK, 0);
}

static void mvneta_percpu_clear_intr_cause(void *arg)
{
	struct mvneta_port *pp = arg;

	/* All the queue are cleared, but actually only the ones
	 * mapped to this CPU will be cleared
	 */
	mvreg_write(pp, MVNETA_INTR_NEW_CAUSE, 0);
	mvreg_write(pp, MVNETA_INTR_MISC_CAUSE, 0);
	mvreg_write(pp, MVNETA_INTR_OLD_CAUSE, 0);
}

1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330
/* This method sets defaults to the NETA port:
 *	Clears interrupt Cause and Mask registers.
 *	Clears all MAC tables.
 *	Sets defaults to all registers.
 *	Resets RX and TX descriptor rings.
 *	Resets PHY.
 * This method can be called after mvneta_port_down() to return the port
 *	settings to defaults.
 */
static void mvneta_defaults_set(struct mvneta_port *pp)
{
	int cpu;
	int queue;
	u32 val;
1331
	int max_cpu = num_present_cpus();
1332 1333

	/* Clear all Cause registers */
1334
	on_each_cpu(mvneta_percpu_clear_intr_cause, pp, true);
1335 1336

	/* Mask all interrupts */
1337
	on_each_cpu(mvneta_percpu_mask_interrupt, pp, true);
1338 1339 1340 1341 1342
	mvreg_write(pp, MVNETA_INTR_ENABLE, 0);

	/* Enable MBUS Retry bit16 */
	mvreg_write(pp, MVNETA_MBUS_RETRY, 0x20);

1343 1344 1345 1346
	/* Set CPU queue access map. CPUs are assigned to the RX and
	 * TX queues modulo their number. If there is only one TX
	 * queue then it is assigned to the CPU associated to the
	 * default RX queue.
1347
	 */
1348 1349
	for_each_present_cpu(cpu) {
		int rxq_map = 0, txq_map = 0;
1350
		int rxq, txq;
1351 1352 1353 1354 1355

		for (rxq = 0; rxq < rxq_number; rxq++)
			if ((rxq % max_cpu) == cpu)
				rxq_map |= MVNETA_CPU_RXQ_ACCESS(rxq);

1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366
		for (txq = 0; txq < txq_number; txq++)
			if ((txq % max_cpu) == cpu)
				txq_map |= MVNETA_CPU_TXQ_ACCESS(txq);

		/* With only one TX queue we configure a special case
		 * which will allow to get all the irq on a single
		 * CPU
		 */
		if (txq_number == 1)
			txq_map = (cpu == pp->rxq_def) ?
				MVNETA_CPU_TXQ_ACCESS(1) : 0;
1367 1368 1369

		mvreg_write(pp, MVNETA_CPU_MAP(cpu), rxq_map | txq_map);
	}
1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385

	/* Reset RX and TX DMAs */
	mvreg_write(pp, MVNETA_PORT_RX_RESET, MVNETA_PORT_RX_DMA_RESET);
	mvreg_write(pp, MVNETA_PORT_TX_RESET, MVNETA_PORT_TX_DMA_RESET);

	/* Disable Legacy WRR, Disable EJP, Release from reset */
	mvreg_write(pp, MVNETA_TXQ_CMD_1, 0);
	for (queue = 0; queue < txq_number; queue++) {
		mvreg_write(pp, MVETH_TXQ_TOKEN_COUNT_REG(queue), 0);
		mvreg_write(pp, MVETH_TXQ_TOKEN_CFG_REG(queue), 0);
	}

	mvreg_write(pp, MVNETA_PORT_TX_RESET, 0);
	mvreg_write(pp, MVNETA_PORT_RX_RESET, 0);

	/* Set Port Acceleration Mode */
1386 1387 1388 1389 1390 1391
	if (pp->bm_priv)
		/* HW buffer management + legacy parser */
		val = MVNETA_ACC_MODE_EXT2;
	else
		/* SW buffer management + legacy parser */
		val = MVNETA_ACC_MODE_EXT1;
1392 1393
	mvreg_write(pp, MVNETA_ACC_MODE, val);

1394 1395 1396
	if (pp->bm_priv)
		mvreg_write(pp, MVNETA_BM_ADDRESS, pp->bm_priv->bppi_phys_addr);

1397
	/* Update val of portCfg register accordingly with all RxQueue types */
1398
	val = MVNETA_PORT_CONFIG_DEFL_VALUE(pp->rxq_def);
1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410
	mvreg_write(pp, MVNETA_PORT_CONFIG, val);

	val = 0;
	mvreg_write(pp, MVNETA_PORT_CONFIG_EXTEND, val);
	mvreg_write(pp, MVNETA_RX_MIN_FRAME_SIZE, 64);

	/* Build PORT_SDMA_CONFIG_REG */
	val = 0;

	/* Default burst size */
	val |= MVNETA_TX_BRST_SZ_MASK(MVNETA_SDMA_BRST_SIZE_16);
	val |= MVNETA_RX_BRST_SZ_MASK(MVNETA_SDMA_BRST_SIZE_16);
1411
	val |= MVNETA_RX_NO_DATA_SWAP | MVNETA_TX_NO_DATA_SWAP;
1412

1413 1414 1415
#if defined(__BIG_ENDIAN)
	val |= MVNETA_DESC_SWAP;
#endif
1416 1417 1418 1419

	/* Assign port SDMA configuration */
	mvreg_write(pp, MVNETA_SDMA_CONFIG, val);

1420 1421 1422 1423 1424 1425 1426
	/* Disable PHY polling in hardware, since we're using the
	 * kernel phylib to do this.
	 */
	val = mvreg_read(pp, MVNETA_UNIT_CONTROL);
	val &= ~MVNETA_PHY_POLLING_ENABLE;
	mvreg_write(pp, MVNETA_UNIT_CONTROL, val);

1427
	mvneta_set_autoneg(pp, pp->use_inband_status);
1428 1429 1430 1431 1432 1433 1434 1435
	mvneta_set_ucast_table(pp, -1);
	mvneta_set_special_mcast_table(pp, -1);
	mvneta_set_other_mcast_table(pp, -1);

	/* Set port interrupt enable register - default enable all */
	mvreg_write(pp, MVNETA_INTR_ENABLE,
		    (MVNETA_RXQ_INTR_ENABLE_ALL_MASK
		     | MVNETA_TXQ_INTR_ENABLE_ALL_MASK));
1436 1437

	mvneta_mib_counters_clear(pp);
1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529
}

/* Set max sizes for tx queues */
static void mvneta_txq_max_tx_size_set(struct mvneta_port *pp, int max_tx_size)

{
	u32 val, size, mtu;
	int queue;

	mtu = max_tx_size * 8;
	if (mtu > MVNETA_TX_MTU_MAX)
		mtu = MVNETA_TX_MTU_MAX;

	/* Set MTU */
	val = mvreg_read(pp, MVNETA_TX_MTU);
	val &= ~MVNETA_TX_MTU_MAX;
	val |= mtu;
	mvreg_write(pp, MVNETA_TX_MTU, val);

	/* TX token size and all TXQs token size must be larger that MTU */
	val = mvreg_read(pp, MVNETA_TX_TOKEN_SIZE);

	size = val & MVNETA_TX_TOKEN_SIZE_MAX;
	if (size < mtu) {
		size = mtu;
		val &= ~MVNETA_TX_TOKEN_SIZE_MAX;
		val |= size;
		mvreg_write(pp, MVNETA_TX_TOKEN_SIZE, val);
	}
	for (queue = 0; queue < txq_number; queue++) {
		val = mvreg_read(pp, MVNETA_TXQ_TOKEN_SIZE_REG(queue));

		size = val & MVNETA_TXQ_TOKEN_SIZE_MAX;
		if (size < mtu) {
			size = mtu;
			val &= ~MVNETA_TXQ_TOKEN_SIZE_MAX;
			val |= size;
			mvreg_write(pp, MVNETA_TXQ_TOKEN_SIZE_REG(queue), val);
		}
	}
}

/* Set unicast address */
static void mvneta_set_ucast_addr(struct mvneta_port *pp, u8 last_nibble,
				  int queue)
{
	unsigned int unicast_reg;
	unsigned int tbl_offset;
	unsigned int reg_offset;

	/* Locate the Unicast table entry */
	last_nibble = (0xf & last_nibble);

	/* offset from unicast tbl base */
	tbl_offset = (last_nibble / 4) * 4;

	/* offset within the above reg  */
	reg_offset = last_nibble % 4;

	unicast_reg = mvreg_read(pp, (MVNETA_DA_FILT_UCAST_BASE + tbl_offset));

	if (queue == -1) {
		/* Clear accepts frame bit at specified unicast DA tbl entry */
		unicast_reg &= ~(0xff << (8 * reg_offset));
	} else {
		unicast_reg &= ~(0xff << (8 * reg_offset));
		unicast_reg |= ((0x01 | (queue << 1)) << (8 * reg_offset));
	}

	mvreg_write(pp, (MVNETA_DA_FILT_UCAST_BASE + tbl_offset), unicast_reg);
}

/* Set mac address */
static void mvneta_mac_addr_set(struct mvneta_port *pp, unsigned char *addr,
				int queue)
{
	unsigned int mac_h;
	unsigned int mac_l;

	if (queue != -1) {
		mac_l = (addr[4] << 8) | (addr[5]);
		mac_h = (addr[0] << 24) | (addr[1] << 16) |
			(addr[2] << 8) | (addr[3] << 0);

		mvreg_write(pp, MVNETA_MAC_ADDR_LOW, mac_l);
		mvreg_write(pp, MVNETA_MAC_ADDR_HIGH, mac_h);
	}

	/* Accept frames of this address */
	mvneta_set_ucast_addr(pp, addr[5], queue);
}

1530 1531
/* Set the number of packets that will be received before RX interrupt
 * will be generated by HW.
1532 1533 1534 1535 1536 1537 1538 1539 1540
 */
static void mvneta_rx_pkts_coal_set(struct mvneta_port *pp,
				    struct mvneta_rx_queue *rxq, u32 value)
{
	mvreg_write(pp, MVNETA_RXQ_THRESHOLD_REG(rxq->id),
		    value | MVNETA_RXQ_NON_OCCUPIED(0));
	rxq->pkts_coal = value;
}

1541 1542
/* Set the time delay in usec before RX interrupt will be generated by
 * HW.
1543 1544 1545 1546
 */
static void mvneta_rx_time_coal_set(struct mvneta_port *pp,
				    struct mvneta_rx_queue *rxq, u32 value)
{
T
Thomas Petazzoni 已提交
1547 1548 1549 1550 1551
	u32 val;
	unsigned long clk_rate;

	clk_rate = clk_get_rate(pp->clk);
	val = (clk_rate / 1000000) * value;
1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612

	mvreg_write(pp, MVNETA_RXQ_TIME_COAL_REG(rxq->id), val);
	rxq->time_coal = value;
}

/* Set threshold for TX_DONE pkts coalescing */
static void mvneta_tx_done_pkts_coal_set(struct mvneta_port *pp,
					 struct mvneta_tx_queue *txq, u32 value)
{
	u32 val;

	val = mvreg_read(pp, MVNETA_TXQ_SIZE_REG(txq->id));

	val &= ~MVNETA_TXQ_SENT_THRESH_ALL_MASK;
	val |= MVNETA_TXQ_SENT_THRESH_MASK(value);

	mvreg_write(pp, MVNETA_TXQ_SIZE_REG(txq->id), val);

	txq->done_pkts_coal = value;
}

/* Handle rx descriptor fill by setting buf_cookie and buf_phys_addr */
static void mvneta_rx_desc_fill(struct mvneta_rx_desc *rx_desc,
				u32 phys_addr, u32 cookie)
{
	rx_desc->buf_cookie = cookie;
	rx_desc->buf_phys_addr = phys_addr;
}

/* Decrement sent descriptors counter */
static void mvneta_txq_sent_desc_dec(struct mvneta_port *pp,
				     struct mvneta_tx_queue *txq,
				     int sent_desc)
{
	u32 val;

	/* Only 255 TX descriptors can be updated at once */
	while (sent_desc > 0xff) {
		val = 0xff << MVNETA_TXQ_DEC_SENT_SHIFT;
		mvreg_write(pp, MVNETA_TXQ_UPDATE_REG(txq->id), val);
		sent_desc = sent_desc - 0xff;
	}

	val = sent_desc << MVNETA_TXQ_DEC_SENT_SHIFT;
	mvreg_write(pp, MVNETA_TXQ_UPDATE_REG(txq->id), val);
}

/* Get number of TX descriptors already sent by HW */
static int mvneta_txq_sent_desc_num_get(struct mvneta_port *pp,
					struct mvneta_tx_queue *txq)
{
	u32 val;
	int sent_desc;

	val = mvreg_read(pp, MVNETA_TXQ_STATUS_REG(txq->id));
	sent_desc = (val & MVNETA_TXQ_SENT_DESC_MASK) >>
		MVNETA_TXQ_SENT_DESC_SHIFT;

	return sent_desc;
}

1613
/* Get number of sent descriptors and decrement counter.
1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637
 *  The number of sent descriptors is returned.
 */
static int mvneta_txq_sent_desc_proc(struct mvneta_port *pp,
				     struct mvneta_tx_queue *txq)
{
	int sent_desc;

	/* Get number of sent descriptors */
	sent_desc = mvneta_txq_sent_desc_num_get(pp, txq);

	/* Decrement sent descriptors counter */
	if (sent_desc)
		mvneta_txq_sent_desc_dec(pp, txq, sent_desc);

	return sent_desc;
}

/* Set TXQ descriptors fields relevant for CSUM calculation */
static u32 mvneta_txq_desc_csum(int l3_offs, int l3_proto,
				int ip_hdr_len, int l4_proto)
{
	u32 command;

	/* Fields: L3_offset, IP_hdrlen, L3_type, G_IPv4_chk,
1638 1639 1640
	 * G_L4_chk, L4_type; required only for checksum
	 * calculation
	 */
1641 1642 1643
	command =  l3_offs    << MVNETA_TX_L3_OFF_SHIFT;
	command |= ip_hdr_len << MVNETA_TX_IP_HLEN_SHIFT;

1644
	if (l3_proto == htons(ETH_P_IP))
1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665
		command |= MVNETA_TXD_IP_CSUM;
	else
		command |= MVNETA_TX_L3_IP6;

	if (l4_proto == IPPROTO_TCP)
		command |=  MVNETA_TX_L4_CSUM_FULL;
	else if (l4_proto == IPPROTO_UDP)
		command |= MVNETA_TX_L4_UDP | MVNETA_TX_L4_CSUM_FULL;
	else
		command |= MVNETA_TX_L4_CSUM_NOT;

	return command;
}


/* Display more error info */
static void mvneta_rx_error(struct mvneta_port *pp,
			    struct mvneta_rx_desc *rx_desc)
{
	u32 status = rx_desc->status;

1666
	if (!mvneta_rxq_desc_is_first_last(status)) {
1667 1668
		netdev_err(pp->dev,
			   "bad rx status %08x (buffer oversize), size=%d\n",
1669
			   status, rx_desc->data_size);
1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692
		return;
	}

	switch (status & MVNETA_RXD_ERR_CODE_MASK) {
	case MVNETA_RXD_ERR_CRC:
		netdev_err(pp->dev, "bad rx status %08x (crc error), size=%d\n",
			   status, rx_desc->data_size);
		break;
	case MVNETA_RXD_ERR_OVERRUN:
		netdev_err(pp->dev, "bad rx status %08x (overrun error), size=%d\n",
			   status, rx_desc->data_size);
		break;
	case MVNETA_RXD_ERR_LEN:
		netdev_err(pp->dev, "bad rx status %08x (max frame length error), size=%d\n",
			   status, rx_desc->data_size);
		break;
	case MVNETA_RXD_ERR_RESOURCE:
		netdev_err(pp->dev, "bad rx status %08x (resource error), size=%d\n",
			   status, rx_desc->data_size);
		break;
	}
}

1693 1694
/* Handle RX checksum offload based on the descriptor's status */
static void mvneta_rx_csum(struct mvneta_port *pp, u32 status,
1695 1696
			   struct sk_buff *skb)
{
1697 1698
	if ((status & MVNETA_RXD_L3_IP4) &&
	    (status & MVNETA_RXD_L4_CSUM_OK)) {
1699 1700 1701 1702 1703 1704 1705 1706
		skb->csum = 0;
		skb->ip_summed = CHECKSUM_UNNECESSARY;
		return;
	}

	skb->ip_summed = CHECKSUM_NONE;
}

1707 1708 1709 1710
/* Return tx queue pointer (find last set bit) according to <cause> returned
 * form tx_done reg. <cause> must not be null. The return value is always a
 * valid queue for matching the first one found in <cause>.
 */
1711 1712 1713 1714 1715
static struct mvneta_tx_queue *mvneta_tx_done_policy(struct mvneta_port *pp,
						     u32 cause)
{
	int queue = fls(cause) - 1;

1716
	return &pp->txqs[queue];
1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731
}

/* Free tx queue skbuffs */
static void mvneta_txq_bufs_free(struct mvneta_port *pp,
				 struct mvneta_tx_queue *txq, int num)
{
	int i;

	for (i = 0; i < num; i++) {
		struct mvneta_tx_desc *tx_desc = txq->descs +
			txq->txq_get_index;
		struct sk_buff *skb = txq->tx_skb[txq->txq_get_index];

		mvneta_txq_inc_get(txq);

1732 1733 1734 1735
		if (!IS_TSO_HEADER(txq, tx_desc->buf_phys_addr))
			dma_unmap_single(pp->dev->dev.parent,
					 tx_desc->buf_phys_addr,
					 tx_desc->data_size, DMA_TO_DEVICE);
1736 1737
		if (!skb)
			continue;
1738 1739 1740 1741 1742
		dev_kfree_skb_any(skb);
	}
}

/* Handle end of transmission */
1743
static void mvneta_txq_done(struct mvneta_port *pp,
1744 1745 1746 1747 1748 1749
			   struct mvneta_tx_queue *txq)
{
	struct netdev_queue *nq = netdev_get_tx_queue(pp->dev, txq->id);
	int tx_done;

	tx_done = mvneta_txq_sent_desc_proc(pp, txq);
1750 1751 1752
	if (!tx_done)
		return;

1753 1754 1755 1756 1757
	mvneta_txq_bufs_free(pp, txq, tx_done);

	txq->count -= tx_done;

	if (netif_tx_queue_stopped(nq)) {
1758
		if (txq->count <= txq->tx_wake_threshold)
1759 1760 1761 1762
			netif_tx_wake_queue(nq);
	}
}

1763
void *mvneta_frag_alloc(unsigned int frag_size)
1764
{
1765 1766
	if (likely(frag_size <= PAGE_SIZE))
		return netdev_alloc_frag(frag_size);
1767
	else
1768
		return kmalloc(frag_size, GFP_ATOMIC);
1769
}
1770
EXPORT_SYMBOL_GPL(mvneta_frag_alloc);
1771

1772
void mvneta_frag_free(unsigned int frag_size, void *data)
1773
{
1774
	if (likely(frag_size <= PAGE_SIZE))
1775
		skb_free_frag(data);
1776 1777 1778
	else
		kfree(data);
}
1779
EXPORT_SYMBOL_GPL(mvneta_frag_free);
1780

1781
/* Refill processing for SW buffer management */
1782 1783 1784 1785 1786
static int mvneta_rx_refill(struct mvneta_port *pp,
			    struct mvneta_rx_desc *rx_desc)

{
	dma_addr_t phys_addr;
1787
	void *data;
1788

1789
	data = mvneta_frag_alloc(pp->frag_size);
1790
	if (!data)
1791 1792
		return -ENOMEM;

1793
	phys_addr = dma_map_single(pp->dev->dev.parent, data,
1794 1795 1796
				   MVNETA_RX_BUF_SIZE(pp->pkt_size),
				   DMA_FROM_DEVICE);
	if (unlikely(dma_mapping_error(pp->dev->dev.parent, phys_addr))) {
1797
		mvneta_frag_free(pp->frag_size, data);
1798 1799 1800
		return -ENOMEM;
	}

1801
	mvneta_rx_desc_fill(rx_desc, phys_addr, (u32)data);
1802 1803 1804 1805 1806 1807 1808 1809
	return 0;
}

/* Handle tx checksum */
static u32 mvneta_skb_tx_csum(struct mvneta_port *pp, struct sk_buff *skb)
{
	if (skb->ip_summed == CHECKSUM_PARTIAL) {
		int ip_hdr_len = 0;
1810
		__be16 l3_proto = vlan_get_protocol(skb);
1811 1812
		u8 l4_proto;

1813
		if (l3_proto == htons(ETH_P_IP)) {
1814 1815 1816 1817 1818
			struct iphdr *ip4h = ip_hdr(skb);

			/* Calculate IPv4 checksum and L4 checksum */
			ip_hdr_len = ip4h->ihl;
			l4_proto = ip4h->protocol;
1819
		} else if (l3_proto == htons(ETH_P_IPV6)) {
1820 1821 1822 1823 1824 1825 1826 1827 1828 1829
			struct ipv6hdr *ip6h = ipv6_hdr(skb);

			/* Read l4_protocol from one of IPv6 extra headers */
			if (skb_network_header_len(skb) > 0)
				ip_hdr_len = (skb_network_header_len(skb) >> 2);
			l4_proto = ip6h->nexthdr;
		} else
			return MVNETA_TX_L4_CSUM_NOT;

		return mvneta_txq_desc_csum(skb_network_offset(skb),
1830
					    l3_proto, ip_hdr_len, l4_proto);
1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842
	}

	return MVNETA_TX_L4_CSUM_NOT;
}

/* Drop packets received by the RXQ and free buffers */
static void mvneta_rxq_drop_pkts(struct mvneta_port *pp,
				 struct mvneta_rx_queue *rxq)
{
	int rx_done, i;

	rx_done = mvneta_rxq_busy_desc_num_get(pp, rxq);
1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860
	if (rx_done)
		mvneta_rxq_desc_num_update(pp, rxq, rx_done, rx_done);

	if (pp->bm_priv) {
		for (i = 0; i < rx_done; i++) {
			struct mvneta_rx_desc *rx_desc =
						  mvneta_rxq_next_desc_get(rxq);
			u8 pool_id = MVNETA_RX_GET_BM_POOL_ID(rx_desc);
			struct mvneta_bm_pool *bm_pool;

			bm_pool = &pp->bm_priv->bm_pools[pool_id];
			/* Return dropped buffer to the pool */
			mvneta_bm_pool_put_bp(pp->bm_priv, bm_pool,
					      rx_desc->buf_phys_addr);
		}
		return;
	}

1861 1862
	for (i = 0; i < rxq->size; i++) {
		struct mvneta_rx_desc *rx_desc = rxq->descs + i;
1863
		void *data = (void *)rx_desc->buf_cookie;
1864 1865

		dma_unmap_single(pp->dev->dev.parent, rx_desc->buf_phys_addr,
1866
				 MVNETA_RX_BUF_SIZE(pp->pkt_size), DMA_FROM_DEVICE);
1867
		mvneta_frag_free(pp->frag_size, data);
1868
	}
1869
}
1870

1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987
/* Main rx processing when using software buffer management */
static int mvneta_rx_swbm(struct mvneta_port *pp, int rx_todo,
			  struct mvneta_rx_queue *rxq)
{
	struct mvneta_pcpu_port *port = this_cpu_ptr(pp->ports);
	struct net_device *dev = pp->dev;
	int rx_done;
	u32 rcvd_pkts = 0;
	u32 rcvd_bytes = 0;

	/* Get number of received packets */
	rx_done = mvneta_rxq_busy_desc_num_get(pp, rxq);

	if (rx_todo > rx_done)
		rx_todo = rx_done;

	rx_done = 0;

	/* Fairness NAPI loop */
	while (rx_done < rx_todo) {
		struct mvneta_rx_desc *rx_desc = mvneta_rxq_next_desc_get(rxq);
		struct sk_buff *skb;
		unsigned char *data;
		dma_addr_t phys_addr;
		u32 rx_status, frag_size;
		int rx_bytes, err;

		rx_done++;
		rx_status = rx_desc->status;
		rx_bytes = rx_desc->data_size - (ETH_FCS_LEN + MVNETA_MH_SIZE);
		data = (unsigned char *)rx_desc->buf_cookie;
		phys_addr = rx_desc->buf_phys_addr;

		if (!mvneta_rxq_desc_is_first_last(rx_status) ||
		    (rx_status & MVNETA_RXD_ERR_SUMMARY)) {
err_drop_frame:
			dev->stats.rx_errors++;
			mvneta_rx_error(pp, rx_desc);
			/* leave the descriptor untouched */
			continue;
		}

		if (rx_bytes <= rx_copybreak) {
		/* better copy a small frame and not unmap the DMA region */
			skb = netdev_alloc_skb_ip_align(dev, rx_bytes);
			if (unlikely(!skb))
				goto err_drop_frame;

			dma_sync_single_range_for_cpu(dev->dev.parent,
						      rx_desc->buf_phys_addr,
						      MVNETA_MH_SIZE + NET_SKB_PAD,
						      rx_bytes,
						      DMA_FROM_DEVICE);
			memcpy(skb_put(skb, rx_bytes),
			       data + MVNETA_MH_SIZE + NET_SKB_PAD,
			       rx_bytes);

			skb->protocol = eth_type_trans(skb, dev);
			mvneta_rx_csum(pp, rx_status, skb);
			napi_gro_receive(&port->napi, skb);

			rcvd_pkts++;
			rcvd_bytes += rx_bytes;

			/* leave the descriptor and buffer untouched */
			continue;
		}

		/* Refill processing */
		err = mvneta_rx_refill(pp, rx_desc);
		if (err) {
			netdev_err(dev, "Linux processing - Can't refill\n");
			rxq->missed++;
			goto err_drop_frame;
		}

		frag_size = pp->frag_size;

		skb = build_skb(data, frag_size > PAGE_SIZE ? 0 : frag_size);

		/* After refill old buffer has to be unmapped regardless
		 * the skb is successfully built or not.
		 */
		dma_unmap_single(dev->dev.parent, phys_addr,
				 MVNETA_RX_BUF_SIZE(pp->pkt_size),
				 DMA_FROM_DEVICE);

		if (!skb)
			goto err_drop_frame;

		rcvd_pkts++;
		rcvd_bytes += rx_bytes;

		/* Linux processing */
		skb_reserve(skb, MVNETA_MH_SIZE + NET_SKB_PAD);
		skb_put(skb, rx_bytes);

		skb->protocol = eth_type_trans(skb, dev);

		mvneta_rx_csum(pp, rx_status, skb);

		napi_gro_receive(&port->napi, skb);
	}

	if (rcvd_pkts) {
		struct mvneta_pcpu_stats *stats = this_cpu_ptr(pp->stats);

		u64_stats_update_begin(&stats->syncp);
		stats->rx_packets += rcvd_pkts;
		stats->rx_bytes   += rcvd_bytes;
		u64_stats_update_end(&stats->syncp);
	}

	/* Update rxq management counters */
	mvneta_rxq_desc_num_update(pp, rxq, rx_done, rx_done);

	return rx_done;
1988 1989
}

1990 1991 1992
/* Main rx processing when using hardware buffer management */
static int mvneta_rx_hwbm(struct mvneta_port *pp, int rx_todo,
			  struct mvneta_rx_queue *rxq)
1993
{
1994
	struct mvneta_pcpu_port *port = this_cpu_ptr(pp->ports);
1995
	struct net_device *dev = pp->dev;
1996
	int rx_done;
1997 1998
	u32 rcvd_pkts = 0;
	u32 rcvd_bytes = 0;
1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010

	/* Get number of received packets */
	rx_done = mvneta_rxq_busy_desc_num_get(pp, rxq);

	if (rx_todo > rx_done)
		rx_todo = rx_done;

	rx_done = 0;

	/* Fairness NAPI loop */
	while (rx_done < rx_todo) {
		struct mvneta_rx_desc *rx_desc = mvneta_rxq_next_desc_get(rxq);
2011
		struct mvneta_bm_pool *bm_pool = NULL;
2012
		struct sk_buff *skb;
2013
		unsigned char *data;
2014
		dma_addr_t phys_addr;
2015
		u32 rx_status, frag_size;
2016
		int rx_bytes, err;
2017
		u8 pool_id;
2018 2019 2020

		rx_done++;
		rx_status = rx_desc->status;
2021
		rx_bytes = rx_desc->data_size - (ETH_FCS_LEN + MVNETA_MH_SIZE);
2022
		data = (unsigned char *)rx_desc->buf_cookie;
2023
		phys_addr = rx_desc->buf_phys_addr;
2024 2025
		pool_id = MVNETA_RX_GET_BM_POOL_ID(rx_desc);
		bm_pool = &pp->bm_priv->bm_pools[pool_id];
2026

2027
		if (!mvneta_rxq_desc_is_first_last(rx_status) ||
2028
		    (rx_status & MVNETA_RXD_ERR_SUMMARY)) {
2029 2030 2031 2032 2033
err_drop_frame_ret_pool:
			/* Return the buffer to the pool */
			mvneta_bm_pool_put_bp(pp->bm_priv, bm_pool,
					      rx_desc->buf_phys_addr);
err_drop_frame:
2034 2035
			dev->stats.rx_errors++;
			mvneta_rx_error(pp, rx_desc);
2036
			/* leave the descriptor untouched */
2037 2038 2039
			continue;
		}

2040 2041 2042 2043
		if (rx_bytes <= rx_copybreak) {
			/* better copy a small frame and not unmap the DMA region */
			skb = netdev_alloc_skb_ip_align(dev, rx_bytes);
			if (unlikely(!skb))
2044
				goto err_drop_frame_ret_pool;
2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056

			dma_sync_single_range_for_cpu(dev->dev.parent,
			                              rx_desc->buf_phys_addr,
			                              MVNETA_MH_SIZE + NET_SKB_PAD,
			                              rx_bytes,
			                              DMA_FROM_DEVICE);
			memcpy(skb_put(skb, rx_bytes),
			       data + MVNETA_MH_SIZE + NET_SKB_PAD,
			       rx_bytes);

			skb->protocol = eth_type_trans(skb, dev);
			mvneta_rx_csum(pp, rx_status, skb);
2057
			napi_gro_receive(&port->napi, skb);
2058 2059 2060 2061

			rcvd_pkts++;
			rcvd_bytes += rx_bytes;

2062 2063 2064 2065
			/* Return the buffer to the pool */
			mvneta_bm_pool_put_bp(pp->bm_priv, bm_pool,
					      rx_desc->buf_phys_addr);

2066 2067 2068 2069
			/* leave the descriptor and buffer untouched */
			continue;
		}

2070
		/* Refill processing */
2071
		err = hwbm_pool_refill(&bm_pool->hwbm_pool, GFP_ATOMIC);
2072 2073 2074
		if (err) {
			netdev_err(dev, "Linux processing - Can't refill\n");
			rxq->missed++;
2075
			goto err_drop_frame_ret_pool;
2076 2077
		}

2078
		frag_size = bm_pool->hwbm_pool.frag_size;
2079 2080

		skb = build_skb(data, frag_size > PAGE_SIZE ? 0 : frag_size);
2081

2082 2083 2084
		/* After refill old buffer has to be unmapped regardless
		 * the skb is successfully built or not.
		 */
2085 2086
		dma_unmap_single(&pp->bm_priv->pdev->dev, phys_addr,
				 bm_pool->buf_size, DMA_FROM_DEVICE);
2087 2088 2089
		if (!skb)
			goto err_drop_frame;

2090 2091
		rcvd_pkts++;
		rcvd_bytes += rx_bytes;
2092 2093

		/* Linux processing */
2094
		skb_reserve(skb, MVNETA_MH_SIZE + NET_SKB_PAD);
2095 2096 2097 2098
		skb_put(skb, rx_bytes);

		skb->protocol = eth_type_trans(skb, dev);

2099
		mvneta_rx_csum(pp, rx_status, skb);
2100

2101
		napi_gro_receive(&port->napi, skb);
2102 2103
	}

2104
	if (rcvd_pkts) {
2105 2106 2107 2108 2109 2110
		struct mvneta_pcpu_stats *stats = this_cpu_ptr(pp->stats);

		u64_stats_update_begin(&stats->syncp);
		stats->rx_packets += rcvd_pkts;
		stats->rx_bytes   += rcvd_bytes;
		u64_stats_update_end(&stats->syncp);
2111 2112
	}

2113
	/* Update rxq management counters */
2114
	mvneta_rxq_desc_num_update(pp, rxq, rx_done, rx_done);
2115 2116 2117 2118

	return rx_done;
}

2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228
static inline void
mvneta_tso_put_hdr(struct sk_buff *skb,
		   struct mvneta_port *pp, struct mvneta_tx_queue *txq)
{
	struct mvneta_tx_desc *tx_desc;
	int hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);

	txq->tx_skb[txq->txq_put_index] = NULL;
	tx_desc = mvneta_txq_next_desc_get(txq);
	tx_desc->data_size = hdr_len;
	tx_desc->command = mvneta_skb_tx_csum(pp, skb);
	tx_desc->command |= MVNETA_TXD_F_DESC;
	tx_desc->buf_phys_addr = txq->tso_hdrs_phys +
				 txq->txq_put_index * TSO_HEADER_SIZE;
	mvneta_txq_inc_put(txq);
}

static inline int
mvneta_tso_put_data(struct net_device *dev, struct mvneta_tx_queue *txq,
		    struct sk_buff *skb, char *data, int size,
		    bool last_tcp, bool is_last)
{
	struct mvneta_tx_desc *tx_desc;

	tx_desc = mvneta_txq_next_desc_get(txq);
	tx_desc->data_size = size;
	tx_desc->buf_phys_addr = dma_map_single(dev->dev.parent, data,
						size, DMA_TO_DEVICE);
	if (unlikely(dma_mapping_error(dev->dev.parent,
		     tx_desc->buf_phys_addr))) {
		mvneta_txq_desc_put(txq);
		return -ENOMEM;
	}

	tx_desc->command = 0;
	txq->tx_skb[txq->txq_put_index] = NULL;

	if (last_tcp) {
		/* last descriptor in the TCP packet */
		tx_desc->command = MVNETA_TXD_L_DESC;

		/* last descriptor in SKB */
		if (is_last)
			txq->tx_skb[txq->txq_put_index] = skb;
	}
	mvneta_txq_inc_put(txq);
	return 0;
}

static int mvneta_tx_tso(struct sk_buff *skb, struct net_device *dev,
			 struct mvneta_tx_queue *txq)
{
	int total_len, data_left;
	int desc_count = 0;
	struct mvneta_port *pp = netdev_priv(dev);
	struct tso_t tso;
	int hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
	int i;

	/* Count needed descriptors */
	if ((txq->count + tso_count_descs(skb)) >= txq->size)
		return 0;

	if (skb_headlen(skb) < (skb_transport_offset(skb) + tcp_hdrlen(skb))) {
		pr_info("*** Is this even  possible???!?!?\n");
		return 0;
	}

	/* Initialize the TSO handler, and prepare the first payload */
	tso_start(skb, &tso);

	total_len = skb->len - hdr_len;
	while (total_len > 0) {
		char *hdr;

		data_left = min_t(int, skb_shinfo(skb)->gso_size, total_len);
		total_len -= data_left;
		desc_count++;

		/* prepare packet headers: MAC + IP + TCP */
		hdr = txq->tso_hdrs + txq->txq_put_index * TSO_HEADER_SIZE;
		tso_build_hdr(skb, hdr, &tso, data_left, total_len == 0);

		mvneta_tso_put_hdr(skb, pp, txq);

		while (data_left > 0) {
			int size;
			desc_count++;

			size = min_t(int, tso.size, data_left);

			if (mvneta_tso_put_data(dev, txq, skb,
						 tso.data, size,
						 size == data_left,
						 total_len == 0))
				goto err_release;
			data_left -= size;

			tso_build_data(skb, &tso, size);
		}
	}

	return desc_count;

err_release:
	/* Release all used data descriptors; header descriptors must not
	 * be DMA-unmapped.
	 */
	for (i = desc_count - 1; i >= 0; i--) {
		struct mvneta_tx_desc *tx_desc = txq->descs + i;
2229
		if (!IS_TSO_HEADER(txq, tx_desc->buf_phys_addr))
2230 2231 2232 2233 2234 2235 2236 2237 2238
			dma_unmap_single(pp->dev->dev.parent,
					 tx_desc->buf_phys_addr,
					 tx_desc->data_size,
					 DMA_TO_DEVICE);
		mvneta_txq_desc_put(txq);
	}
	return 0;
}

2239 2240 2241 2242 2243
/* Handle tx fragmentation processing */
static int mvneta_tx_frag_process(struct mvneta_port *pp, struct sk_buff *skb,
				  struct mvneta_tx_queue *txq)
{
	struct mvneta_tx_desc *tx_desc;
2244
	int i, nr_frags = skb_shinfo(skb)->nr_frags;
2245

2246
	for (i = 0; i < nr_frags; i++) {
2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262
		skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
		void *addr = page_address(frag->page.p) + frag->page_offset;

		tx_desc = mvneta_txq_next_desc_get(txq);
		tx_desc->data_size = frag->size;

		tx_desc->buf_phys_addr =
			dma_map_single(pp->dev->dev.parent, addr,
				       tx_desc->data_size, DMA_TO_DEVICE);

		if (dma_mapping_error(pp->dev->dev.parent,
				      tx_desc->buf_phys_addr)) {
			mvneta_txq_desc_put(txq);
			goto error;
		}

2263
		if (i == nr_frags - 1) {
2264 2265 2266 2267 2268 2269 2270 2271
			/* Last descriptor */
			tx_desc->command = MVNETA_TXD_L_DESC | MVNETA_TXD_Z_PAD;
			txq->tx_skb[txq->txq_put_index] = skb;
		} else {
			/* Descriptor in the middle: Not First, Not Last */
			tx_desc->command = 0;
			txq->tx_skb[txq->txq_put_index] = NULL;
		}
2272
		mvneta_txq_inc_put(txq);
2273 2274 2275 2276 2277 2278
	}

	return 0;

error:
	/* Release all descriptors that were used to map fragments of
2279 2280
	 * this packet, as well as the corresponding DMA mappings
	 */
2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296
	for (i = i - 1; i >= 0; i--) {
		tx_desc = txq->descs + i;
		dma_unmap_single(pp->dev->dev.parent,
				 tx_desc->buf_phys_addr,
				 tx_desc->data_size,
				 DMA_TO_DEVICE);
		mvneta_txq_desc_put(txq);
	}

	return -ENOMEM;
}

/* Main tx processing */
static int mvneta_tx(struct sk_buff *skb, struct net_device *dev)
{
	struct mvneta_port *pp = netdev_priv(dev);
2297 2298
	u16 txq_id = skb_get_queue_mapping(skb);
	struct mvneta_tx_queue *txq = &pp->txqs[txq_id];
2299
	struct mvneta_tx_desc *tx_desc;
2300
	int len = skb->len;
2301 2302 2303 2304 2305 2306
	int frags = 0;
	u32 tx_cmd;

	if (!netif_running(dev))
		goto out;

2307 2308 2309 2310 2311
	if (skb_is_gso(skb)) {
		frags = mvneta_tx_tso(skb, dev, txq);
		goto out;
	}

2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356
	frags = skb_shinfo(skb)->nr_frags + 1;

	/* Get a descriptor for the first part of the packet */
	tx_desc = mvneta_txq_next_desc_get(txq);

	tx_cmd = mvneta_skb_tx_csum(pp, skb);

	tx_desc->data_size = skb_headlen(skb);

	tx_desc->buf_phys_addr = dma_map_single(dev->dev.parent, skb->data,
						tx_desc->data_size,
						DMA_TO_DEVICE);
	if (unlikely(dma_mapping_error(dev->dev.parent,
				       tx_desc->buf_phys_addr))) {
		mvneta_txq_desc_put(txq);
		frags = 0;
		goto out;
	}

	if (frags == 1) {
		/* First and Last descriptor */
		tx_cmd |= MVNETA_TXD_FLZ_DESC;
		tx_desc->command = tx_cmd;
		txq->tx_skb[txq->txq_put_index] = skb;
		mvneta_txq_inc_put(txq);
	} else {
		/* First but not Last */
		tx_cmd |= MVNETA_TXD_F_DESC;
		txq->tx_skb[txq->txq_put_index] = NULL;
		mvneta_txq_inc_put(txq);
		tx_desc->command = tx_cmd;
		/* Continue with other skb fragments */
		if (mvneta_tx_frag_process(pp, skb, txq)) {
			dma_unmap_single(dev->dev.parent,
					 tx_desc->buf_phys_addr,
					 tx_desc->data_size,
					 DMA_TO_DEVICE);
			mvneta_txq_desc_put(txq);
			frags = 0;
			goto out;
		}
	}

out:
	if (frags > 0) {
2357
		struct mvneta_pcpu_stats *stats = this_cpu_ptr(pp->stats);
2358 2359 2360 2361 2362
		struct netdev_queue *nq = netdev_get_tx_queue(dev, txq_id);

		txq->count += frags;
		mvneta_txq_pend_desc_add(pp, txq, frags);

2363
		if (txq->count >= txq->tx_stop_threshold)
2364
			netif_tx_stop_queue(nq);
2365

2366 2367
		u64_stats_update_begin(&stats->syncp);
		stats->tx_packets++;
2368
		stats->tx_bytes  += len;
2369
		u64_stats_update_end(&stats->syncp);
2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393
	} else {
		dev->stats.tx_dropped++;
		dev_kfree_skb_any(skb);
	}

	return NETDEV_TX_OK;
}


/* Free tx resources, when resetting a port */
static void mvneta_txq_done_force(struct mvneta_port *pp,
				  struct mvneta_tx_queue *txq)

{
	int tx_done = txq->count;

	mvneta_txq_bufs_free(pp, txq, tx_done);

	/* reset txq */
	txq->count = 0;
	txq->txq_put_index = 0;
	txq->txq_get_index = 0;
}

2394 2395 2396
/* Handle tx done - called in softirq context. The <cause_tx_done> argument
 * must be a valid cause according to MVNETA_TXQ_INTR_MASK_ALL.
 */
2397
static void mvneta_tx_done_gbe(struct mvneta_port *pp, u32 cause_tx_done)
2398 2399 2400 2401
{
	struct mvneta_tx_queue *txq;
	struct netdev_queue *nq;

2402
	while (cause_tx_done) {
2403 2404 2405 2406 2407
		txq = mvneta_tx_done_policy(pp, cause_tx_done);

		nq = netdev_get_tx_queue(pp->dev, txq->id);
		__netif_tx_lock(nq, smp_processor_id());

2408 2409
		if (txq->count)
			mvneta_txq_done(pp, txq);
2410 2411 2412 2413 2414 2415

		__netif_tx_unlock(nq);
		cause_tx_done &= ~((1 << txq->id));
	}
}

2416
/* Compute crc8 of the specified address, using a unique algorithm ,
2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580
 * according to hw spec, different than generic crc8 algorithm
 */
static int mvneta_addr_crc(unsigned char *addr)
{
	int crc = 0;
	int i;

	for (i = 0; i < ETH_ALEN; i++) {
		int j;

		crc = (crc ^ addr[i]) << 8;
		for (j = 7; j >= 0; j--) {
			if (crc & (0x100 << j))
				crc ^= 0x107 << j;
		}
	}

	return crc;
}

/* This method controls the net device special MAC multicast support.
 * The Special Multicast Table for MAC addresses supports MAC of the form
 * 0x01-00-5E-00-00-XX (where XX is between 0x00 and 0xFF).
 * The MAC DA[7:0] bits are used as a pointer to the Special Multicast
 * Table entries in the DA-Filter table. This method set the Special
 * Multicast Table appropriate entry.
 */
static void mvneta_set_special_mcast_addr(struct mvneta_port *pp,
					  unsigned char last_byte,
					  int queue)
{
	unsigned int smc_table_reg;
	unsigned int tbl_offset;
	unsigned int reg_offset;

	/* Register offset from SMC table base    */
	tbl_offset = (last_byte / 4);
	/* Entry offset within the above reg */
	reg_offset = last_byte % 4;

	smc_table_reg = mvreg_read(pp, (MVNETA_DA_FILT_SPEC_MCAST
					+ tbl_offset * 4));

	if (queue == -1)
		smc_table_reg &= ~(0xff << (8 * reg_offset));
	else {
		smc_table_reg &= ~(0xff << (8 * reg_offset));
		smc_table_reg |= ((0x01 | (queue << 1)) << (8 * reg_offset));
	}

	mvreg_write(pp, MVNETA_DA_FILT_SPEC_MCAST + tbl_offset * 4,
		    smc_table_reg);
}

/* This method controls the network device Other MAC multicast support.
 * The Other Multicast Table is used for multicast of another type.
 * A CRC-8 is used as an index to the Other Multicast Table entries
 * in the DA-Filter table.
 * The method gets the CRC-8 value from the calling routine and
 * sets the Other Multicast Table appropriate entry according to the
 * specified CRC-8 .
 */
static void mvneta_set_other_mcast_addr(struct mvneta_port *pp,
					unsigned char crc8,
					int queue)
{
	unsigned int omc_table_reg;
	unsigned int tbl_offset;
	unsigned int reg_offset;

	tbl_offset = (crc8 / 4) * 4; /* Register offset from OMC table base */
	reg_offset = crc8 % 4;	     /* Entry offset within the above reg   */

	omc_table_reg = mvreg_read(pp, MVNETA_DA_FILT_OTH_MCAST + tbl_offset);

	if (queue == -1) {
		/* Clear accepts frame bit at specified Other DA table entry */
		omc_table_reg &= ~(0xff << (8 * reg_offset));
	} else {
		omc_table_reg &= ~(0xff << (8 * reg_offset));
		omc_table_reg |= ((0x01 | (queue << 1)) << (8 * reg_offset));
	}

	mvreg_write(pp, MVNETA_DA_FILT_OTH_MCAST + tbl_offset, omc_table_reg);
}

/* The network device supports multicast using two tables:
 *    1) Special Multicast Table for MAC addresses of the form
 *       0x01-00-5E-00-00-XX (where XX is between 0x00 and 0xFF).
 *       The MAC DA[7:0] bits are used as a pointer to the Special Multicast
 *       Table entries in the DA-Filter table.
 *    2) Other Multicast Table for multicast of another type. A CRC-8 value
 *       is used as an index to the Other Multicast Table entries in the
 *       DA-Filter table.
 */
static int mvneta_mcast_addr_set(struct mvneta_port *pp, unsigned char *p_addr,
				 int queue)
{
	unsigned char crc_result = 0;

	if (memcmp(p_addr, "\x01\x00\x5e\x00\x00", 5) == 0) {
		mvneta_set_special_mcast_addr(pp, p_addr[5], queue);
		return 0;
	}

	crc_result = mvneta_addr_crc(p_addr);
	if (queue == -1) {
		if (pp->mcast_count[crc_result] == 0) {
			netdev_info(pp->dev, "No valid Mcast for crc8=0x%02x\n",
				    crc_result);
			return -EINVAL;
		}

		pp->mcast_count[crc_result]--;
		if (pp->mcast_count[crc_result] != 0) {
			netdev_info(pp->dev,
				    "After delete there are %d valid Mcast for crc8=0x%02x\n",
				    pp->mcast_count[crc_result], crc_result);
			return -EINVAL;
		}
	} else
		pp->mcast_count[crc_result]++;

	mvneta_set_other_mcast_addr(pp, crc_result, queue);

	return 0;
}

/* Configure Fitering mode of Ethernet port */
static void mvneta_rx_unicast_promisc_set(struct mvneta_port *pp,
					  int is_promisc)
{
	u32 port_cfg_reg, val;

	port_cfg_reg = mvreg_read(pp, MVNETA_PORT_CONFIG);

	val = mvreg_read(pp, MVNETA_TYPE_PRIO);

	/* Set / Clear UPM bit in port configuration register */
	if (is_promisc) {
		/* Accept all Unicast addresses */
		port_cfg_reg |= MVNETA_UNI_PROMISC_MODE;
		val |= MVNETA_FORCE_UNI;
		mvreg_write(pp, MVNETA_MAC_ADDR_LOW, 0xffff);
		mvreg_write(pp, MVNETA_MAC_ADDR_HIGH, 0xffffffff);
	} else {
		/* Reject all Unicast addresses */
		port_cfg_reg &= ~MVNETA_UNI_PROMISC_MODE;
		val &= ~MVNETA_FORCE_UNI;
	}

	mvreg_write(pp, MVNETA_PORT_CONFIG, port_cfg_reg);
	mvreg_write(pp, MVNETA_TYPE_PRIO, val);
}

/* register unicast and multicast addresses */
static void mvneta_set_rx_mode(struct net_device *dev)
{
	struct mvneta_port *pp = netdev_priv(dev);
	struct netdev_hw_addr *ha;

	if (dev->flags & IFF_PROMISC) {
		/* Accept all: Multicast + Unicast */
		mvneta_rx_unicast_promisc_set(pp, 1);
2581 2582 2583
		mvneta_set_ucast_table(pp, pp->rxq_def);
		mvneta_set_special_mcast_table(pp, pp->rxq_def);
		mvneta_set_other_mcast_table(pp, pp->rxq_def);
2584 2585 2586 2587
	} else {
		/* Accept single Unicast */
		mvneta_rx_unicast_promisc_set(pp, 0);
		mvneta_set_ucast_table(pp, -1);
2588
		mvneta_mac_addr_set(pp, dev->dev_addr, pp->rxq_def);
2589 2590 2591

		if (dev->flags & IFF_ALLMULTI) {
			/* Accept all multicast */
2592 2593
			mvneta_set_special_mcast_table(pp, pp->rxq_def);
			mvneta_set_other_mcast_table(pp, pp->rxq_def);
2594 2595 2596 2597 2598 2599 2600 2601
		} else {
			/* Accept only initialized multicast */
			mvneta_set_special_mcast_table(pp, -1);
			mvneta_set_other_mcast_table(pp, -1);

			if (!netdev_mc_empty(dev)) {
				netdev_for_each_mc_addr(ha, dev) {
					mvneta_mcast_addr_set(pp, ha->addr,
2602
							      pp->rxq_def);
2603 2604 2605 2606 2607 2608 2609 2610 2611
				}
			}
		}
	}
}

/* Interrupt handling - the callback for request_irq() */
static irqreturn_t mvneta_isr(int irq, void *dev_id)
{
2612
	struct mvneta_pcpu_port *port = (struct mvneta_pcpu_port *)dev_id;
2613

2614 2615
	disable_percpu_irq(port->pp->dev->irq);
	napi_schedule(&port->napi);
2616 2617 2618 2619

	return IRQ_HANDLED;
}

2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641
static int mvneta_fixed_link_update(struct mvneta_port *pp,
				    struct phy_device *phy)
{
	struct fixed_phy_status status;
	struct fixed_phy_status changed = {};
	u32 gmac_stat = mvreg_read(pp, MVNETA_GMAC_STATUS);

	status.link = !!(gmac_stat & MVNETA_GMAC_LINK_UP);
	if (gmac_stat & MVNETA_GMAC_SPEED_1000)
		status.speed = SPEED_1000;
	else if (gmac_stat & MVNETA_GMAC_SPEED_100)
		status.speed = SPEED_100;
	else
		status.speed = SPEED_10;
	status.duplex = !!(gmac_stat & MVNETA_GMAC_FULL_DUPLEX);
	changed.link = 1;
	changed.speed = 1;
	changed.duplex = 1;
	fixed_phy_update_state(phy, &status, &changed);
	return 0;
}

2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652
/* NAPI handler
 * Bits 0 - 7 of the causeRxTx register indicate that are transmitted
 * packets on the corresponding TXQ (Bit 0 is for TX queue 1).
 * Bits 8 -15 of the cause Rx Tx register indicate that are received
 * packets on the corresponding RXQ (Bit 8 is for RX queue 0).
 * Each CPU has its own causeRxTx register
 */
static int mvneta_poll(struct napi_struct *napi, int budget)
{
	int rx_done = 0;
	u32 cause_rx_tx;
2653
	int rx_queue;
2654
	struct mvneta_port *pp = netdev_priv(napi->dev);
2655
	struct mvneta_pcpu_port *port = this_cpu_ptr(pp->ports);
2656 2657

	if (!netif_running(pp->dev)) {
2658
		napi_complete(&port->napi);
2659 2660 2661 2662
		return rx_done;
	}

	/* Read cause register */
2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674
	cause_rx_tx = mvreg_read(pp, MVNETA_INTR_NEW_CAUSE);
	if (cause_rx_tx & MVNETA_MISCINTR_INTR_MASK) {
		u32 cause_misc = mvreg_read(pp, MVNETA_INTR_MISC_CAUSE);

		mvreg_write(pp, MVNETA_INTR_MISC_CAUSE, 0);
		if (pp->use_inband_status && (cause_misc &
				(MVNETA_CAUSE_PHY_STATUS_CHANGE |
				 MVNETA_CAUSE_LINK_CHANGE |
				 MVNETA_CAUSE_PSC_SYNC_CHANGE))) {
			mvneta_fixed_link_update(pp, pp->phy_dev);
		}
	}
2675 2676 2677

	/* Release Tx descriptors */
	if (cause_rx_tx & MVNETA_TX_INTR_MASK_ALL) {
2678
		mvneta_tx_done_gbe(pp, (cause_rx_tx & MVNETA_TX_INTR_MASK_ALL));
2679 2680
		cause_rx_tx &= ~MVNETA_TX_INTR_MASK_ALL;
	}
2681

2682
	/* For the case where the last mvneta_poll did not process all
2683 2684
	 * RX packets
	 */
2685 2686
	rx_queue = fls(((cause_rx_tx >> 8) & 0xff));

2687
	cause_rx_tx |= port->cause_rx_tx;
2688 2689 2690

	if (rx_queue) {
		rx_queue = rx_queue - 1;
2691 2692 2693 2694
		if (pp->bm_priv)
			rx_done = mvneta_rx_hwbm(pp, budget, &pp->rxqs[rx_queue]);
		else
			rx_done = mvneta_rx_swbm(pp, budget, &pp->rxqs[rx_queue]);
2695 2696
	}

2697
	budget -= rx_done;
2698 2699 2700

	if (budget > 0) {
		cause_rx_tx = 0;
2701 2702
		napi_complete(&port->napi);
		enable_percpu_irq(pp->dev->irq, 0);
2703 2704
	}

2705
	port->cause_rx_tx = cause_rx_tx;
2706 2707 2708 2709 2710 2711 2712 2713 2714 2715
	return rx_done;
}

/* Handle rxq fill: allocates rxq skbs; called when initializing a port */
static int mvneta_rxq_fill(struct mvneta_port *pp, struct mvneta_rx_queue *rxq,
			   int num)
{
	int i;

	for (i = 0; i < num; i++) {
2716 2717 2718
		memset(rxq->descs + i, 0, sizeof(struct mvneta_rx_desc));
		if (mvneta_rx_refill(pp, rxq->descs + i) != 0) {
			netdev_err(pp->dev, "%s:rxq %d, %d of %d buffs  filled\n",
2719 2720 2721 2722 2723 2724
				__func__, rxq->id, i, num);
			break;
		}
	}

	/* Add this number of RX descriptors as non occupied (ready to
2725 2726
	 * get packets)
	 */
2727 2728 2729 2730 2731 2732 2733 2734 2735 2736
	mvneta_rxq_non_occup_desc_add(pp, rxq, i);

	return i;
}

/* Free all packets pending transmit from all TXQs and reset TX port */
static void mvneta_tx_reset(struct mvneta_port *pp)
{
	int queue;

2737
	/* free the skb's in the tx ring */
2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763
	for (queue = 0; queue < txq_number; queue++)
		mvneta_txq_done_force(pp, &pp->txqs[queue]);

	mvreg_write(pp, MVNETA_PORT_TX_RESET, MVNETA_PORT_TX_DMA_RESET);
	mvreg_write(pp, MVNETA_PORT_TX_RESET, 0);
}

static void mvneta_rx_reset(struct mvneta_port *pp)
{
	mvreg_write(pp, MVNETA_PORT_RX_RESET, MVNETA_PORT_RX_DMA_RESET);
	mvreg_write(pp, MVNETA_PORT_RX_RESET, 0);
}

/* Rx/Tx queue initialization/cleanup methods */

/* Create a specified RX queue */
static int mvneta_rxq_init(struct mvneta_port *pp,
			   struct mvneta_rx_queue *rxq)

{
	rxq->size = pp->rx_ring_size;

	/* Allocate memory for RX descriptors */
	rxq->descs = dma_alloc_coherent(pp->dev->dev.parent,
					rxq->size * MVNETA_DESC_ALIGNED_SIZE,
					&rxq->descs_phys, GFP_KERNEL);
2764
	if (rxq->descs == NULL)
2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782
		return -ENOMEM;

	BUG_ON(rxq->descs !=
	       PTR_ALIGN(rxq->descs, MVNETA_CPU_D_CACHE_LINE_SIZE));

	rxq->last_desc = rxq->size - 1;

	/* Set Rx descriptors queue starting address */
	mvreg_write(pp, MVNETA_RXQ_BASE_ADDR_REG(rxq->id), rxq->descs_phys);
	mvreg_write(pp, MVNETA_RXQ_SIZE_REG(rxq->id), rxq->size);

	/* Set Offset */
	mvneta_rxq_offset_set(pp, rxq, NET_SKB_PAD);

	/* Set coalescing pkts and time */
	mvneta_rx_pkts_coal_set(pp, rxq, rxq->pkts_coal);
	mvneta_rx_time_coal_set(pp, rxq, rxq->time_coal);

2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793
	if (!pp->bm_priv) {
		/* Fill RXQ with buffers from RX pool */
		mvneta_rxq_buf_size_set(pp, rxq,
					MVNETA_RX_BUF_SIZE(pp->pkt_size));
		mvneta_rxq_bm_disable(pp, rxq);
	} else {
		mvneta_rxq_bm_enable(pp, rxq);
		mvneta_rxq_long_pool_set(pp, rxq);
		mvneta_rxq_short_pool_set(pp, rxq);
	}

2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820
	mvneta_rxq_fill(pp, rxq, rxq->size);

	return 0;
}

/* Cleanup Rx queue */
static void mvneta_rxq_deinit(struct mvneta_port *pp,
			      struct mvneta_rx_queue *rxq)
{
	mvneta_rxq_drop_pkts(pp, rxq);

	if (rxq->descs)
		dma_free_coherent(pp->dev->dev.parent,
				  rxq->size * MVNETA_DESC_ALIGNED_SIZE,
				  rxq->descs,
				  rxq->descs_phys);

	rxq->descs             = NULL;
	rxq->last_desc         = 0;
	rxq->next_desc_to_proc = 0;
	rxq->descs_phys        = 0;
}

/* Create and initialize a tx queue */
static int mvneta_txq_init(struct mvneta_port *pp,
			   struct mvneta_tx_queue *txq)
{
2821 2822
	int cpu;

2823 2824
	txq->size = pp->tx_ring_size;

2825 2826 2827 2828 2829 2830 2831 2832
	/* A queue must always have room for at least one skb.
	 * Therefore, stop the queue when the free entries reaches
	 * the maximum number of descriptors per skb.
	 */
	txq->tx_stop_threshold = txq->size - MVNETA_MAX_SKB_DESCS;
	txq->tx_wake_threshold = txq->tx_stop_threshold / 2;


2833 2834 2835 2836
	/* Allocate memory for TX descriptors */
	txq->descs = dma_alloc_coherent(pp->dev->dev.parent,
					txq->size * MVNETA_DESC_ALIGNED_SIZE,
					&txq->descs_phys, GFP_KERNEL);
2837
	if (txq->descs == NULL)
2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860
		return -ENOMEM;

	/* Make sure descriptor address is cache line size aligned  */
	BUG_ON(txq->descs !=
	       PTR_ALIGN(txq->descs, MVNETA_CPU_D_CACHE_LINE_SIZE));

	txq->last_desc = txq->size - 1;

	/* Set maximum bandwidth for enabled TXQs */
	mvreg_write(pp, MVETH_TXQ_TOKEN_CFG_REG(txq->id), 0x03ffffff);
	mvreg_write(pp, MVETH_TXQ_TOKEN_COUNT_REG(txq->id), 0x3fffffff);

	/* Set Tx descriptors queue starting address */
	mvreg_write(pp, MVNETA_TXQ_BASE_ADDR_REG(txq->id), txq->descs_phys);
	mvreg_write(pp, MVNETA_TXQ_SIZE_REG(txq->id), txq->size);

	txq->tx_skb = kmalloc(txq->size * sizeof(*txq->tx_skb), GFP_KERNEL);
	if (txq->tx_skb == NULL) {
		dma_free_coherent(pp->dev->dev.parent,
				  txq->size * MVNETA_DESC_ALIGNED_SIZE,
				  txq->descs, txq->descs_phys);
		return -ENOMEM;
	}
2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872

	/* Allocate DMA buffers for TSO MAC/IP/TCP headers */
	txq->tso_hdrs = dma_alloc_coherent(pp->dev->dev.parent,
					   txq->size * TSO_HEADER_SIZE,
					   &txq->tso_hdrs_phys, GFP_KERNEL);
	if (txq->tso_hdrs == NULL) {
		kfree(txq->tx_skb);
		dma_free_coherent(pp->dev->dev.parent,
				  txq->size * MVNETA_DESC_ALIGNED_SIZE,
				  txq->descs, txq->descs_phys);
		return -ENOMEM;
	}
2873 2874
	mvneta_tx_done_pkts_coal_set(pp, txq, txq->done_pkts_coal);

2875 2876 2877 2878 2879 2880 2881 2882
	/* Setup XPS mapping */
	if (txq_number > 1)
		cpu = txq->id % num_present_cpus();
	else
		cpu = pp->rxq_def % num_present_cpus();
	cpumask_set_cpu(cpu, &txq->affinity_mask);
	netif_set_xps_queue(pp->dev, &txq->affinity_mask, txq->id);

2883 2884 2885 2886 2887 2888 2889 2890 2891
	return 0;
}

/* Free allocated resources when mvneta_txq_init() fails to allocate memory*/
static void mvneta_txq_deinit(struct mvneta_port *pp,
			      struct mvneta_tx_queue *txq)
{
	kfree(txq->tx_skb);

2892 2893 2894 2895
	if (txq->tso_hdrs)
		dma_free_coherent(pp->dev->dev.parent,
				  txq->size * TSO_HEADER_SIZE,
				  txq->tso_hdrs, txq->tso_hdrs_phys);
2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926
	if (txq->descs)
		dma_free_coherent(pp->dev->dev.parent,
				  txq->size * MVNETA_DESC_ALIGNED_SIZE,
				  txq->descs, txq->descs_phys);

	txq->descs             = NULL;
	txq->last_desc         = 0;
	txq->next_desc_to_proc = 0;
	txq->descs_phys        = 0;

	/* Set minimum bandwidth for disabled TXQs */
	mvreg_write(pp, MVETH_TXQ_TOKEN_CFG_REG(txq->id), 0);
	mvreg_write(pp, MVETH_TXQ_TOKEN_COUNT_REG(txq->id), 0);

	/* Set Tx descriptors queue starting address and size */
	mvreg_write(pp, MVNETA_TXQ_BASE_ADDR_REG(txq->id), 0);
	mvreg_write(pp, MVNETA_TXQ_SIZE_REG(txq->id), 0);
}

/* Cleanup all Tx queues */
static void mvneta_cleanup_txqs(struct mvneta_port *pp)
{
	int queue;

	for (queue = 0; queue < txq_number; queue++)
		mvneta_txq_deinit(pp, &pp->txqs[queue]);
}

/* Cleanup all Rx queues */
static void mvneta_cleanup_rxqs(struct mvneta_port *pp)
{
2927 2928 2929 2930
	int queue;

	for (queue = 0; queue < txq_number; queue++)
		mvneta_rxq_deinit(pp, &pp->rxqs[queue]);
2931 2932 2933 2934 2935 2936
}


/* Init all Rx queues */
static int mvneta_setup_rxqs(struct mvneta_port *pp)
{
2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947
	int queue;

	for (queue = 0; queue < rxq_number; queue++) {
		int err = mvneta_rxq_init(pp, &pp->rxqs[queue]);

		if (err) {
			netdev_err(pp->dev, "%s: can't create rxq=%d\n",
				   __func__, queue);
			mvneta_cleanup_rxqs(pp);
			return err;
		}
2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972
	}

	return 0;
}

/* Init all tx queues */
static int mvneta_setup_txqs(struct mvneta_port *pp)
{
	int queue;

	for (queue = 0; queue < txq_number; queue++) {
		int err = mvneta_txq_init(pp, &pp->txqs[queue]);
		if (err) {
			netdev_err(pp->dev, "%s: can't create txq=%d\n",
				   __func__, queue);
			mvneta_cleanup_txqs(pp);
			return err;
		}
	}

	return 0;
}

static void mvneta_start_dev(struct mvneta_port *pp)
{
2973
	int cpu;
2974

2975 2976 2977 2978 2979 2980 2981
	mvneta_max_rx_size_set(pp, pp->pkt_size);
	mvneta_txq_max_tx_size_set(pp, pp->pkt_size);

	/* start the Rx/Tx activity */
	mvneta_port_enable(pp);

	/* Enable polling on the port */
2982
	for_each_online_cpu(cpu) {
2983 2984 2985 2986
		struct mvneta_pcpu_port *port = per_cpu_ptr(pp->ports, cpu);

		napi_enable(&port->napi);
	}
2987

2988
	/* Unmask interrupts. It has to be done from each CPU */
2989 2990
	on_each_cpu(mvneta_percpu_unmask_interrupt, pp, true);

2991 2992 2993 2994
	mvreg_write(pp, MVNETA_INTR_MISC_MASK,
		    MVNETA_CAUSE_PHY_STATUS_CHANGE |
		    MVNETA_CAUSE_LINK_CHANGE |
		    MVNETA_CAUSE_PSC_SYNC_CHANGE);
2995 2996 2997 2998 2999 3000 3001

	phy_start(pp->phy_dev);
	netif_tx_start_all_queues(pp->dev);
}

static void mvneta_stop_dev(struct mvneta_port *pp)
{
3002 3003
	unsigned int cpu;

3004 3005
	phy_stop(pp->phy_dev);

3006
	for_each_online_cpu(cpu) {
3007 3008 3009 3010
		struct mvneta_pcpu_port *port = per_cpu_ptr(pp->ports, cpu);

		napi_disable(&port->napi);
	}
3011 3012 3013 3014 3015 3016 3017 3018 3019 3020

	netif_carrier_off(pp->dev);

	mvneta_port_down(pp);
	netif_tx_stop_all_queues(pp->dev);

	/* Stop the port activity */
	mvneta_port_disable(pp);

	/* Clear all ethernet port interrupts */
3021
	on_each_cpu(mvneta_percpu_clear_intr_cause, pp, true);
3022 3023

	/* Mask all ethernet port interrupts */
3024
	on_each_cpu(mvneta_percpu_mask_interrupt, pp, true);
3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037

	mvneta_tx_reset(pp);
	mvneta_rx_reset(pp);
}

/* Return positive if MTU is valid */
static int mvneta_check_mtu_valid(struct net_device *dev, int mtu)
{
	if (mtu < 68) {
		netdev_err(dev, "cannot change mtu to less than 68\n");
		return -EINVAL;
	}

3038
	/* 9676 == 9700 - 20 and rounding to 8 */
3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064
	if (mtu > 9676) {
		netdev_info(dev, "Illegal MTU value %d, round to 9676\n", mtu);
		mtu = 9676;
	}

	if (!IS_ALIGNED(MVNETA_RX_PKT_SIZE(mtu), 8)) {
		netdev_info(dev, "Illegal MTU value %d, rounding to %d\n",
			mtu, ALIGN(MVNETA_RX_PKT_SIZE(mtu), 8));
		mtu = ALIGN(MVNETA_RX_PKT_SIZE(mtu), 8);
	}

	return mtu;
}

/* Change the device mtu */
static int mvneta_change_mtu(struct net_device *dev, int mtu)
{
	struct mvneta_port *pp = netdev_priv(dev);
	int ret;

	mtu = mvneta_check_mtu_valid(dev, mtu);
	if (mtu < 0)
		return -EINVAL;

	dev->mtu = mtu;

3065
	if (!netif_running(dev)) {
3066 3067 3068
		if (pp->bm_priv)
			mvneta_bm_update_mtu(pp, mtu);

3069
		netdev_update_features(dev);
3070
		return 0;
3071
	}
3072

3073
	/* The interface is running, so we have to force a
3074
	 * reallocation of the queues
3075 3076 3077 3078 3079 3080
	 */
	mvneta_stop_dev(pp);

	mvneta_cleanup_txqs(pp);
	mvneta_cleanup_rxqs(pp);

3081 3082 3083
	if (pp->bm_priv)
		mvneta_bm_update_mtu(pp, mtu);

3084
	pp->pkt_size = MVNETA_RX_PKT_SIZE(dev->mtu);
3085 3086
	pp->frag_size = SKB_DATA_ALIGN(MVNETA_RX_BUF_SIZE(pp->pkt_size)) +
	                SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
3087 3088 3089

	ret = mvneta_setup_rxqs(pp);
	if (ret) {
3090
		netdev_err(dev, "unable to setup rxqs after MTU change\n");
3091 3092 3093
		return ret;
	}

3094 3095 3096 3097 3098
	ret = mvneta_setup_txqs(pp);
	if (ret) {
		netdev_err(dev, "unable to setup txqs after MTU change\n");
		return ret;
	}
3099 3100 3101 3102

	mvneta_start_dev(pp);
	mvneta_port_up(pp);

3103 3104
	netdev_update_features(dev);

3105 3106 3107
	return 0;
}

3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122
static netdev_features_t mvneta_fix_features(struct net_device *dev,
					     netdev_features_t features)
{
	struct mvneta_port *pp = netdev_priv(dev);

	if (pp->tx_csum_limit && dev->mtu > pp->tx_csum_limit) {
		features &= ~(NETIF_F_IP_CSUM | NETIF_F_TSO);
		netdev_info(dev,
			    "Disable IP checksum for MTU greater than %dB\n",
			    pp->tx_csum_limit);
	}

	return features;
}

3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137
/* Get mac address */
static void mvneta_get_mac_addr(struct mvneta_port *pp, unsigned char *addr)
{
	u32 mac_addr_l, mac_addr_h;

	mac_addr_l = mvreg_read(pp, MVNETA_MAC_ADDR_LOW);
	mac_addr_h = mvreg_read(pp, MVNETA_MAC_ADDR_HIGH);
	addr[0] = (mac_addr_h >> 24) & 0xFF;
	addr[1] = (mac_addr_h >> 16) & 0xFF;
	addr[2] = (mac_addr_h >> 8) & 0xFF;
	addr[3] = mac_addr_h & 0xFF;
	addr[4] = (mac_addr_l >> 8) & 0xFF;
	addr[5] = mac_addr_l & 0xFF;
}

3138 3139 3140 3141
/* Handle setting mac address */
static int mvneta_set_mac_addr(struct net_device *dev, void *addr)
{
	struct mvneta_port *pp = netdev_priv(dev);
3142 3143
	struct sockaddr *sockaddr = addr;
	int ret;
3144

3145 3146 3147
	ret = eth_prepare_mac_addr_change(dev, addr);
	if (ret < 0)
		return ret;
3148 3149 3150 3151
	/* Remove previous address table entry */
	mvneta_mac_addr_set(pp, dev->dev_addr, -1);

	/* Set new addr in hw */
3152
	mvneta_mac_addr_set(pp, sockaddr->sa_data, pp->rxq_def);
3153

3154
	eth_commit_mac_addr_change(dev, addr);
3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171
	return 0;
}

static void mvneta_adjust_link(struct net_device *ndev)
{
	struct mvneta_port *pp = netdev_priv(ndev);
	struct phy_device *phydev = pp->phy_dev;
	int status_change = 0;

	if (phydev->link) {
		if ((pp->speed != phydev->speed) ||
		    (pp->duplex != phydev->duplex)) {
			u32 val;

			val = mvreg_read(pp, MVNETA_GMAC_AUTONEG_CONFIG);
			val &= ~(MVNETA_GMAC_CONFIG_MII_SPEED |
				 MVNETA_GMAC_CONFIG_GMII_SPEED |
3172
				 MVNETA_GMAC_CONFIG_FULL_DUPLEX);
3173 3174 3175 3176 3177 3178

			if (phydev->duplex)
				val |= MVNETA_GMAC_CONFIG_FULL_DUPLEX;

			if (phydev->speed == SPEED_1000)
				val |= MVNETA_GMAC_CONFIG_GMII_SPEED;
3179
			else if (phydev->speed == SPEED_100)
3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200
				val |= MVNETA_GMAC_CONFIG_MII_SPEED;

			mvreg_write(pp, MVNETA_GMAC_AUTONEG_CONFIG, val);

			pp->duplex = phydev->duplex;
			pp->speed  = phydev->speed;
		}
	}

	if (phydev->link != pp->link) {
		if (!phydev->link) {
			pp->duplex = -1;
			pp->speed = 0;
		}

		pp->link = phydev->link;
		status_change = 1;
	}

	if (status_change) {
		if (phydev->link) {
3201 3202 3203 3204 3205 3206 3207 3208
			if (!pp->use_inband_status) {
				u32 val = mvreg_read(pp,
						  MVNETA_GMAC_AUTONEG_CONFIG);
				val &= ~MVNETA_GMAC_FORCE_LINK_DOWN;
				val |= MVNETA_GMAC_FORCE_LINK_PASS;
				mvreg_write(pp, MVNETA_GMAC_AUTONEG_CONFIG,
					    val);
			}
3209 3210
			mvneta_port_up(pp);
		} else {
3211 3212 3213 3214 3215 3216 3217 3218
			if (!pp->use_inband_status) {
				u32 val = mvreg_read(pp,
						  MVNETA_GMAC_AUTONEG_CONFIG);
				val &= ~MVNETA_GMAC_FORCE_LINK_PASS;
				val |= MVNETA_GMAC_FORCE_LINK_DOWN;
				mvreg_write(pp, MVNETA_GMAC_AUTONEG_CONFIG,
					    val);
			}
3219 3220
			mvneta_port_down(pp);
		}
3221
		phy_print_status(phydev);
3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252
	}
}

static int mvneta_mdio_probe(struct mvneta_port *pp)
{
	struct phy_device *phy_dev;

	phy_dev = of_phy_connect(pp->dev, pp->phy_node, mvneta_adjust_link, 0,
				 pp->phy_interface);
	if (!phy_dev) {
		netdev_err(pp->dev, "could not find the PHY\n");
		return -ENODEV;
	}

	phy_dev->supported &= PHY_GBIT_FEATURES;
	phy_dev->advertising = phy_dev->supported;

	pp->phy_dev = phy_dev;
	pp->link    = 0;
	pp->duplex  = 0;
	pp->speed   = 0;

	return 0;
}

static void mvneta_mdio_remove(struct mvneta_port *pp)
{
	phy_disconnect(pp->phy_dev);
	pp->phy_dev = NULL;
}

3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266
static void mvneta_percpu_enable(void *arg)
{
	struct mvneta_port *pp = arg;

	enable_percpu_irq(pp->dev->irq, IRQ_TYPE_NONE);
}

static void mvneta_percpu_disable(void *arg)
{
	struct mvneta_port *pp = arg;

	disable_percpu_irq(pp->dev->irq);
}

3267 3268 3269 3270
/* Electing a CPU must be done in an atomic way: it should be done
 * after or before the removal/insertion of a CPU and this function is
 * not reentrant.
 */
3271 3272
static void mvneta_percpu_elect(struct mvneta_port *pp)
{
3273 3274 3275 3276 3277 3278 3279
	int elected_cpu = 0, max_cpu, cpu, i = 0;

	/* Use the cpu associated to the rxq when it is online, in all
	 * the other cases, use the cpu 0 which can't be offline.
	 */
	if (cpu_online(pp->rxq_def))
		elected_cpu = pp->rxq_def;
3280

3281
	max_cpu = num_present_cpus();
3282 3283

	for_each_online_cpu(cpu) {
3284 3285 3286 3287 3288 3289 3290
		int rxq_map = 0, txq_map = 0;
		int rxq;

		for (rxq = 0; rxq < rxq_number; rxq++)
			if ((rxq % max_cpu) == cpu)
				rxq_map |= MVNETA_CPU_RXQ_ACCESS(rxq);

3291
		if (cpu == elected_cpu)
3292 3293
			/* Map the default receive queue queue to the
			 * elected CPU
3294
			 */
3295
			rxq_map |= MVNETA_CPU_RXQ_ACCESS(pp->rxq_def);
3296 3297 3298 3299 3300 3301

		/* We update the TX queue map only if we have one
		 * queue. In this case we associate the TX queue to
		 * the CPU bound to the default RX queue
		 */
		if (txq_number == 1)
3302
			txq_map = (cpu == elected_cpu) ?
3303 3304 3305 3306 3307
				MVNETA_CPU_TXQ_ACCESS(1) : 0;
		else
			txq_map = mvreg_read(pp, MVNETA_CPU_MAP(cpu)) &
				MVNETA_CPU_TXQ_ACCESS_ALL_MASK;

3308 3309 3310 3311 3312 3313 3314
		mvreg_write(pp, MVNETA_CPU_MAP(cpu), rxq_map | txq_map);

		/* Update the interrupt mask on each CPU according the
		 * new mapping
		 */
		smp_call_function_single(cpu, mvneta_percpu_unmask_interrupt,
					 pp, true);
3315
		i++;
3316

3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330
	}
};

static int mvneta_percpu_notifier(struct notifier_block *nfb,
				  unsigned long action, void *hcpu)
{
	struct mvneta_port *pp = container_of(nfb, struct mvneta_port,
					      cpu_notifier);
	int cpu = (unsigned long)hcpu, other_cpu;
	struct mvneta_pcpu_port *port = per_cpu_ptr(pp->ports, cpu);

	switch (action) {
	case CPU_ONLINE:
	case CPU_ONLINE_FROZEN:
3331 3332 3333 3334 3335 3336 3337 3338
		spin_lock(&pp->lock);
		/* Configuring the driver for a new CPU while the
		 * driver is stopping is racy, so just avoid it.
		 */
		if (pp->is_stopped) {
			spin_unlock(&pp->lock);
			break;
		}
3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353
		netif_tx_stop_all_queues(pp->dev);

		/* We have to synchronise on tha napi of each CPU
		 * except the one just being waked up
		 */
		for_each_online_cpu(other_cpu) {
			if (other_cpu != cpu) {
				struct mvneta_pcpu_port *other_port =
					per_cpu_ptr(pp->ports, other_cpu);

				napi_synchronize(&other_port->napi);
			}
		}

		/* Mask all ethernet port interrupts */
3354
		on_each_cpu(mvneta_percpu_mask_interrupt, pp, true);
3355 3356
		napi_enable(&port->napi);

3357 3358 3359 3360 3361 3362 3363

		/* Enable per-CPU interrupts on the CPU that is
		 * brought up.
		 */
		smp_call_function_single(cpu, mvneta_percpu_enable,
					 pp, true);

3364 3365 3366 3367 3368
		/* Enable per-CPU interrupt on the one CPU we care
		 * about.
		 */
		mvneta_percpu_elect(pp);

3369 3370
		/* Unmask all ethernet port interrupts */
		on_each_cpu(mvneta_percpu_unmask_interrupt, pp, true);
3371 3372 3373 3374 3375
		mvreg_write(pp, MVNETA_INTR_MISC_MASK,
			MVNETA_CAUSE_PHY_STATUS_CHANGE |
			MVNETA_CAUSE_LINK_CHANGE |
			MVNETA_CAUSE_PSC_SYNC_CHANGE);
		netif_tx_start_all_queues(pp->dev);
3376
		spin_unlock(&pp->lock);
3377 3378 3379 3380
		break;
	case CPU_DOWN_PREPARE:
	case CPU_DOWN_PREPARE_FROZEN:
		netif_tx_stop_all_queues(pp->dev);
3381 3382 3383 3384
		/* Thanks to this lock we are sure that any pending
		 * cpu election is done
		 */
		spin_lock(&pp->lock);
3385
		/* Mask all ethernet port interrupts */
3386
		on_each_cpu(mvneta_percpu_mask_interrupt, pp, true);
3387
		spin_unlock(&pp->lock);
3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400

		napi_synchronize(&port->napi);
		napi_disable(&port->napi);
		/* Disable per-CPU interrupts on the CPU that is
		 * brought down.
		 */
		smp_call_function_single(cpu, mvneta_percpu_disable,
					 pp, true);

		break;
	case CPU_DEAD:
	case CPU_DEAD_FROZEN:
		/* Check if a new CPU must be elected now this on is down */
3401
		spin_lock(&pp->lock);
3402
		mvneta_percpu_elect(pp);
3403
		spin_unlock(&pp->lock);
3404
		/* Unmask all ethernet port interrupts */
3405
		on_each_cpu(mvneta_percpu_unmask_interrupt, pp, true);
3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416
		mvreg_write(pp, MVNETA_INTR_MISC_MASK,
			MVNETA_CAUSE_PHY_STATUS_CHANGE |
			MVNETA_CAUSE_LINK_CHANGE |
			MVNETA_CAUSE_PSC_SYNC_CHANGE);
		netif_tx_start_all_queues(pp->dev);
		break;
	}

	return NOTIFY_OK;
}

3417 3418 3419
static int mvneta_open(struct net_device *dev)
{
	struct mvneta_port *pp = netdev_priv(dev);
3420
	int ret;
3421 3422

	pp->pkt_size = MVNETA_RX_PKT_SIZE(pp->dev->mtu);
3423 3424
	pp->frag_size = SKB_DATA_ALIGN(MVNETA_RX_BUF_SIZE(pp->pkt_size)) +
	                SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
3425 3426 3427 3428 3429 3430 3431 3432 3433 3434

	ret = mvneta_setup_rxqs(pp);
	if (ret)
		return ret;

	ret = mvneta_setup_txqs(pp);
	if (ret)
		goto err_cleanup_rxqs;

	/* Connect to port interrupt line */
3435 3436
	ret = request_percpu_irq(pp->dev->irq, mvneta_isr,
				 MVNETA_DRIVER_NAME, pp->ports);
3437 3438 3439 3440 3441
	if (ret) {
		netdev_err(pp->dev, "cannot request irq %d\n", pp->dev->irq);
		goto err_cleanup_txqs;
	}

3442 3443 3444
	/* Enable per-CPU interrupt on all the CPU to handle our RX
	 * queue interrupts
	 */
3445
	on_each_cpu(mvneta_percpu_enable, pp, true);
3446

3447
	pp->is_stopped = false;
3448 3449 3450 3451 3452
	/* Register a CPU notifier to handle the case where our CPU
	 * might be taken offline.
	 */
	register_cpu_notifier(&pp->cpu_notifier);

3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466
	/* In default link is down */
	netif_carrier_off(pp->dev);

	ret = mvneta_mdio_probe(pp);
	if (ret < 0) {
		netdev_err(dev, "cannot probe MDIO bus\n");
		goto err_free_irq;
	}

	mvneta_start_dev(pp);

	return 0;

err_free_irq:
3467
	free_percpu_irq(pp->dev->irq, pp->ports);
3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479
err_cleanup_txqs:
	mvneta_cleanup_txqs(pp);
err_cleanup_rxqs:
	mvneta_cleanup_rxqs(pp);
	return ret;
}

/* Stop the port, free port interrupt line */
static int mvneta_stop(struct net_device *dev)
{
	struct mvneta_port *pp = netdev_priv(dev);

3480 3481 3482 3483 3484
	/* Inform that we are stopping so we don't want to setup the
	 * driver for new CPUs in the notifiers
	 */
	spin_lock(&pp->lock);
	pp->is_stopped = true;
3485 3486
	mvneta_stop_dev(pp);
	mvneta_mdio_remove(pp);
3487
	unregister_cpu_notifier(&pp->cpu_notifier);
3488 3489 3490 3491
	/* Now that the notifier are unregistered, we can release le
	 * lock
	 */
	spin_unlock(&pp->lock);
3492
	on_each_cpu(mvneta_percpu_disable, pp, true);
3493
	free_percpu_irq(dev->irq, pp->ports);
3494 3495 3496 3497 3498 3499
	mvneta_cleanup_rxqs(pp);
	mvneta_cleanup_txqs(pp);

	return 0;
}

3500 3501 3502 3503 3504 3505 3506
static int mvneta_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
{
	struct mvneta_port *pp = netdev_priv(dev);

	if (!pp->phy_dev)
		return -ENOTSUPP;

3507
	return phy_mii_ioctl(pp->phy_dev, ifr, cmd);
3508 3509
}

3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526
/* Ethtool methods */

/* Get settings (phy address, speed) for ethtools */
int mvneta_ethtool_get_settings(struct net_device *dev, struct ethtool_cmd *cmd)
{
	struct mvneta_port *pp = netdev_priv(dev);

	if (!pp->phy_dev)
		return -ENODEV;

	return phy_ethtool_gset(pp->phy_dev, cmd);
}

/* Set settings (phy address, speed) for ethtools */
int mvneta_ethtool_set_settings(struct net_device *dev, struct ethtool_cmd *cmd)
{
	struct mvneta_port *pp = netdev_priv(dev);
3527
	struct phy_device *phydev = pp->phy_dev;
3528

3529
	if (!phydev)
3530 3531
		return -ENODEV;

3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563
	if ((cmd->autoneg == AUTONEG_ENABLE) != pp->use_inband_status) {
		u32 val;

		mvneta_set_autoneg(pp, cmd->autoneg == AUTONEG_ENABLE);

		if (cmd->autoneg == AUTONEG_DISABLE) {
			val = mvreg_read(pp, MVNETA_GMAC_AUTONEG_CONFIG);
			val &= ~(MVNETA_GMAC_CONFIG_MII_SPEED |
				 MVNETA_GMAC_CONFIG_GMII_SPEED |
				 MVNETA_GMAC_CONFIG_FULL_DUPLEX);

			if (phydev->duplex)
				val |= MVNETA_GMAC_CONFIG_FULL_DUPLEX;

			if (phydev->speed == SPEED_1000)
				val |= MVNETA_GMAC_CONFIG_GMII_SPEED;
			else if (phydev->speed == SPEED_100)
				val |= MVNETA_GMAC_CONFIG_MII_SPEED;

			mvreg_write(pp, MVNETA_GMAC_AUTONEG_CONFIG, val);
		}

		pp->use_inband_status = (cmd->autoneg == AUTONEG_ENABLE);
		netdev_info(pp->dev, "autoneg status set to %i\n",
			    pp->use_inband_status);

		if (netif_running(dev)) {
			mvneta_port_down(pp);
			mvneta_port_up(pp);
		}
	}

3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636
	return phy_ethtool_sset(pp->phy_dev, cmd);
}

/* Set interrupt coalescing for ethtools */
static int mvneta_ethtool_set_coalesce(struct net_device *dev,
				       struct ethtool_coalesce *c)
{
	struct mvneta_port *pp = netdev_priv(dev);
	int queue;

	for (queue = 0; queue < rxq_number; queue++) {
		struct mvneta_rx_queue *rxq = &pp->rxqs[queue];
		rxq->time_coal = c->rx_coalesce_usecs;
		rxq->pkts_coal = c->rx_max_coalesced_frames;
		mvneta_rx_pkts_coal_set(pp, rxq, rxq->pkts_coal);
		mvneta_rx_time_coal_set(pp, rxq, rxq->time_coal);
	}

	for (queue = 0; queue < txq_number; queue++) {
		struct mvneta_tx_queue *txq = &pp->txqs[queue];
		txq->done_pkts_coal = c->tx_max_coalesced_frames;
		mvneta_tx_done_pkts_coal_set(pp, txq, txq->done_pkts_coal);
	}

	return 0;
}

/* get coalescing for ethtools */
static int mvneta_ethtool_get_coalesce(struct net_device *dev,
				       struct ethtool_coalesce *c)
{
	struct mvneta_port *pp = netdev_priv(dev);

	c->rx_coalesce_usecs        = pp->rxqs[0].time_coal;
	c->rx_max_coalesced_frames  = pp->rxqs[0].pkts_coal;

	c->tx_max_coalesced_frames =  pp->txqs[0].done_pkts_coal;
	return 0;
}


static void mvneta_ethtool_get_drvinfo(struct net_device *dev,
				    struct ethtool_drvinfo *drvinfo)
{
	strlcpy(drvinfo->driver, MVNETA_DRIVER_NAME,
		sizeof(drvinfo->driver));
	strlcpy(drvinfo->version, MVNETA_DRIVER_VERSION,
		sizeof(drvinfo->version));
	strlcpy(drvinfo->bus_info, dev_name(&dev->dev),
		sizeof(drvinfo->bus_info));
}


static void mvneta_ethtool_get_ringparam(struct net_device *netdev,
					 struct ethtool_ringparam *ring)
{
	struct mvneta_port *pp = netdev_priv(netdev);

	ring->rx_max_pending = MVNETA_MAX_RXD;
	ring->tx_max_pending = MVNETA_MAX_TXD;
	ring->rx_pending = pp->rx_ring_size;
	ring->tx_pending = pp->tx_ring_size;
}

static int mvneta_ethtool_set_ringparam(struct net_device *dev,
					struct ethtool_ringparam *ring)
{
	struct mvneta_port *pp = netdev_priv(dev);

	if ((ring->rx_pending == 0) || (ring->tx_pending == 0))
		return -EINVAL;
	pp->rx_ring_size = ring->rx_pending < MVNETA_MAX_RXD ?
		ring->rx_pending : MVNETA_MAX_RXD;
3637 3638 3639 3640 3641 3642

	pp->tx_ring_size = clamp_t(u16, ring->tx_pending,
				   MVNETA_MAX_SKB_DESCS * 2, MVNETA_MAX_TXD);
	if (pp->tx_ring_size != ring->tx_pending)
		netdev_warn(dev, "TX queue size set to %u (requested %u)\n",
			    pp->tx_ring_size, ring->tx_pending);
3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655

	if (netif_running(dev)) {
		mvneta_stop(dev);
		if (mvneta_open(dev)) {
			netdev_err(dev,
				   "error on opening device after ring param change\n");
			return -ENOMEM;
		}
	}

	return 0;
}

R
Russell King 已提交
3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672
static void mvneta_ethtool_get_strings(struct net_device *netdev, u32 sset,
				       u8 *data)
{
	if (sset == ETH_SS_STATS) {
		int i;

		for (i = 0; i < ARRAY_SIZE(mvneta_statistics); i++)
			memcpy(data + i * ETH_GSTRING_LEN,
			       mvneta_statistics[i].name, ETH_GSTRING_LEN);
	}
}

static void mvneta_ethtool_update_stats(struct mvneta_port *pp)
{
	const struct mvneta_statistic *s;
	void __iomem *base = pp->base;
	u32 high, low, val;
3673
	u64 val64;
R
Russell King 已提交
3674 3675 3676 3677 3678 3679 3680 3681
	int i;

	for (i = 0, s = mvneta_statistics;
	     s < mvneta_statistics + ARRAY_SIZE(mvneta_statistics);
	     s++, i++) {
		switch (s->type) {
		case T_REG_32:
			val = readl_relaxed(base + s->offset);
3682
			pp->ethtool_stats[i] += val;
R
Russell King 已提交
3683 3684 3685 3686 3687
			break;
		case T_REG_64:
			/* Docs say to read low 32-bit then high */
			low = readl_relaxed(base + s->offset);
			high = readl_relaxed(base + s->offset + 4);
3688 3689
			val64 = (u64)high << 32 | low;
			pp->ethtool_stats[i] += val64;
R
Russell King 已提交
3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713
			break;
		}
	}
}

static void mvneta_ethtool_get_stats(struct net_device *dev,
				     struct ethtool_stats *stats, u64 *data)
{
	struct mvneta_port *pp = netdev_priv(dev);
	int i;

	mvneta_ethtool_update_stats(pp);

	for (i = 0; i < ARRAY_SIZE(mvneta_statistics); i++)
		*data++ = pp->ethtool_stats[i];
}

static int mvneta_ethtool_get_sset_count(struct net_device *dev, int sset)
{
	if (sset == ETH_SS_STATS)
		return ARRAY_SIZE(mvneta_statistics);
	return -EOPNOTSUPP;
}

3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740
static u32 mvneta_ethtool_get_rxfh_indir_size(struct net_device *dev)
{
	return MVNETA_RSS_LU_TABLE_SIZE;
}

static int mvneta_ethtool_get_rxnfc(struct net_device *dev,
				    struct ethtool_rxnfc *info,
				    u32 *rules __always_unused)
{
	switch (info->cmd) {
	case ETHTOOL_GRXRINGS:
		info->data =  rxq_number;
		return 0;
	case ETHTOOL_GRXFH:
		return -EOPNOTSUPP;
	default:
		return -EOPNOTSUPP;
	}
}

static int  mvneta_config_rss(struct mvneta_port *pp)
{
	int cpu;
	u32 val;

	netif_tx_stop_all_queues(pp->dev);

3741
	on_each_cpu(mvneta_percpu_mask_interrupt, pp, true);
3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761

	/* We have to synchronise on the napi of each CPU */
	for_each_online_cpu(cpu) {
		struct mvneta_pcpu_port *pcpu_port =
			per_cpu_ptr(pp->ports, cpu);

		napi_synchronize(&pcpu_port->napi);
		napi_disable(&pcpu_port->napi);
	}

	pp->rxq_def = pp->indir[0];

	/* Update unicast mapping */
	mvneta_set_rx_mode(pp->dev);

	/* Update val of portCfg register accordingly with all RxQueue types */
	val = MVNETA_PORT_CONFIG_DEFL_VALUE(pp->rxq_def);
	mvreg_write(pp, MVNETA_PORT_CONFIG, val);

	/* Update the elected CPU matching the new rxq_def */
3762
	spin_lock(&pp->lock);
3763
	mvneta_percpu_elect(pp);
3764
	spin_unlock(&pp->lock);
3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813

	/* We have to synchronise on the napi of each CPU */
	for_each_online_cpu(cpu) {
		struct mvneta_pcpu_port *pcpu_port =
			per_cpu_ptr(pp->ports, cpu);

		napi_enable(&pcpu_port->napi);
	}

	netif_tx_start_all_queues(pp->dev);

	return 0;
}

static int mvneta_ethtool_set_rxfh(struct net_device *dev, const u32 *indir,
				   const u8 *key, const u8 hfunc)
{
	struct mvneta_port *pp = netdev_priv(dev);
	/* We require at least one supported parameter to be changed
	 * and no change in any of the unsupported parameters
	 */
	if (key ||
	    (hfunc != ETH_RSS_HASH_NO_CHANGE && hfunc != ETH_RSS_HASH_TOP))
		return -EOPNOTSUPP;

	if (!indir)
		return 0;

	memcpy(pp->indir, indir, MVNETA_RSS_LU_TABLE_SIZE);

	return mvneta_config_rss(pp);
}

static int mvneta_ethtool_get_rxfh(struct net_device *dev, u32 *indir, u8 *key,
				   u8 *hfunc)
{
	struct mvneta_port *pp = netdev_priv(dev);

	if (hfunc)
		*hfunc = ETH_RSS_HASH_TOP;

	if (!indir)
		return 0;

	memcpy(indir, pp->indir, MVNETA_RSS_LU_TABLE_SIZE);

	return 0;
}

3814 3815 3816 3817 3818 3819 3820
static const struct net_device_ops mvneta_netdev_ops = {
	.ndo_open            = mvneta_open,
	.ndo_stop            = mvneta_stop,
	.ndo_start_xmit      = mvneta_tx,
	.ndo_set_rx_mode     = mvneta_set_rx_mode,
	.ndo_set_mac_address = mvneta_set_mac_addr,
	.ndo_change_mtu      = mvneta_change_mtu,
3821
	.ndo_fix_features    = mvneta_fix_features,
3822
	.ndo_get_stats64     = mvneta_get_stats64,
3823
	.ndo_do_ioctl        = mvneta_ioctl,
3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834
};

const struct ethtool_ops mvneta_eth_tool_ops = {
	.get_link       = ethtool_op_get_link,
	.get_settings   = mvneta_ethtool_get_settings,
	.set_settings   = mvneta_ethtool_set_settings,
	.set_coalesce   = mvneta_ethtool_set_coalesce,
	.get_coalesce   = mvneta_ethtool_get_coalesce,
	.get_drvinfo    = mvneta_ethtool_get_drvinfo,
	.get_ringparam  = mvneta_ethtool_get_ringparam,
	.set_ringparam	= mvneta_ethtool_set_ringparam,
R
Russell King 已提交
3835 3836 3837
	.get_strings	= mvneta_ethtool_get_strings,
	.get_ethtool_stats = mvneta_ethtool_get_stats,
	.get_sset_count	= mvneta_ethtool_get_sset_count,
3838 3839 3840 3841
	.get_rxfh_indir_size = mvneta_ethtool_get_rxfh_indir_size,
	.get_rxnfc	= mvneta_ethtool_get_rxnfc,
	.get_rxfh	= mvneta_ethtool_get_rxfh,
	.set_rxfh	= mvneta_ethtool_set_rxfh,
3842 3843 3844
};

/* Initialize hw */
3845
static int mvneta_init(struct device *dev, struct mvneta_port *pp)
3846 3847 3848 3849 3850 3851 3852 3853 3854
{
	int queue;

	/* Disable port */
	mvneta_port_disable(pp);

	/* Set port default values */
	mvneta_defaults_set(pp);

3855 3856
	pp->txqs = devm_kcalloc(dev, txq_number, sizeof(struct mvneta_tx_queue),
				GFP_KERNEL);
3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867
	if (!pp->txqs)
		return -ENOMEM;

	/* Initialize TX descriptor rings */
	for (queue = 0; queue < txq_number; queue++) {
		struct mvneta_tx_queue *txq = &pp->txqs[queue];
		txq->id = queue;
		txq->size = pp->tx_ring_size;
		txq->done_pkts_coal = MVNETA_TXDONE_COAL_PKTS;
	}

3868 3869 3870
	pp->rxqs = devm_kcalloc(dev, rxq_number, sizeof(struct mvneta_rx_queue),
				GFP_KERNEL);
	if (!pp->rxqs)
3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885
		return -ENOMEM;

	/* Create Rx descriptor rings */
	for (queue = 0; queue < rxq_number; queue++) {
		struct mvneta_rx_queue *rxq = &pp->rxqs[queue];
		rxq->id = queue;
		rxq->size = pp->rx_ring_size;
		rxq->pkts_coal = MVNETA_RX_COAL_PKTS;
		rxq->time_coal = MVNETA_RX_COAL_USEC;
	}

	return 0;
}

/* platform glue : initialize decoding windows */
G
Greg KH 已提交
3886 3887
static void mvneta_conf_mbus_windows(struct mvneta_port *pp,
				     const struct mbus_dram_target_info *dram)
3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916
{
	u32 win_enable;
	u32 win_protect;
	int i;

	for (i = 0; i < 6; i++) {
		mvreg_write(pp, MVNETA_WIN_BASE(i), 0);
		mvreg_write(pp, MVNETA_WIN_SIZE(i), 0);

		if (i < 4)
			mvreg_write(pp, MVNETA_WIN_REMAP(i), 0);
	}

	win_enable = 0x3f;
	win_protect = 0;

	for (i = 0; i < dram->num_cs; i++) {
		const struct mbus_dram_window *cs = dram->cs + i;
		mvreg_write(pp, MVNETA_WIN_BASE(i), (cs->base & 0xffff0000) |
			    (cs->mbus_attr << 8) | dram->mbus_dram_target_id);

		mvreg_write(pp, MVNETA_WIN_SIZE(i),
			    (cs->size - 1) & 0xffff0000);

		win_enable &= ~(1 << i);
		win_protect |= 3 << (2 * i);
	}

	mvreg_write(pp, MVNETA_BASE_ADDR_ENABLE, win_enable);
3917
	mvreg_write(pp, MVNETA_ACCESS_PROTECT_ENABLE, win_protect);
3918 3919 3920
}

/* Power up the port */
3921
static int mvneta_port_power_up(struct mvneta_port *pp, int phy_mode)
3922
{
3923
	u32 ctrl;
3924 3925 3926 3927

	/* MAC Cause register should be cleared */
	mvreg_write(pp, MVNETA_UNIT_INTR_CAUSE, 0);

3928
	ctrl = mvreg_read(pp, MVNETA_GMAC_CTRL_2);
3929

3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948
	/* Even though it might look weird, when we're configured in
	 * SGMII or QSGMII mode, the RGMII bit needs to be set.
	 */
	switch(phy_mode) {
	case PHY_INTERFACE_MODE_QSGMII:
		mvreg_write(pp, MVNETA_SERDES_CFG, MVNETA_QSGMII_SERDES_PROTO);
		ctrl |= MVNETA_GMAC2_PCS_ENABLE | MVNETA_GMAC2_PORT_RGMII;
		break;
	case PHY_INTERFACE_MODE_SGMII:
		mvreg_write(pp, MVNETA_SERDES_CFG, MVNETA_SGMII_SERDES_PROTO);
		ctrl |= MVNETA_GMAC2_PCS_ENABLE | MVNETA_GMAC2_PORT_RGMII;
		break;
	case PHY_INTERFACE_MODE_RGMII:
	case PHY_INTERFACE_MODE_RGMII_ID:
		ctrl |= MVNETA_GMAC2_PORT_RGMII;
		break;
	default:
		return -EINVAL;
	}
3949 3950

	/* Cancel Port Reset */
3951 3952
	ctrl &= ~MVNETA_GMAC2_PORT_RESET;
	mvreg_write(pp, MVNETA_GMAC_CTRL_2, ctrl);
3953 3954 3955 3956

	while ((mvreg_read(pp, MVNETA_GMAC_CTRL_2) &
		MVNETA_GMAC2_PORT_RESET) != 0)
		continue;
3957 3958

	return 0;
3959 3960 3961
}

/* Device initialization routine */
G
Greg KH 已提交
3962
static int mvneta_probe(struct platform_device *pdev)
3963 3964
{
	const struct mbus_dram_target_info *dram_target_info;
3965
	struct resource *res;
3966 3967
	struct device_node *dn = pdev->dev.of_node;
	struct device_node *phy_node;
3968
	struct device_node *bm_node;
3969 3970
	struct mvneta_port *pp;
	struct net_device *dev;
3971 3972 3973
	const char *dt_mac_addr;
	char hw_mac_addr[ETH_ALEN];
	const char *mac_from;
3974
	const char *managed;
3975
	int tx_csum_limit;
3976 3977
	int phy_mode;
	int err;
3978
	int cpu;
3979

3980
	dev = alloc_etherdev_mqs(sizeof(struct mvneta_port), txq_number, rxq_number);
3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991
	if (!dev)
		return -ENOMEM;

	dev->irq = irq_of_parse_and_map(dn, 0);
	if (dev->irq == 0) {
		err = -EINVAL;
		goto err_free_netdev;
	}

	phy_node = of_parse_phandle(dn, "phy", 0);
	if (!phy_node) {
3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006
		if (!of_phy_is_fixed_link(dn)) {
			dev_err(&pdev->dev, "no PHY specified\n");
			err = -ENODEV;
			goto err_free_irq;
		}

		err = of_phy_register_fixed_link(dn);
		if (err < 0) {
			dev_err(&pdev->dev, "cannot register fixed PHY\n");
			goto err_free_irq;
		}

		/* In the case of a fixed PHY, the DT node associated
		 * to the PHY is the Ethernet MAC DT node.
		 */
4007
		phy_node = of_node_get(dn);
4008 4009 4010 4011 4012 4013
	}

	phy_mode = of_get_phy_mode(dn);
	if (phy_mode < 0) {
		dev_err(&pdev->dev, "incorrect phy-mode\n");
		err = -EINVAL;
4014
		goto err_put_phy_node;
4015 4016 4017 4018 4019 4020
	}

	dev->tx_queue_len = MVNETA_MAX_TXD;
	dev->watchdog_timeo = 5 * HZ;
	dev->netdev_ops = &mvneta_netdev_ops;

4021
	dev->ethtool_ops = &mvneta_eth_tool_ops;
4022 4023 4024 4025

	pp = netdev_priv(dev);
	pp->phy_node = phy_node;
	pp->phy_interface = phy_mode;
4026 4027 4028 4029

	err = of_property_read_string(dn, "managed", &managed);
	pp->use_inband_status = (err == 0 &&
				 strcmp(managed, "in-band-status") == 0);
4030
	pp->cpu_notifier.notifier_call = mvneta_percpu_notifier;
4031

4032 4033
	pp->rxq_def = rxq_def;

4034 4035
	pp->indir[0] = rxq_def;

4036 4037 4038
	pp->clk = devm_clk_get(&pdev->dev, "core");
	if (IS_ERR(pp->clk))
		pp->clk = devm_clk_get(&pdev->dev, NULL);
T
Thomas Petazzoni 已提交
4039 4040
	if (IS_ERR(pp->clk)) {
		err = PTR_ERR(pp->clk);
4041
		goto err_put_phy_node;
T
Thomas Petazzoni 已提交
4042 4043 4044 4045
	}

	clk_prepare_enable(pp->clk);

4046 4047 4048 4049
	pp->clk_bus = devm_clk_get(&pdev->dev, "bus");
	if (!IS_ERR(pp->clk_bus))
		clk_prepare_enable(pp->clk_bus);

4050 4051 4052 4053
	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
	pp->base = devm_ioremap_resource(&pdev->dev, res);
	if (IS_ERR(pp->base)) {
		err = PTR_ERR(pp->base);
4054 4055 4056
		goto err_clk;
	}

4057 4058 4059 4060 4061 4062 4063
	/* Alloc per-cpu port structure */
	pp->ports = alloc_percpu(struct mvneta_pcpu_port);
	if (!pp->ports) {
		err = -ENOMEM;
		goto err_clk;
	}

4064
	/* Alloc per-cpu stats */
4065
	pp->stats = netdev_alloc_pcpu_stats(struct mvneta_pcpu_stats);
4066 4067
	if (!pp->stats) {
		err = -ENOMEM;
4068
		goto err_free_ports;
4069 4070
	}

4071
	dt_mac_addr = of_get_mac_address(dn);
4072
	if (dt_mac_addr) {
4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085
		mac_from = "device tree";
		memcpy(dev->dev_addr, dt_mac_addr, ETH_ALEN);
	} else {
		mvneta_get_mac_addr(pp, hw_mac_addr);
		if (is_valid_ether_addr(hw_mac_addr)) {
			mac_from = "hardware";
			memcpy(dev->dev_addr, hw_mac_addr, ETH_ALEN);
		} else {
			mac_from = "random";
			eth_hw_addr_random(dev);
		}
	}

4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 4096 4097 4098 4099 4100
	if (!of_property_read_u32(dn, "tx-csum-limit", &tx_csum_limit)) {
		if (tx_csum_limit < 0 ||
		    tx_csum_limit > MVNETA_TX_CSUM_MAX_SIZE) {
			tx_csum_limit = MVNETA_TX_CSUM_DEF_SIZE;
			dev_info(&pdev->dev,
				 "Wrong TX csum limit in DT, set to %dB\n",
				 MVNETA_TX_CSUM_DEF_SIZE);
		}
	} else if (of_device_is_compatible(dn, "marvell,armada-370-neta")) {
		tx_csum_limit = MVNETA_TX_CSUM_DEF_SIZE;
	} else {
		tx_csum_limit = MVNETA_TX_CSUM_MAX_SIZE;
	}

	pp->tx_csum_limit = tx_csum_limit;
4101

4102 4103 4104 4105
	dram_target_info = mv_mbus_dram_info();
	if (dram_target_info)
		mvneta_conf_mbus_windows(pp, dram_target_info);

4106 4107 4108 4109 4110 4111
	pp->tx_ring_size = MVNETA_MAX_TXD;
	pp->rx_ring_size = MVNETA_MAX_RXD;

	pp->dev = dev;
	SET_NETDEV_DEV(dev, &pdev->dev);

4112 4113 4114 4115 4116 4117 4118 4119 4120 4121 4122 4123 4124
	pp->id = global_port_id++;

	/* Obtain access to BM resources if enabled and already initialized */
	bm_node = of_parse_phandle(dn, "buffer-manager", 0);
	if (bm_node && bm_node->data) {
		pp->bm_priv = bm_node->data;
		err = mvneta_bm_port_init(pdev, pp);
		if (err < 0) {
			dev_info(&pdev->dev, "use SW buffer management\n");
			pp->bm_priv = NULL;
		}
	}

4125 4126
	err = mvneta_init(&pdev->dev, pp);
	if (err < 0)
4127
		goto err_netdev;
4128 4129 4130 4131

	err = mvneta_port_power_up(pp, phy_mode);
	if (err < 0) {
		dev_err(&pdev->dev, "can't power up port\n");
4132
		goto err_netdev;
4133
	}
4134

4135 4136 4137 4138 4139 4140
	for_each_present_cpu(cpu) {
		struct mvneta_pcpu_port *port = per_cpu_ptr(pp->ports, cpu);

		netif_napi_add(dev, &port->napi, mvneta_poll, NAPI_POLL_WEIGHT);
		port->pp = pp;
	}
4141

4142
	dev->features = NETIF_F_SG | NETIF_F_IP_CSUM | NETIF_F_TSO;
4143 4144
	dev->hw_features |= dev->features;
	dev->vlan_features |= dev->features;
4145
	dev->priv_flags |= IFF_UNICAST_FLT;
4146
	dev->gso_max_segs = MVNETA_MAX_TSO_SEGS;
4147

4148 4149 4150
	err = register_netdev(dev);
	if (err < 0) {
		dev_err(&pdev->dev, "failed to register\n");
4151
		goto err_free_stats;
4152 4153
	}

4154 4155
	netdev_info(dev, "Using %s mac address %pM\n", mac_from,
		    dev->dev_addr);
4156 4157 4158

	platform_set_drvdata(pdev, pp->dev);

4159 4160 4161 4162
	if (pp->use_inband_status) {
		struct phy_device *phy = of_phy_find_device(dn);

		mvneta_fixed_link_update(pp, phy);
4163

A
Andrew Lunn 已提交
4164
		put_device(&phy->mdio.dev);
4165 4166
	}

4167 4168
	return 0;

4169 4170 4171 4172 4173 4174 4175
err_netdev:
	unregister_netdev(dev);
	if (pp->bm_priv) {
		mvneta_bm_pool_destroy(pp->bm_priv, pp->pool_long, 1 << pp->id);
		mvneta_bm_pool_destroy(pp->bm_priv, pp->pool_short,
				       1 << pp->id);
	}
4176 4177
err_free_stats:
	free_percpu(pp->stats);
4178 4179
err_free_ports:
	free_percpu(pp->ports);
4180
err_clk:
4181
	clk_disable_unprepare(pp->clk_bus);
4182
	clk_disable_unprepare(pp->clk);
4183 4184
err_put_phy_node:
	of_node_put(phy_node);
4185 4186 4187 4188 4189 4190 4191 4192
err_free_irq:
	irq_dispose_mapping(dev->irq);
err_free_netdev:
	free_netdev(dev);
	return err;
}

/* Device removal routine */
G
Greg KH 已提交
4193
static int mvneta_remove(struct platform_device *pdev)
4194 4195 4196 4197 4198
{
	struct net_device  *dev = platform_get_drvdata(pdev);
	struct mvneta_port *pp = netdev_priv(dev);

	unregister_netdev(dev);
4199
	clk_disable_unprepare(pp->clk_bus);
T
Thomas Petazzoni 已提交
4200
	clk_disable_unprepare(pp->clk);
4201
	free_percpu(pp->ports);
4202
	free_percpu(pp->stats);
4203
	irq_dispose_mapping(dev->irq);
4204
	of_node_put(pp->phy_node);
4205 4206
	free_netdev(dev);

4207 4208 4209 4210 4211 4212
	if (pp->bm_priv) {
		mvneta_bm_pool_destroy(pp->bm_priv, pp->pool_long, 1 << pp->id);
		mvneta_bm_pool_destroy(pp->bm_priv, pp->pool_short,
				       1 << pp->id);
	}

4213 4214 4215 4216 4217
	return 0;
}

static const struct of_device_id mvneta_match[] = {
	{ .compatible = "marvell,armada-370-neta" },
4218
	{ .compatible = "marvell,armada-xp-neta" },
4219 4220 4221 4222 4223 4224
	{ }
};
MODULE_DEVICE_TABLE(of, mvneta_match);

static struct platform_driver mvneta_driver = {
	.probe = mvneta_probe,
G
Greg KH 已提交
4225
	.remove = mvneta_remove,
4226 4227 4228 4229 4230 4231 4232 4233 4234 4235 4236 4237 4238 4239 4240 4241
	.driver = {
		.name = MVNETA_DRIVER_NAME,
		.of_match_table = mvneta_match,
	},
};

module_platform_driver(mvneta_driver);

MODULE_DESCRIPTION("Marvell NETA Ethernet Driver - www.marvell.com");
MODULE_AUTHOR("Rami Rosen <rosenr@marvell.com>, Thomas Petazzoni <thomas.petazzoni@free-electrons.com>");
MODULE_LICENSE("GPL");

module_param(rxq_number, int, S_IRUGO);
module_param(txq_number, int, S_IRUGO);

module_param(rxq_def, int, S_IRUGO);
4242
module_param(rx_copybreak, int, S_IRUGO | S_IWUSR);