ich8lan.c 116.2 KB
Newer Older
1 2 3
/*******************************************************************************

  Intel PRO/1000 Linux driver
B
Bruce Allan 已提交
4
  Copyright(c) 1999 - 2012 Intel Corporation.
5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29

  This program is free software; you can redistribute it and/or modify it
  under the terms and conditions of the GNU General Public License,
  version 2, as published by the Free Software Foundation.

  This program is distributed in the hope it will be useful, but WITHOUT
  ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
  more details.

  You should have received a copy of the GNU General Public License along with
  this program; if not, write to the Free Software Foundation, Inc.,
  51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.

  The full GNU General Public License is included in this distribution in
  the file called "COPYING".

  Contact Information:
  Linux NICS <linux.nics@intel.com>
  e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
  Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497

*******************************************************************************/

/*
30
 * 82562G 10/100 Network Connection
31 32 33 34 35 36 37 38 39 40 41
 * 82562G-2 10/100 Network Connection
 * 82562GT 10/100 Network Connection
 * 82562GT-2 10/100 Network Connection
 * 82562V 10/100 Network Connection
 * 82562V-2 10/100 Network Connection
 * 82566DC-2 Gigabit Network Connection
 * 82566DC Gigabit Network Connection
 * 82566DM-2 Gigabit Network Connection
 * 82566DM Gigabit Network Connection
 * 82566MC Gigabit Network Connection
 * 82566MM Gigabit Network Connection
42 43
 * 82567LM Gigabit Network Connection
 * 82567LF Gigabit Network Connection
44
 * 82567V Gigabit Network Connection
45 46 47
 * 82567LM-2 Gigabit Network Connection
 * 82567LF-2 Gigabit Network Connection
 * 82567V-2 Gigabit Network Connection
48 49
 * 82567LF-3 Gigabit Network Connection
 * 82567LM-3 Gigabit Network Connection
50
 * 82567LM-4 Gigabit Network Connection
51 52 53 54
 * 82577LM Gigabit Network Connection
 * 82577LC Gigabit Network Connection
 * 82578DM Gigabit Network Connection
 * 82578DC Gigabit Network Connection
55 56
 * 82579LM Gigabit Network Connection
 * 82579V Gigabit Network Connection
57 58 59 60 61 62 63 64 65
 */

#include "e1000.h"

#define ICH_FLASH_GFPREG		0x0000
#define ICH_FLASH_HSFSTS		0x0004
#define ICH_FLASH_HSFCTL		0x0006
#define ICH_FLASH_FADDR			0x0008
#define ICH_FLASH_FDATA0		0x0010
66
#define ICH_FLASH_PR0			0x0074
67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87

#define ICH_FLASH_READ_COMMAND_TIMEOUT	500
#define ICH_FLASH_WRITE_COMMAND_TIMEOUT	500
#define ICH_FLASH_ERASE_COMMAND_TIMEOUT	3000000
#define ICH_FLASH_LINEAR_ADDR_MASK	0x00FFFFFF
#define ICH_FLASH_CYCLE_REPEAT_COUNT	10

#define ICH_CYCLE_READ			0
#define ICH_CYCLE_WRITE			2
#define ICH_CYCLE_ERASE			3

#define FLASH_GFPREG_BASE_MASK		0x1FFF
#define FLASH_SECTOR_ADDR_SHIFT		12

#define ICH_FLASH_SEG_SIZE_256		256
#define ICH_FLASH_SEG_SIZE_4K		4096
#define ICH_FLASH_SEG_SIZE_8K		8192
#define ICH_FLASH_SEG_SIZE_64K		65536


#define E1000_ICH_FWSM_RSPCIPHY	0x00000040 /* Reset PHY on PCI Reset */
88 89
/* FW established a valid mode */
#define E1000_ICH_FWSM_FW_VALID		0x00008000
90 91 92 93 94 95 96 97 98 99

#define E1000_ICH_MNG_IAMT_MODE		0x2

#define ID_LED_DEFAULT_ICH8LAN  ((ID_LED_DEF1_DEF2 << 12) | \
				 (ID_LED_DEF1_OFF2 <<  8) | \
				 (ID_LED_DEF1_ON2  <<  4) | \
				 (ID_LED_DEF1_DEF2))

#define E1000_ICH_NVM_SIG_WORD		0x13
#define E1000_ICH_NVM_SIG_MASK		0xC000
100 101
#define E1000_ICH_NVM_VALID_SIG_MASK    0xC0
#define E1000_ICH_NVM_SIG_VALUE         0x80
102 103 104 105 106 107

#define E1000_ICH8_LAN_INIT_TIMEOUT	1500

#define E1000_FEXTNVM_SW_CONFIG		1
#define E1000_FEXTNVM_SW_CONFIG_ICH8M (1 << 27) /* Bit redefined for ICH8M :/ */

108 109 110
#define E1000_FEXTNVM3_PHY_CFG_COUNTER_MASK    0x0C000000
#define E1000_FEXTNVM3_PHY_CFG_COUNTER_50MSEC  0x08000000

111 112 113 114
#define E1000_FEXTNVM4_BEACON_DURATION_MASK    0x7
#define E1000_FEXTNVM4_BEACON_DURATION_8USEC   0x7
#define E1000_FEXTNVM4_BEACON_DURATION_16USEC  0x3

115 116 117
#define PCIE_ICH8_SNOOP_ALL		PCIE_NO_SNOOP_ALL

#define E1000_ICH_RAR_ENTRIES		7
118
#define E1000_PCH2_RAR_ENTRIES		5 /* RAR[0], SHRA[0-3] */
119 120 121 122 123 124 125 126 127 128 129

#define PHY_PAGE_SHIFT 5
#define PHY_REG(page, reg) (((page) << PHY_PAGE_SHIFT) | \
			   ((reg) & MAX_PHY_REG_ADDRESS))
#define IGP3_KMRN_DIAG  PHY_REG(770, 19) /* KMRN Diagnostic */
#define IGP3_VR_CTRL    PHY_REG(776, 18) /* Voltage Regulator Control */

#define IGP3_KMRN_DIAG_PCS_LOCK_LOSS	0x0002
#define IGP3_VR_CTRL_DEV_POWERDOWN_MODE_MASK 0x0300
#define IGP3_VR_CTRL_MODE_SHUTDOWN	0x0200

130 131
#define HV_LED_CONFIG		PHY_REG(768, 30) /* LED Configuration */

132 133
#define SW_FLAG_TIMEOUT    1000 /* SW Semaphore flag timeout in milliseconds */

134 135
/* SMBus Address Phy Register */
#define HV_SMB_ADDR            PHY_REG(768, 26)
136
#define HV_SMB_ADDR_MASK       0x007F
137 138 139
#define HV_SMB_ADDR_PEC_EN     0x0200
#define HV_SMB_ADDR_VALID      0x0080

140 141
/* PHY Power Management Control */
#define HV_PM_CTRL		PHY_REG(770, 17)
142
#define HV_PM_CTRL_PLL_STOP_IN_K1_GIGA	0x100
143

144
/* PHY Low Power Idle Control */
145 146 147
#define I82579_LPI_CTRL				PHY_REG(772, 20)
#define I82579_LPI_CTRL_ENABLE_MASK		0x6000
#define I82579_LPI_CTRL_FORCE_PLL_LOCK_COUNT	0x80
148

149 150 151 152
/* EMI Registers */
#define I82579_EMI_ADDR         0x10
#define I82579_EMI_DATA         0x11
#define I82579_LPI_UPDATE_TIMER 0x4805	/* in 40ns units + 40 ns base value */
153 154
#define I82579_MSE_THRESHOLD    0x084F	/* Mean Square Error Threshold */
#define I82579_MSE_LINK_DOWN    0x2411	/* MSE count before dropping link */
155

156 157 158 159 160
/* Strapping Option Register - RO */
#define E1000_STRAP                     0x0000C
#define E1000_STRAP_SMBUS_ADDRESS_MASK  0x00FE0000
#define E1000_STRAP_SMBUS_ADDRESS_SHIFT 17

161 162 163
/* OEM Bits Phy Register */
#define HV_OEM_BITS            PHY_REG(768, 25)
#define HV_OEM_BITS_LPLU       0x0004 /* Low Power Link Up */
164
#define HV_OEM_BITS_GBE_DIS    0x0040 /* Gigabit Disable */
165 166
#define HV_OEM_BITS_RESTART_AN 0x0400 /* Restart Auto-negotiation */

167 168 169
#define E1000_NVM_K1_CONFIG 0x1B /* NVM K1 Config Word */
#define E1000_NVM_K1_ENABLE 0x1  /* NVM Enable K1 bit */

170 171 172 173
/* KMRN Mode Control */
#define HV_KMRN_MODE_CTRL      PHY_REG(769, 16)
#define HV_KMRN_MDIO_SLOW      0x0400

174 175 176 177 178
/* KMRN FIFO Control and Status */
#define HV_KMRN_FIFO_CTRLSTA                  PHY_REG(770, 16)
#define HV_KMRN_FIFO_CTRLSTA_PREAMBLE_MASK    0x7000
#define HV_KMRN_FIFO_CTRLSTA_PREAMBLE_SHIFT   12

179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219
/* ICH GbE Flash Hardware Sequencing Flash Status Register bit breakdown */
/* Offset 04h HSFSTS */
union ich8_hws_flash_status {
	struct ich8_hsfsts {
		u16 flcdone    :1; /* bit 0 Flash Cycle Done */
		u16 flcerr     :1; /* bit 1 Flash Cycle Error */
		u16 dael       :1; /* bit 2 Direct Access error Log */
		u16 berasesz   :2; /* bit 4:3 Sector Erase Size */
		u16 flcinprog  :1; /* bit 5 flash cycle in Progress */
		u16 reserved1  :2; /* bit 13:6 Reserved */
		u16 reserved2  :6; /* bit 13:6 Reserved */
		u16 fldesvalid :1; /* bit 14 Flash Descriptor Valid */
		u16 flockdn    :1; /* bit 15 Flash Config Lock-Down */
	} hsf_status;
	u16 regval;
};

/* ICH GbE Flash Hardware Sequencing Flash control Register bit breakdown */
/* Offset 06h FLCTL */
union ich8_hws_flash_ctrl {
	struct ich8_hsflctl {
		u16 flcgo      :1;   /* 0 Flash Cycle Go */
		u16 flcycle    :2;   /* 2:1 Flash Cycle */
		u16 reserved   :5;   /* 7:3 Reserved  */
		u16 fldbcount  :2;   /* 9:8 Flash Data Byte Count */
		u16 flockdn    :6;   /* 15:10 Reserved */
	} hsf_ctrl;
	u16 regval;
};

/* ICH Flash Region Access Permissions */
union ich8_hws_flash_regacc {
	struct ich8_flracc {
		u32 grra      :8; /* 0:7 GbE region Read Access */
		u32 grwa      :8; /* 8:15 GbE region Write Access */
		u32 gmrag     :8; /* 23:16 GbE Master Read Access Grant */
		u32 gmwag     :8; /* 31:24 GbE Master Write Access Grant */
	} hsf_flregacc;
	u16 regval;
};

220 221 222 223 224 225 226 227 228 229 230 231 232
/* ICH Flash Protected Region */
union ich8_flash_protected_range {
	struct ich8_pr {
		u32 base:13;     /* 0:12 Protected Range Base */
		u32 reserved1:2; /* 13:14 Reserved */
		u32 rpe:1;       /* 15 Read Protection Enable */
		u32 limit:13;    /* 16:28 Protected Range Limit */
		u32 reserved2:2; /* 29:30 Reserved */
		u32 wpe:1;       /* 31 Write Protection Enable */
	} range;
	u32 regval;
};

233 234 235 236 237 238
static s32 e1000_setup_link_ich8lan(struct e1000_hw *hw);
static void e1000_clear_hw_cntrs_ich8lan(struct e1000_hw *hw);
static void e1000_initialize_hw_bits_ich8lan(struct e1000_hw *hw);
static s32 e1000_erase_flash_bank_ich8lan(struct e1000_hw *hw, u32 bank);
static s32 e1000_retry_write_flash_byte_ich8lan(struct e1000_hw *hw,
						u32 offset, u8 byte);
239 240
static s32 e1000_read_flash_byte_ich8lan(struct e1000_hw *hw, u32 offset,
					 u8 *data);
241 242 243 244 245 246
static s32 e1000_read_flash_word_ich8lan(struct e1000_hw *hw, u32 offset,
					 u16 *data);
static s32 e1000_read_flash_data_ich8lan(struct e1000_hw *hw, u32 offset,
					 u8 size, u16 *data);
static s32 e1000_setup_copper_link_ich8lan(struct e1000_hw *hw);
static s32 e1000_kmrn_lock_loss_workaround_ich8lan(struct e1000_hw *hw);
247
static s32 e1000_get_cfg_done_ich8lan(struct e1000_hw *hw);
248 249 250 251 252 253 254 255
static s32 e1000_cleanup_led_ich8lan(struct e1000_hw *hw);
static s32 e1000_led_on_ich8lan(struct e1000_hw *hw);
static s32 e1000_led_off_ich8lan(struct e1000_hw *hw);
static s32 e1000_id_led_init_pchlan(struct e1000_hw *hw);
static s32 e1000_setup_led_pchlan(struct e1000_hw *hw);
static s32 e1000_cleanup_led_pchlan(struct e1000_hw *hw);
static s32 e1000_led_on_pchlan(struct e1000_hw *hw);
static s32 e1000_led_off_pchlan(struct e1000_hw *hw);
256
static s32 e1000_set_lplu_state_pchlan(struct e1000_hw *hw, bool active);
257
static void e1000_power_down_phy_copper_ich8lan(struct e1000_hw *hw);
258
static void e1000_lan_init_done_ich8lan(struct e1000_hw *hw);
259
static s32  e1000_k1_gig_workaround_hv(struct e1000_hw *hw, bool link);
260
static s32 e1000_set_mdio_slow_mode_hv(struct e1000_hw *hw);
261 262
static bool e1000_check_mng_mode_ich8lan(struct e1000_hw *hw);
static bool e1000_check_mng_mode_pchlan(struct e1000_hw *hw);
263
static void e1000_rar_set_pch2lan(struct e1000_hw *hw, u8 *addr, u32 index);
264
static s32 e1000_k1_workaround_lv(struct e1000_hw *hw);
265
static void e1000_gate_hw_phy_config_ich8lan(struct e1000_hw *hw, bool gate);
266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288

static inline u16 __er16flash(struct e1000_hw *hw, unsigned long reg)
{
	return readw(hw->flash_address + reg);
}

static inline u32 __er32flash(struct e1000_hw *hw, unsigned long reg)
{
	return readl(hw->flash_address + reg);
}

static inline void __ew16flash(struct e1000_hw *hw, unsigned long reg, u16 val)
{
	writew(val, hw->flash_address + reg);
}

static inline void __ew32flash(struct e1000_hw *hw, unsigned long reg, u32 val)
{
	writel(val, hw->flash_address + reg);
}

#define er16flash(reg)		__er16flash(hw, (reg))
#define er32flash(reg)		__er32flash(hw, (reg))
289 290
#define ew16flash(reg, val)	__ew16flash(hw, (reg), (val))
#define ew32flash(reg, val)	__ew32flash(hw, (reg), (val))
291

292 293 294 295 296 297 298 299 300 301 302
/**
 *  e1000_phy_is_accessible_pchlan - Check if able to access PHY registers
 *  @hw: pointer to the HW structure
 *
 *  Test access to the PHY registers by reading the PHY ID registers.  If
 *  the PHY ID is already known (e.g. resume path) compare it with known ID,
 *  otherwise assume the read PHY ID is correct if it is valid.
 *
 *  Assumes the sw/fw/hw semaphore is already acquired.
 **/
static bool e1000_phy_is_accessible_pchlan(struct e1000_hw *hw)
303
{
304 305
	u16 phy_reg;
	u32 phy_id;
306

307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411
	hw->phy.ops.read_reg_locked(hw, PHY_ID1, &phy_reg);
	phy_id = (u32)(phy_reg << 16);
	hw->phy.ops.read_reg_locked(hw, PHY_ID2, &phy_reg);
	phy_id |= (u32)(phy_reg & PHY_REVISION_MASK);

	if (hw->phy.id) {
		if (hw->phy.id == phy_id)
			return true;
	} else {
		if ((phy_id != 0) && (phy_id != PHY_REVISION_MASK))
			hw->phy.id = phy_id;
		return true;
	}

	return false;
}

/**
 *  e1000_init_phy_workarounds_pchlan - PHY initialization workarounds
 *  @hw: pointer to the HW structure
 *
 *  Workarounds/flow necessary for PHY initialization during driver load
 *  and resume paths.
 **/
static s32 e1000_init_phy_workarounds_pchlan(struct e1000_hw *hw)
{
	u32 mac_reg, fwsm = er32(FWSM);
	s32 ret_val;

	ret_val = hw->phy.ops.acquire(hw);
	if (ret_val) {
		e_dbg("Failed to initialize PHY flow\n");
		return ret_val;
	}

	/*
	 * The MAC-PHY interconnect may be in SMBus mode.  If the PHY is
	 * inaccessible and resetting the PHY is not blocked, toggle the
	 * LANPHYPC Value bit to force the interconnect to PCIe mode.
	 */
	switch (hw->mac.type) {
	case e1000_pch2lan:
		/*
		 * Gate automatic PHY configuration by hardware on
		 * non-managed 82579
		 */
		if (!(fwsm & E1000_ICH_FWSM_FW_VALID))
			e1000_gate_hw_phy_config_ich8lan(hw, true);

		if (e1000_phy_is_accessible_pchlan(hw))
			break;

		/* fall-through */
	case e1000_pchlan:
		if ((hw->mac.type == e1000_pchlan) &&
		    (fwsm & E1000_ICH_FWSM_FW_VALID))
			break;

		if (hw->phy.ops.check_reset_block(hw)) {
			e_dbg("Required LANPHYPC toggle blocked by ME\n");
			break;
		}

		e_dbg("Toggling LANPHYPC\n");

		/* Set Phy Config Counter to 50msec */
		mac_reg = er32(FEXTNVM3);
		mac_reg &= ~E1000_FEXTNVM3_PHY_CFG_COUNTER_MASK;
		mac_reg |= E1000_FEXTNVM3_PHY_CFG_COUNTER_50MSEC;
		ew32(FEXTNVM3, mac_reg);

		/* Toggle LANPHYPC Value bit */
		mac_reg = er32(CTRL);
		mac_reg |= E1000_CTRL_LANPHYPC_OVERRIDE;
		mac_reg &= ~E1000_CTRL_LANPHYPC_VALUE;
		ew32(CTRL, mac_reg);
		e1e_flush();
		udelay(10);
		mac_reg &= ~E1000_CTRL_LANPHYPC_OVERRIDE;
		ew32(CTRL, mac_reg);
		e1e_flush();
		msleep(50);
		break;
	default:
		break;
	}

	hw->phy.ops.release(hw);

	/*
	 * Reset the PHY before any access to it.  Doing so, ensures
	 * that the PHY is in a known good state before we read/write
	 * PHY registers.  The generic reset is sufficient here,
	 * because we haven't determined the PHY type yet.
	 */
	ret_val = e1000e_phy_hw_reset_generic(hw);

	/* Ungate automatic PHY configuration on non-managed 82579 */
	if ((hw->mac.type == e1000_pch2lan) &&
	    !(fwsm & E1000_ICH_FWSM_FW_VALID)) {
		usleep_range(10000, 20000);
		e1000_gate_hw_phy_config_ich8lan(hw, false);
	}

	return ret_val;
412 413
}

414 415 416 417 418 419 420 421 422 423 424 425 426 427
/**
 *  e1000_init_phy_params_pchlan - Initialize PHY function pointers
 *  @hw: pointer to the HW structure
 *
 *  Initialize family-specific PHY parameters and function pointers.
 **/
static s32 e1000_init_phy_params_pchlan(struct e1000_hw *hw)
{
	struct e1000_phy_info *phy = &hw->phy;
	s32 ret_val = 0;

	phy->addr                     = 1;
	phy->reset_delay_us           = 100;

428
	phy->ops.set_page             = e1000_set_page_igp;
429 430
	phy->ops.read_reg             = e1000_read_phy_reg_hv;
	phy->ops.read_reg_locked      = e1000_read_phy_reg_hv_locked;
431
	phy->ops.read_reg_page        = e1000_read_phy_reg_page_hv;
432 433
	phy->ops.set_d0_lplu_state    = e1000_set_lplu_state_pchlan;
	phy->ops.set_d3_lplu_state    = e1000_set_lplu_state_pchlan;
434 435
	phy->ops.write_reg            = e1000_write_phy_reg_hv;
	phy->ops.write_reg_locked     = e1000_write_phy_reg_hv_locked;
436
	phy->ops.write_reg_page       = e1000_write_phy_reg_page_hv;
437 438
	phy->ops.power_up             = e1000_power_up_phy_copper;
	phy->ops.power_down           = e1000_power_down_phy_copper_ich8lan;
439 440
	phy->autoneg_mask             = AUTONEG_ADVERTISE_SPEED_DEFAULT;

441
	phy->id = e1000_phy_unknown;
442

443 444 445
	ret_val = e1000_init_phy_workarounds_pchlan(hw);
	if (ret_val)
		return ret_val;
446

447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466
	if (phy->id == e1000_phy_unknown)
		switch (hw->mac.type) {
		default:
			ret_val = e1000e_get_phy_id(hw);
			if (ret_val)
				return ret_val;
			if ((phy->id != 0) && (phy->id != PHY_REVISION_MASK))
				break;
			/* fall-through */
		case e1000_pch2lan:
			/*
			 * In case the PHY needs to be in mdio slow mode,
			 * set slow mode and try to get the PHY id again.
			 */
			ret_val = e1000_set_mdio_slow_mode_hv(hw);
			if (ret_val)
				return ret_val;
			ret_val = e1000e_get_phy_id(hw);
			if (ret_val)
				return ret_val;
467
			break;
468
		}
469 470
	phy->type = e1000e_get_phy_type_from_id(phy->id);

471 472
	switch (phy->type) {
	case e1000_phy_82577:
473
	case e1000_phy_82579:
474 475
		phy->ops.check_polarity = e1000_check_polarity_82577;
		phy->ops.force_speed_duplex =
476
		    e1000_phy_force_speed_duplex_82577;
477
		phy->ops.get_cable_length = e1000_get_cable_length_82577;
478 479
		phy->ops.get_info = e1000_get_phy_info_82577;
		phy->ops.commit = e1000e_phy_sw_reset;
480
		break;
481 482 483 484 485 486 487 488 489
	case e1000_phy_82578:
		phy->ops.check_polarity = e1000_check_polarity_m88;
		phy->ops.force_speed_duplex = e1000e_phy_force_speed_duplex_m88;
		phy->ops.get_cable_length = e1000e_get_cable_length_m88;
		phy->ops.get_info = e1000e_get_phy_info_m88;
		break;
	default:
		ret_val = -E1000_ERR_PHY;
		break;
490 491 492 493 494
	}

	return ret_val;
}

495 496 497 498 499 500 501 502 503 504 505 506 507 508 509
/**
 *  e1000_init_phy_params_ich8lan - Initialize PHY function pointers
 *  @hw: pointer to the HW structure
 *
 *  Initialize family-specific PHY parameters and function pointers.
 **/
static s32 e1000_init_phy_params_ich8lan(struct e1000_hw *hw)
{
	struct e1000_phy_info *phy = &hw->phy;
	s32 ret_val;
	u16 i = 0;

	phy->addr			= 1;
	phy->reset_delay_us		= 100;

510 511 512
	phy->ops.power_up               = e1000_power_up_phy_copper;
	phy->ops.power_down             = e1000_power_down_phy_copper_ich8lan;

513 514 515 516 517 518
	/*
	 * We may need to do this twice - once for IGP and if that fails,
	 * we'll set BM func pointers and try again
	 */
	ret_val = e1000e_determine_phy_address(hw);
	if (ret_val) {
519 520
		phy->ops.write_reg = e1000e_write_phy_reg_bm;
		phy->ops.read_reg  = e1000e_read_phy_reg_bm;
521
		ret_val = e1000e_determine_phy_address(hw);
B
Bruce Allan 已提交
522 523
		if (ret_val) {
			e_dbg("Cannot determine PHY addr. Erroring out\n");
524
			return ret_val;
B
Bruce Allan 已提交
525
		}
526 527
	}

528 529 530
	phy->id = 0;
	while ((e1000_phy_unknown == e1000e_get_phy_type_from_id(phy->id)) &&
	       (i++ < 100)) {
531
		usleep_range(1000, 2000);
532 533 534 535 536 537 538 539 540 541
		ret_val = e1000e_get_phy_id(hw);
		if (ret_val)
			return ret_val;
	}

	/* Verify phy id */
	switch (phy->id) {
	case IGP03E1000_E_PHY_ID:
		phy->type = e1000_phy_igp_3;
		phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT;
542 543
		phy->ops.read_reg_locked = e1000e_read_phy_reg_igp_locked;
		phy->ops.write_reg_locked = e1000e_write_phy_reg_igp_locked;
544 545 546
		phy->ops.get_info = e1000e_get_phy_info_igp;
		phy->ops.check_polarity = e1000_check_polarity_igp;
		phy->ops.force_speed_duplex = e1000e_phy_force_speed_duplex_igp;
547 548 549 550 551 552
		break;
	case IFE_E_PHY_ID:
	case IFE_PLUS_E_PHY_ID:
	case IFE_C_E_PHY_ID:
		phy->type = e1000_phy_ife;
		phy->autoneg_mask = E1000_ALL_NOT_GIG;
553 554 555
		phy->ops.get_info = e1000_get_phy_info_ife;
		phy->ops.check_polarity = e1000_check_polarity_ife;
		phy->ops.force_speed_duplex = e1000_phy_force_speed_duplex_ife;
556
		break;
557 558 559
	case BME1000_E_PHY_ID:
		phy->type = e1000_phy_bm;
		phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT;
560 561 562
		phy->ops.read_reg = e1000e_read_phy_reg_bm;
		phy->ops.write_reg = e1000e_write_phy_reg_bm;
		phy->ops.commit = e1000e_phy_sw_reset;
563 564 565
		phy->ops.get_info = e1000e_get_phy_info_m88;
		phy->ops.check_polarity = e1000_check_polarity_m88;
		phy->ops.force_speed_duplex = e1000e_phy_force_speed_duplex_m88;
566
		break;
567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585
	default:
		return -E1000_ERR_PHY;
		break;
	}

	return 0;
}

/**
 *  e1000_init_nvm_params_ich8lan - Initialize NVM function pointers
 *  @hw: pointer to the HW structure
 *
 *  Initialize family-specific NVM parameters and function
 *  pointers.
 **/
static s32 e1000_init_nvm_params_ich8lan(struct e1000_hw *hw)
{
	struct e1000_nvm_info *nvm = &hw->nvm;
	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
586
	u32 gfpreg, sector_base_addr, sector_end_addr;
587 588
	u16 i;

589
	/* Can't read flash registers if the register set isn't mapped. */
590
	if (!hw->flash_address) {
591
		e_dbg("ERROR: Flash registers not mapped\n");
592 593 594 595 596 597 598
		return -E1000_ERR_CONFIG;
	}

	nvm->type = e1000_nvm_flash_sw;

	gfpreg = er32flash(ICH_FLASH_GFPREG);

599 600
	/*
	 * sector_X_addr is a "sector"-aligned address (4096 bytes)
601
	 * Add 1 to sector_end_addr since this sector is included in
602 603
	 * the overall size.
	 */
604 605 606 607 608 609
	sector_base_addr = gfpreg & FLASH_GFPREG_BASE_MASK;
	sector_end_addr = ((gfpreg >> 16) & FLASH_GFPREG_BASE_MASK) + 1;

	/* flash_base_addr is byte-aligned */
	nvm->flash_base_addr = sector_base_addr << FLASH_SECTOR_ADDR_SHIFT;

610 611 612 613
	/*
	 * find total size of the NVM, then cut in half since the total
	 * size represents two separate NVM banks.
	 */
614 615 616 617 618 619 620 621 622 623
	nvm->flash_bank_size = (sector_end_addr - sector_base_addr)
				<< FLASH_SECTOR_ADDR_SHIFT;
	nvm->flash_bank_size /= 2;
	/* Adjust to word count */
	nvm->flash_bank_size /= sizeof(u16);

	nvm->word_size = E1000_ICH8_SHADOW_RAM_WORDS;

	/* Clear shadow ram */
	for (i = 0; i < nvm->word_size; i++) {
624
		dev_spec->shadow_ram[i].modified = false;
625 626 627 628 629 630 631 632 633 634 635 636 637
		dev_spec->shadow_ram[i].value    = 0xFFFF;
	}

	return 0;
}

/**
 *  e1000_init_mac_params_ich8lan - Initialize MAC function pointers
 *  @hw: pointer to the HW structure
 *
 *  Initialize family-specific MAC parameters and function
 *  pointers.
 **/
638
static s32 e1000_init_mac_params_ich8lan(struct e1000_hw *hw)
639 640 641 642
{
	struct e1000_mac_info *mac = &hw->mac;

	/* Set media type function pointer */
643
	hw->phy.media_type = e1000_media_type_copper;
644 645 646 647 648 649 650

	/* Set mta register count */
	mac->mta_reg_count = 32;
	/* Set rar entry count */
	mac->rar_entry_count = E1000_ICH_RAR_ENTRIES;
	if (mac->type == e1000_ich8lan)
		mac->rar_entry_count--;
651 652 653 654
	/* FWSM register */
	mac->has_fwsm = true;
	/* ARC subsystem not supported */
	mac->arc_subsystem_valid = false;
655 656
	/* Adaptive IFS supported */
	mac->adaptive_ifs = true;
657

658 659 660 661 662
	/* LED operations */
	switch (mac->type) {
	case e1000_ich8lan:
	case e1000_ich9lan:
	case e1000_ich10lan:
663 664
		/* check management mode */
		mac->ops.check_mng_mode = e1000_check_mng_mode_ich8lan;
665
		/* ID LED init */
666
		mac->ops.id_led_init = e1000e_id_led_init_generic;
667 668
		/* blink LED */
		mac->ops.blink_led = e1000e_blink_led_generic;
669 670 671 672 673 674 675 676
		/* setup LED */
		mac->ops.setup_led = e1000e_setup_led_generic;
		/* cleanup LED */
		mac->ops.cleanup_led = e1000_cleanup_led_ich8lan;
		/* turn on/off LED */
		mac->ops.led_on = e1000_led_on_ich8lan;
		mac->ops.led_off = e1000_led_off_ich8lan;
		break;
677
	case e1000_pch2lan:
678 679 680 681
		mac->rar_entry_count = E1000_PCH2_RAR_ENTRIES;
		mac->ops.rar_set = e1000_rar_set_pch2lan;
		/* fall-through */
	case e1000_pchlan:
682 683
		/* check management mode */
		mac->ops.check_mng_mode = e1000_check_mng_mode_pchlan;
684 685 686 687 688 689 690 691 692 693 694 695 696 697
		/* ID LED init */
		mac->ops.id_led_init = e1000_id_led_init_pchlan;
		/* setup LED */
		mac->ops.setup_led = e1000_setup_led_pchlan;
		/* cleanup LED */
		mac->ops.cleanup_led = e1000_cleanup_led_pchlan;
		/* turn on/off LED */
		mac->ops.led_on = e1000_led_on_pchlan;
		mac->ops.led_off = e1000_led_off_pchlan;
		break;
	default:
		break;
	}

698 699
	/* Enable PCS Lock-loss workaround for ICH8 */
	if (mac->type == e1000_ich8lan)
700
		e1000e_set_kmrn_lock_loss_workaround_ich8lan(hw, true);
701

702 703 704 705
	/* Gate automatic PHY configuration by hardware on managed 82579 */
	if ((mac->type == e1000_pch2lan) &&
	    (er32(FWSM) & E1000_ICH_FWSM_FW_VALID))
		e1000_gate_hw_phy_config_ich8lan(hw, true);
706

707 708 709
	return 0;
}

710 711 712 713 714 715 716 717 718 719 720 721 722
/**
 *  e1000_set_eee_pchlan - Enable/disable EEE support
 *  @hw: pointer to the HW structure
 *
 *  Enable/disable EEE based on setting in dev_spec structure.  The bits in
 *  the LPI Control register will remain set only if/when link is up.
 **/
static s32 e1000_set_eee_pchlan(struct e1000_hw *hw)
{
	s32 ret_val = 0;
	u16 phy_reg;

	if (hw->phy.type != e1000_phy_82579)
723
		return 0;
724 725 726

	ret_val = e1e_rphy(hw, I82579_LPI_CTRL, &phy_reg);
	if (ret_val)
727
		return ret_val;
728 729 730 731 732 733

	if (hw->dev_spec.ich8lan.eee_disable)
		phy_reg &= ~I82579_LPI_CTRL_ENABLE_MASK;
	else
		phy_reg |= I82579_LPI_CTRL_ENABLE_MASK;

734
	return e1e_wphy(hw, I82579_LPI_CTRL, phy_reg);
735 736
}

737 738 739 740 741 742 743 744 745 746 747 748 749
/**
 *  e1000_check_for_copper_link_ich8lan - Check for link (Copper)
 *  @hw: pointer to the HW structure
 *
 *  Checks to see of the link status of the hardware has changed.  If a
 *  change in link status has been detected, then we read the PHY registers
 *  to get the current speed/duplex if link exists.
 **/
static s32 e1000_check_for_copper_link_ich8lan(struct e1000_hw *hw)
{
	struct e1000_mac_info *mac = &hw->mac;
	s32 ret_val;
	bool link;
750
	u16 phy_reg;
751 752 753 754 755 756 757

	/*
	 * We only want to go out to the PHY registers to see if Auto-Neg
	 * has completed and/or if our link status has changed.  The
	 * get_link_status flag is set upon receiving a Link Status
	 * Change or Rx Sequence Error interrupt.
	 */
758 759
	if (!mac->get_link_status)
		return 0;
760 761 762 763 764 765 766 767

	/*
	 * First we want to see if the MII Status Register reports
	 * link.  If so, then we want to get the current speed/duplex
	 * of the PHY.
	 */
	ret_val = e1000e_phy_has_link_generic(hw, 1, 0, &link);
	if (ret_val)
768
		return ret_val;
769

770 771 772
	if (hw->mac.type == e1000_pchlan) {
		ret_val = e1000_k1_gig_workaround_hv(hw, link);
		if (ret_val)
773
			return ret_val;
774 775
	}

776
	if (!link)
777
		return 0; /* No link detected */
778 779 780

	mac->get_link_status = false;

781 782
	switch (hw->mac.type) {
	case e1000_pch2lan:
783 784
		ret_val = e1000_k1_workaround_lv(hw);
		if (ret_val)
785
			return ret_val;
786 787 788 789 790
		/* fall-thru */
	case e1000_pchlan:
		if (hw->phy.type == e1000_phy_82578) {
			ret_val = e1000_link_stall_workaround_hv(hw);
			if (ret_val)
791
				return ret_val;
792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809
		}

		/*
		 * Workaround for PCHx parts in half-duplex:
		 * Set the number of preambles removed from the packet
		 * when it is passed from the PHY to the MAC to prevent
		 * the MAC from misinterpreting the packet type.
		 */
		e1e_rphy(hw, HV_KMRN_FIFO_CTRLSTA, &phy_reg);
		phy_reg &= ~HV_KMRN_FIFO_CTRLSTA_PREAMBLE_MASK;

		if ((er32(STATUS) & E1000_STATUS_FD) != E1000_STATUS_FD)
			phy_reg |= (1 << HV_KMRN_FIFO_CTRLSTA_PREAMBLE_SHIFT);

		e1e_wphy(hw, HV_KMRN_FIFO_CTRLSTA, phy_reg);
		break;
	default:
		break;
810 811
	}

812 813 814 815 816 817
	/*
	 * Check if there was DownShift, must be checked
	 * immediately after link-up
	 */
	e1000e_check_downshift(hw);

818 819 820
	/* Enable/Disable EEE after link up */
	ret_val = e1000_set_eee_pchlan(hw);
	if (ret_val)
821
		return ret_val;
822

823 824 825 826
	/*
	 * If we are forcing speed/duplex, then we simply return since
	 * we have already determined whether we have link or not.
	 */
827 828
	if (!mac->autoneg)
		return -E1000_ERR_CONFIG;
829 830 831 832 833 834

	/*
	 * Auto-Neg is enabled.  Auto Speed Detection takes care
	 * of MAC speed/duplex configuration.  So we only need to
	 * configure Collision Distance in the MAC.
	 */
835
	mac->ops.config_collision_dist(hw);
836 837 838 839 840 841 842 843 844

	/*
	 * Configure Flow Control now that Auto-Neg has completed.
	 * First, we need to restore the desired flow control
	 * settings because we may have had to re-autoneg with a
	 * different link partner.
	 */
	ret_val = e1000e_config_fc_after_link_up(hw);
	if (ret_val)
845
		e_dbg("Error configuring flow control\n");
846 847 848 849

	return ret_val;
}

J
Jeff Kirsher 已提交
850
static s32 e1000_get_variants_ich8lan(struct e1000_adapter *adapter)
851 852 853 854
{
	struct e1000_hw *hw = &adapter->hw;
	s32 rc;

855
	rc = e1000_init_mac_params_ich8lan(hw);
856 857 858 859 860 861 862
	if (rc)
		return rc;

	rc = e1000_init_nvm_params_ich8lan(hw);
	if (rc)
		return rc;

863 864 865 866
	switch (hw->mac.type) {
	case e1000_ich8lan:
	case e1000_ich9lan:
	case e1000_ich10lan:
867
		rc = e1000_init_phy_params_ich8lan(hw);
868 869 870 871 872 873 874 875
		break;
	case e1000_pchlan:
	case e1000_pch2lan:
		rc = e1000_init_phy_params_pchlan(hw);
		break;
	default:
		break;
	}
876 877 878
	if (rc)
		return rc;

879 880 881 882 883 884 885
	/*
	 * Disable Jumbo Frame support on parts with Intel 10/100 PHY or
	 * on parts with MACsec enabled in NVM (reflected in CTRL_EXT).
	 */
	if ((adapter->hw.phy.type == e1000_phy_ife) ||
	    ((adapter->hw.mac.type >= e1000_pch2lan) &&
	     (!(er32(CTRL_EXT) & E1000_CTRL_EXT_LSECCK)))) {
886 887
		adapter->flags &= ~FLAG_HAS_JUMBO_FRAMES;
		adapter->max_hw_frame_size = ETH_FRAME_LEN + ETH_FCS_LEN;
888 889

		hw->mac.ops.blink_led = NULL;
890 891
	}

892
	if ((adapter->hw.mac.type == e1000_ich8lan) &&
893
	    (adapter->hw.phy.type != e1000_phy_ife))
894 895
		adapter->flags |= FLAG_LSC_GIG_SPEED_DROP;

896 897 898 899 900
	/* Enable workaround for 82579 w/ ME enabled */
	if ((adapter->hw.mac.type == e1000_pch2lan) &&
	    (er32(FWSM) & E1000_ICH_FWSM_FW_VALID))
		adapter->flags2 |= FLAG2_PCIM2PCI_ARBITER_WA;

901 902 903 904
	/* Disable EEE by default until IEEE802.3az spec is finalized */
	if (adapter->flags2 & FLAG2_HAS_EEE)
		adapter->hw.dev_spec.ich8lan.eee_disable = true;

905 906 907
	return 0;
}

908 909
static DEFINE_MUTEX(nvm_mutex);

910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933
/**
 *  e1000_acquire_nvm_ich8lan - Acquire NVM mutex
 *  @hw: pointer to the HW structure
 *
 *  Acquires the mutex for performing NVM operations.
 **/
static s32 e1000_acquire_nvm_ich8lan(struct e1000_hw *hw)
{
	mutex_lock(&nvm_mutex);

	return 0;
}

/**
 *  e1000_release_nvm_ich8lan - Release NVM mutex
 *  @hw: pointer to the HW structure
 *
 *  Releases the mutex used while performing NVM operations.
 **/
static void e1000_release_nvm_ich8lan(struct e1000_hw *hw)
{
	mutex_unlock(&nvm_mutex);
}

934 935 936 937
/**
 *  e1000_acquire_swflag_ich8lan - Acquire software control flag
 *  @hw: pointer to the HW structure
 *
938 939
 *  Acquires the software control flag for performing PHY and select
 *  MAC CSR accesses.
940 941 942
 **/
static s32 e1000_acquire_swflag_ich8lan(struct e1000_hw *hw)
{
943 944
	u32 extcnf_ctrl, timeout = PHY_CFG_TIMEOUT;
	s32 ret_val = 0;
945

946 947
	if (test_and_set_bit(__E1000_ACCESS_SHARED_RESOURCE,
			     &hw->adapter->state)) {
948
		e_dbg("contention for Phy access\n");
949 950
		return -E1000_ERR_PHY;
	}
951

952 953
	while (timeout) {
		extcnf_ctrl = er32(EXTCNF_CTRL);
954 955
		if (!(extcnf_ctrl & E1000_EXTCNF_CTRL_SWFLAG))
			break;
956

957 958 959 960 961
		mdelay(1);
		timeout--;
	}

	if (!timeout) {
962
		e_dbg("SW has already locked the resource.\n");
963 964 965 966
		ret_val = -E1000_ERR_CONFIG;
		goto out;
	}

967
	timeout = SW_FLAG_TIMEOUT;
968 969 970 971 972 973 974 975

	extcnf_ctrl |= E1000_EXTCNF_CTRL_SWFLAG;
	ew32(EXTCNF_CTRL, extcnf_ctrl);

	while (timeout) {
		extcnf_ctrl = er32(EXTCNF_CTRL);
		if (extcnf_ctrl & E1000_EXTCNF_CTRL_SWFLAG)
			break;
976

977 978 979 980 981
		mdelay(1);
		timeout--;
	}

	if (!timeout) {
982
		e_dbg("Failed to acquire the semaphore, FW or HW has it: FWSM=0x%8.8x EXTCNF_CTRL=0x%8.8x)\n",
983
		      er32(FWSM), extcnf_ctrl);
984 985
		extcnf_ctrl &= ~E1000_EXTCNF_CTRL_SWFLAG;
		ew32(EXTCNF_CTRL, extcnf_ctrl);
986 987
		ret_val = -E1000_ERR_CONFIG;
		goto out;
988 989
	}

990 991
out:
	if (ret_val)
992
		clear_bit(__E1000_ACCESS_SHARED_RESOURCE, &hw->adapter->state);
993 994

	return ret_val;
995 996 997 998 999 1000
}

/**
 *  e1000_release_swflag_ich8lan - Release software control flag
 *  @hw: pointer to the HW structure
 *
1001 1002
 *  Releases the software control flag for performing PHY and select
 *  MAC CSR accesses.
1003 1004 1005 1006 1007 1008
 **/
static void e1000_release_swflag_ich8lan(struct e1000_hw *hw)
{
	u32 extcnf_ctrl;

	extcnf_ctrl = er32(EXTCNF_CTRL);
1009 1010 1011 1012 1013 1014 1015

	if (extcnf_ctrl & E1000_EXTCNF_CTRL_SWFLAG) {
		extcnf_ctrl &= ~E1000_EXTCNF_CTRL_SWFLAG;
		ew32(EXTCNF_CTRL, extcnf_ctrl);
	} else {
		e_dbg("Semaphore unexpectedly released by sw/fw/hw\n");
	}
1016

1017
	clear_bit(__E1000_ACCESS_SHARED_RESOURCE, &hw->adapter->state);
1018 1019
}

1020 1021 1022 1023
/**
 *  e1000_check_mng_mode_ich8lan - Checks management mode
 *  @hw: pointer to the HW structure
 *
1024
 *  This checks if the adapter has any manageability enabled.
1025 1026 1027 1028 1029
 *  This is a function pointer entry point only called by read/write
 *  routines for the PHY and NVM parts.
 **/
static bool e1000_check_mng_mode_ich8lan(struct e1000_hw *hw)
{
1030 1031 1032
	u32 fwsm;

	fwsm = er32(FWSM);
1033 1034 1035 1036
	return (fwsm & E1000_ICH_FWSM_FW_VALID) &&
	       ((fwsm & E1000_FWSM_MODE_MASK) ==
		(E1000_ICH_MNG_IAMT_MODE << E1000_FWSM_MODE_SHIFT));
}
1037

1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052
/**
 *  e1000_check_mng_mode_pchlan - Checks management mode
 *  @hw: pointer to the HW structure
 *
 *  This checks if the adapter has iAMT enabled.
 *  This is a function pointer entry point only called by read/write
 *  routines for the PHY and NVM parts.
 **/
static bool e1000_check_mng_mode_pchlan(struct e1000_hw *hw)
{
	u32 fwsm;

	fwsm = er32(FWSM);
	return (fwsm & E1000_ICH_FWSM_FW_VALID) &&
	       (fwsm & (E1000_ICH_MNG_IAMT_MODE << E1000_FWSM_MODE_SHIFT));
1053 1054
}

1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118
/**
 *  e1000_rar_set_pch2lan - Set receive address register
 *  @hw: pointer to the HW structure
 *  @addr: pointer to the receive address
 *  @index: receive address array register
 *
 *  Sets the receive address array register at index to the address passed
 *  in by addr.  For 82579, RAR[0] is the base address register that is to
 *  contain the MAC address but RAR[1-6] are reserved for manageability (ME).
 *  Use SHRA[0-3] in place of those reserved for ME.
 **/
static void e1000_rar_set_pch2lan(struct e1000_hw *hw, u8 *addr, u32 index)
{
	u32 rar_low, rar_high;

	/*
	 * HW expects these in little endian so we reverse the byte order
	 * from network order (big endian) to little endian
	 */
	rar_low = ((u32)addr[0] |
		   ((u32)addr[1] << 8) |
		   ((u32)addr[2] << 16) | ((u32)addr[3] << 24));

	rar_high = ((u32)addr[4] | ((u32)addr[5] << 8));

	/* If MAC address zero, no need to set the AV bit */
	if (rar_low || rar_high)
		rar_high |= E1000_RAH_AV;

	if (index == 0) {
		ew32(RAL(index), rar_low);
		e1e_flush();
		ew32(RAH(index), rar_high);
		e1e_flush();
		return;
	}

	if (index < hw->mac.rar_entry_count) {
		s32 ret_val;

		ret_val = e1000_acquire_swflag_ich8lan(hw);
		if (ret_val)
			goto out;

		ew32(SHRAL(index - 1), rar_low);
		e1e_flush();
		ew32(SHRAH(index - 1), rar_high);
		e1e_flush();

		e1000_release_swflag_ich8lan(hw);

		/* verify the register updates */
		if ((er32(SHRAL(index - 1)) == rar_low) &&
		    (er32(SHRAH(index - 1)) == rar_high))
			return;

		e_dbg("SHRA[%d] might be locked by ME - FWSM=0x%8.8x\n",
		      (index - 1), er32(FWSM));
	}

out:
	e_dbg("Failed to write receive address at index %d\n", index);
}

1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135
/**
 *  e1000_check_reset_block_ich8lan - Check if PHY reset is blocked
 *  @hw: pointer to the HW structure
 *
 *  Checks if firmware is blocking the reset of the PHY.
 *  This is a function pointer entry point only called by
 *  reset routines.
 **/
static s32 e1000_check_reset_block_ich8lan(struct e1000_hw *hw)
{
	u32 fwsm;

	fwsm = er32(FWSM);

	return (fwsm & E1000_ICH_FWSM_RSPCIPHY) ? 0 : E1000_BLK_PHY_RESET;
}

1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152
/**
 *  e1000_write_smbus_addr - Write SMBus address to PHY needed during Sx states
 *  @hw: pointer to the HW structure
 *
 *  Assumes semaphore already acquired.
 *
 **/
static s32 e1000_write_smbus_addr(struct e1000_hw *hw)
{
	u16 phy_data;
	u32 strap = er32(STRAP);
	s32 ret_val = 0;

	strap &= E1000_STRAP_SMBUS_ADDRESS_MASK;

	ret_val = e1000_read_phy_reg_hv_locked(hw, HV_SMB_ADDR, &phy_data);
	if (ret_val)
1153
		return ret_val;
1154 1155 1156 1157 1158

	phy_data &= ~HV_SMB_ADDR_MASK;
	phy_data |= (strap >> E1000_STRAP_SMBUS_ADDRESS_SHIFT);
	phy_data |= HV_SMB_ADDR_PEC_EN | HV_SMB_ADDR_VALID;

1159
	return e1000_write_phy_reg_hv_locked(hw, HV_SMB_ADDR, phy_data);
1160 1161
}

1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172
/**
 *  e1000_sw_lcd_config_ich8lan - SW-based LCD Configuration
 *  @hw:   pointer to the HW structure
 *
 *  SW should configure the LCD from the NVM extended configuration region
 *  as a workaround for certain parts.
 **/
static s32 e1000_sw_lcd_config_ich8lan(struct e1000_hw *hw)
{
	struct e1000_phy_info *phy = &hw->phy;
	u32 i, data, cnf_size, cnf_base_addr, sw_cfg_mask;
1173
	s32 ret_val = 0;
1174 1175 1176 1177 1178 1179 1180 1181 1182
	u16 word_addr, reg_data, reg_addr, phy_page = 0;

	/*
	 * Initialize the PHY from the NVM on ICH platforms.  This
	 * is needed due to an issue where the NVM configuration is
	 * not properly autoloaded after power transitions.
	 * Therefore, after each PHY reset, we will load the
	 * configuration data out of the NVM manually.
	 */
1183 1184 1185 1186 1187
	switch (hw->mac.type) {
	case e1000_ich8lan:
		if (phy->type != e1000_phy_igp_3)
			return ret_val;

B
Bruce Allan 已提交
1188 1189
		if ((hw->adapter->pdev->device == E1000_DEV_ID_ICH8_IGP_AMT) ||
		    (hw->adapter->pdev->device == E1000_DEV_ID_ICH8_IGP_C)) {
1190 1191 1192 1193 1194
			sw_cfg_mask = E1000_FEXTNVM_SW_CONFIG;
			break;
		}
		/* Fall-thru */
	case e1000_pchlan:
1195
	case e1000_pch2lan:
1196
		sw_cfg_mask = E1000_FEXTNVM_SW_CONFIG_ICH8M;
1197 1198 1199 1200 1201 1202 1203 1204
		break;
	default:
		return ret_val;
	}

	ret_val = hw->phy.ops.acquire(hw);
	if (ret_val)
		return ret_val;
1205 1206 1207

	data = er32(FEXTNVM);
	if (!(data & sw_cfg_mask))
1208
		goto release;
1209

1210 1211 1212 1213 1214
	/*
	 * Make sure HW does not configure LCD from PHY
	 * extended configuration before SW configuration
	 */
	data = er32(EXTCNF_CTRL);
1215 1216
	if (!(hw->mac.type == e1000_pch2lan)) {
		if (data & E1000_EXTCNF_CTRL_LCD_WRITE_ENABLE)
1217
			goto release;
1218
	}
1219 1220 1221 1222 1223

	cnf_size = er32(EXTCNF_SIZE);
	cnf_size &= E1000_EXTCNF_SIZE_EXT_PCIE_LENGTH_MASK;
	cnf_size >>= E1000_EXTCNF_SIZE_EXT_PCIE_LENGTH_SHIFT;
	if (!cnf_size)
1224
		goto release;
1225 1226 1227 1228

	cnf_base_addr = data & E1000_EXTCNF_CTRL_EXT_CNF_POINTER_MASK;
	cnf_base_addr >>= E1000_EXTCNF_CTRL_EXT_CNF_POINTER_SHIFT;

1229 1230 1231
	if ((!(data & E1000_EXTCNF_CTRL_OEM_WRITE_ENABLE) &&
	    (hw->mac.type == e1000_pchlan)) ||
	     (hw->mac.type == e1000_pch2lan)) {
1232
		/*
1233 1234 1235 1236
		 * HW configures the SMBus address and LEDs when the
		 * OEM and LCD Write Enable bits are set in the NVM.
		 * When both NVM bits are cleared, SW will configure
		 * them instead.
1237
		 */
1238
		ret_val = e1000_write_smbus_addr(hw);
1239
		if (ret_val)
1240
			goto release;
1241

1242 1243 1244 1245
		data = er32(LEDCTL);
		ret_val = e1000_write_phy_reg_hv_locked(hw, HV_LED_CONFIG,
							(u16)data);
		if (ret_val)
1246
			goto release;
1247
	}
1248

1249 1250 1251 1252 1253 1254 1255 1256 1257
	/* Configure LCD from extended configuration region. */

	/* cnf_base_addr is in DWORD */
	word_addr = (u16)(cnf_base_addr << 1);

	for (i = 0; i < cnf_size; i++) {
		ret_val = e1000_read_nvm(hw, (word_addr + i * 2), 1,
					 &reg_data);
		if (ret_val)
1258
			goto release;
1259 1260 1261 1262

		ret_val = e1000_read_nvm(hw, (word_addr + i * 2 + 1),
					 1, &reg_addr);
		if (ret_val)
1263
			goto release;
1264 1265 1266 1267 1268

		/* Save off the PHY page for future writes. */
		if (reg_addr == IGP01E1000_PHY_PAGE_SELECT) {
			phy_page = reg_data;
			continue;
1269
		}
1270 1271 1272 1273 1274 1275 1276

		reg_addr &= PHY_REG_MASK;
		reg_addr |= phy_page;

		ret_val = phy->ops.write_reg_locked(hw, (u32)reg_addr,
						    reg_data);
		if (ret_val)
1277
			goto release;
1278 1279
	}

1280
release:
1281
	hw->phy.ops.release(hw);
1282 1283 1284
	return ret_val;
}

1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301
/**
 *  e1000_k1_gig_workaround_hv - K1 Si workaround
 *  @hw:   pointer to the HW structure
 *  @link: link up bool flag
 *
 *  If K1 is enabled for 1Gbps, the MAC might stall when transitioning
 *  from a lower speed.  This workaround disables K1 whenever link is at 1Gig
 *  If link is down, the function will restore the default K1 setting located
 *  in the NVM.
 **/
static s32 e1000_k1_gig_workaround_hv(struct e1000_hw *hw, bool link)
{
	s32 ret_val = 0;
	u16 status_reg = 0;
	bool k1_enable = hw->dev_spec.ich8lan.nvm_k1_enabled;

	if (hw->mac.type != e1000_pchlan)
1302
		return 0;
1303 1304

	/* Wrap the whole flow with the sw flag */
1305
	ret_val = hw->phy.ops.acquire(hw);
1306
	if (ret_val)
1307
		return ret_val;
1308 1309 1310 1311

	/* Disable K1 when link is 1Gbps, otherwise use the NVM setting */
	if (link) {
		if (hw->phy.type == e1000_phy_82578) {
1312
			ret_val = hw->phy.ops.read_reg_locked(hw, BM_CS_STATUS,
1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327
			                                          &status_reg);
			if (ret_val)
				goto release;

			status_reg &= BM_CS_STATUS_LINK_UP |
			              BM_CS_STATUS_RESOLVED |
			              BM_CS_STATUS_SPEED_MASK;

			if (status_reg == (BM_CS_STATUS_LINK_UP |
			                   BM_CS_STATUS_RESOLVED |
			                   BM_CS_STATUS_SPEED_1000))
				k1_enable = false;
		}

		if (hw->phy.type == e1000_phy_82577) {
1328
			ret_val = hw->phy.ops.read_reg_locked(hw, HV_M_STATUS,
1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343
			                                          &status_reg);
			if (ret_val)
				goto release;

			status_reg &= HV_M_STATUS_LINK_UP |
			              HV_M_STATUS_AUTONEG_COMPLETE |
			              HV_M_STATUS_SPEED_MASK;

			if (status_reg == (HV_M_STATUS_LINK_UP |
			                   HV_M_STATUS_AUTONEG_COMPLETE |
			                   HV_M_STATUS_SPEED_1000))
				k1_enable = false;
		}

		/* Link stall fix for link up */
1344
		ret_val = hw->phy.ops.write_reg_locked(hw, PHY_REG(770, 19),
1345 1346 1347 1348 1349 1350
		                                           0x0100);
		if (ret_val)
			goto release;

	} else {
		/* Link stall fix for link down */
1351
		ret_val = hw->phy.ops.write_reg_locked(hw, PHY_REG(770, 19),
1352 1353 1354 1355 1356 1357 1358 1359
		                                           0x4100);
		if (ret_val)
			goto release;
	}

	ret_val = e1000_configure_k1_ich8lan(hw, k1_enable);

release:
1360
	hw->phy.ops.release(hw);
1361

1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374
	return ret_val;
}

/**
 *  e1000_configure_k1_ich8lan - Configure K1 power state
 *  @hw: pointer to the HW structure
 *  @enable: K1 state to configure
 *
 *  Configure the K1 power state based on the provided parameter.
 *  Assumes semaphore already acquired.
 *
 *  Success returns 0, Failure returns -E1000_ERR_PHY (-2)
 **/
1375
s32 e1000_configure_k1_ich8lan(struct e1000_hw *hw, bool k1_enable)
1376 1377 1378 1379 1380 1381 1382
{
	s32 ret_val = 0;
	u32 ctrl_reg = 0;
	u32 ctrl_ext = 0;
	u32 reg = 0;
	u16 kmrn_reg = 0;

1383 1384
	ret_val = e1000e_read_kmrn_reg_locked(hw, E1000_KMRNCTRLSTA_K1_CONFIG,
					      &kmrn_reg);
1385
	if (ret_val)
1386
		return ret_val;
1387 1388 1389 1390 1391 1392

	if (k1_enable)
		kmrn_reg |= E1000_KMRNCTRLSTA_K1_ENABLE;
	else
		kmrn_reg &= ~E1000_KMRNCTRLSTA_K1_ENABLE;

1393 1394
	ret_val = e1000e_write_kmrn_reg_locked(hw, E1000_KMRNCTRLSTA_K1_CONFIG,
					       kmrn_reg);
1395
	if (ret_val)
1396
		return ret_val;
1397 1398 1399 1400 1401 1402 1403 1404 1405 1406

	udelay(20);
	ctrl_ext = er32(CTRL_EXT);
	ctrl_reg = er32(CTRL);

	reg = ctrl_reg & ~(E1000_CTRL_SPD_1000 | E1000_CTRL_SPD_100);
	reg |= E1000_CTRL_FRCSPD;
	ew32(CTRL, reg);

	ew32(CTRL_EXT, ctrl_ext | E1000_CTRL_EXT_SPD_BYPS);
1407
	e1e_flush();
1408 1409 1410
	udelay(20);
	ew32(CTRL, ctrl_reg);
	ew32(CTRL_EXT, ctrl_ext);
1411
	e1e_flush();
1412 1413
	udelay(20);

1414
	return 0;
1415 1416
}

1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431
/**
 *  e1000_oem_bits_config_ich8lan - SW-based LCD Configuration
 *  @hw:       pointer to the HW structure
 *  @d0_state: boolean if entering d0 or d3 device state
 *
 *  SW will configure Gbe Disable and LPLU based on the NVM. The four bits are
 *  collectively called OEM bits.  The OEM Write Enable bit and SW Config bit
 *  in NVM determines whether HW should configure LPLU and Gbe Disable.
 **/
static s32 e1000_oem_bits_config_ich8lan(struct e1000_hw *hw, bool d0_state)
{
	s32 ret_val = 0;
	u32 mac_reg;
	u16 oem_reg;

1432
	if ((hw->mac.type != e1000_pch2lan) && (hw->mac.type != e1000_pchlan))
1433 1434
		return ret_val;

1435
	ret_val = hw->phy.ops.acquire(hw);
1436 1437 1438
	if (ret_val)
		return ret_val;

1439 1440 1441
	if (!(hw->mac.type == e1000_pch2lan)) {
		mac_reg = er32(EXTCNF_CTRL);
		if (mac_reg & E1000_EXTCNF_CTRL_OEM_WRITE_ENABLE)
1442
			goto release;
1443
	}
1444 1445 1446

	mac_reg = er32(FEXTNVM);
	if (!(mac_reg & E1000_FEXTNVM_SW_CONFIG_ICH8M))
1447
		goto release;
1448 1449 1450

	mac_reg = er32(PHY_CTRL);

1451
	ret_val = hw->phy.ops.read_reg_locked(hw, HV_OEM_BITS, &oem_reg);
1452
	if (ret_val)
1453
		goto release;
1454 1455 1456 1457 1458 1459 1460 1461 1462 1463

	oem_reg &= ~(HV_OEM_BITS_GBE_DIS | HV_OEM_BITS_LPLU);

	if (d0_state) {
		if (mac_reg & E1000_PHY_CTRL_GBE_DISABLE)
			oem_reg |= HV_OEM_BITS_GBE_DIS;

		if (mac_reg & E1000_PHY_CTRL_D0A_LPLU)
			oem_reg |= HV_OEM_BITS_LPLU;
	} else {
B
Bruce Allan 已提交
1464 1465
		if (mac_reg & (E1000_PHY_CTRL_GBE_DISABLE |
			       E1000_PHY_CTRL_NOND0A_GBE_DISABLE))
1466 1467
			oem_reg |= HV_OEM_BITS_GBE_DIS;

B
Bruce Allan 已提交
1468 1469
		if (mac_reg & (E1000_PHY_CTRL_D0A_LPLU |
			       E1000_PHY_CTRL_NOND0A_LPLU))
1470 1471
			oem_reg |= HV_OEM_BITS_LPLU;
	}
B
Bruce Allan 已提交
1472

B
Bruce Allan 已提交
1473 1474 1475 1476 1477
	/* Set Restart auto-neg to activate the bits */
	if ((d0_state || (hw->mac.type != e1000_pchlan)) &&
	    !hw->phy.ops.check_reset_block(hw))
		oem_reg |= HV_OEM_BITS_RESTART_AN;

1478
	ret_val = hw->phy.ops.write_reg_locked(hw, HV_OEM_BITS, oem_reg);
1479

1480
release:
1481
	hw->phy.ops.release(hw);
1482 1483 1484 1485 1486

	return ret_val;
}


1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506
/**
 *  e1000_set_mdio_slow_mode_hv - Set slow MDIO access mode
 *  @hw:   pointer to the HW structure
 **/
static s32 e1000_set_mdio_slow_mode_hv(struct e1000_hw *hw)
{
	s32 ret_val;
	u16 data;

	ret_val = e1e_rphy(hw, HV_KMRN_MODE_CTRL, &data);
	if (ret_val)
		return ret_val;

	data |= HV_KMRN_MDIO_SLOW;

	ret_val = e1e_wphy(hw, HV_KMRN_MODE_CTRL, data);

	return ret_val;
}

1507 1508 1509 1510 1511 1512 1513
/**
 *  e1000_hv_phy_workarounds_ich8lan - A series of Phy workarounds to be
 *  done after every PHY reset.
 **/
static s32 e1000_hv_phy_workarounds_ich8lan(struct e1000_hw *hw)
{
	s32 ret_val = 0;
1514
	u16 phy_data;
1515 1516

	if (hw->mac.type != e1000_pchlan)
1517
		return 0;
1518

1519 1520 1521 1522
	/* Set MDIO slow mode before any other MDIO access */
	if (hw->phy.type == e1000_phy_82577) {
		ret_val = e1000_set_mdio_slow_mode_hv(hw);
		if (ret_val)
1523
			return ret_val;
1524 1525
	}

1526 1527 1528 1529 1530 1531 1532 1533 1534
	if (((hw->phy.type == e1000_phy_82577) &&
	     ((hw->phy.revision == 1) || (hw->phy.revision == 2))) ||
	    ((hw->phy.type == e1000_phy_82578) && (hw->phy.revision == 1))) {
		/* Disable generation of early preamble */
		ret_val = e1e_wphy(hw, PHY_REG(769, 25), 0x4431);
		if (ret_val)
			return ret_val;

		/* Preamble tuning for SSC */
1535
		ret_val = e1e_wphy(hw, HV_KMRN_FIFO_CTRLSTA, 0xA204);
1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551
		if (ret_val)
			return ret_val;
	}

	if (hw->phy.type == e1000_phy_82578) {
		/*
		 * Return registers to default by doing a soft reset then
		 * writing 0x3140 to the control register.
		 */
		if (hw->phy.revision < 2) {
			e1000e_phy_sw_reset(hw);
			ret_val = e1e_wphy(hw, PHY_CONTROL, 0x3140);
		}
	}

	/* Select page 0 */
1552
	ret_val = hw->phy.ops.acquire(hw);
1553 1554
	if (ret_val)
		return ret_val;
1555

1556
	hw->phy.addr = 1;
1557
	ret_val = e1000e_write_phy_reg_mdic(hw, IGP01E1000_PHY_PAGE_SELECT, 0);
1558
	hw->phy.ops.release(hw);
1559
	if (ret_val)
1560
		return ret_val;
1561

1562 1563 1564 1565 1566
	/*
	 * Configure the K1 Si workaround during phy reset assuming there is
	 * link so that it disables K1 if link is in 1Gbps.
	 */
	ret_val = e1000_k1_gig_workaround_hv(hw, true);
1567
	if (ret_val)
1568
		return ret_val;
1569

1570 1571 1572
	/* Workaround for link disconnects on a busy hub in half duplex */
	ret_val = hw->phy.ops.acquire(hw);
	if (ret_val)
1573
		return ret_val;
1574
	ret_val = hw->phy.ops.read_reg_locked(hw, BM_PORT_GEN_CFG, &phy_data);
1575 1576
	if (ret_val)
		goto release;
1577 1578
	ret_val = hw->phy.ops.write_reg_locked(hw, BM_PORT_GEN_CFG,
					       phy_data & 0x00FF);
1579 1580
release:
	hw->phy.ops.release(hw);
1581

1582 1583 1584
	return ret_val;
}

1585 1586 1587 1588 1589 1590 1591
/**
 *  e1000_copy_rx_addrs_to_phy_ich8lan - Copy Rx addresses from MAC to PHY
 *  @hw:   pointer to the HW structure
 **/
void e1000_copy_rx_addrs_to_phy_ich8lan(struct e1000_hw *hw)
{
	u32 mac_reg;
1592 1593 1594 1595 1596 1597 1598 1599 1600
	u16 i, phy_reg = 0;
	s32 ret_val;

	ret_val = hw->phy.ops.acquire(hw);
	if (ret_val)
		return;
	ret_val = e1000_enable_phy_wakeup_reg_access_bm(hw, &phy_reg);
	if (ret_val)
		goto release;
1601 1602 1603 1604

	/* Copy both RAL/H (rar_entry_count) and SHRAL/H (+4) to PHY */
	for (i = 0; i < (hw->mac.rar_entry_count + 4); i++) {
		mac_reg = er32(RAL(i));
1605 1606 1607 1608 1609
		hw->phy.ops.write_reg_page(hw, BM_RAR_L(i),
					   (u16)(mac_reg & 0xFFFF));
		hw->phy.ops.write_reg_page(hw, BM_RAR_M(i),
					   (u16)((mac_reg >> 16) & 0xFFFF));

1610
		mac_reg = er32(RAH(i));
1611 1612 1613 1614 1615
		hw->phy.ops.write_reg_page(hw, BM_RAR_H(i),
					   (u16)(mac_reg & 0xFFFF));
		hw->phy.ops.write_reg_page(hw, BM_RAR_CTRL(i),
					   (u16)((mac_reg & E1000_RAH_AV)
						 >> 16));
1616
	}
1617 1618 1619 1620 1621

	e1000_disable_phy_wakeup_reg_access_bm(hw, &phy_reg);

release:
	hw->phy.ops.release(hw);
1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637
}

/**
 *  e1000_lv_jumbo_workaround_ich8lan - required for jumbo frame operation
 *  with 82579 PHY
 *  @hw: pointer to the HW structure
 *  @enable: flag to enable/disable workaround when enabling/disabling jumbos
 **/
s32 e1000_lv_jumbo_workaround_ich8lan(struct e1000_hw *hw, bool enable)
{
	s32 ret_val = 0;
	u16 phy_reg, data;
	u32 mac_reg;
	u16 i;

	if (hw->mac.type != e1000_pch2lan)
1638
		return 0;
1639 1640 1641 1642 1643

	/* disable Rx path while enabling/disabling workaround */
	e1e_rphy(hw, PHY_REG(769, 20), &phy_reg);
	ret_val = e1e_wphy(hw, PHY_REG(769, 20), phy_reg | (1 << 14));
	if (ret_val)
1644
		return ret_val;
1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665

	if (enable) {
		/*
		 * Write Rx addresses (rar_entry_count for RAL/H, +4 for
		 * SHRAL/H) and initial CRC values to the MAC
		 */
		for (i = 0; i < (hw->mac.rar_entry_count + 4); i++) {
			u8 mac_addr[ETH_ALEN] = {0};
			u32 addr_high, addr_low;

			addr_high = er32(RAH(i));
			if (!(addr_high & E1000_RAH_AV))
				continue;
			addr_low = er32(RAL(i));
			mac_addr[0] = (addr_low & 0xFF);
			mac_addr[1] = ((addr_low >> 8) & 0xFF);
			mac_addr[2] = ((addr_low >> 16) & 0xFF);
			mac_addr[3] = ((addr_low >> 24) & 0xFF);
			mac_addr[4] = (addr_high & 0xFF);
			mac_addr[5] = ((addr_high >> 8) & 0xFF);

1666
			ew32(PCH_RAICC(i), ~ether_crc_le(ETH_ALEN, mac_addr));
1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685
		}

		/* Write Rx addresses to the PHY */
		e1000_copy_rx_addrs_to_phy_ich8lan(hw);

		/* Enable jumbo frame workaround in the MAC */
		mac_reg = er32(FFLT_DBG);
		mac_reg &= ~(1 << 14);
		mac_reg |= (7 << 15);
		ew32(FFLT_DBG, mac_reg);

		mac_reg = er32(RCTL);
		mac_reg |= E1000_RCTL_SECRC;
		ew32(RCTL, mac_reg);

		ret_val = e1000e_read_kmrn_reg(hw,
						E1000_KMRNCTRLSTA_CTRL_OFFSET,
						&data);
		if (ret_val)
1686
			return ret_val;
1687 1688 1689 1690
		ret_val = e1000e_write_kmrn_reg(hw,
						E1000_KMRNCTRLSTA_CTRL_OFFSET,
						data | (1 << 0));
		if (ret_val)
1691
			return ret_val;
1692 1693 1694 1695
		ret_val = e1000e_read_kmrn_reg(hw,
						E1000_KMRNCTRLSTA_HD_CTRL,
						&data);
		if (ret_val)
1696
			return ret_val;
1697 1698 1699 1700 1701 1702
		data &= ~(0xF << 8);
		data |= (0xB << 8);
		ret_val = e1000e_write_kmrn_reg(hw,
						E1000_KMRNCTRLSTA_HD_CTRL,
						data);
		if (ret_val)
1703
			return ret_val;
1704 1705 1706 1707 1708 1709 1710

		/* Enable jumbo frame workaround in the PHY */
		e1e_rphy(hw, PHY_REG(769, 23), &data);
		data &= ~(0x7F << 5);
		data |= (0x37 << 5);
		ret_val = e1e_wphy(hw, PHY_REG(769, 23), data);
		if (ret_val)
1711
			return ret_val;
1712 1713 1714 1715
		e1e_rphy(hw, PHY_REG(769, 16), &data);
		data &= ~(1 << 13);
		ret_val = e1e_wphy(hw, PHY_REG(769, 16), data);
		if (ret_val)
1716
			return ret_val;
1717 1718 1719 1720 1721
		e1e_rphy(hw, PHY_REG(776, 20), &data);
		data &= ~(0x3FF << 2);
		data |= (0x1A << 2);
		ret_val = e1e_wphy(hw, PHY_REG(776, 20), data);
		if (ret_val)
1722
			return ret_val;
1723
		ret_val = e1e_wphy(hw, PHY_REG(776, 23), 0xF100);
1724
		if (ret_val)
1725
			return ret_val;
1726 1727 1728
		e1e_rphy(hw, HV_PM_CTRL, &data);
		ret_val = e1e_wphy(hw, HV_PM_CTRL, data | (1 << 10));
		if (ret_val)
1729
			return ret_val;
1730 1731 1732 1733 1734 1735 1736 1737
	} else {
		/* Write MAC register values back to h/w defaults */
		mac_reg = er32(FFLT_DBG);
		mac_reg &= ~(0xF << 14);
		ew32(FFLT_DBG, mac_reg);

		mac_reg = er32(RCTL);
		mac_reg &= ~E1000_RCTL_SECRC;
1738
		ew32(RCTL, mac_reg);
1739 1740 1741 1742 1743

		ret_val = e1000e_read_kmrn_reg(hw,
						E1000_KMRNCTRLSTA_CTRL_OFFSET,
						&data);
		if (ret_val)
1744
			return ret_val;
1745 1746 1747 1748
		ret_val = e1000e_write_kmrn_reg(hw,
						E1000_KMRNCTRLSTA_CTRL_OFFSET,
						data & ~(1 << 0));
		if (ret_val)
1749
			return ret_val;
1750 1751 1752 1753
		ret_val = e1000e_read_kmrn_reg(hw,
						E1000_KMRNCTRLSTA_HD_CTRL,
						&data);
		if (ret_val)
1754
			return ret_val;
1755 1756 1757 1758 1759 1760
		data &= ~(0xF << 8);
		data |= (0xB << 8);
		ret_val = e1000e_write_kmrn_reg(hw,
						E1000_KMRNCTRLSTA_HD_CTRL,
						data);
		if (ret_val)
1761
			return ret_val;
1762 1763 1764 1765 1766 1767

		/* Write PHY register values back to h/w defaults */
		e1e_rphy(hw, PHY_REG(769, 23), &data);
		data &= ~(0x7F << 5);
		ret_val = e1e_wphy(hw, PHY_REG(769, 23), data);
		if (ret_val)
1768
			return ret_val;
1769 1770 1771 1772
		e1e_rphy(hw, PHY_REG(769, 16), &data);
		data |= (1 << 13);
		ret_val = e1e_wphy(hw, PHY_REG(769, 16), data);
		if (ret_val)
1773
			return ret_val;
1774 1775 1776 1777 1778
		e1e_rphy(hw, PHY_REG(776, 20), &data);
		data &= ~(0x3FF << 2);
		data |= (0x8 << 2);
		ret_val = e1e_wphy(hw, PHY_REG(776, 20), data);
		if (ret_val)
1779
			return ret_val;
1780 1781
		ret_val = e1e_wphy(hw, PHY_REG(776, 23), 0x7E00);
		if (ret_val)
1782
			return ret_val;
1783 1784 1785
		e1e_rphy(hw, HV_PM_CTRL, &data);
		ret_val = e1e_wphy(hw, HV_PM_CTRL, data & ~(1 << 10));
		if (ret_val)
1786
			return ret_val;
1787 1788 1789
	}

	/* re-enable Rx path after enabling/disabling workaround */
1790
	return e1e_wphy(hw, PHY_REG(769, 20), phy_reg & ~(1 << 14));
1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801
}

/**
 *  e1000_lv_phy_workarounds_ich8lan - A series of Phy workarounds to be
 *  done after every PHY reset.
 **/
static s32 e1000_lv_phy_workarounds_ich8lan(struct e1000_hw *hw)
{
	s32 ret_val = 0;

	if (hw->mac.type != e1000_pch2lan)
1802
		return 0;
1803 1804 1805 1806

	/* Set MDIO slow mode before any other MDIO access */
	ret_val = e1000_set_mdio_slow_mode_hv(hw);

1807 1808
	ret_val = hw->phy.ops.acquire(hw);
	if (ret_val)
1809
		return ret_val;
1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826
	ret_val = hw->phy.ops.write_reg_locked(hw, I82579_EMI_ADDR,
					       I82579_MSE_THRESHOLD);
	if (ret_val)
		goto release;
	/* set MSE higher to enable link to stay up when noise is high */
	ret_val = hw->phy.ops.write_reg_locked(hw, I82579_EMI_DATA, 0x0034);
	if (ret_val)
		goto release;
	ret_val = hw->phy.ops.write_reg_locked(hw, I82579_EMI_ADDR,
					       I82579_MSE_LINK_DOWN);
	if (ret_val)
		goto release;
	/* drop link after 5 times MSE threshold was reached */
	ret_val = hw->phy.ops.write_reg_locked(hw, I82579_EMI_DATA, 0x0005);
release:
	hw->phy.ops.release(hw);

1827 1828 1829
	return ret_val;
}

1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840
/**
 *  e1000_k1_gig_workaround_lv - K1 Si workaround
 *  @hw:   pointer to the HW structure
 *
 *  Workaround to set the K1 beacon duration for 82579 parts
 **/
static s32 e1000_k1_workaround_lv(struct e1000_hw *hw)
{
	s32 ret_val = 0;
	u16 status_reg = 0;
	u32 mac_reg;
1841
	u16 phy_reg;
1842 1843

	if (hw->mac.type != e1000_pch2lan)
1844
		return 0;
1845 1846 1847 1848

	/* Set K1 beacon duration based on 1Gbps speed or otherwise */
	ret_val = e1e_rphy(hw, HV_M_STATUS, &status_reg);
	if (ret_val)
1849
		return ret_val;
1850 1851 1852 1853 1854 1855

	if ((status_reg & (HV_M_STATUS_LINK_UP | HV_M_STATUS_AUTONEG_COMPLETE))
	    == (HV_M_STATUS_LINK_UP | HV_M_STATUS_AUTONEG_COMPLETE)) {
		mac_reg = er32(FEXTNVM4);
		mac_reg &= ~E1000_FEXTNVM4_BEACON_DURATION_MASK;

1856 1857
		ret_val = e1e_rphy(hw, I82579_LPI_CTRL, &phy_reg);
		if (ret_val)
1858
			return ret_val;
1859 1860

		if (status_reg & HV_M_STATUS_SPEED_1000) {
1861 1862
			u16 pm_phy_reg;

1863
			mac_reg |= E1000_FEXTNVM4_BEACON_DURATION_8USEC;
1864
			phy_reg &= ~I82579_LPI_CTRL_FORCE_PLL_LOCK_COUNT;
1865 1866 1867 1868 1869 1870 1871 1872
			/* LV 1G Packet drop issue wa  */
			ret_val = e1e_rphy(hw, HV_PM_CTRL, &pm_phy_reg);
			if (ret_val)
				return ret_val;
			pm_phy_reg &= ~HV_PM_CTRL_PLL_STOP_IN_K1_GIGA;
			ret_val = e1e_wphy(hw, HV_PM_CTRL, pm_phy_reg);
			if (ret_val)
				return ret_val;
1873
		} else {
1874
			mac_reg |= E1000_FEXTNVM4_BEACON_DURATION_16USEC;
1875 1876
			phy_reg |= I82579_LPI_CTRL_FORCE_PLL_LOCK_COUNT;
		}
1877
		ew32(FEXTNVM4, mac_reg);
1878
		ret_val = e1e_wphy(hw, I82579_LPI_CTRL, phy_reg);
1879 1880 1881 1882 1883
	}

	return ret_val;
}

1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908
/**
 *  e1000_gate_hw_phy_config_ich8lan - disable PHY config via hardware
 *  @hw:   pointer to the HW structure
 *  @gate: boolean set to true to gate, false to ungate
 *
 *  Gate/ungate the automatic PHY configuration via hardware; perform
 *  the configuration via software instead.
 **/
static void e1000_gate_hw_phy_config_ich8lan(struct e1000_hw *hw, bool gate)
{
	u32 extcnf_ctrl;

	if (hw->mac.type != e1000_pch2lan)
		return;

	extcnf_ctrl = er32(EXTCNF_CTRL);

	if (gate)
		extcnf_ctrl |= E1000_EXTCNF_CTRL_GATE_PHY_CFG;
	else
		extcnf_ctrl &= ~E1000_EXTCNF_CTRL_GATE_PHY_CFG;

	ew32(EXTCNF_CTRL, extcnf_ctrl);
}

1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932
/**
 *  e1000_lan_init_done_ich8lan - Check for PHY config completion
 *  @hw: pointer to the HW structure
 *
 *  Check the appropriate indication the MAC has finished configuring the
 *  PHY after a software reset.
 **/
static void e1000_lan_init_done_ich8lan(struct e1000_hw *hw)
{
	u32 data, loop = E1000_ICH8_LAN_INIT_TIMEOUT;

	/* Wait for basic configuration completes before proceeding */
	do {
		data = er32(STATUS);
		data &= E1000_STATUS_LAN_INIT_DONE;
		udelay(100);
	} while ((!data) && --loop);

	/*
	 * If basic configuration is incomplete before the above loop
	 * count reaches 0, loading the configuration from NVM will
	 * leave the PHY in a bad state possibly resulting in no link.
	 */
	if (loop == 0)
1933
		e_dbg("LAN_INIT_DONE not set, increase timeout\n");
1934 1935 1936 1937 1938 1939 1940

	/* Clear the Init Done bit for the next init event */
	data = er32(STATUS);
	data &= ~E1000_STATUS_LAN_INIT_DONE;
	ew32(STATUS, data);
}

1941
/**
1942
 *  e1000_post_phy_reset_ich8lan - Perform steps required after a PHY reset
1943 1944
 *  @hw: pointer to the HW structure
 **/
1945
static s32 e1000_post_phy_reset_ich8lan(struct e1000_hw *hw)
1946
{
1947 1948
	s32 ret_val = 0;
	u16 reg;
1949

1950
	if (hw->phy.ops.check_reset_block(hw))
1951
		return 0;
1952

B
Bruce Allan 已提交
1953
	/* Allow time for h/w to get to quiescent state after reset */
1954
	usleep_range(10000, 20000);
B
Bruce Allan 已提交
1955

1956
	/* Perform any necessary post-reset workarounds */
1957 1958
	switch (hw->mac.type) {
	case e1000_pchlan:
1959 1960
		ret_val = e1000_hv_phy_workarounds_ich8lan(hw);
		if (ret_val)
1961
			return ret_val;
1962
		break;
1963 1964 1965
	case e1000_pch2lan:
		ret_val = e1000_lv_phy_workarounds_ich8lan(hw);
		if (ret_val)
1966
			return ret_val;
1967
		break;
1968 1969
	default:
		break;
1970 1971
	}

1972 1973 1974 1975 1976 1977
	/* Clear the host wakeup bit after lcd reset */
	if (hw->mac.type >= e1000_pchlan) {
		e1e_rphy(hw, BM_PORT_GEN_CFG, &reg);
		reg &= ~BM_WUC_HOST_WU_BIT;
		e1e_wphy(hw, BM_PORT_GEN_CFG, reg);
	}
1978

1979 1980 1981
	/* Configure the LCD with the extended configuration region in NVM */
	ret_val = e1000_sw_lcd_config_ich8lan(hw);
	if (ret_val)
1982
		return ret_val;
1983

1984
	/* Configure the LCD with the OEM bits in NVM */
1985
	ret_val = e1000_oem_bits_config_ich8lan(hw, true);
1986

1987 1988 1989
	if (hw->mac.type == e1000_pch2lan) {
		/* Ungate automatic PHY configuration on non-managed 82579 */
		if (!(er32(FWSM) & E1000_ICH_FWSM_FW_VALID)) {
1990
			usleep_range(10000, 20000);
1991 1992 1993 1994 1995 1996
			e1000_gate_hw_phy_config_ich8lan(hw, false);
		}

		/* Set EEE LPI Update Timer to 200usec */
		ret_val = hw->phy.ops.acquire(hw);
		if (ret_val)
1997
			return ret_val;
1998 1999
		ret_val = hw->phy.ops.write_reg_locked(hw, I82579_EMI_ADDR,
						       I82579_LPI_UPDATE_TIMER);
2000 2001 2002 2003
		if (!ret_val)
			ret_val = hw->phy.ops.write_reg_locked(hw,
							       I82579_EMI_DATA,
							       0x1387);
2004
		hw->phy.ops.release(hw);
2005 2006
	}

2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021
	return ret_val;
}

/**
 *  e1000_phy_hw_reset_ich8lan - Performs a PHY reset
 *  @hw: pointer to the HW structure
 *
 *  Resets the PHY
 *  This is a function pointer entry point called by drivers
 *  or other shared routines.
 **/
static s32 e1000_phy_hw_reset_ich8lan(struct e1000_hw *hw)
{
	s32 ret_val = 0;

2022 2023 2024 2025 2026
	/* Gate automatic PHY configuration by hardware on non-managed 82579 */
	if ((hw->mac.type == e1000_pch2lan) &&
	    !(er32(FWSM) & E1000_ICH_FWSM_FW_VALID))
		e1000_gate_hw_phy_config_ich8lan(hw, true);

2027 2028
	ret_val = e1000e_phy_hw_reset_generic(hw);
	if (ret_val)
2029
		return ret_val;
2030

2031
	return e1000_post_phy_reset_ich8lan(hw);
2032 2033
}

2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051
/**
 *  e1000_set_lplu_state_pchlan - Set Low Power Link Up state
 *  @hw: pointer to the HW structure
 *  @active: true to enable LPLU, false to disable
 *
 *  Sets the LPLU state according to the active flag.  For PCH, if OEM write
 *  bit are disabled in the NVM, writing the LPLU bits in the MAC will not set
 *  the phy speed. This function will manually set the LPLU bit and restart
 *  auto-neg as hw would do. D3 and D0 LPLU will call the same function
 *  since it configures the same bit.
 **/
static s32 e1000_set_lplu_state_pchlan(struct e1000_hw *hw, bool active)
{
	s32 ret_val = 0;
	u16 oem_reg;

	ret_val = e1e_rphy(hw, HV_OEM_BITS, &oem_reg);
	if (ret_val)
2052
		return ret_val;
2053 2054 2055 2056 2057 2058

	if (active)
		oem_reg |= HV_OEM_BITS_LPLU;
	else
		oem_reg &= ~HV_OEM_BITS_LPLU;

2059
	if (!hw->phy.ops.check_reset_block(hw))
2060 2061
		oem_reg |= HV_OEM_BITS_RESTART_AN;

2062
	return e1e_wphy(hw, HV_OEM_BITS, oem_reg);
2063 2064
}

2065 2066 2067
/**
 *  e1000_set_d0_lplu_state_ich8lan - Set Low Power Linkup D0 state
 *  @hw: pointer to the HW structure
2068
 *  @active: true to enable LPLU, false to disable
2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084
 *
 *  Sets the LPLU D0 state according to the active flag.  When
 *  activating LPLU this function also disables smart speed
 *  and vice versa.  LPLU will not be activated unless the
 *  device autonegotiation advertisement meets standards of
 *  either 10 or 10/100 or 10/100/1000 at all duplexes.
 *  This is a function pointer entry point only called by
 *  PHY setup routines.
 **/
static s32 e1000_set_d0_lplu_state_ich8lan(struct e1000_hw *hw, bool active)
{
	struct e1000_phy_info *phy = &hw->phy;
	u32 phy_ctrl;
	s32 ret_val = 0;
	u16 data;

2085
	if (phy->type == e1000_phy_ife)
B
Bruce Allan 已提交
2086
		return 0;
2087 2088 2089 2090 2091 2092 2093

	phy_ctrl = er32(PHY_CTRL);

	if (active) {
		phy_ctrl |= E1000_PHY_CTRL_D0A_LPLU;
		ew32(PHY_CTRL, phy_ctrl);

2094 2095 2096
		if (phy->type != e1000_phy_igp_3)
			return 0;

2097 2098 2099 2100
		/*
		 * Call gig speed drop workaround on LPLU before accessing
		 * any PHY registers
		 */
2101
		if (hw->mac.type == e1000_ich8lan)
2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113
			e1000e_gig_downshift_workaround_ich8lan(hw);

		/* When LPLU is enabled, we should disable SmartSpeed */
		ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG, &data);
		data &= ~IGP01E1000_PSCFR_SMART_SPEED;
		ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG, data);
		if (ret_val)
			return ret_val;
	} else {
		phy_ctrl &= ~E1000_PHY_CTRL_D0A_LPLU;
		ew32(PHY_CTRL, phy_ctrl);

2114 2115 2116
		if (phy->type != e1000_phy_igp_3)
			return 0;

2117 2118
		/*
		 * LPLU and SmartSpeed are mutually exclusive.  LPLU is used
2119 2120
		 * during Dx states where the power conservation is most
		 * important.  During driver activity we should enable
2121 2122
		 * SmartSpeed, so performance is maintained.
		 */
2123 2124
		if (phy->smart_speed == e1000_smart_speed_on) {
			ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
2125
					   &data);
2126 2127 2128 2129 2130
			if (ret_val)
				return ret_val;

			data |= IGP01E1000_PSCFR_SMART_SPEED;
			ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
2131
					   data);
2132 2133 2134 2135
			if (ret_val)
				return ret_val;
		} else if (phy->smart_speed == e1000_smart_speed_off) {
			ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
2136
					   &data);
2137 2138 2139 2140 2141
			if (ret_val)
				return ret_val;

			data &= ~IGP01E1000_PSCFR_SMART_SPEED;
			ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
2142
					   data);
2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153
			if (ret_val)
				return ret_val;
		}
	}

	return 0;
}

/**
 *  e1000_set_d3_lplu_state_ich8lan - Set Low Power Linkup D3 state
 *  @hw: pointer to the HW structure
2154
 *  @active: true to enable LPLU, false to disable
2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167
 *
 *  Sets the LPLU D3 state according to the active flag.  When
 *  activating LPLU this function also disables smart speed
 *  and vice versa.  LPLU will not be activated unless the
 *  device autonegotiation advertisement meets standards of
 *  either 10 or 10/100 or 10/100/1000 at all duplexes.
 *  This is a function pointer entry point only called by
 *  PHY setup routines.
 **/
static s32 e1000_set_d3_lplu_state_ich8lan(struct e1000_hw *hw, bool active)
{
	struct e1000_phy_info *phy = &hw->phy;
	u32 phy_ctrl;
2168
	s32 ret_val = 0;
2169 2170 2171 2172 2173 2174 2175
	u16 data;

	phy_ctrl = er32(PHY_CTRL);

	if (!active) {
		phy_ctrl &= ~E1000_PHY_CTRL_NOND0A_LPLU;
		ew32(PHY_CTRL, phy_ctrl);
2176 2177 2178 2179

		if (phy->type != e1000_phy_igp_3)
			return 0;

2180 2181
		/*
		 * LPLU and SmartSpeed are mutually exclusive.  LPLU is used
2182 2183
		 * during Dx states where the power conservation is most
		 * important.  During driver activity we should enable
2184 2185
		 * SmartSpeed, so performance is maintained.
		 */
2186
		if (phy->smart_speed == e1000_smart_speed_on) {
2187 2188
			ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
					   &data);
2189 2190 2191 2192
			if (ret_val)
				return ret_val;

			data |= IGP01E1000_PSCFR_SMART_SPEED;
2193 2194
			ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
					   data);
2195 2196 2197
			if (ret_val)
				return ret_val;
		} else if (phy->smart_speed == e1000_smart_speed_off) {
2198 2199
			ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
					   &data);
2200 2201 2202 2203
			if (ret_val)
				return ret_val;

			data &= ~IGP01E1000_PSCFR_SMART_SPEED;
2204 2205
			ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
					   data);
2206 2207 2208 2209 2210 2211 2212 2213 2214
			if (ret_val)
				return ret_val;
		}
	} else if ((phy->autoneg_advertised == E1000_ALL_SPEED_DUPLEX) ||
		   (phy->autoneg_advertised == E1000_ALL_NOT_GIG) ||
		   (phy->autoneg_advertised == E1000_ALL_10_SPEED)) {
		phy_ctrl |= E1000_PHY_CTRL_NOND0A_LPLU;
		ew32(PHY_CTRL, phy_ctrl);

2215 2216 2217
		if (phy->type != e1000_phy_igp_3)
			return 0;

2218 2219 2220 2221
		/*
		 * Call gig speed drop workaround on LPLU before accessing
		 * any PHY registers
		 */
2222
		if (hw->mac.type == e1000_ich8lan)
2223 2224 2225
			e1000e_gig_downshift_workaround_ich8lan(hw);

		/* When LPLU is enabled, we should disable SmartSpeed */
2226
		ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG, &data);
2227 2228 2229 2230
		if (ret_val)
			return ret_val;

		data &= ~IGP01E1000_PSCFR_SMART_SPEED;
2231
		ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG, data);
2232 2233
	}

2234
	return ret_val;
2235 2236
}

2237 2238 2239 2240 2241 2242
/**
 *  e1000_valid_nvm_bank_detect_ich8lan - finds out the valid bank 0 or 1
 *  @hw: pointer to the HW structure
 *  @bank:  pointer to the variable that returns the active bank
 *
 *  Reads signature byte from the NVM using the flash access registers.
2243
 *  Word 0x13 bits 15:14 = 10b indicate a valid signature for that bank.
2244 2245 2246
 **/
static s32 e1000_valid_nvm_bank_detect_ich8lan(struct e1000_hw *hw, u32 *bank)
{
2247
	u32 eecd;
2248 2249 2250
	struct e1000_nvm_info *nvm = &hw->nvm;
	u32 bank1_offset = nvm->flash_bank_size * sizeof(u16);
	u32 act_offset = E1000_ICH_NVM_SIG_WORD * 2 + 1;
2251
	u8 sig_byte = 0;
2252
	s32 ret_val;
2253

2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266
	switch (hw->mac.type) {
	case e1000_ich8lan:
	case e1000_ich9lan:
		eecd = er32(EECD);
		if ((eecd & E1000_EECD_SEC1VAL_VALID_MASK) ==
		    E1000_EECD_SEC1VAL_VALID_MASK) {
			if (eecd & E1000_EECD_SEC1VAL)
				*bank = 1;
			else
				*bank = 0;

			return 0;
		}
2267
		e_dbg("Unable to determine valid NVM bank via EEC - reading flash signature\n");
2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279
		/* fall-thru */
	default:
		/* set bank to 0 in case flash read fails */
		*bank = 0;

		/* Check bank 0 */
		ret_val = e1000_read_flash_byte_ich8lan(hw, act_offset,
		                                        &sig_byte);
		if (ret_val)
			return ret_val;
		if ((sig_byte & E1000_ICH_NVM_VALID_SIG_MASK) ==
		    E1000_ICH_NVM_SIG_VALUE) {
2280
			*bank = 0;
2281 2282
			return 0;
		}
2283

2284 2285 2286 2287 2288 2289 2290 2291 2292 2293
		/* Check bank 1 */
		ret_val = e1000_read_flash_byte_ich8lan(hw, act_offset +
		                                        bank1_offset,
		                                        &sig_byte);
		if (ret_val)
			return ret_val;
		if ((sig_byte & E1000_ICH_NVM_VALID_SIG_MASK) ==
		    E1000_ICH_NVM_SIG_VALUE) {
			*bank = 1;
			return 0;
2294
		}
2295

2296
		e_dbg("ERROR: No valid NVM bank present\n");
2297
		return -E1000_ERR_NVM;
2298 2299 2300
	}
}

2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315
/**
 *  e1000_read_nvm_ich8lan - Read word(s) from the NVM
 *  @hw: pointer to the HW structure
 *  @offset: The offset (in bytes) of the word(s) to read.
 *  @words: Size of data to read in words
 *  @data: Pointer to the word(s) to read at offset.
 *
 *  Reads a word(s) from the NVM using the flash access registers.
 **/
static s32 e1000_read_nvm_ich8lan(struct e1000_hw *hw, u16 offset, u16 words,
				  u16 *data)
{
	struct e1000_nvm_info *nvm = &hw->nvm;
	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
	u32 act_offset;
2316
	s32 ret_val = 0;
2317
	u32 bank = 0;
2318 2319 2320 2321
	u16 i, word;

	if ((offset >= nvm->word_size) || (words > nvm->word_size - offset) ||
	    (words == 0)) {
2322
		e_dbg("nvm parameter(s) out of bounds\n");
2323 2324
		ret_val = -E1000_ERR_NVM;
		goto out;
2325 2326
	}

2327
	nvm->ops.acquire(hw);
2328

2329
	ret_val = e1000_valid_nvm_bank_detect_ich8lan(hw, &bank);
2330
	if (ret_val) {
2331
		e_dbg("Could not detect valid bank, assuming bank 0\n");
2332 2333
		bank = 0;
	}
2334 2335

	act_offset = (bank) ? nvm->flash_bank_size : 0;
2336 2337
	act_offset += offset;

2338
	ret_val = 0;
2339
	for (i = 0; i < words; i++) {
2340
		if (dev_spec->shadow_ram[offset+i].modified) {
2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351
			data[i] = dev_spec->shadow_ram[offset+i].value;
		} else {
			ret_val = e1000_read_flash_word_ich8lan(hw,
								act_offset + i,
								&word);
			if (ret_val)
				break;
			data[i] = word;
		}
	}

2352
	nvm->ops.release(hw);
2353

2354 2355
out:
	if (ret_val)
2356
		e_dbg("NVM read error: %d\n", ret_val);
2357

2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375
	return ret_val;
}

/**
 *  e1000_flash_cycle_init_ich8lan - Initialize flash
 *  @hw: pointer to the HW structure
 *
 *  This function does initial flash setup so that a new read/write/erase cycle
 *  can be started.
 **/
static s32 e1000_flash_cycle_init_ich8lan(struct e1000_hw *hw)
{
	union ich8_hws_flash_status hsfsts;
	s32 ret_val = -E1000_ERR_NVM;

	hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);

	/* Check if the flash descriptor is valid */
B
Bruce Allan 已提交
2376
	if (!hsfsts.hsf_status.fldesvalid) {
2377
		e_dbg("Flash descriptor invalid.  SW Sequencing must be used.\n");
2378 2379 2380 2381 2382 2383 2384 2385 2386
		return -E1000_ERR_NVM;
	}

	/* Clear FCERR and DAEL in hw status by writing 1 */
	hsfsts.hsf_status.flcerr = 1;
	hsfsts.hsf_status.dael = 1;

	ew16flash(ICH_FLASH_HSFSTS, hsfsts.regval);

2387 2388
	/*
	 * Either we should have a hardware SPI cycle in progress
2389 2390
	 * bit to check against, in order to start a new cycle or
	 * FDONE bit should be changed in the hardware so that it
2391
	 * is 1 after hardware reset, which can then be used as an
2392 2393 2394 2395
	 * indication whether a cycle is in progress or has been
	 * completed.
	 */

B
Bruce Allan 已提交
2396
	if (!hsfsts.hsf_status.flcinprog) {
2397 2398
		/*
		 * There is no cycle running at present,
B
Bruce Allan 已提交
2399
		 * so we can start a cycle.
2400 2401
		 * Begin by setting Flash Cycle Done.
		 */
2402 2403 2404 2405
		hsfsts.hsf_status.flcdone = 1;
		ew16flash(ICH_FLASH_HSFSTS, hsfsts.regval);
		ret_val = 0;
	} else {
2406
		s32 i;
2407

2408
		/*
B
Bruce Allan 已提交
2409
		 * Otherwise poll for sometime so the current
2410 2411
		 * cycle has a chance to end before giving up.
		 */
2412
		for (i = 0; i < ICH_FLASH_READ_COMMAND_TIMEOUT; i++) {
2413
			hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
B
Bruce Allan 已提交
2414
			if (!hsfsts.hsf_status.flcinprog) {
2415 2416 2417 2418 2419
				ret_val = 0;
				break;
			}
			udelay(1);
		}
2420
		if (!ret_val) {
2421 2422 2423 2424
			/*
			 * Successful in waiting for previous cycle to timeout,
			 * now set the Flash Cycle Done.
			 */
2425 2426 2427
			hsfsts.hsf_status.flcdone = 1;
			ew16flash(ICH_FLASH_HSFSTS, hsfsts.regval);
		} else {
J
Joe Perches 已提交
2428
			e_dbg("Flash controller busy, cannot get access\n");
2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455
		}
	}

	return ret_val;
}

/**
 *  e1000_flash_cycle_ich8lan - Starts flash cycle (read/write/erase)
 *  @hw: pointer to the HW structure
 *  @timeout: maximum time to wait for completion
 *
 *  This function starts a flash cycle and waits for its completion.
 **/
static s32 e1000_flash_cycle_ich8lan(struct e1000_hw *hw, u32 timeout)
{
	union ich8_hws_flash_ctrl hsflctl;
	union ich8_hws_flash_status hsfsts;
	u32 i = 0;

	/* Start a cycle by writing 1 in Flash Cycle Go in Hw Flash Control */
	hsflctl.regval = er16flash(ICH_FLASH_HSFCTL);
	hsflctl.hsf_ctrl.flcgo = 1;
	ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval);

	/* wait till FDONE bit is set to 1 */
	do {
		hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
B
Bruce Allan 已提交
2456
		if (hsfsts.hsf_status.flcdone)
2457 2458 2459 2460
			break;
		udelay(1);
	} while (i++ < timeout);

B
Bruce Allan 已提交
2461
	if (hsfsts.hsf_status.flcdone && !hsfsts.hsf_status.flcerr)
2462 2463
		return 0;

2464
	return -E1000_ERR_NVM;
2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484
}

/**
 *  e1000_read_flash_word_ich8lan - Read word from flash
 *  @hw: pointer to the HW structure
 *  @offset: offset to data location
 *  @data: pointer to the location for storing the data
 *
 *  Reads the flash word at offset into data.  Offset is converted
 *  to bytes before read.
 **/
static s32 e1000_read_flash_word_ich8lan(struct e1000_hw *hw, u32 offset,
					 u16 *data)
{
	/* Must convert offset into bytes. */
	offset <<= 1;

	return e1000_read_flash_data_ich8lan(hw, offset, 2, data);
}

2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507
/**
 *  e1000_read_flash_byte_ich8lan - Read byte from flash
 *  @hw: pointer to the HW structure
 *  @offset: The offset of the byte to read.
 *  @data: Pointer to a byte to store the value read.
 *
 *  Reads a single byte from the NVM using the flash access registers.
 **/
static s32 e1000_read_flash_byte_ich8lan(struct e1000_hw *hw, u32 offset,
					 u8 *data)
{
	s32 ret_val;
	u16 word = 0;

	ret_val = e1000_read_flash_data_ich8lan(hw, offset, 1, &word);
	if (ret_val)
		return ret_val;

	*data = (u8)word;

	return 0;
}

2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536
/**
 *  e1000_read_flash_data_ich8lan - Read byte or word from NVM
 *  @hw: pointer to the HW structure
 *  @offset: The offset (in bytes) of the byte or word to read.
 *  @size: Size of data to read, 1=byte 2=word
 *  @data: Pointer to the word to store the value read.
 *
 *  Reads a byte or word from the NVM using the flash access registers.
 **/
static s32 e1000_read_flash_data_ich8lan(struct e1000_hw *hw, u32 offset,
					 u8 size, u16 *data)
{
	union ich8_hws_flash_status hsfsts;
	union ich8_hws_flash_ctrl hsflctl;
	u32 flash_linear_addr;
	u32 flash_data = 0;
	s32 ret_val = -E1000_ERR_NVM;
	u8 count = 0;

	if (size < 1  || size > 2 || offset > ICH_FLASH_LINEAR_ADDR_MASK)
		return -E1000_ERR_NVM;

	flash_linear_addr = (ICH_FLASH_LINEAR_ADDR_MASK & offset) +
			    hw->nvm.flash_base_addr;

	do {
		udelay(1);
		/* Steps */
		ret_val = e1000_flash_cycle_init_ich8lan(hw);
2537
		if (ret_val)
2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550
			break;

		hsflctl.regval = er16flash(ICH_FLASH_HSFCTL);
		/* 0b/1b corresponds to 1 or 2 byte size, respectively. */
		hsflctl.hsf_ctrl.fldbcount = size - 1;
		hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_READ;
		ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval);

		ew32flash(ICH_FLASH_FADDR, flash_linear_addr);

		ret_val = e1000_flash_cycle_ich8lan(hw,
						ICH_FLASH_READ_COMMAND_TIMEOUT);

2551 2552
		/*
		 * Check if FCERR is set to 1, if set to 1, clear it
2553 2554
		 * and try the whole sequence a few more times, else
		 * read in (shift in) the Flash Data0, the order is
2555 2556
		 * least significant byte first msb to lsb
		 */
2557
		if (!ret_val) {
2558
			flash_data = er32flash(ICH_FLASH_FDATA0);
B
Bruce Allan 已提交
2559
			if (size == 1)
2560
				*data = (u8)(flash_data & 0x000000FF);
B
Bruce Allan 已提交
2561
			else if (size == 2)
2562 2563 2564
				*data = (u16)(flash_data & 0x0000FFFF);
			break;
		} else {
2565 2566
			/*
			 * If we've gotten here, then things are probably
2567 2568 2569 2570 2571
			 * completely hosed, but if the error condition is
			 * detected, it won't hurt to give it another try...
			 * ICH_FLASH_CYCLE_REPEAT_COUNT times.
			 */
			hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
B
Bruce Allan 已提交
2572
			if (hsfsts.hsf_status.flcerr) {
2573 2574
				/* Repeat for some time before giving up. */
				continue;
B
Bruce Allan 已提交
2575
			} else if (!hsfsts.hsf_status.flcdone) {
2576
				e_dbg("Timeout error - flash cycle did not complete.\n");
2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602
				break;
			}
		}
	} while (count++ < ICH_FLASH_CYCLE_REPEAT_COUNT);

	return ret_val;
}

/**
 *  e1000_write_nvm_ich8lan - Write word(s) to the NVM
 *  @hw: pointer to the HW structure
 *  @offset: The offset (in bytes) of the word(s) to write.
 *  @words: Size of data to write in words
 *  @data: Pointer to the word(s) to write at offset.
 *
 *  Writes a byte or word to the NVM using the flash access registers.
 **/
static s32 e1000_write_nvm_ich8lan(struct e1000_hw *hw, u16 offset, u16 words,
				   u16 *data)
{
	struct e1000_nvm_info *nvm = &hw->nvm;
	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
	u16 i;

	if ((offset >= nvm->word_size) || (words > nvm->word_size - offset) ||
	    (words == 0)) {
2603
		e_dbg("nvm parameter(s) out of bounds\n");
2604 2605 2606
		return -E1000_ERR_NVM;
	}

2607
	nvm->ops.acquire(hw);
2608

2609
	for (i = 0; i < words; i++) {
2610
		dev_spec->shadow_ram[offset+i].modified = true;
2611 2612 2613
		dev_spec->shadow_ram[offset+i].value = data[i];
	}

2614
	nvm->ops.release(hw);
2615

2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626
	return 0;
}

/**
 *  e1000_update_nvm_checksum_ich8lan - Update the checksum for NVM
 *  @hw: pointer to the HW structure
 *
 *  The NVM checksum is updated by calling the generic update_nvm_checksum,
 *  which writes the checksum to the shadow ram.  The changes in the shadow
 *  ram are then committed to the EEPROM by processing each bank at a time
 *  checking for the modified bit and writing only the pending changes.
2627
 *  After a successful commit, the shadow ram is cleared and is ready for
2628 2629 2630 2631 2632 2633
 *  future writes.
 **/
static s32 e1000_update_nvm_checksum_ich8lan(struct e1000_hw *hw)
{
	struct e1000_nvm_info *nvm = &hw->nvm;
	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
2634
	u32 i, act_offset, new_bank_offset, old_bank_offset, bank;
2635 2636 2637 2638 2639
	s32 ret_val;
	u16 data;

	ret_val = e1000e_update_nvm_checksum_generic(hw);
	if (ret_val)
2640
		goto out;
2641 2642

	if (nvm->type != e1000_nvm_flash_sw)
2643
		goto out;
2644

2645
	nvm->ops.acquire(hw);
2646

2647 2648
	/*
	 * We're writing to the opposite bank so if we're on bank 1,
2649
	 * write to bank 0 etc.  We also need to erase the segment that
2650 2651
	 * is going to be written
	 */
2652
	ret_val =  e1000_valid_nvm_bank_detect_ich8lan(hw, &bank);
2653
	if (ret_val) {
2654
		e_dbg("Could not detect valid bank, assuming bank 0\n");
2655
		bank = 0;
2656
	}
2657 2658

	if (bank == 0) {
2659 2660
		new_bank_offset = nvm->flash_bank_size;
		old_bank_offset = 0;
2661
		ret_val = e1000_erase_flash_bank_ich8lan(hw, 1);
2662 2663
		if (ret_val)
			goto release;
2664 2665 2666
	} else {
		old_bank_offset = nvm->flash_bank_size;
		new_bank_offset = 0;
2667
		ret_val = e1000_erase_flash_bank_ich8lan(hw, 0);
2668 2669
		if (ret_val)
			goto release;
2670 2671 2672
	}

	for (i = 0; i < E1000_ICH8_SHADOW_RAM_WORDS; i++) {
2673 2674
		/*
		 * Determine whether to write the value stored
2675
		 * in the other NVM bank or a modified value stored
2676 2677
		 * in the shadow RAM
		 */
2678 2679 2680
		if (dev_spec->shadow_ram[i].modified) {
			data = dev_spec->shadow_ram[i].value;
		} else {
2681 2682 2683 2684 2685
			ret_val = e1000_read_flash_word_ich8lan(hw, i +
			                                        old_bank_offset,
			                                        &data);
			if (ret_val)
				break;
2686 2687
		}

2688 2689
		/*
		 * If the word is 0x13, then make sure the signature bits
2690 2691 2692 2693
		 * (15:14) are 11b until the commit has completed.
		 * This will allow us to write 10b which indicates the
		 * signature is valid.  We want to do this after the write
		 * has completed so that we don't mark the segment valid
2694 2695
		 * while the write is still in progress
		 */
2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717
		if (i == E1000_ICH_NVM_SIG_WORD)
			data |= E1000_ICH_NVM_SIG_MASK;

		/* Convert offset to bytes. */
		act_offset = (i + new_bank_offset) << 1;

		udelay(100);
		/* Write the bytes to the new bank. */
		ret_val = e1000_retry_write_flash_byte_ich8lan(hw,
							       act_offset,
							       (u8)data);
		if (ret_val)
			break;

		udelay(100);
		ret_val = e1000_retry_write_flash_byte_ich8lan(hw,
							  act_offset + 1,
							  (u8)(data >> 8));
		if (ret_val)
			break;
	}

2718 2719 2720 2721
	/*
	 * Don't bother writing the segment valid bits if sector
	 * programming failed.
	 */
2722
	if (ret_val) {
2723
		/* Possibly read-only, see e1000e_write_protect_nvm_ich8lan() */
2724
		e_dbg("Flash commit failed.\n");
2725
		goto release;
2726 2727
	}

2728 2729
	/*
	 * Finally validate the new segment by setting bit 15:14
2730 2731
	 * to 10b in word 0x13 , this can be done without an
	 * erase as well since these bits are 11 to start with
2732 2733
	 * and we need to change bit 14 to 0b
	 */
2734
	act_offset = new_bank_offset + E1000_ICH_NVM_SIG_WORD;
2735
	ret_val = e1000_read_flash_word_ich8lan(hw, act_offset, &data);
2736 2737 2738
	if (ret_val)
		goto release;

2739 2740 2741 2742
	data &= 0xBFFF;
	ret_val = e1000_retry_write_flash_byte_ich8lan(hw,
						       act_offset * 2 + 1,
						       (u8)(data >> 8));
2743 2744
	if (ret_val)
		goto release;
2745

2746 2747
	/*
	 * And invalidate the previously valid segment by setting
2748 2749
	 * its signature word (0x13) high_byte to 0b. This can be
	 * done without an erase because flash erase sets all bits
2750 2751
	 * to 1's. We can write 1's to 0's without an erase
	 */
2752 2753
	act_offset = (old_bank_offset + E1000_ICH_NVM_SIG_WORD) * 2 + 1;
	ret_val = e1000_retry_write_flash_byte_ich8lan(hw, act_offset, 0);
2754 2755
	if (ret_val)
		goto release;
2756 2757 2758

	/* Great!  Everything worked, we can now clear the cached entries. */
	for (i = 0; i < E1000_ICH8_SHADOW_RAM_WORDS; i++) {
2759
		dev_spec->shadow_ram[i].modified = false;
2760 2761 2762
		dev_spec->shadow_ram[i].value = 0xFFFF;
	}

2763
release:
2764
	nvm->ops.release(hw);
2765

2766 2767
	/*
	 * Reload the EEPROM, or else modifications will not appear
2768 2769
	 * until after the next adapter reset.
	 */
2770
	if (!ret_val) {
2771
		nvm->ops.reload(hw);
2772
		usleep_range(10000, 20000);
2773
	}
2774

2775 2776
out:
	if (ret_val)
2777
		e_dbg("NVM update error: %d\n", ret_val);
2778

2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794
	return ret_val;
}

/**
 *  e1000_validate_nvm_checksum_ich8lan - Validate EEPROM checksum
 *  @hw: pointer to the HW structure
 *
 *  Check to see if checksum needs to be fixed by reading bit 6 in word 0x19.
 *  If the bit is 0, that the EEPROM had been modified, but the checksum was not
 *  calculated, in which case we need to calculate the checksum and set bit 6.
 **/
static s32 e1000_validate_nvm_checksum_ich8lan(struct e1000_hw *hw)
{
	s32 ret_val;
	u16 data;

2795 2796
	/*
	 * Read 0x19 and check bit 6.  If this bit is 0, the checksum
2797 2798 2799 2800 2801 2802 2803 2804
	 * needs to be fixed.  This bit is an indication that the NVM
	 * was prepared by OEM software and did not calculate the
	 * checksum...a likely scenario.
	 */
	ret_val = e1000_read_nvm(hw, 0x19, 1, &data);
	if (ret_val)
		return ret_val;

B
Bruce Allan 已提交
2805
	if (!(data & 0x40)) {
2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817
		data |= 0x40;
		ret_val = e1000_write_nvm(hw, 0x19, 1, &data);
		if (ret_val)
			return ret_val;
		ret_val = e1000e_update_nvm_checksum(hw);
		if (ret_val)
			return ret_val;
	}

	return e1000e_validate_nvm_checksum_generic(hw);
}

2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829
/**
 *  e1000e_write_protect_nvm_ich8lan - Make the NVM read-only
 *  @hw: pointer to the HW structure
 *
 *  To prevent malicious write/erase of the NVM, set it to be read-only
 *  so that the hardware ignores all write/erase cycles of the NVM via
 *  the flash control registers.  The shadow-ram copy of the NVM will
 *  still be updated, however any updates to this copy will not stick
 *  across driver reloads.
 **/
void e1000e_write_protect_nvm_ich8lan(struct e1000_hw *hw)
{
2830
	struct e1000_nvm_info *nvm = &hw->nvm;
2831 2832 2833 2834
	union ich8_flash_protected_range pr0;
	union ich8_hws_flash_status hsfsts;
	u32 gfpreg;

2835
	nvm->ops.acquire(hw);
2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855

	gfpreg = er32flash(ICH_FLASH_GFPREG);

	/* Write-protect GbE Sector of NVM */
	pr0.regval = er32flash(ICH_FLASH_PR0);
	pr0.range.base = gfpreg & FLASH_GFPREG_BASE_MASK;
	pr0.range.limit = ((gfpreg >> 16) & FLASH_GFPREG_BASE_MASK);
	pr0.range.wpe = true;
	ew32flash(ICH_FLASH_PR0, pr0.regval);

	/*
	 * Lock down a subset of GbE Flash Control Registers, e.g.
	 * PR0 to prevent the write-protection from being lifted.
	 * Once FLOCKDN is set, the registers protected by it cannot
	 * be written until FLOCKDN is cleared by a hardware reset.
	 */
	hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
	hsfsts.hsf_status.flockdn = true;
	ew32flash(ICH_FLASH_HSFSTS, hsfsts.regval);

2856
	nvm->ops.release(hw);
2857 2858
}

2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906
/**
 *  e1000_write_flash_data_ich8lan - Writes bytes to the NVM
 *  @hw: pointer to the HW structure
 *  @offset: The offset (in bytes) of the byte/word to read.
 *  @size: Size of data to read, 1=byte 2=word
 *  @data: The byte(s) to write to the NVM.
 *
 *  Writes one/two bytes to the NVM using the flash access registers.
 **/
static s32 e1000_write_flash_data_ich8lan(struct e1000_hw *hw, u32 offset,
					  u8 size, u16 data)
{
	union ich8_hws_flash_status hsfsts;
	union ich8_hws_flash_ctrl hsflctl;
	u32 flash_linear_addr;
	u32 flash_data = 0;
	s32 ret_val;
	u8 count = 0;

	if (size < 1 || size > 2 || data > size * 0xff ||
	    offset > ICH_FLASH_LINEAR_ADDR_MASK)
		return -E1000_ERR_NVM;

	flash_linear_addr = (ICH_FLASH_LINEAR_ADDR_MASK & offset) +
			    hw->nvm.flash_base_addr;

	do {
		udelay(1);
		/* Steps */
		ret_val = e1000_flash_cycle_init_ich8lan(hw);
		if (ret_val)
			break;

		hsflctl.regval = er16flash(ICH_FLASH_HSFCTL);
		/* 0b/1b corresponds to 1 or 2 byte size, respectively. */
		hsflctl.hsf_ctrl.fldbcount = size -1;
		hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_WRITE;
		ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval);

		ew32flash(ICH_FLASH_FADDR, flash_linear_addr);

		if (size == 1)
			flash_data = (u32)data & 0x00FF;
		else
			flash_data = (u32)data;

		ew32flash(ICH_FLASH_FDATA0, flash_data);

2907 2908 2909 2910
		/*
		 * check if FCERR is set to 1 , if set to 1, clear it
		 * and try the whole sequence a few more times else done
		 */
2911 2912 2913 2914 2915
		ret_val = e1000_flash_cycle_ich8lan(hw,
					       ICH_FLASH_WRITE_COMMAND_TIMEOUT);
		if (!ret_val)
			break;

2916 2917
		/*
		 * If we're here, then things are most likely
2918 2919 2920 2921 2922
		 * completely hosed, but if the error condition
		 * is detected, it won't hurt to give it another
		 * try...ICH_FLASH_CYCLE_REPEAT_COUNT times.
		 */
		hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
B
Bruce Allan 已提交
2923
		if (hsfsts.hsf_status.flcerr)
2924 2925
			/* Repeat for some time before giving up. */
			continue;
B
Bruce Allan 已提交
2926
		if (!hsfsts.hsf_status.flcdone) {
2927
			e_dbg("Timeout error - flash cycle did not complete.\n");
2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970
			break;
		}
	} while (count++ < ICH_FLASH_CYCLE_REPEAT_COUNT);

	return ret_val;
}

/**
 *  e1000_write_flash_byte_ich8lan - Write a single byte to NVM
 *  @hw: pointer to the HW structure
 *  @offset: The index of the byte to read.
 *  @data: The byte to write to the NVM.
 *
 *  Writes a single byte to the NVM using the flash access registers.
 **/
static s32 e1000_write_flash_byte_ich8lan(struct e1000_hw *hw, u32 offset,
					  u8 data)
{
	u16 word = (u16)data;

	return e1000_write_flash_data_ich8lan(hw, offset, 1, word);
}

/**
 *  e1000_retry_write_flash_byte_ich8lan - Writes a single byte to NVM
 *  @hw: pointer to the HW structure
 *  @offset: The offset of the byte to write.
 *  @byte: The byte to write to the NVM.
 *
 *  Writes a single byte to the NVM using the flash access registers.
 *  Goes through a retry algorithm before giving up.
 **/
static s32 e1000_retry_write_flash_byte_ich8lan(struct e1000_hw *hw,
						u32 offset, u8 byte)
{
	s32 ret_val;
	u16 program_retries;

	ret_val = e1000_write_flash_byte_ich8lan(hw, offset, byte);
	if (!ret_val)
		return ret_val;

	for (program_retries = 0; program_retries < 100; program_retries++) {
2971
		e_dbg("Retrying Byte %2.2X at offset %u\n", byte, offset);
2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000
		udelay(100);
		ret_val = e1000_write_flash_byte_ich8lan(hw, offset, byte);
		if (!ret_val)
			break;
	}
	if (program_retries == 100)
		return -E1000_ERR_NVM;

	return 0;
}

/**
 *  e1000_erase_flash_bank_ich8lan - Erase a bank (4k) from NVM
 *  @hw: pointer to the HW structure
 *  @bank: 0 for first bank, 1 for second bank, etc.
 *
 *  Erases the bank specified. Each bank is a 4k block. Banks are 0 based.
 *  bank N is 4096 * N + flash_reg_addr.
 **/
static s32 e1000_erase_flash_bank_ich8lan(struct e1000_hw *hw, u32 bank)
{
	struct e1000_nvm_info *nvm = &hw->nvm;
	union ich8_hws_flash_status hsfsts;
	union ich8_hws_flash_ctrl hsflctl;
	u32 flash_linear_addr;
	/* bank size is in 16bit words - adjust to bytes */
	u32 flash_bank_size = nvm->flash_bank_size * 2;
	s32 ret_val;
	s32 count = 0;
3001
	s32 j, iteration, sector_size;
3002 3003 3004

	hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);

3005 3006 3007 3008
	/*
	 * Determine HW Sector size: Read BERASE bits of hw flash status
	 * register
	 * 00: The Hw sector is 256 bytes, hence we need to erase 16
3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025
	 *     consecutive sectors.  The start index for the nth Hw sector
	 *     can be calculated as = bank * 4096 + n * 256
	 * 01: The Hw sector is 4K bytes, hence we need to erase 1 sector.
	 *     The start index for the nth Hw sector can be calculated
	 *     as = bank * 4096
	 * 10: The Hw sector is 8K bytes, nth sector = bank * 8192
	 *     (ich9 only, otherwise error condition)
	 * 11: The Hw sector is 64K bytes, nth sector = bank * 65536
	 */
	switch (hsfsts.hsf_status.berasesz) {
	case 0:
		/* Hw sector size 256 */
		sector_size = ICH_FLASH_SEG_SIZE_256;
		iteration = flash_bank_size / ICH_FLASH_SEG_SIZE_256;
		break;
	case 1:
		sector_size = ICH_FLASH_SEG_SIZE_4K;
3026
		iteration = 1;
3027 3028
		break;
	case 2:
3029 3030
		sector_size = ICH_FLASH_SEG_SIZE_8K;
		iteration = 1;
3031 3032 3033
		break;
	case 3:
		sector_size = ICH_FLASH_SEG_SIZE_64K;
3034
		iteration = 1;
3035 3036 3037 3038 3039 3040 3041
		break;
	default:
		return -E1000_ERR_NVM;
	}

	/* Start with the base address, then add the sector offset. */
	flash_linear_addr = hw->nvm.flash_base_addr;
3042
	flash_linear_addr += (bank) ? flash_bank_size : 0;
3043 3044 3045 3046 3047 3048 3049 3050

	for (j = 0; j < iteration ; j++) {
		do {
			/* Steps */
			ret_val = e1000_flash_cycle_init_ich8lan(hw);
			if (ret_val)
				return ret_val;

3051 3052 3053 3054
			/*
			 * Write a value 11 (block Erase) in Flash
			 * Cycle field in hw flash control
			 */
3055 3056 3057 3058
			hsflctl.regval = er16flash(ICH_FLASH_HSFCTL);
			hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_ERASE;
			ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval);

3059 3060
			/*
			 * Write the last 24 bits of an index within the
3061 3062 3063 3064 3065 3066 3067 3068
			 * block into Flash Linear address field in Flash
			 * Address.
			 */
			flash_linear_addr += (j * sector_size);
			ew32flash(ICH_FLASH_FADDR, flash_linear_addr);

			ret_val = e1000_flash_cycle_ich8lan(hw,
					       ICH_FLASH_ERASE_COMMAND_TIMEOUT);
3069
			if (!ret_val)
3070 3071
				break;

3072 3073
			/*
			 * Check if FCERR is set to 1.  If 1,
3074
			 * clear it and try the whole sequence
3075 3076
			 * a few more times else Done
			 */
3077
			hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
B
Bruce Allan 已提交
3078
			if (hsfsts.hsf_status.flcerr)
3079
				/* repeat for some time before giving up */
3080
				continue;
B
Bruce Allan 已提交
3081
			else if (!hsfsts.hsf_status.flcdone)
3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103
				return ret_val;
		} while (++count < ICH_FLASH_CYCLE_REPEAT_COUNT);
	}

	return 0;
}

/**
 *  e1000_valid_led_default_ich8lan - Set the default LED settings
 *  @hw: pointer to the HW structure
 *  @data: Pointer to the LED settings
 *
 *  Reads the LED default settings from the NVM to data.  If the NVM LED
 *  settings is all 0's or F's, set the LED default to a valid LED default
 *  setting.
 **/
static s32 e1000_valid_led_default_ich8lan(struct e1000_hw *hw, u16 *data)
{
	s32 ret_val;

	ret_val = e1000_read_nvm(hw, NVM_ID_LED_SETTINGS, 1, data);
	if (ret_val) {
3104
		e_dbg("NVM Read Error\n");
3105 3106 3107 3108 3109 3110 3111 3112 3113 3114
		return ret_val;
	}

	if (*data == ID_LED_RESERVED_0000 ||
	    *data == ID_LED_RESERVED_FFFF)
		*data = ID_LED_DEFAULT_ICH8LAN;

	return 0;
}

3115 3116 3117 3118 3119 3120 3121 3122 3123
/**
 *  e1000_id_led_init_pchlan - store LED configurations
 *  @hw: pointer to the HW structure
 *
 *  PCH does not control LEDs via the LEDCTL register, rather it uses
 *  the PHY LED configuration register.
 *
 *  PCH also does not have an "always on" or "always off" mode which
 *  complicates the ID feature.  Instead of using the "on" mode to indicate
3124
 *  in ledctl_mode2 the LEDs to use for ID (see e1000e_id_led_init_generic()),
3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138
 *  use "link_up" mode.  The LEDs will still ID on request if there is no
 *  link based on logic in e1000_led_[on|off]_pchlan().
 **/
static s32 e1000_id_led_init_pchlan(struct e1000_hw *hw)
{
	struct e1000_mac_info *mac = &hw->mac;
	s32 ret_val;
	const u32 ledctl_on = E1000_LEDCTL_MODE_LINK_UP;
	const u32 ledctl_off = E1000_LEDCTL_MODE_LINK_UP | E1000_PHY_LED0_IVRT;
	u16 data, i, temp, shift;

	/* Get default ID LED modes */
	ret_val = hw->nvm.ops.valid_led_default(hw, &data);
	if (ret_val)
3139
		return ret_val;
3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183

	mac->ledctl_default = er32(LEDCTL);
	mac->ledctl_mode1 = mac->ledctl_default;
	mac->ledctl_mode2 = mac->ledctl_default;

	for (i = 0; i < 4; i++) {
		temp = (data >> (i << 2)) & E1000_LEDCTL_LED0_MODE_MASK;
		shift = (i * 5);
		switch (temp) {
		case ID_LED_ON1_DEF2:
		case ID_LED_ON1_ON2:
		case ID_LED_ON1_OFF2:
			mac->ledctl_mode1 &= ~(E1000_PHY_LED0_MASK << shift);
			mac->ledctl_mode1 |= (ledctl_on << shift);
			break;
		case ID_LED_OFF1_DEF2:
		case ID_LED_OFF1_ON2:
		case ID_LED_OFF1_OFF2:
			mac->ledctl_mode1 &= ~(E1000_PHY_LED0_MASK << shift);
			mac->ledctl_mode1 |= (ledctl_off << shift);
			break;
		default:
			/* Do nothing */
			break;
		}
		switch (temp) {
		case ID_LED_DEF1_ON2:
		case ID_LED_ON1_ON2:
		case ID_LED_OFF1_ON2:
			mac->ledctl_mode2 &= ~(E1000_PHY_LED0_MASK << shift);
			mac->ledctl_mode2 |= (ledctl_on << shift);
			break;
		case ID_LED_DEF1_OFF2:
		case ID_LED_ON1_OFF2:
		case ID_LED_OFF1_OFF2:
			mac->ledctl_mode2 &= ~(E1000_PHY_LED0_MASK << shift);
			mac->ledctl_mode2 |= (ledctl_off << shift);
			break;
		default:
			/* Do nothing */
			break;
		}
	}

3184
	return 0;
3185 3186
}

3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200
/**
 *  e1000_get_bus_info_ich8lan - Get/Set the bus type and width
 *  @hw: pointer to the HW structure
 *
 *  ICH8 use the PCI Express bus, but does not contain a PCI Express Capability
 *  register, so the the bus width is hard coded.
 **/
static s32 e1000_get_bus_info_ich8lan(struct e1000_hw *hw)
{
	struct e1000_bus_info *bus = &hw->bus;
	s32 ret_val;

	ret_val = e1000e_get_bus_info_pcie(hw);

3201 3202
	/*
	 * ICH devices are "PCI Express"-ish.  They have
3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221
	 * a configuration space, but do not contain
	 * PCI Express Capability registers, so bus width
	 * must be hardcoded.
	 */
	if (bus->width == e1000_bus_width_unknown)
		bus->width = e1000_bus_width_pcie_x1;

	return ret_val;
}

/**
 *  e1000_reset_hw_ich8lan - Reset the hardware
 *  @hw: pointer to the HW structure
 *
 *  Does a full reset of the hardware which includes a reset of the PHY and
 *  MAC.
 **/
static s32 e1000_reset_hw_ich8lan(struct e1000_hw *hw)
{
3222
	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
3223 3224
	u16 kum_cfg;
	u32 ctrl, reg;
3225 3226
	s32 ret_val;

3227 3228
	/*
	 * Prevent the PCI-E bus from sticking if there is no TLP connection
3229 3230 3231
	 * on the last TLP read/write transaction when MAC is reset.
	 */
	ret_val = e1000e_disable_pcie_master(hw);
3232
	if (ret_val)
3233
		e_dbg("PCI-E Master disable polling has failed.\n");
3234

3235
	e_dbg("Masking off all interrupts\n");
3236 3237
	ew32(IMC, 0xffffffff);

3238 3239
	/*
	 * Disable the Transmit and Receive units.  Then delay to allow
3240 3241 3242 3243 3244 3245 3246
	 * any pending transactions to complete before we hit the MAC
	 * with the global reset.
	 */
	ew32(RCTL, 0);
	ew32(TCTL, E1000_TCTL_PSP);
	e1e_flush();

3247
	usleep_range(10000, 20000);
3248 3249 3250 3251 3252 3253 3254 3255 3256

	/* Workaround for ICH8 bit corruption issue in FIFO memory */
	if (hw->mac.type == e1000_ich8lan) {
		/* Set Tx and Rx buffer allocation to 8k apiece. */
		ew32(PBA, E1000_PBA_8K);
		/* Set Packet Buffer Size to 16k. */
		ew32(PBS, E1000_PBS_16K);
	}

3257
	if (hw->mac.type == e1000_pchlan) {
3258 3259
		/* Save the NVM K1 bit setting */
		ret_val = e1000_read_nvm(hw, E1000_NVM_K1_CONFIG, 1, &kum_cfg);
3260 3261 3262
		if (ret_val)
			return ret_val;

3263
		if (kum_cfg & E1000_NVM_K1_ENABLE)
3264 3265 3266 3267 3268
			dev_spec->nvm_k1_enabled = true;
		else
			dev_spec->nvm_k1_enabled = false;
	}

3269 3270
	ctrl = er32(CTRL);

3271
	if (!hw->phy.ops.check_reset_block(hw)) {
3272
		/*
3273
		 * Full-chip reset requires MAC and PHY reset at the same
3274 3275 3276 3277
		 * time to make sure the interface between MAC and the
		 * external PHY is reset.
		 */
		ctrl |= E1000_CTRL_PHY_RST;
3278 3279 3280 3281 3282 3283 3284 3285

		/*
		 * Gate automatic PHY configuration by hardware on
		 * non-managed 82579
		 */
		if ((hw->mac.type == e1000_pch2lan) &&
		    !(er32(FWSM) & E1000_ICH_FWSM_FW_VALID))
			e1000_gate_hw_phy_config_ich8lan(hw, true);
3286 3287
	}
	ret_val = e1000_acquire_swflag_ich8lan(hw);
3288
	e_dbg("Issuing a global reset to ich8lan\n");
3289
	ew32(CTRL, (ctrl | E1000_CTRL_RST));
3290
	/* cannot issue a flush here because it hangs the hardware */
3291 3292
	msleep(20);

3293 3294 3295 3296 3297 3298 3299 3300
	/* Set Phy Config Counter to 50msec */
	if (hw->mac.type == e1000_pch2lan) {
		reg = er32(FEXTNVM3);
		reg &= ~E1000_FEXTNVM3_PHY_CFG_COUNTER_MASK;
		reg |= E1000_FEXTNVM3_PHY_CFG_COUNTER_50MSEC;
		ew32(FEXTNVM3, reg);
	}

3301
	if (!ret_val)
3302
		clear_bit(__E1000_ACCESS_SHARED_RESOURCE, &hw->adapter->state);
3303

3304
	if (ctrl & E1000_CTRL_PHY_RST) {
3305
		ret_val = hw->phy.ops.get_cfg_done(hw);
3306
		if (ret_val)
3307
			return ret_val;
3308

3309
		ret_val = e1000_post_phy_reset_ich8lan(hw);
3310
		if (ret_val)
3311
			return ret_val;
3312
	}
3313

3314 3315 3316 3317 3318 3319 3320 3321
	/*
	 * For PCH, this write will make sure that any noise
	 * will be detected as a CRC error and be dropped rather than show up
	 * as a bad packet to the DMA engine.
	 */
	if (hw->mac.type == e1000_pchlan)
		ew32(CRC_OFFSET, 0x65656565);

3322
	ew32(IMC, 0xffffffff);
3323
	er32(ICR);
3324

3325 3326 3327
	reg = er32(KABGTXD);
	reg |= E1000_KABGTXD_BGSQLBIAS;
	ew32(KABGTXD, reg);
3328

3329
	return 0;
3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340
}

/**
 *  e1000_init_hw_ich8lan - Initialize the hardware
 *  @hw: pointer to the HW structure
 *
 *  Prepares the hardware for transmit and receive by doing the following:
 *   - initialize hardware bits
 *   - initialize LED identification
 *   - setup receive address registers
 *   - setup flow control
3341
 *   - setup transmit descriptors
3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353
 *   - clear statistics
 **/
static s32 e1000_init_hw_ich8lan(struct e1000_hw *hw)
{
	struct e1000_mac_info *mac = &hw->mac;
	u32 ctrl_ext, txdctl, snoop;
	s32 ret_val;
	u16 i;

	e1000_initialize_hw_bits_ich8lan(hw);

	/* Initialize identification LED */
3354
	ret_val = mac->ops.id_led_init(hw);
3355
	if (ret_val)
3356
		e_dbg("Error initializing identification LED\n");
3357
		/* This is not fatal and we should not stop init due to this */
3358 3359 3360 3361 3362

	/* Setup the receive address. */
	e1000e_init_rx_addrs(hw, mac->rar_entry_count);

	/* Zero out the Multicast HASH table */
3363
	e_dbg("Zeroing the MTA\n");
3364 3365 3366
	for (i = 0; i < mac->mta_reg_count; i++)
		E1000_WRITE_REG_ARRAY(hw, E1000_MTA, i, 0);

3367 3368
	/*
	 * The 82578 Rx buffer will stall if wakeup is enabled in host and
3369
	 * the ME.  Disable wakeup by clearing the host wakeup bit.
3370 3371 3372
	 * Reset the phy after disabling host wakeup to reset the Rx buffer.
	 */
	if (hw->phy.type == e1000_phy_82578) {
3373 3374 3375
		e1e_rphy(hw, BM_PORT_GEN_CFG, &i);
		i &= ~BM_WUC_HOST_WU_BIT;
		e1e_wphy(hw, BM_PORT_GEN_CFG, i);
3376 3377 3378 3379 3380
		ret_val = e1000_phy_hw_reset_ich8lan(hw);
		if (ret_val)
			return ret_val;
	}

3381
	/* Setup link and flow control */
3382
	ret_val = mac->ops.setup_link(hw);
3383 3384

	/* Set the transmit descriptor write-back policy for both queues */
3385
	txdctl = er32(TXDCTL(0));
3386 3387 3388 3389
	txdctl = (txdctl & ~E1000_TXDCTL_WTHRESH) |
		 E1000_TXDCTL_FULL_TX_DESC_WB;
	txdctl = (txdctl & ~E1000_TXDCTL_PTHRESH) |
		 E1000_TXDCTL_MAX_TX_DESC_PREFETCH;
3390 3391
	ew32(TXDCTL(0), txdctl);
	txdctl = er32(TXDCTL(1));
3392 3393 3394 3395
	txdctl = (txdctl & ~E1000_TXDCTL_WTHRESH) |
		 E1000_TXDCTL_FULL_TX_DESC_WB;
	txdctl = (txdctl & ~E1000_TXDCTL_PTHRESH) |
		 E1000_TXDCTL_MAX_TX_DESC_PREFETCH;
3396
	ew32(TXDCTL(1), txdctl);
3397

3398 3399 3400 3401
	/*
	 * ICH8 has opposite polarity of no_snoop bits.
	 * By default, we should use snoop behavior.
	 */
3402 3403 3404 3405 3406 3407 3408 3409 3410 3411
	if (mac->type == e1000_ich8lan)
		snoop = PCIE_ICH8_SNOOP_ALL;
	else
		snoop = (u32) ~(PCIE_NO_SNOOP_ALL);
	e1000e_set_pcie_no_snoop(hw, snoop);

	ctrl_ext = er32(CTRL_EXT);
	ctrl_ext |= E1000_CTRL_EXT_RO_DIS;
	ew32(CTRL_EXT, ctrl_ext);

3412 3413
	/*
	 * Clear all of the statistics registers (clear on read).  It is
3414 3415 3416 3417 3418 3419
	 * important that we do this after we have tried to establish link
	 * because the symbol error count will increment wildly if there
	 * is no link.
	 */
	e1000_clear_hw_cntrs_ich8lan(hw);

3420
	return ret_val;
3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435
}
/**
 *  e1000_initialize_hw_bits_ich8lan - Initialize required hardware bits
 *  @hw: pointer to the HW structure
 *
 *  Sets/Clears required hardware bits necessary for correctly setting up the
 *  hardware for transmit and receive.
 **/
static void e1000_initialize_hw_bits_ich8lan(struct e1000_hw *hw)
{
	u32 reg;

	/* Extended Device Control */
	reg = er32(CTRL_EXT);
	reg |= (1 << 22);
3436 3437 3438
	/* Enable PHY low-power state when MAC is at D3 w/o WoL */
	if (hw->mac.type >= e1000_pchlan)
		reg |= E1000_CTRL_EXT_PHYPDEN;
3439 3440 3441
	ew32(CTRL_EXT, reg);

	/* Transmit Descriptor Control 0 */
3442
	reg = er32(TXDCTL(0));
3443
	reg |= (1 << 22);
3444
	ew32(TXDCTL(0), reg);
3445 3446

	/* Transmit Descriptor Control 1 */
3447
	reg = er32(TXDCTL(1));
3448
	reg |= (1 << 22);
3449
	ew32(TXDCTL(1), reg);
3450 3451

	/* Transmit Arbitration Control 0 */
3452
	reg = er32(TARC(0));
3453 3454 3455
	if (hw->mac.type == e1000_ich8lan)
		reg |= (1 << 28) | (1 << 29);
	reg |= (1 << 23) | (1 << 24) | (1 << 26) | (1 << 27);
3456
	ew32(TARC(0), reg);
3457 3458

	/* Transmit Arbitration Control 1 */
3459
	reg = er32(TARC(1));
3460 3461 3462 3463 3464
	if (er32(TCTL) & E1000_TCTL_MULR)
		reg &= ~(1 << 28);
	else
		reg |= (1 << 28);
	reg |= (1 << 24) | (1 << 26) | (1 << 30);
3465
	ew32(TARC(1), reg);
3466 3467 3468 3469 3470 3471 3472

	/* Device Status */
	if (hw->mac.type == e1000_ich8lan) {
		reg = er32(STATUS);
		reg &= ~(1 << 31);
		ew32(STATUS, reg);
	}
3473 3474 3475 3476 3477 3478 3479 3480

	/*
	 * work-around descriptor data corruption issue during nfs v2 udp
	 * traffic, just disable the nfs filtering capability
	 */
	reg = er32(RFCTL);
	reg |= (E1000_RFCTL_NFSW_DIS | E1000_RFCTL_NFSR_DIS);
	ew32(RFCTL, reg);
3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496
}

/**
 *  e1000_setup_link_ich8lan - Setup flow control and link settings
 *  @hw: pointer to the HW structure
 *
 *  Determines which flow control settings to use, then configures flow
 *  control.  Calls the appropriate media-specific link configuration
 *  function.  Assuming the adapter has a valid link partner, a valid link
 *  should be established.  Assumes the hardware has previously been reset
 *  and the transmitter and receiver are not enabled.
 **/
static s32 e1000_setup_link_ich8lan(struct e1000_hw *hw)
{
	s32 ret_val;

3497
	if (hw->phy.ops.check_reset_block(hw))
3498 3499
		return 0;

3500 3501
	/*
	 * ICH parts do not have a word in the NVM to determine
3502 3503 3504
	 * the default flow control setting, so we explicitly
	 * set it to full.
	 */
3505 3506 3507 3508 3509 3510 3511
	if (hw->fc.requested_mode == e1000_fc_default) {
		/* Workaround h/w hang when Tx flow control enabled */
		if (hw->mac.type == e1000_pchlan)
			hw->fc.requested_mode = e1000_fc_rx_pause;
		else
			hw->fc.requested_mode = e1000_fc_full;
	}
3512

3513 3514 3515 3516 3517
	/*
	 * Save off the requested flow control mode for use later.  Depending
	 * on the link partner's capabilities, we may or may not use this mode.
	 */
	hw->fc.current_mode = hw->fc.requested_mode;
3518

3519
	e_dbg("After fix-ups FlowControl is now = %x\n",
3520
		hw->fc.current_mode);
3521 3522

	/* Continue to configure the copper link. */
3523
	ret_val = hw->mac.ops.setup_physical_interface(hw);
3524 3525 3526
	if (ret_val)
		return ret_val;

3527
	ew32(FCTTV, hw->fc.pause_time);
3528
	if ((hw->phy.type == e1000_phy_82578) ||
3529
	    (hw->phy.type == e1000_phy_82579) ||
3530
	    (hw->phy.type == e1000_phy_82577)) {
3531 3532
		ew32(FCRTV_PCH, hw->fc.refresh_time);

3533 3534
		ret_val = e1e_wphy(hw, PHY_REG(BM_PORT_CTRL_PAGE, 27),
				   hw->fc.pause_time);
3535 3536 3537
		if (ret_val)
			return ret_val;
	}
3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560

	return e1000e_set_fc_watermarks(hw);
}

/**
 *  e1000_setup_copper_link_ich8lan - Configure MAC/PHY interface
 *  @hw: pointer to the HW structure
 *
 *  Configures the kumeran interface to the PHY to wait the appropriate time
 *  when polling the PHY, then call the generic setup_copper_link to finish
 *  configuring the copper link.
 **/
static s32 e1000_setup_copper_link_ich8lan(struct e1000_hw *hw)
{
	u32 ctrl;
	s32 ret_val;
	u16 reg_data;

	ctrl = er32(CTRL);
	ctrl |= E1000_CTRL_SLU;
	ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
	ew32(CTRL, ctrl);

3561 3562
	/*
	 * Set the mac to wait the maximum time between each iteration
3563
	 * and increase the max iterations when polling the phy;
3564 3565
	 * this fixes erroneous timeouts at 10Mbps.
	 */
3566
	ret_val = e1000e_write_kmrn_reg(hw, E1000_KMRNCTRLSTA_TIMEOUTS, 0xFFFF);
3567 3568
	if (ret_val)
		return ret_val;
3569 3570
	ret_val = e1000e_read_kmrn_reg(hw, E1000_KMRNCTRLSTA_INBAND_PARAM,
	                               &reg_data);
3571 3572 3573
	if (ret_val)
		return ret_val;
	reg_data |= 0x3F;
3574 3575
	ret_val = e1000e_write_kmrn_reg(hw, E1000_KMRNCTRLSTA_INBAND_PARAM,
	                                reg_data);
3576 3577 3578
	if (ret_val)
		return ret_val;

3579 3580
	switch (hw->phy.type) {
	case e1000_phy_igp_3:
3581 3582 3583
		ret_val = e1000e_copper_link_setup_igp(hw);
		if (ret_val)
			return ret_val;
3584 3585 3586
		break;
	case e1000_phy_bm:
	case e1000_phy_82578:
3587 3588 3589
		ret_val = e1000e_copper_link_setup_m88(hw);
		if (ret_val)
			return ret_val;
3590 3591
		break;
	case e1000_phy_82577:
3592
	case e1000_phy_82579:
3593 3594 3595 3596 3597
		ret_val = e1000_copper_link_setup_82577(hw);
		if (ret_val)
			return ret_val;
		break;
	case e1000_phy_ife:
3598
		ret_val = e1e_rphy(hw, IFE_PHY_MDIX_CONTROL, &reg_data);
3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615
		if (ret_val)
			return ret_val;

		reg_data &= ~IFE_PMC_AUTO_MDIX;

		switch (hw->phy.mdix) {
		case 1:
			reg_data &= ~IFE_PMC_FORCE_MDIX;
			break;
		case 2:
			reg_data |= IFE_PMC_FORCE_MDIX;
			break;
		case 0:
		default:
			reg_data |= IFE_PMC_AUTO_MDIX;
			break;
		}
3616
		ret_val = e1e_wphy(hw, IFE_PHY_MDIX_CONTROL, reg_data);
3617 3618
		if (ret_val)
			return ret_val;
3619 3620 3621
		break;
	default:
		break;
3622
	}
3623

3624 3625 3626 3627 3628 3629 3630 3631 3632
	return e1000e_setup_copper_link(hw);
}

/**
 *  e1000_get_link_up_info_ich8lan - Get current link speed and duplex
 *  @hw: pointer to the HW structure
 *  @speed: pointer to store current link speed
 *  @duplex: pointer to store the current link duplex
 *
3633
 *  Calls the generic get_speed_and_duplex to retrieve the current link
3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680
 *  information and then calls the Kumeran lock loss workaround for links at
 *  gigabit speeds.
 **/
static s32 e1000_get_link_up_info_ich8lan(struct e1000_hw *hw, u16 *speed,
					  u16 *duplex)
{
	s32 ret_val;

	ret_val = e1000e_get_speed_and_duplex_copper(hw, speed, duplex);
	if (ret_val)
		return ret_val;

	if ((hw->mac.type == e1000_ich8lan) &&
	    (hw->phy.type == e1000_phy_igp_3) &&
	    (*speed == SPEED_1000)) {
		ret_val = e1000_kmrn_lock_loss_workaround_ich8lan(hw);
	}

	return ret_val;
}

/**
 *  e1000_kmrn_lock_loss_workaround_ich8lan - Kumeran workaround
 *  @hw: pointer to the HW structure
 *
 *  Work-around for 82566 Kumeran PCS lock loss:
 *  On link status change (i.e. PCI reset, speed change) and link is up and
 *  speed is gigabit-
 *    0) if workaround is optionally disabled do nothing
 *    1) wait 1ms for Kumeran link to come up
 *    2) check Kumeran Diagnostic register PCS lock loss bit
 *    3) if not set the link is locked (all is good), otherwise...
 *    4) reset the PHY
 *    5) repeat up to 10 times
 *  Note: this is only called for IGP3 copper when speed is 1gb.
 **/
static s32 e1000_kmrn_lock_loss_workaround_ich8lan(struct e1000_hw *hw)
{
	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
	u32 phy_ctrl;
	s32 ret_val;
	u16 i, data;
	bool link;

	if (!dev_spec->kmrn_lock_loss_workaround_enabled)
		return 0;

3681 3682
	/*
	 * Make sure link is up before proceeding.  If not just return.
3683
	 * Attempting this while link is negotiating fouled up link
3684 3685
	 * stability
	 */
3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713
	ret_val = e1000e_phy_has_link_generic(hw, 1, 0, &link);
	if (!link)
		return 0;

	for (i = 0; i < 10; i++) {
		/* read once to clear */
		ret_val = e1e_rphy(hw, IGP3_KMRN_DIAG, &data);
		if (ret_val)
			return ret_val;
		/* and again to get new status */
		ret_val = e1e_rphy(hw, IGP3_KMRN_DIAG, &data);
		if (ret_val)
			return ret_val;

		/* check for PCS lock */
		if (!(data & IGP3_KMRN_DIAG_PCS_LOCK_LOSS))
			return 0;

		/* Issue PHY reset */
		e1000_phy_hw_reset(hw);
		mdelay(5);
	}
	/* Disable GigE link negotiation */
	phy_ctrl = er32(PHY_CTRL);
	phy_ctrl |= (E1000_PHY_CTRL_GBE_DISABLE |
		     E1000_PHY_CTRL_NOND0A_GBE_DISABLE);
	ew32(PHY_CTRL, phy_ctrl);

3714 3715 3716 3717
	/*
	 * Call gig speed drop workaround on Gig disable before accessing
	 * any PHY registers
	 */
3718 3719 3720 3721 3722 3723 3724
	e1000e_gig_downshift_workaround_ich8lan(hw);

	/* unable to acquire PCS lock */
	return -E1000_ERR_PHY;
}

/**
3725
 *  e1000e_set_kmrn_lock_loss_workaround_ich8lan - Set Kumeran workaround state
3726
 *  @hw: pointer to the HW structure
3727
 *  @state: boolean value used to set the current Kumeran workaround state
3728
 *
3729 3730
 *  If ICH8, set the current Kumeran workaround state (enabled - true
 *  /disabled - false).
3731 3732 3733 3734 3735 3736 3737
 **/
void e1000e_set_kmrn_lock_loss_workaround_ich8lan(struct e1000_hw *hw,
						 bool state)
{
	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;

	if (hw->mac.type != e1000_ich8lan) {
3738
		e_dbg("Workaround applies to ICH8 only.\n");
3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771
		return;
	}

	dev_spec->kmrn_lock_loss_workaround_enabled = state;
}

/**
 *  e1000_ipg3_phy_powerdown_workaround_ich8lan - Power down workaround on D3
 *  @hw: pointer to the HW structure
 *
 *  Workaround for 82566 power-down on D3 entry:
 *    1) disable gigabit link
 *    2) write VR power-down enable
 *    3) read it back
 *  Continue if successful, else issue LCD reset and repeat
 **/
void e1000e_igp3_phy_powerdown_workaround_ich8lan(struct e1000_hw *hw)
{
	u32 reg;
	u16 data;
	u8  retry = 0;

	if (hw->phy.type != e1000_phy_igp_3)
		return;

	/* Try the workaround twice (if needed) */
	do {
		/* Disable link */
		reg = er32(PHY_CTRL);
		reg |= (E1000_PHY_CTRL_GBE_DISABLE |
			E1000_PHY_CTRL_NOND0A_GBE_DISABLE);
		ew32(PHY_CTRL, reg);

3772 3773 3774 3775
		/*
		 * Call gig speed drop workaround on Gig disable before
		 * accessing any PHY registers
		 */
3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801
		if (hw->mac.type == e1000_ich8lan)
			e1000e_gig_downshift_workaround_ich8lan(hw);

		/* Write VR power-down enable */
		e1e_rphy(hw, IGP3_VR_CTRL, &data);
		data &= ~IGP3_VR_CTRL_DEV_POWERDOWN_MODE_MASK;
		e1e_wphy(hw, IGP3_VR_CTRL, data | IGP3_VR_CTRL_MODE_SHUTDOWN);

		/* Read it back and test */
		e1e_rphy(hw, IGP3_VR_CTRL, &data);
		data &= IGP3_VR_CTRL_DEV_POWERDOWN_MODE_MASK;
		if ((data == IGP3_VR_CTRL_MODE_SHUTDOWN) || retry)
			break;

		/* Issue PHY reset and repeat at most one more time */
		reg = er32(CTRL);
		ew32(CTRL, reg | E1000_CTRL_PHY_RST);
		retry++;
	} while (retry);
}

/**
 *  e1000e_gig_downshift_workaround_ich8lan - WoL from S5 stops working
 *  @hw: pointer to the HW structure
 *
 *  Steps to take when dropping from 1Gb/s (eg. link cable removal (LSC),
3802
 *  LPLU, Gig disable, MDIC PHY reset):
3803 3804
 *    1) Set Kumeran Near-end loopback
 *    2) Clear Kumeran Near-end loopback
3805
 *  Should only be called for ICH8[m] devices with any 1G Phy.
3806 3807 3808 3809 3810 3811
 **/
void e1000e_gig_downshift_workaround_ich8lan(struct e1000_hw *hw)
{
	s32 ret_val;
	u16 reg_data;

3812
	if ((hw->mac.type != e1000_ich8lan) || (hw->phy.type == e1000_phy_ife))
3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828
		return;

	ret_val = e1000e_read_kmrn_reg(hw, E1000_KMRNCTRLSTA_DIAG_OFFSET,
				      &reg_data);
	if (ret_val)
		return;
	reg_data |= E1000_KMRNCTRLSTA_DIAG_NELPBK;
	ret_val = e1000e_write_kmrn_reg(hw, E1000_KMRNCTRLSTA_DIAG_OFFSET,
				       reg_data);
	if (ret_val)
		return;
	reg_data &= ~E1000_KMRNCTRLSTA_DIAG_NELPBK;
	ret_val = e1000e_write_kmrn_reg(hw, E1000_KMRNCTRLSTA_DIAG_OFFSET,
				       reg_data);
}

3829
/**
3830
 *  e1000_suspend_workarounds_ich8lan - workarounds needed during S0->Sx
3831 3832 3833 3834
 *  @hw: pointer to the HW structure
 *
 *  During S0 to Sx transition, it is possible the link remains at gig
 *  instead of negotiating to a lower speed.  Before going to Sx, set
3835 3836 3837 3838
 *  'Gig Disable' to force link speed negotiation to a lower speed based on
 *  the LPLU setting in the NVM or custom setting.  For PCH and newer parts,
 *  the OEM bits PHY register (LED, GbE disable and LPLU configurations) also
 *  needs to be written.
3839
 **/
3840
void e1000_suspend_workarounds_ich8lan(struct e1000_hw *hw)
3841 3842
{
	u32 phy_ctrl;
3843
	s32 ret_val;
3844

3845
	phy_ctrl = er32(PHY_CTRL);
3846
	phy_ctrl |= E1000_PHY_CTRL_GBE_DISABLE;
3847
	ew32(PHY_CTRL, phy_ctrl);
3848

3849 3850 3851
	if (hw->mac.type == e1000_ich8lan)
		e1000e_gig_downshift_workaround_ich8lan(hw);

3852
	if (hw->mac.type >= e1000_pchlan) {
3853
		e1000_oem_bits_config_ich8lan(hw, false);
B
Bruce Allan 已提交
3854 3855 3856 3857 3858

		/* Reset PHY to activate OEM bits on 82577/8 */
		if (hw->mac.type == e1000_pchlan)
			e1000e_phy_hw_reset_generic(hw);

3859 3860 3861 3862 3863 3864
		ret_val = hw->phy.ops.acquire(hw);
		if (ret_val)
			return;
		e1000_write_smbus_addr(hw);
		hw->phy.ops.release(hw);
	}
3865 3866
}

3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877
/**
 *  e1000_resume_workarounds_pchlan - workarounds needed during Sx->S0
 *  @hw: pointer to the HW structure
 *
 *  During Sx to S0 transitions on non-managed devices or managed devices
 *  on which PHY resets are not blocked, if the PHY registers cannot be
 *  accessed properly by the s/w toggle the LANPHYPC value to power cycle
 *  the PHY.
 **/
void e1000_resume_workarounds_pchlan(struct e1000_hw *hw)
{
3878
	s32 ret_val;
3879

3880
	if (hw->mac.type < e1000_pch2lan)
3881 3882
		return;

3883
	ret_val = e1000_init_phy_workarounds_pchlan(hw);
3884
	if (ret_val) {
3885
		e_dbg("Failed to init PHY flow ret_val=%d\n", ret_val);
3886 3887
		return;
	}
3888 3889
}

3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905
/**
 *  e1000_cleanup_led_ich8lan - Restore the default LED operation
 *  @hw: pointer to the HW structure
 *
 *  Return the LED back to the default configuration.
 **/
static s32 e1000_cleanup_led_ich8lan(struct e1000_hw *hw)
{
	if (hw->phy.type == e1000_phy_ife)
		return e1e_wphy(hw, IFE_PHY_SPECIAL_CONTROL_LED, 0);

	ew32(LEDCTL, hw->mac.ledctl_default);
	return 0;
}

/**
3906
 *  e1000_led_on_ich8lan - Turn LEDs on
3907 3908
 *  @hw: pointer to the HW structure
 *
3909
 *  Turn on the LEDs.
3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921
 **/
static s32 e1000_led_on_ich8lan(struct e1000_hw *hw)
{
	if (hw->phy.type == e1000_phy_ife)
		return e1e_wphy(hw, IFE_PHY_SPECIAL_CONTROL_LED,
				(IFE_PSCL_PROBE_MODE | IFE_PSCL_PROBE_LEDS_ON));

	ew32(LEDCTL, hw->mac.ledctl_mode2);
	return 0;
}

/**
3922
 *  e1000_led_off_ich8lan - Turn LEDs off
3923 3924
 *  @hw: pointer to the HW structure
 *
3925
 *  Turn off the LEDs.
3926 3927 3928 3929 3930
 **/
static s32 e1000_led_off_ich8lan(struct e1000_hw *hw)
{
	if (hw->phy.type == e1000_phy_ife)
		return e1e_wphy(hw, IFE_PHY_SPECIAL_CONTROL_LED,
3931 3932
				(IFE_PSCL_PROBE_MODE |
				 IFE_PSCL_PROBE_LEDS_OFF));
3933 3934 3935 3936 3937

	ew32(LEDCTL, hw->mac.ledctl_mode1);
	return 0;
}

3938 3939 3940 3941 3942 3943 3944 3945
/**
 *  e1000_setup_led_pchlan - Configures SW controllable LED
 *  @hw: pointer to the HW structure
 *
 *  This prepares the SW controllable LED for use.
 **/
static s32 e1000_setup_led_pchlan(struct e1000_hw *hw)
{
3946
	return e1e_wphy(hw, HV_LED_CONFIG, (u16)hw->mac.ledctl_mode1);
3947 3948 3949 3950 3951 3952 3953 3954 3955 3956
}

/**
 *  e1000_cleanup_led_pchlan - Restore the default LED operation
 *  @hw: pointer to the HW structure
 *
 *  Return the LED back to the default configuration.
 **/
static s32 e1000_cleanup_led_pchlan(struct e1000_hw *hw)
{
3957
	return e1e_wphy(hw, HV_LED_CONFIG, (u16)hw->mac.ledctl_default);
3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987
}

/**
 *  e1000_led_on_pchlan - Turn LEDs on
 *  @hw: pointer to the HW structure
 *
 *  Turn on the LEDs.
 **/
static s32 e1000_led_on_pchlan(struct e1000_hw *hw)
{
	u16 data = (u16)hw->mac.ledctl_mode2;
	u32 i, led;

	/*
	 * If no link, then turn LED on by setting the invert bit
	 * for each LED that's mode is "link_up" in ledctl_mode2.
	 */
	if (!(er32(STATUS) & E1000_STATUS_LU)) {
		for (i = 0; i < 3; i++) {
			led = (data >> (i * 5)) & E1000_PHY_LED0_MASK;
			if ((led & E1000_PHY_LED0_MODE_MASK) !=
			    E1000_LEDCTL_MODE_LINK_UP)
				continue;
			if (led & E1000_PHY_LED0_IVRT)
				data &= ~(E1000_PHY_LED0_IVRT << (i * 5));
			else
				data |= (E1000_PHY_LED0_IVRT << (i * 5));
		}
	}

3988
	return e1e_wphy(hw, HV_LED_CONFIG, data);
3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018
}

/**
 *  e1000_led_off_pchlan - Turn LEDs off
 *  @hw: pointer to the HW structure
 *
 *  Turn off the LEDs.
 **/
static s32 e1000_led_off_pchlan(struct e1000_hw *hw)
{
	u16 data = (u16)hw->mac.ledctl_mode1;
	u32 i, led;

	/*
	 * If no link, then turn LED off by clearing the invert bit
	 * for each LED that's mode is "link_up" in ledctl_mode1.
	 */
	if (!(er32(STATUS) & E1000_STATUS_LU)) {
		for (i = 0; i < 3; i++) {
			led = (data >> (i * 5)) & E1000_PHY_LED0_MASK;
			if ((led & E1000_PHY_LED0_MODE_MASK) !=
			    E1000_LEDCTL_MODE_LINK_UP)
				continue;
			if (led & E1000_PHY_LED0_IVRT)
				data &= ~(E1000_PHY_LED0_IVRT << (i * 5));
			else
				data |= (E1000_PHY_LED0_IVRT << (i * 5));
		}
	}

4019
	return e1e_wphy(hw, HV_LED_CONFIG, data);
4020 4021
}

4022
/**
4023
 *  e1000_get_cfg_done_ich8lan - Read config done bit after Full or PHY reset
4024 4025
 *  @hw: pointer to the HW structure
 *
4026 4027 4028 4029 4030 4031 4032
 *  Read appropriate register for the config done bit for completion status
 *  and configure the PHY through s/w for EEPROM-less parts.
 *
 *  NOTE: some silicon which is EEPROM-less will fail trying to read the
 *  config done bit, so only an error is logged and continues.  If we were
 *  to return with error, EEPROM-less silicon would not be able to be reset
 *  or change link.
4033 4034 4035
 **/
static s32 e1000_get_cfg_done_ich8lan(struct e1000_hw *hw)
{
4036
	s32 ret_val = 0;
4037
	u32 bank = 0;
4038
	u32 status;
4039

4040
	e1000e_get_cfg_done(hw);
4041

4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055
	/* Wait for indication from h/w that it has completed basic config */
	if (hw->mac.type >= e1000_ich10lan) {
		e1000_lan_init_done_ich8lan(hw);
	} else {
		ret_val = e1000e_get_auto_rd_done(hw);
		if (ret_val) {
			/*
			 * When auto config read does not complete, do not
			 * return with an error. This can happen in situations
			 * where there is no eeprom and prevents getting link.
			 */
			e_dbg("Auto Read Done did not complete\n");
			ret_val = 0;
		}
4056 4057
	}

4058 4059 4060 4061 4062 4063
	/* Clear PHY Reset Asserted bit */
	status = er32(STATUS);
	if (status & E1000_STATUS_PHYRA)
		ew32(STATUS, status & ~E1000_STATUS_PHYRA);
	else
		e_dbg("PHY Reset Asserted not set - needs delay\n");
4064 4065

	/* If EEPROM is not marked present, init the IGP 3 PHY manually */
4066
	if (hw->mac.type <= e1000_ich9lan) {
B
Bruce Allan 已提交
4067
		if (!(er32(EECD) & E1000_EECD_PRES) &&
4068 4069 4070 4071 4072 4073
		    (hw->phy.type == e1000_phy_igp_3)) {
			e1000e_phy_init_script_igp3(hw);
		}
	} else {
		if (e1000_valid_nvm_bank_detect_ich8lan(hw, &bank)) {
			/* Maybe we should do a basic PHY config */
4074
			e_dbg("EEPROM not present\n");
4075
			ret_val = -E1000_ERR_CONFIG;
4076 4077 4078
		}
	}

4079
	return ret_val;
4080 4081
}

4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 4096
/**
 * e1000_power_down_phy_copper_ich8lan - Remove link during PHY power down
 * @hw: pointer to the HW structure
 *
 * In the case of a PHY power down to save power, or to turn off link during a
 * driver unload, or wake on lan is not enabled, remove the link.
 **/
static void e1000_power_down_phy_copper_ich8lan(struct e1000_hw *hw)
{
	/* If the management interface is not enabled, then power down */
	if (!(hw->mac.ops.check_mng_mode(hw) ||
	      hw->phy.ops.check_reset_block(hw)))
		e1000_power_down_phy_copper(hw);
}

4097 4098 4099 4100 4101 4102 4103 4104 4105
/**
 *  e1000_clear_hw_cntrs_ich8lan - Clear statistical counters
 *  @hw: pointer to the HW structure
 *
 *  Clears hardware counters specific to the silicon family and calls
 *  clear_hw_cntrs_generic to clear all general purpose counters.
 **/
static void e1000_clear_hw_cntrs_ich8lan(struct e1000_hw *hw)
{
4106
	u16 phy_data;
4107
	s32 ret_val;
4108 4109 4110

	e1000e_clear_hw_cntrs_base(hw);

4111 4112 4113 4114 4115 4116
	er32(ALGNERRC);
	er32(RXERRC);
	er32(TNCRS);
	er32(CEXTERR);
	er32(TSCTC);
	er32(TSCTFC);
4117

4118 4119 4120
	er32(MGTPRC);
	er32(MGTPDC);
	er32(MGTPTC);
4121

4122 4123
	er32(IAC);
	er32(ICRXOC);
4124

4125 4126
	/* Clear PHY statistics registers */
	if ((hw->phy.type == e1000_phy_82578) ||
4127
	    (hw->phy.type == e1000_phy_82579) ||
4128
	    (hw->phy.type == e1000_phy_82577)) {
4129 4130 4131 4132 4133 4134 4135 4136 4137 4138 4139 4140 4141 4142 4143 4144 4145 4146 4147 4148 4149 4150 4151
		ret_val = hw->phy.ops.acquire(hw);
		if (ret_val)
			return;
		ret_val = hw->phy.ops.set_page(hw,
					       HV_STATS_PAGE << IGP_PAGE_SHIFT);
		if (ret_val)
			goto release;
		hw->phy.ops.read_reg_page(hw, HV_SCC_UPPER, &phy_data);
		hw->phy.ops.read_reg_page(hw, HV_SCC_LOWER, &phy_data);
		hw->phy.ops.read_reg_page(hw, HV_ECOL_UPPER, &phy_data);
		hw->phy.ops.read_reg_page(hw, HV_ECOL_LOWER, &phy_data);
		hw->phy.ops.read_reg_page(hw, HV_MCC_UPPER, &phy_data);
		hw->phy.ops.read_reg_page(hw, HV_MCC_LOWER, &phy_data);
		hw->phy.ops.read_reg_page(hw, HV_LATECOL_UPPER, &phy_data);
		hw->phy.ops.read_reg_page(hw, HV_LATECOL_LOWER, &phy_data);
		hw->phy.ops.read_reg_page(hw, HV_COLC_UPPER, &phy_data);
		hw->phy.ops.read_reg_page(hw, HV_COLC_LOWER, &phy_data);
		hw->phy.ops.read_reg_page(hw, HV_DC_UPPER, &phy_data);
		hw->phy.ops.read_reg_page(hw, HV_DC_LOWER, &phy_data);
		hw->phy.ops.read_reg_page(hw, HV_TNCRS_UPPER, &phy_data);
		hw->phy.ops.read_reg_page(hw, HV_TNCRS_LOWER, &phy_data);
release:
		hw->phy.ops.release(hw);
4152
	}
4153 4154
}

J
Jeff Kirsher 已提交
4155
static const struct e1000_mac_operations ich8_mac_ops = {
4156
	/* check_mng_mode dependent on mac type */
4157
	.check_for_link		= e1000_check_for_copper_link_ich8lan,
4158
	/* cleanup_led dependent on mac type */
4159 4160
	.clear_hw_cntrs		= e1000_clear_hw_cntrs_ich8lan,
	.get_bus_info		= e1000_get_bus_info_ich8lan,
4161
	.set_lan_id		= e1000_set_lan_id_single_port,
4162
	.get_link_up_info	= e1000_get_link_up_info_ich8lan,
4163 4164
	/* led_on dependent on mac type */
	/* led_off dependent on mac type */
4165
	.update_mc_addr_list	= e1000e_update_mc_addr_list_generic,
4166 4167 4168 4169
	.reset_hw		= e1000_reset_hw_ich8lan,
	.init_hw		= e1000_init_hw_ich8lan,
	.setup_link		= e1000_setup_link_ich8lan,
	.setup_physical_interface= e1000_setup_copper_link_ich8lan,
4170
	/* id_led_init dependent on mac type */
4171
	.config_collision_dist	= e1000e_config_collision_dist_generic,
4172
	.rar_set		= e1000e_rar_set_generic,
4173 4174
};

J
Jeff Kirsher 已提交
4175
static const struct e1000_phy_operations ich8_phy_ops = {
4176
	.acquire		= e1000_acquire_swflag_ich8lan,
4177
	.check_reset_block	= e1000_check_reset_block_ich8lan,
4178
	.commit			= NULL,
4179
	.get_cfg_done		= e1000_get_cfg_done_ich8lan,
4180
	.get_cable_length	= e1000e_get_cable_length_igp_2,
4181 4182 4183
	.read_reg		= e1000e_read_phy_reg_igp,
	.release		= e1000_release_swflag_ich8lan,
	.reset			= e1000_phy_hw_reset_ich8lan,
4184 4185
	.set_d0_lplu_state	= e1000_set_d0_lplu_state_ich8lan,
	.set_d3_lplu_state	= e1000_set_d3_lplu_state_ich8lan,
4186
	.write_reg		= e1000e_write_phy_reg_igp,
4187 4188
};

J
Jeff Kirsher 已提交
4189
static const struct e1000_nvm_operations ich8_nvm_ops = {
4190 4191 4192
	.acquire		= e1000_acquire_nvm_ich8lan,
	.read		 	= e1000_read_nvm_ich8lan,
	.release		= e1000_release_nvm_ich8lan,
4193
	.reload			= e1000e_reload_nvm_generic,
4194
	.update			= e1000_update_nvm_checksum_ich8lan,
4195
	.valid_led_default	= e1000_valid_led_default_ich8lan,
4196 4197
	.validate		= e1000_validate_nvm_checksum_ich8lan,
	.write			= e1000_write_nvm_ich8lan,
4198 4199
};

J
Jeff Kirsher 已提交
4200
const struct e1000_info e1000_ich8_info = {
4201 4202
	.mac			= e1000_ich8lan,
	.flags			= FLAG_HAS_WOL
4203
				  | FLAG_IS_ICH
4204 4205 4206 4207 4208
				  | FLAG_HAS_CTRLEXT_ON_LOAD
				  | FLAG_HAS_AMT
				  | FLAG_HAS_FLASH
				  | FLAG_APME_IN_WUC,
	.pba			= 8,
4209
	.max_hw_frame_size	= ETH_FRAME_LEN + ETH_FCS_LEN,
J
Jeff Kirsher 已提交
4210
	.get_variants		= e1000_get_variants_ich8lan,
4211 4212 4213 4214 4215
	.mac_ops		= &ich8_mac_ops,
	.phy_ops		= &ich8_phy_ops,
	.nvm_ops		= &ich8_nvm_ops,
};

J
Jeff Kirsher 已提交
4216
const struct e1000_info e1000_ich9_info = {
4217 4218
	.mac			= e1000_ich9lan,
	.flags			= FLAG_HAS_JUMBO_FRAMES
4219
				  | FLAG_IS_ICH
4220 4221 4222 4223 4224
				  | FLAG_HAS_WOL
				  | FLAG_HAS_CTRLEXT_ON_LOAD
				  | FLAG_HAS_AMT
				  | FLAG_HAS_FLASH
				  | FLAG_APME_IN_WUC,
4225
	.pba			= 18,
4226
	.max_hw_frame_size	= DEFAULT_JUMBO,
J
Jeff Kirsher 已提交
4227
	.get_variants		= e1000_get_variants_ich8lan,
4228 4229 4230 4231 4232
	.mac_ops		= &ich8_mac_ops,
	.phy_ops		= &ich8_phy_ops,
	.nvm_ops		= &ich8_nvm_ops,
};

J
Jeff Kirsher 已提交
4233
const struct e1000_info e1000_ich10_info = {
4234 4235 4236 4237 4238 4239 4240 4241
	.mac			= e1000_ich10lan,
	.flags			= FLAG_HAS_JUMBO_FRAMES
				  | FLAG_IS_ICH
				  | FLAG_HAS_WOL
				  | FLAG_HAS_CTRLEXT_ON_LOAD
				  | FLAG_HAS_AMT
				  | FLAG_HAS_FLASH
				  | FLAG_APME_IN_WUC,
4242
	.pba			= 18,
4243
	.max_hw_frame_size	= DEFAULT_JUMBO,
4244 4245 4246 4247 4248
	.get_variants		= e1000_get_variants_ich8lan,
	.mac_ops		= &ich8_mac_ops,
	.phy_ops		= &ich8_phy_ops,
	.nvm_ops		= &ich8_nvm_ops,
};
4249

J
Jeff Kirsher 已提交
4250
const struct e1000_info e1000_pch_info = {
4251 4252 4253 4254 4255 4256 4257
	.mac			= e1000_pchlan,
	.flags			= FLAG_IS_ICH
				  | FLAG_HAS_WOL
				  | FLAG_HAS_CTRLEXT_ON_LOAD
				  | FLAG_HAS_AMT
				  | FLAG_HAS_FLASH
				  | FLAG_HAS_JUMBO_FRAMES
4258
				  | FLAG_DISABLE_FC_PAUSE_TIME /* errata */
4259
				  | FLAG_APME_IN_WUC,
4260
	.flags2			= FLAG2_HAS_PHY_STATS,
4261 4262 4263 4264 4265 4266 4267
	.pba			= 26,
	.max_hw_frame_size	= 4096,
	.get_variants		= e1000_get_variants_ich8lan,
	.mac_ops		= &ich8_mac_ops,
	.phy_ops		= &ich8_phy_ops,
	.nvm_ops		= &ich8_nvm_ops,
};
4268

J
Jeff Kirsher 已提交
4269
const struct e1000_info e1000_pch2_info = {
4270 4271 4272 4273 4274 4275 4276 4277
	.mac			= e1000_pch2lan,
	.flags			= FLAG_IS_ICH
				  | FLAG_HAS_WOL
				  | FLAG_HAS_CTRLEXT_ON_LOAD
				  | FLAG_HAS_AMT
				  | FLAG_HAS_FLASH
				  | FLAG_HAS_JUMBO_FRAMES
				  | FLAG_APME_IN_WUC,
4278 4279
	.flags2			= FLAG2_HAS_PHY_STATS
				  | FLAG2_HAS_EEE,
4280
	.pba			= 26,
4281 4282 4283 4284 4285 4286
	.max_hw_frame_size	= DEFAULT_JUMBO,
	.get_variants		= e1000_get_variants_ich8lan,
	.mac_ops		= &ich8_mac_ops,
	.phy_ops		= &ich8_phy_ops,
	.nvm_ops		= &ich8_nvm_ops,
};