sched.c 188.2 KB
Newer Older
L
Linus Torvalds 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
/*
 *  kernel/sched.c
 *
 *  Kernel scheduler and related syscalls
 *
 *  Copyright (C) 1991-2002  Linus Torvalds
 *
 *  1996-12-23  Modified by Dave Grothe to fix bugs in semaphores and
 *		make semaphores SMP safe
 *  1998-11-19	Implemented schedule_timeout() and related stuff
 *		by Andrea Arcangeli
 *  2002-01-04	New ultra-scalable O(1) scheduler by Ingo Molnar:
 *		hybrid priority-list and round-robin design with
 *		an array-switch method of distributing timeslices
 *		and per-CPU runqueues.  Cleanups and useful suggestions
 *		by Davide Libenzi, preemptible kernel bits by Robert Love.
 *  2003-09-03	Interactivity tuning by Con Kolivas.
 *  2004-04-02	Scheduler domains code by Nick Piggin
I
Ingo Molnar 已提交
19 20 21 22 23 24
 *  2007-04-15  Work begun on replacing all interactivity tuning with a
 *              fair scheduling design by Con Kolivas.
 *  2007-05-05  Load balancing (smp-nice) and other improvements
 *              by Peter Williams
 *  2007-05-06  Interactivity improvements to CFS by Mike Galbraith
 *  2007-07-01  Group scheduling enhancements by Srivatsa Vaddagiri
25 26
 *  2007-11-29  RT balancing improvements by Steven Rostedt, Gregory Haskins,
 *              Thomas Gleixner, Mike Kravetz
L
Linus Torvalds 已提交
27 28 29 30 31 32
 */

#include <linux/mm.h>
#include <linux/module.h>
#include <linux/nmi.h>
#include <linux/init.h>
33
#include <linux/uaccess.h>
L
Linus Torvalds 已提交
34 35 36 37
#include <linux/highmem.h>
#include <linux/smp_lock.h>
#include <asm/mmu_context.h>
#include <linux/interrupt.h>
38
#include <linux/capability.h>
L
Linus Torvalds 已提交
39 40
#include <linux/completion.h>
#include <linux/kernel_stat.h>
41
#include <linux/debug_locks.h>
L
Linus Torvalds 已提交
42 43 44
#include <linux/security.h>
#include <linux/notifier.h>
#include <linux/profile.h>
45
#include <linux/freezer.h>
46
#include <linux/vmalloc.h>
L
Linus Torvalds 已提交
47 48
#include <linux/blkdev.h>
#include <linux/delay.h>
49
#include <linux/pid_namespace.h>
L
Linus Torvalds 已提交
50 51 52 53 54 55 56 57 58
#include <linux/smp.h>
#include <linux/threads.h>
#include <linux/timer.h>
#include <linux/rcupdate.h>
#include <linux/cpu.h>
#include <linux/cpuset.h>
#include <linux/percpu.h>
#include <linux/kthread.h>
#include <linux/seq_file.h>
59
#include <linux/sysctl.h>
L
Linus Torvalds 已提交
60 61
#include <linux/syscalls.h>
#include <linux/times.h>
62
#include <linux/tsacct_kern.h>
63
#include <linux/kprobes.h>
64
#include <linux/delayacct.h>
65
#include <linux/reciprocal_div.h>
66
#include <linux/unistd.h>
J
Jens Axboe 已提交
67
#include <linux/pagemap.h>
L
Linus Torvalds 已提交
68

69
#include <asm/tlb.h>
70
#include <asm/irq_regs.h>
L
Linus Torvalds 已提交
71

72 73 74 75 76 77 78
/*
 * Scheduler clock - returns current time in nanosec units.
 * This is default implementation.
 * Architectures and sub-architectures can override this.
 */
unsigned long long __attribute__((weak)) sched_clock(void)
{
79
	return (unsigned long long)jiffies * (NSEC_PER_SEC / HZ);
80 81
}

L
Linus Torvalds 已提交
82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100
/*
 * Convert user-nice values [ -20 ... 0 ... 19 ]
 * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
 * and back.
 */
#define NICE_TO_PRIO(nice)	(MAX_RT_PRIO + (nice) + 20)
#define PRIO_TO_NICE(prio)	((prio) - MAX_RT_PRIO - 20)
#define TASK_NICE(p)		PRIO_TO_NICE((p)->static_prio)

/*
 * 'User priority' is the nice value converted to something we
 * can work with better when scaling various scheduler parameters,
 * it's a [ 0 ... 39 ] range.
 */
#define USER_PRIO(p)		((p)-MAX_RT_PRIO)
#define TASK_USER_PRIO(p)	USER_PRIO((p)->static_prio)
#define MAX_USER_PRIO		(USER_PRIO(MAX_PRIO))

/*
101
 * Helpers for converting nanosecond timing to jiffy resolution
L
Linus Torvalds 已提交
102
 */
103
#define NS_TO_JIFFIES(TIME)	((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
L
Linus Torvalds 已提交
104

I
Ingo Molnar 已提交
105 106 107
#define NICE_0_LOAD		SCHED_LOAD_SCALE
#define NICE_0_SHIFT		SCHED_LOAD_SHIFT

L
Linus Torvalds 已提交
108 109 110
/*
 * These are the 'tuning knobs' of the scheduler:
 *
D
Dmitry Adamushko 已提交
111
 * default timeslice is 100 msecs (used only for SCHED_RR tasks).
L
Linus Torvalds 已提交
112 113 114
 * Timeslices get refilled after they expire.
 */
#define DEF_TIMESLICE		(100 * HZ / 1000)
115

116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136
#ifdef CONFIG_SMP
/*
 * Divide a load by a sched group cpu_power : (load / sg->__cpu_power)
 * Since cpu_power is a 'constant', we can use a reciprocal divide.
 */
static inline u32 sg_div_cpu_power(const struct sched_group *sg, u32 load)
{
	return reciprocal_divide(load, sg->reciprocal_cpu_power);
}

/*
 * Each time a sched group cpu_power is changed,
 * we must compute its reciprocal value
 */
static inline void sg_inc_cpu_power(struct sched_group *sg, u32 val)
{
	sg->__cpu_power += val;
	sg->reciprocal_cpu_power = reciprocal_value(sg->__cpu_power);
}
#endif

137 138 139 140 141 142 143 144 145 146 147 148
static inline int rt_policy(int policy)
{
	if (unlikely(policy == SCHED_FIFO) || unlikely(policy == SCHED_RR))
		return 1;
	return 0;
}

static inline int task_has_rt_policy(struct task_struct *p)
{
	return rt_policy(p->policy);
}

L
Linus Torvalds 已提交
149
/*
I
Ingo Molnar 已提交
150
 * This is the priority-queue data structure of the RT scheduling class:
L
Linus Torvalds 已提交
151
 */
I
Ingo Molnar 已提交
152 153 154 155 156
struct rt_prio_array {
	DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
	struct list_head queue[MAX_RT_PRIO];
};

S
Srivatsa Vaddagiri 已提交
157 158
#ifdef CONFIG_FAIR_GROUP_SCHED

159 160
#include <linux/cgroup.h>

S
Srivatsa Vaddagiri 已提交
161 162 163
struct cfs_rq;

/* task group related information */
164
struct task_group {
165 166 167
#ifdef CONFIG_FAIR_CGROUP_SCHED
	struct cgroup_subsys_state css;
#endif
S
Srivatsa Vaddagiri 已提交
168 169 170 171
	/* schedulable entities of this group on each cpu */
	struct sched_entity **se;
	/* runqueue "owned" by this group on each cpu */
	struct cfs_rq **cfs_rq;
172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206

	/*
	 * shares assigned to a task group governs how much of cpu bandwidth
	 * is allocated to the group. The more shares a group has, the more is
	 * the cpu bandwidth allocated to it.
	 *
	 * For ex, lets say that there are three task groups, A, B and C which
	 * have been assigned shares 1000, 2000 and 3000 respectively. Then,
	 * cpu bandwidth allocated by the scheduler to task groups A, B and C
	 * should be:
	 *
	 *	Bw(A) = 1000/(1000+2000+3000) * 100 = 16.66%
	 *	Bw(B) = 2000/(1000+2000+3000) * 100 = 33.33%
	 * 	Bw(C) = 3000/(1000+2000+3000) * 100 = 50%
	 *
	 * The weight assigned to a task group's schedulable entities on every
	 * cpu (task_group.se[a_cpu]->load.weight) is derived from the task
	 * group's shares. For ex: lets say that task group A has been
	 * assigned shares of 1000 and there are two CPUs in a system. Then,
	 *
	 *  tg_A->se[0]->load.weight = tg_A->se[1]->load.weight = 1000;
	 *
	 * Note: It's not necessary that each of a task's group schedulable
	 * 	 entity have the same weight on all CPUs. If the group
	 * 	 has 2 of its tasks on CPU0 and 1 task on CPU1, then a
	 * 	 better distribution of weight could be:
	 *
	 *	tg_A->se[0]->load.weight = 2/3 * 2000 = 1333
	 *	tg_A->se[1]->load.weight = 1/2 * 2000 =  667
	 *
	 * rebalance_shares() is responsible for distributing the shares of a
	 * task groups like this among the group's schedulable entities across
	 * cpus.
	 *
	 */
S
Srivatsa Vaddagiri 已提交
207
	unsigned long shares;
208

209
	struct rcu_head rcu;
S
Srivatsa Vaddagiri 已提交
210 211 212 213 214 215 216
};

/* Default task group's sched entity on each cpu */
static DEFINE_PER_CPU(struct sched_entity, init_sched_entity);
/* Default task group's cfs_rq on each cpu */
static DEFINE_PER_CPU(struct cfs_rq, init_cfs_rq) ____cacheline_aligned_in_smp;

217 218
static struct sched_entity *init_sched_entity_p[NR_CPUS];
static struct cfs_rq *init_cfs_rq_p[NR_CPUS];
S
Srivatsa Vaddagiri 已提交
219

220 221 222 223 224
/* task_group_mutex serializes add/remove of task groups and also changes to
 * a task group's cpu shares.
 */
static DEFINE_MUTEX(task_group_mutex);

225 226 227
/* doms_cur_mutex serializes access to doms_cur[] array */
static DEFINE_MUTEX(doms_cur_mutex);

228 229 230 231 232 233 234 235
#ifdef CONFIG_SMP
/* kernel thread that runs rebalance_shares() periodically */
static struct task_struct *lb_monitor_task;
static int load_balance_monitor(void *unused);
#endif

static void set_se_shares(struct sched_entity *se, unsigned long shares);

S
Srivatsa Vaddagiri 已提交
236
/* Default task group.
I
Ingo Molnar 已提交
237
 *	Every task in system belong to this group at bootup.
S
Srivatsa Vaddagiri 已提交
238
 */
239
struct task_group init_task_group = {
I
Ingo Molnar 已提交
240
	.se	= init_sched_entity_p,
I
Ingo Molnar 已提交
241 242
	.cfs_rq = init_cfs_rq_p,
};
243

244
#ifdef CONFIG_FAIR_USER_SCHED
I
Ingo Molnar 已提交
245
# define INIT_TASK_GROUP_LOAD	(2*NICE_0_LOAD)
246
#else
247
# define INIT_TASK_GROUP_LOAD	NICE_0_LOAD
248 249
#endif

I
Ingo Molnar 已提交
250
#define MIN_GROUP_SHARES	2
251

252
static int init_task_group_load = INIT_TASK_GROUP_LOAD;
S
Srivatsa Vaddagiri 已提交
253 254

/* return group to which a task belongs */
255
static inline struct task_group *task_group(struct task_struct *p)
S
Srivatsa Vaddagiri 已提交
256
{
257
	struct task_group *tg;
258

259 260
#ifdef CONFIG_FAIR_USER_SCHED
	tg = p->user->tg;
261 262 263
#elif defined(CONFIG_FAIR_CGROUP_SCHED)
	tg = container_of(task_subsys_state(p, cpu_cgroup_subsys_id),
				struct task_group, css);
264
#else
I
Ingo Molnar 已提交
265
	tg = &init_task_group;
266
#endif
267
	return tg;
S
Srivatsa Vaddagiri 已提交
268 269 270
}

/* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
271
static inline void set_task_cfs_rq(struct task_struct *p, unsigned int cpu)
S
Srivatsa Vaddagiri 已提交
272
{
273 274
	p->se.cfs_rq = task_group(p)->cfs_rq[cpu];
	p->se.parent = task_group(p)->se[cpu];
S
Srivatsa Vaddagiri 已提交
275 276
}

277 278 279 280 281 282 283 284 285 286
static inline void lock_task_group_list(void)
{
	mutex_lock(&task_group_mutex);
}

static inline void unlock_task_group_list(void)
{
	mutex_unlock(&task_group_mutex);
}

287 288 289 290 291 292 293 294 295 296
static inline void lock_doms_cur(void)
{
	mutex_lock(&doms_cur_mutex);
}

static inline void unlock_doms_cur(void)
{
	mutex_unlock(&doms_cur_mutex);
}

S
Srivatsa Vaddagiri 已提交
297 298
#else

299
static inline void set_task_cfs_rq(struct task_struct *p, unsigned int cpu) { }
300 301
static inline void lock_task_group_list(void) { }
static inline void unlock_task_group_list(void) { }
302 303
static inline void lock_doms_cur(void) { }
static inline void unlock_doms_cur(void) { }
S
Srivatsa Vaddagiri 已提交
304 305 306

#endif	/* CONFIG_FAIR_GROUP_SCHED */

I
Ingo Molnar 已提交
307 308 309 310 311 312
/* CFS-related fields in a runqueue */
struct cfs_rq {
	struct load_weight load;
	unsigned long nr_running;

	u64 exec_clock;
I
Ingo Molnar 已提交
313
	u64 min_vruntime;
I
Ingo Molnar 已提交
314 315 316 317 318 319 320 321

	struct rb_root tasks_timeline;
	struct rb_node *rb_leftmost;
	struct rb_node *rb_load_balance_curr;
	/* 'curr' points to currently running entity on this cfs_rq.
	 * It is set to NULL otherwise (i.e when none are currently running).
	 */
	struct sched_entity *curr;
P
Peter Zijlstra 已提交
322 323 324

	unsigned long nr_spread_over;

325
#ifdef CONFIG_FAIR_GROUP_SCHED
I
Ingo Molnar 已提交
326 327
	struct rq *rq;	/* cpu runqueue to which this cfs_rq is attached */

I
Ingo Molnar 已提交
328 329
	/*
	 * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
I
Ingo Molnar 已提交
330 331 332 333 334 335
	 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
	 * (like users, containers etc.)
	 *
	 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
	 * list is used during load balance.
	 */
I
Ingo Molnar 已提交
336 337
	struct list_head leaf_cfs_rq_list;
	struct task_group *tg;	/* group that "owns" this runqueue */
I
Ingo Molnar 已提交
338 339
#endif
};
L
Linus Torvalds 已提交
340

I
Ingo Molnar 已提交
341 342 343 344 345
/* Real-Time classes' related field in a runqueue: */
struct rt_rq {
	struct rt_prio_array active;
	int rt_load_balance_idx;
	struct list_head *rt_load_balance_head, *rt_load_balance_curr;
346
	unsigned long rt_nr_running;
347
	unsigned long rt_nr_migratory;
348 349
	/* highest queued rt task prio */
	int highest_prio;
G
Gregory Haskins 已提交
350
	int overloaded;
I
Ingo Molnar 已提交
351 352
};

G
Gregory Haskins 已提交
353 354 355 356
#ifdef CONFIG_SMP

/*
 * We add the notion of a root-domain which will be used to define per-domain
I
Ingo Molnar 已提交
357 358
 * variables. Each exclusive cpuset essentially defines an island domain by
 * fully partitioning the member cpus from any other cpuset. Whenever a new
G
Gregory Haskins 已提交
359 360 361 362 363 364 365 366
 * exclusive cpuset is created, we also create and attach a new root-domain
 * object.
 *
 */
struct root_domain {
	atomic_t refcount;
	cpumask_t span;
	cpumask_t online;
367

I
Ingo Molnar 已提交
368
	/*
369 370 371 372
	 * The "RT overload" flag: it gets set if a CPU has more than
	 * one runnable RT task.
	 */
	cpumask_t rto_mask;
I
Ingo Molnar 已提交
373
	atomic_t rto_count;
G
Gregory Haskins 已提交
374 375
};

376 377 378 379
/*
 * By default the system creates a single root-domain with all cpus as
 * members (mimicking the global state we have today).
 */
G
Gregory Haskins 已提交
380 381 382 383
static struct root_domain def_root_domain;

#endif

L
Linus Torvalds 已提交
384 385 386 387 388 389 390
/*
 * This is the main, per-CPU runqueue data structure.
 *
 * Locking rule: those places that want to lock multiple runqueues
 * (such as the load balancing or the thread migration code), lock
 * acquire operations must be ordered by ascending &runqueue.
 */
391
struct rq {
392 393
	/* runqueue lock: */
	spinlock_t lock;
L
Linus Torvalds 已提交
394 395 396 397 398 399

	/*
	 * nr_running and cpu_load should be in the same cacheline because
	 * remote CPUs use both these fields when doing load calculation.
	 */
	unsigned long nr_running;
I
Ingo Molnar 已提交
400 401
	#define CPU_LOAD_IDX_MAX 5
	unsigned long cpu_load[CPU_LOAD_IDX_MAX];
402
	unsigned char idle_at_tick;
403 404 405
#ifdef CONFIG_NO_HZ
	unsigned char in_nohz_recently;
#endif
406 407
	/* capture load from *all* tasks on this cpu: */
	struct load_weight load;
I
Ingo Molnar 已提交
408 409 410 411 412
	unsigned long nr_load_updates;
	u64 nr_switches;

	struct cfs_rq cfs;
#ifdef CONFIG_FAIR_GROUP_SCHED
413 414
	/* list of leaf cfs_rq on this cpu: */
	struct list_head leaf_cfs_rq_list;
L
Linus Torvalds 已提交
415
#endif
I
Ingo Molnar 已提交
416
	struct rt_rq rt;
L
Linus Torvalds 已提交
417 418 419 420 421 422 423 424 425

	/*
	 * This is part of a global counter where only the total sum
	 * over all CPUs matters. A task can increase this counter on
	 * one CPU and if it got migrated afterwards it may decrease
	 * it on another CPU. Always updated under the runqueue lock:
	 */
	unsigned long nr_uninterruptible;

426
	struct task_struct *curr, *idle;
427
	unsigned long next_balance;
L
Linus Torvalds 已提交
428
	struct mm_struct *prev_mm;
I
Ingo Molnar 已提交
429 430 431 432 433

	u64 clock, prev_clock_raw;
	s64 clock_max_delta;

	unsigned int clock_warps, clock_overflows;
434 435
	u64 idle_clock;
	unsigned int clock_deep_idle_events;
436
	u64 tick_timestamp;
I
Ingo Molnar 已提交
437

L
Linus Torvalds 已提交
438 439 440
	atomic_t nr_iowait;

#ifdef CONFIG_SMP
I
Ingo Molnar 已提交
441
	struct root_domain *rd;
L
Linus Torvalds 已提交
442 443 444 445 446
	struct sched_domain *sd;

	/* For active balancing */
	int active_balance;
	int push_cpu;
447 448
	/* cpu of this runqueue: */
	int cpu;
L
Linus Torvalds 已提交
449

450
	struct task_struct *migration_thread;
L
Linus Torvalds 已提交
451 452 453 454 455 456 457 458
	struct list_head migration_queue;
#endif

#ifdef CONFIG_SCHEDSTATS
	/* latency stats */
	struct sched_info rq_sched_info;

	/* sys_sched_yield() stats */
459 460 461 462
	unsigned int yld_exp_empty;
	unsigned int yld_act_empty;
	unsigned int yld_both_empty;
	unsigned int yld_count;
L
Linus Torvalds 已提交
463 464

	/* schedule() stats */
465 466 467
	unsigned int sched_switch;
	unsigned int sched_count;
	unsigned int sched_goidle;
L
Linus Torvalds 已提交
468 469

	/* try_to_wake_up() stats */
470 471
	unsigned int ttwu_count;
	unsigned int ttwu_local;
I
Ingo Molnar 已提交
472 473

	/* BKL stats */
474
	unsigned int bkl_count;
L
Linus Torvalds 已提交
475
#endif
476
	struct lock_class_key rq_lock_key;
L
Linus Torvalds 已提交
477 478
};

479
static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
L
Linus Torvalds 已提交
480

I
Ingo Molnar 已提交
481 482 483 484 485
static inline void check_preempt_curr(struct rq *rq, struct task_struct *p)
{
	rq->curr->sched_class->check_preempt_curr(rq, p);
}

486 487 488 489 490 491 492 493 494
static inline int cpu_of(struct rq *rq)
{
#ifdef CONFIG_SMP
	return rq->cpu;
#else
	return 0;
#endif
}

I
Ingo Molnar 已提交
495
/*
I
Ingo Molnar 已提交
496 497
 * Update the per-runqueue clock, as finegrained as the platform can give
 * us, but without assuming monotonicity, etc.:
I
Ingo Molnar 已提交
498
 */
I
Ingo Molnar 已提交
499
static void __update_rq_clock(struct rq *rq)
I
Ingo Molnar 已提交
500 501 502 503 504 505
{
	u64 prev_raw = rq->prev_clock_raw;
	u64 now = sched_clock();
	s64 delta = now - prev_raw;
	u64 clock = rq->clock;

I
Ingo Molnar 已提交
506 507 508
#ifdef CONFIG_SCHED_DEBUG
	WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
#endif
I
Ingo Molnar 已提交
509 510 511 512 513 514 515 516 517 518
	/*
	 * Protect against sched_clock() occasionally going backwards:
	 */
	if (unlikely(delta < 0)) {
		clock++;
		rq->clock_warps++;
	} else {
		/*
		 * Catch too large forward jumps too:
		 */
519 520 521 522 523
		if (unlikely(clock + delta > rq->tick_timestamp + TICK_NSEC)) {
			if (clock < rq->tick_timestamp + TICK_NSEC)
				clock = rq->tick_timestamp + TICK_NSEC;
			else
				clock++;
I
Ingo Molnar 已提交
524 525 526 527 528 529 530 531 532 533
			rq->clock_overflows++;
		} else {
			if (unlikely(delta > rq->clock_max_delta))
				rq->clock_max_delta = delta;
			clock += delta;
		}
	}

	rq->prev_clock_raw = now;
	rq->clock = clock;
I
Ingo Molnar 已提交
534
}
I
Ingo Molnar 已提交
535

I
Ingo Molnar 已提交
536 537 538 539
static void update_rq_clock(struct rq *rq)
{
	if (likely(smp_processor_id() == cpu_of(rq)))
		__update_rq_clock(rq);
I
Ingo Molnar 已提交
540 541
}

N
Nick Piggin 已提交
542 543
/*
 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
544
 * See detach_destroy_domains: synchronize_sched for details.
N
Nick Piggin 已提交
545 546 547 548
 *
 * The domain tree of any CPU may only be accessed from within
 * preempt-disabled sections.
 */
549 550
#define for_each_domain(cpu, __sd) \
	for (__sd = rcu_dereference(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
L
Linus Torvalds 已提交
551 552 553 554 555 556

#define cpu_rq(cpu)		(&per_cpu(runqueues, (cpu)))
#define this_rq()		(&__get_cpu_var(runqueues))
#define task_rq(p)		cpu_rq(task_cpu(p))
#define cpu_curr(cpu)		(cpu_rq(cpu)->curr)

I
Ingo Molnar 已提交
557 558 559 560 561 562 563 564 565 566 567 568 569
/*
 * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
 */
#ifdef CONFIG_SCHED_DEBUG
# define const_debug __read_mostly
#else
# define const_debug static const
#endif

/*
 * Debugging: various feature bits
 */
enum {
570
	SCHED_FEAT_NEW_FAIR_SLEEPERS	= 1,
I
Ingo Molnar 已提交
571 572
	SCHED_FEAT_WAKEUP_PREEMPT	= 2,
	SCHED_FEAT_START_DEBIT		= 4,
I
Ingo Molnar 已提交
573 574
	SCHED_FEAT_TREE_AVG		= 8,
	SCHED_FEAT_APPROX_AVG		= 16,
I
Ingo Molnar 已提交
575 576 577
};

const_debug unsigned int sysctl_sched_features =
I
Ingo Molnar 已提交
578
		SCHED_FEAT_NEW_FAIR_SLEEPERS	* 1 |
I
Ingo Molnar 已提交
579
		SCHED_FEAT_WAKEUP_PREEMPT	* 1 |
I
Ingo Molnar 已提交
580 581
		SCHED_FEAT_START_DEBIT		* 1 |
		SCHED_FEAT_TREE_AVG		* 0 |
I
Ingo Molnar 已提交
582
		SCHED_FEAT_APPROX_AVG		* 0;
I
Ingo Molnar 已提交
583 584 585

#define sched_feat(x) (sysctl_sched_features & SCHED_FEAT_##x)

586 587 588 589 590 591
/*
 * Number of tasks to iterate in a single balance run.
 * Limited because this is done with IRQs disabled.
 */
const_debug unsigned int sysctl_sched_nr_migrate = 32;

592 593 594 595 596 597 598 599
/*
 * For kernel-internal use: high-speed (but slightly incorrect) per-cpu
 * clock constructed from sched_clock():
 */
unsigned long long cpu_clock(int cpu)
{
	unsigned long long now;
	unsigned long flags;
I
Ingo Molnar 已提交
600
	struct rq *rq;
601

602
	local_irq_save(flags);
I
Ingo Molnar 已提交
603
	rq = cpu_rq(cpu);
604 605 606 607 608 609
	/*
	 * Only call sched_clock() if the scheduler has already been
	 * initialized (some code might call cpu_clock() very early):
	 */
	if (rq->idle)
		update_rq_clock(rq);
I
Ingo Molnar 已提交
610
	now = rq->clock;
611
	local_irq_restore(flags);
612 613 614

	return now;
}
P
Paul E. McKenney 已提交
615
EXPORT_SYMBOL_GPL(cpu_clock);
616

L
Linus Torvalds 已提交
617
#ifndef prepare_arch_switch
618 619 620 621 622 623
# define prepare_arch_switch(next)	do { } while (0)
#endif
#ifndef finish_arch_switch
# define finish_arch_switch(prev)	do { } while (0)
#endif

624 625 626 627 628
static inline int task_current(struct rq *rq, struct task_struct *p)
{
	return rq->curr == p;
}

629
#ifndef __ARCH_WANT_UNLOCKED_CTXSW
630
static inline int task_running(struct rq *rq, struct task_struct *p)
631
{
632
	return task_current(rq, p);
633 634
}

635
static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
636 637 638
{
}

639
static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
640
{
641 642 643 644
#ifdef CONFIG_DEBUG_SPINLOCK
	/* this is a valid case when another task releases the spinlock */
	rq->lock.owner = current;
#endif
645 646 647 648 649 650 651
	/*
	 * If we are tracking spinlock dependencies then we have to
	 * fix up the runqueue lock - which gets 'carried over' from
	 * prev into current:
	 */
	spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);

652 653 654 655
	spin_unlock_irq(&rq->lock);
}

#else /* __ARCH_WANT_UNLOCKED_CTXSW */
656
static inline int task_running(struct rq *rq, struct task_struct *p)
657 658 659 660
{
#ifdef CONFIG_SMP
	return p->oncpu;
#else
661
	return task_current(rq, p);
662 663 664
#endif
}

665
static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681
{
#ifdef CONFIG_SMP
	/*
	 * We can optimise this out completely for !SMP, because the
	 * SMP rebalancing from interrupt is the only thing that cares
	 * here.
	 */
	next->oncpu = 1;
#endif
#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
	spin_unlock_irq(&rq->lock);
#else
	spin_unlock(&rq->lock);
#endif
}

682
static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
683 684 685 686 687 688 689 690 691 692 693 694
{
#ifdef CONFIG_SMP
	/*
	 * After ->oncpu is cleared, the task can be moved to a different CPU.
	 * We must ensure this doesn't happen until the switch is completely
	 * finished.
	 */
	smp_wmb();
	prev->oncpu = 0;
#endif
#ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
	local_irq_enable();
L
Linus Torvalds 已提交
695
#endif
696 697
}
#endif /* __ARCH_WANT_UNLOCKED_CTXSW */
L
Linus Torvalds 已提交
698

699 700 701 702
/*
 * __task_rq_lock - lock the runqueue a given task resides on.
 * Must be called interrupts disabled.
 */
703
static inline struct rq *__task_rq_lock(struct task_struct *p)
704 705
	__acquires(rq->lock)
{
706 707 708 709 710
	for (;;) {
		struct rq *rq = task_rq(p);
		spin_lock(&rq->lock);
		if (likely(rq == task_rq(p)))
			return rq;
711 712 713 714
		spin_unlock(&rq->lock);
	}
}

L
Linus Torvalds 已提交
715 716
/*
 * task_rq_lock - lock the runqueue a given task resides on and disable
I
Ingo Molnar 已提交
717
 * interrupts. Note the ordering: we can safely lookup the task_rq without
L
Linus Torvalds 已提交
718 719
 * explicitly disabling preemption.
 */
720
static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
L
Linus Torvalds 已提交
721 722
	__acquires(rq->lock)
{
723
	struct rq *rq;
L
Linus Torvalds 已提交
724

725 726 727 728 729 730
	for (;;) {
		local_irq_save(*flags);
		rq = task_rq(p);
		spin_lock(&rq->lock);
		if (likely(rq == task_rq(p)))
			return rq;
L
Linus Torvalds 已提交
731 732 733 734
		spin_unlock_irqrestore(&rq->lock, *flags);
	}
}

A
Alexey Dobriyan 已提交
735
static void __task_rq_unlock(struct rq *rq)
736 737 738 739 740
	__releases(rq->lock)
{
	spin_unlock(&rq->lock);
}

741
static inline void task_rq_unlock(struct rq *rq, unsigned long *flags)
L
Linus Torvalds 已提交
742 743 744 745 746 747
	__releases(rq->lock)
{
	spin_unlock_irqrestore(&rq->lock, *flags);
}

/*
748
 * this_rq_lock - lock this runqueue and disable interrupts.
L
Linus Torvalds 已提交
749
 */
A
Alexey Dobriyan 已提交
750
static struct rq *this_rq_lock(void)
L
Linus Torvalds 已提交
751 752
	__acquires(rq->lock)
{
753
	struct rq *rq;
L
Linus Torvalds 已提交
754 755 756 757 758 759 760 761

	local_irq_disable();
	rq = this_rq();
	spin_lock(&rq->lock);

	return rq;
}

762
/*
763
 * We are going deep-idle (irqs are disabled):
764
 */
765
void sched_clock_idle_sleep_event(void)
766
{
767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782
	struct rq *rq = cpu_rq(smp_processor_id());

	spin_lock(&rq->lock);
	__update_rq_clock(rq);
	spin_unlock(&rq->lock);
	rq->clock_deep_idle_events++;
}
EXPORT_SYMBOL_GPL(sched_clock_idle_sleep_event);

/*
 * We just idled delta nanoseconds (called with irqs disabled):
 */
void sched_clock_idle_wakeup_event(u64 delta_ns)
{
	struct rq *rq = cpu_rq(smp_processor_id());
	u64 now = sched_clock();
783

784
	touch_softlockup_watchdog();
785 786 787 788 789 790 791 792 793 794 795
	rq->idle_clock += delta_ns;
	/*
	 * Override the previous timestamp and ignore all
	 * sched_clock() deltas that occured while we idled,
	 * and use the PM-provided delta_ns to advance the
	 * rq clock:
	 */
	spin_lock(&rq->lock);
	rq->prev_clock_raw = now;
	rq->clock += delta_ns;
	spin_unlock(&rq->lock);
796
}
797
EXPORT_SYMBOL_GPL(sched_clock_idle_wakeup_event);
798

I
Ingo Molnar 已提交
799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850
/*
 * resched_task - mark a task 'to be rescheduled now'.
 *
 * On UP this means the setting of the need_resched flag, on SMP it
 * might also involve a cross-CPU call to trigger the scheduler on
 * the target CPU.
 */
#ifdef CONFIG_SMP

#ifndef tsk_is_polling
#define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
#endif

static void resched_task(struct task_struct *p)
{
	int cpu;

	assert_spin_locked(&task_rq(p)->lock);

	if (unlikely(test_tsk_thread_flag(p, TIF_NEED_RESCHED)))
		return;

	set_tsk_thread_flag(p, TIF_NEED_RESCHED);

	cpu = task_cpu(p);
	if (cpu == smp_processor_id())
		return;

	/* NEED_RESCHED must be visible before we test polling */
	smp_mb();
	if (!tsk_is_polling(p))
		smp_send_reschedule(cpu);
}

static void resched_cpu(int cpu)
{
	struct rq *rq = cpu_rq(cpu);
	unsigned long flags;

	if (!spin_trylock_irqsave(&rq->lock, flags))
		return;
	resched_task(cpu_curr(cpu));
	spin_unlock_irqrestore(&rq->lock, flags);
}
#else
static inline void resched_task(struct task_struct *p)
{
	assert_spin_locked(&task_rq(p)->lock);
	set_tsk_need_resched(p);
}
#endif

851 852 853 854 855 856 857 858
#if BITS_PER_LONG == 32
# define WMULT_CONST	(~0UL)
#else
# define WMULT_CONST	(1UL << 32)
#endif

#define WMULT_SHIFT	32

I
Ingo Molnar 已提交
859 860 861
/*
 * Shift right and round:
 */
I
Ingo Molnar 已提交
862
#define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
I
Ingo Molnar 已提交
863

864
static unsigned long
865 866 867 868 869 870
calc_delta_mine(unsigned long delta_exec, unsigned long weight,
		struct load_weight *lw)
{
	u64 tmp;

	if (unlikely(!lw->inv_weight))
I
Ingo Molnar 已提交
871
		lw->inv_weight = (WMULT_CONST - lw->weight/2) / lw->weight + 1;
872 873 874 875 876

	tmp = (u64)delta_exec * weight;
	/*
	 * Check whether we'd overflow the 64-bit multiplication:
	 */
I
Ingo Molnar 已提交
877
	if (unlikely(tmp > WMULT_CONST))
I
Ingo Molnar 已提交
878
		tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
I
Ingo Molnar 已提交
879 880
			WMULT_SHIFT/2);
	else
I
Ingo Molnar 已提交
881
		tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
882

883
	return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
884 885 886 887 888 889 890 891
}

static inline unsigned long
calc_delta_fair(unsigned long delta_exec, struct load_weight *lw)
{
	return calc_delta_mine(delta_exec, NICE_0_LOAD, lw);
}

892
static inline void update_load_add(struct load_weight *lw, unsigned long inc)
893 894 895 896
{
	lw->weight += inc;
}

897
static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
898 899 900 901
{
	lw->weight -= dec;
}

902 903 904 905
/*
 * To aid in avoiding the subversion of "niceness" due to uneven distribution
 * of tasks with abnormal "nice" values across CPUs the contribution that
 * each task makes to its run queue's load is weighted according to its
I
Ingo Molnar 已提交
906
 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
907 908 909 910
 * scaled version of the new time slice allocation that they receive on time
 * slice expiry etc.
 */

I
Ingo Molnar 已提交
911 912 913 914 915 916 917 918 919 920 921
#define WEIGHT_IDLEPRIO		2
#define WMULT_IDLEPRIO		(1 << 31)

/*
 * Nice levels are multiplicative, with a gentle 10% change for every
 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
 * nice 1, it will get ~10% less CPU time than another CPU-bound task
 * that remained on nice 0.
 *
 * The "10% effect" is relative and cumulative: from _any_ nice level,
 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
922 923 924
 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
 * If a task goes up by ~10% and another task goes down by ~10% then
 * the relative distance between them is ~25%.)
I
Ingo Molnar 已提交
925 926
 */
static const int prio_to_weight[40] = {
927 928 929 930 931 932 933 934
 /* -20 */     88761,     71755,     56483,     46273,     36291,
 /* -15 */     29154,     23254,     18705,     14949,     11916,
 /* -10 */      9548,      7620,      6100,      4904,      3906,
 /*  -5 */      3121,      2501,      1991,      1586,      1277,
 /*   0 */      1024,       820,       655,       526,       423,
 /*   5 */       335,       272,       215,       172,       137,
 /*  10 */       110,        87,        70,        56,        45,
 /*  15 */        36,        29,        23,        18,        15,
I
Ingo Molnar 已提交
935 936
};

937 938 939 940 941 942 943
/*
 * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
 *
 * In cases where the weight does not change often, we can use the
 * precalculated inverse to speed up arithmetics by turning divisions
 * into multiplications:
 */
I
Ingo Molnar 已提交
944
static const u32 prio_to_wmult[40] = {
945 946 947 948 949 950 951 952
 /* -20 */     48388,     59856,     76040,     92818,    118348,
 /* -15 */    147320,    184698,    229616,    287308,    360437,
 /* -10 */    449829,    563644,    704093,    875809,   1099582,
 /*  -5 */   1376151,   1717300,   2157191,   2708050,   3363326,
 /*   0 */   4194304,   5237765,   6557202,   8165337,  10153587,
 /*   5 */  12820798,  15790321,  19976592,  24970740,  31350126,
 /*  10 */  39045157,  49367440,  61356676,  76695844,  95443717,
 /*  15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
I
Ingo Molnar 已提交
953
};
954

I
Ingo Molnar 已提交
955 956 957 958 959 960 961 962 963 964 965 966 967
static void activate_task(struct rq *rq, struct task_struct *p, int wakeup);

/*
 * runqueue iterator, to support SMP load-balancing between different
 * scheduling classes, without having to expose their internal data
 * structures to the load-balancing proper:
 */
struct rq_iterator {
	void *arg;
	struct task_struct *(*start)(void *);
	struct task_struct *(*next)(void *);
};

968 969 970 971 972 973 974 975 976 977 978 979
#ifdef CONFIG_SMP
static unsigned long
balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
	      unsigned long max_load_move, struct sched_domain *sd,
	      enum cpu_idle_type idle, int *all_pinned,
	      int *this_best_prio, struct rq_iterator *iterator);

static int
iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
		   struct sched_domain *sd, enum cpu_idle_type idle,
		   struct rq_iterator *iterator);
#endif
I
Ingo Molnar 已提交
980

981 982 983 984 985 986
#ifdef CONFIG_CGROUP_CPUACCT
static void cpuacct_charge(struct task_struct *tsk, u64 cputime);
#else
static inline void cpuacct_charge(struct task_struct *tsk, u64 cputime) {}
#endif

987 988 989 990 991 992 993 994 995 996
static inline void inc_cpu_load(struct rq *rq, unsigned long load)
{
	update_load_add(&rq->load, load);
}

static inline void dec_cpu_load(struct rq *rq, unsigned long load)
{
	update_load_sub(&rq->load, load);
}

997 998 999 1000 1001 1002 1003
#ifdef CONFIG_SMP
static unsigned long source_load(int cpu, int type);
static unsigned long target_load(int cpu, int type);
static unsigned long cpu_avg_load_per_task(int cpu);
static int task_hot(struct task_struct *p, u64 now, struct sched_domain *sd);
#endif /* CONFIG_SMP */

I
Ingo Molnar 已提交
1004 1005
#include "sched_stats.h"
#include "sched_idletask.c"
1006 1007
#include "sched_fair.c"
#include "sched_rt.c"
I
Ingo Molnar 已提交
1008 1009 1010 1011 1012 1013
#ifdef CONFIG_SCHED_DEBUG
# include "sched_debug.c"
#endif

#define sched_class_highest (&rt_sched_class)

1014
static void inc_nr_running(struct task_struct *p, struct rq *rq)
1015 1016 1017 1018
{
	rq->nr_running++;
}

1019
static void dec_nr_running(struct task_struct *p, struct rq *rq)
1020 1021 1022 1023
{
	rq->nr_running--;
}

1024 1025 1026
static void set_load_weight(struct task_struct *p)
{
	if (task_has_rt_policy(p)) {
I
Ingo Molnar 已提交
1027 1028 1029 1030
		p->se.load.weight = prio_to_weight[0] * 2;
		p->se.load.inv_weight = prio_to_wmult[0] >> 1;
		return;
	}
1031

I
Ingo Molnar 已提交
1032 1033 1034 1035 1036 1037 1038 1039
	/*
	 * SCHED_IDLE tasks get minimal weight:
	 */
	if (p->policy == SCHED_IDLE) {
		p->se.load.weight = WEIGHT_IDLEPRIO;
		p->se.load.inv_weight = WMULT_IDLEPRIO;
		return;
	}
1040

I
Ingo Molnar 已提交
1041 1042
	p->se.load.weight = prio_to_weight[p->static_prio - MAX_RT_PRIO];
	p->se.load.inv_weight = prio_to_wmult[p->static_prio - MAX_RT_PRIO];
1043 1044
}

1045
static void enqueue_task(struct rq *rq, struct task_struct *p, int wakeup)
1046
{
I
Ingo Molnar 已提交
1047
	sched_info_queued(p);
1048
	p->sched_class->enqueue_task(rq, p, wakeup);
I
Ingo Molnar 已提交
1049
	p->se.on_rq = 1;
1050 1051
}

1052
static void dequeue_task(struct rq *rq, struct task_struct *p, int sleep)
1053
{
1054
	p->sched_class->dequeue_task(rq, p, sleep);
I
Ingo Molnar 已提交
1055
	p->se.on_rq = 0;
1056 1057
}

1058
/*
I
Ingo Molnar 已提交
1059
 * __normal_prio - return the priority that is based on the static prio
1060 1061 1062
 */
static inline int __normal_prio(struct task_struct *p)
{
I
Ingo Molnar 已提交
1063
	return p->static_prio;
1064 1065
}

1066 1067 1068 1069 1070 1071 1072
/*
 * Calculate the expected normal priority: i.e. priority
 * without taking RT-inheritance into account. Might be
 * boosted by interactivity modifiers. Changes upon fork,
 * setprio syscalls, and whenever the interactivity
 * estimator recalculates.
 */
1073
static inline int normal_prio(struct task_struct *p)
1074 1075 1076
{
	int prio;

1077
	if (task_has_rt_policy(p))
1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090
		prio = MAX_RT_PRIO-1 - p->rt_priority;
	else
		prio = __normal_prio(p);
	return prio;
}

/*
 * Calculate the current priority, i.e. the priority
 * taken into account by the scheduler. This value might
 * be boosted by RT tasks, or might be boosted by
 * interactivity modifiers. Will be RT if the task got
 * RT-boosted. If not then it returns p->normal_prio.
 */
1091
static int effective_prio(struct task_struct *p)
1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103
{
	p->normal_prio = normal_prio(p);
	/*
	 * If we are RT tasks or we were boosted to RT priority,
	 * keep the priority unchanged. Otherwise, update priority
	 * to the normal priority:
	 */
	if (!rt_prio(p->prio))
		return p->normal_prio;
	return p->prio;
}

L
Linus Torvalds 已提交
1104
/*
I
Ingo Molnar 已提交
1105
 * activate_task - move a task to the runqueue.
L
Linus Torvalds 已提交
1106
 */
I
Ingo Molnar 已提交
1107
static void activate_task(struct rq *rq, struct task_struct *p, int wakeup)
L
Linus Torvalds 已提交
1108
{
I
Ingo Molnar 已提交
1109 1110
	if (p->state == TASK_UNINTERRUPTIBLE)
		rq->nr_uninterruptible--;
L
Linus Torvalds 已提交
1111

1112
	enqueue_task(rq, p, wakeup);
1113
	inc_nr_running(p, rq);
L
Linus Torvalds 已提交
1114 1115 1116 1117 1118
}

/*
 * deactivate_task - remove a task from the runqueue.
 */
1119
static void deactivate_task(struct rq *rq, struct task_struct *p, int sleep)
L
Linus Torvalds 已提交
1120
{
I
Ingo Molnar 已提交
1121 1122 1123
	if (p->state == TASK_UNINTERRUPTIBLE)
		rq->nr_uninterruptible++;

1124
	dequeue_task(rq, p, sleep);
1125
	dec_nr_running(p, rq);
L
Linus Torvalds 已提交
1126 1127 1128 1129 1130 1131
}

/**
 * task_curr - is this task currently executing on a CPU?
 * @p: the task in question.
 */
1132
inline int task_curr(const struct task_struct *p)
L
Linus Torvalds 已提交
1133 1134 1135 1136
{
	return cpu_curr(task_cpu(p)) == p;
}

1137 1138 1139
/* Used instead of source_load when we know the type == 0 */
unsigned long weighted_cpuload(const int cpu)
{
1140
	return cpu_rq(cpu)->load.weight;
I
Ingo Molnar 已提交
1141 1142 1143 1144
}

static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
{
1145
	set_task_cfs_rq(p, cpu);
I
Ingo Molnar 已提交
1146
#ifdef CONFIG_SMP
1147 1148 1149 1150 1151 1152
	/*
	 * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
	 * successfuly executed on another CPU. We must ensure that updates of
	 * per-task data have been completed by this moment.
	 */
	smp_wmb();
I
Ingo Molnar 已提交
1153 1154
	task_thread_info(p)->cpu = cpu;
#endif
1155 1156
}

1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168
static inline void check_class_changed(struct rq *rq, struct task_struct *p,
				       const struct sched_class *prev_class,
				       int oldprio, int running)
{
	if (prev_class != p->sched_class) {
		if (prev_class->switched_from)
			prev_class->switched_from(rq, p, running);
		p->sched_class->switched_to(rq, p, running);
	} else
		p->sched_class->prio_changed(rq, p, oldprio, running);
}

L
Linus Torvalds 已提交
1169
#ifdef CONFIG_SMP
I
Ingo Molnar 已提交
1170

1171 1172 1173
/*
 * Is this task likely cache-hot:
 */
1174
static int
1175 1176 1177 1178 1179 1180 1181
task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
{
	s64 delta;

	if (p->sched_class != &fair_sched_class)
		return 0;

1182 1183 1184 1185 1186
	if (sysctl_sched_migration_cost == -1)
		return 1;
	if (sysctl_sched_migration_cost == 0)
		return 0;

1187 1188 1189 1190 1191 1192
	delta = now - p->se.exec_start;

	return delta < (s64)sysctl_sched_migration_cost;
}


I
Ingo Molnar 已提交
1193
void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
I
Ingo Molnar 已提交
1194
{
I
Ingo Molnar 已提交
1195 1196
	int old_cpu = task_cpu(p);
	struct rq *old_rq = cpu_rq(old_cpu), *new_rq = cpu_rq(new_cpu);
1197 1198
	struct cfs_rq *old_cfsrq = task_cfs_rq(p),
		      *new_cfsrq = cpu_cfs_rq(old_cfsrq, new_cpu);
1199
	u64 clock_offset;
I
Ingo Molnar 已提交
1200 1201

	clock_offset = old_rq->clock - new_rq->clock;
I
Ingo Molnar 已提交
1202 1203 1204 1205

#ifdef CONFIG_SCHEDSTATS
	if (p->se.wait_start)
		p->se.wait_start -= clock_offset;
I
Ingo Molnar 已提交
1206 1207 1208 1209
	if (p->se.sleep_start)
		p->se.sleep_start -= clock_offset;
	if (p->se.block_start)
		p->se.block_start -= clock_offset;
1210 1211 1212 1213 1214
	if (old_cpu != new_cpu) {
		schedstat_inc(p, se.nr_migrations);
		if (task_hot(p, old_rq->clock, NULL))
			schedstat_inc(p, se.nr_forced2_migrations);
	}
I
Ingo Molnar 已提交
1215
#endif
1216 1217
	p->se.vruntime -= old_cfsrq->min_vruntime -
					 new_cfsrq->min_vruntime;
I
Ingo Molnar 已提交
1218 1219

	__set_task_cpu(p, new_cpu);
I
Ingo Molnar 已提交
1220 1221
}

1222
struct migration_req {
L
Linus Torvalds 已提交
1223 1224
	struct list_head list;

1225
	struct task_struct *task;
L
Linus Torvalds 已提交
1226 1227 1228
	int dest_cpu;

	struct completion done;
1229
};
L
Linus Torvalds 已提交
1230 1231 1232 1233 1234

/*
 * The task's runqueue lock must be held.
 * Returns true if you have to wait for migration thread.
 */
1235
static int
1236
migrate_task(struct task_struct *p, int dest_cpu, struct migration_req *req)
L
Linus Torvalds 已提交
1237
{
1238
	struct rq *rq = task_rq(p);
L
Linus Torvalds 已提交
1239 1240 1241 1242 1243

	/*
	 * If the task is not on a runqueue (and not running), then
	 * it is sufficient to simply update the task's cpu field.
	 */
I
Ingo Molnar 已提交
1244
	if (!p->se.on_rq && !task_running(rq, p)) {
L
Linus Torvalds 已提交
1245 1246 1247 1248 1249 1250 1251 1252
		set_task_cpu(p, dest_cpu);
		return 0;
	}

	init_completion(&req->done);
	req->task = p;
	req->dest_cpu = dest_cpu;
	list_add(&req->list, &rq->migration_queue);
1253

L
Linus Torvalds 已提交
1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265
	return 1;
}

/*
 * wait_task_inactive - wait for a thread to unschedule.
 *
 * The caller must ensure that the task *will* unschedule sometime soon,
 * else this function might spin for a *long* time. This function can't
 * be called with interrupts off, or it may introduce deadlock with
 * smp_call_function() if an IPI is sent by the same process we are
 * waiting to become inactive.
 */
1266
void wait_task_inactive(struct task_struct *p)
L
Linus Torvalds 已提交
1267 1268
{
	unsigned long flags;
I
Ingo Molnar 已提交
1269
	int running, on_rq;
1270
	struct rq *rq;
L
Linus Torvalds 已提交
1271

1272 1273 1274 1275 1276 1277 1278 1279
	for (;;) {
		/*
		 * We do the initial early heuristics without holding
		 * any task-queue locks at all. We'll only try to get
		 * the runqueue lock when things look like they will
		 * work out!
		 */
		rq = task_rq(p);
1280

1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293
		/*
		 * If the task is actively running on another CPU
		 * still, just relax and busy-wait without holding
		 * any locks.
		 *
		 * NOTE! Since we don't hold any locks, it's not
		 * even sure that "rq" stays as the right runqueue!
		 * But we don't care, since "task_running()" will
		 * return false if the runqueue has changed and p
		 * is actually now running somewhere else!
		 */
		while (task_running(rq, p))
			cpu_relax();
1294

1295 1296 1297 1298 1299 1300 1301 1302 1303
		/*
		 * Ok, time to look more closely! We need the rq
		 * lock now, to be *sure*. If we're wrong, we'll
		 * just go back and repeat.
		 */
		rq = task_rq_lock(p, &flags);
		running = task_running(rq, p);
		on_rq = p->se.on_rq;
		task_rq_unlock(rq, &flags);
1304

1305 1306 1307 1308 1309 1310 1311 1312 1313 1314
		/*
		 * Was it really running after all now that we
		 * checked with the proper locks actually held?
		 *
		 * Oops. Go back and try again..
		 */
		if (unlikely(running)) {
			cpu_relax();
			continue;
		}
1315

1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328
		/*
		 * It's not enough that it's not actively running,
		 * it must be off the runqueue _entirely_, and not
		 * preempted!
		 *
		 * So if it wa still runnable (but just not actively
		 * running right now), it's preempted, and we should
		 * yield - it could be a while.
		 */
		if (unlikely(on_rq)) {
			schedule_timeout_uninterruptible(1);
			continue;
		}
1329

1330 1331 1332 1333 1334 1335 1336
		/*
		 * Ahh, all good. It wasn't running, and it wasn't
		 * runnable, which means that it will never become
		 * running in the future either. We're all done!
		 */
		break;
	}
L
Linus Torvalds 已提交
1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351
}

/***
 * kick_process - kick a running thread to enter/exit the kernel
 * @p: the to-be-kicked thread
 *
 * Cause a process which is running on another CPU to enter
 * kernel-mode, without any delay. (to get signals handled.)
 *
 * NOTE: this function doesnt have to take the runqueue lock,
 * because all it wants to ensure is that the remote task enters
 * the kernel. If the IPI races and the task has been migrated
 * to another CPU then no harm is done and the purpose has been
 * achieved as well.
 */
1352
void kick_process(struct task_struct *p)
L
Linus Torvalds 已提交
1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363
{
	int cpu;

	preempt_disable();
	cpu = task_cpu(p);
	if ((cpu != smp_processor_id()) && task_curr(p))
		smp_send_reschedule(cpu);
	preempt_enable();
}

/*
1364 1365
 * Return a low guess at the load of a migration-source cpu weighted
 * according to the scheduling class and "nice" value.
L
Linus Torvalds 已提交
1366 1367 1368 1369
 *
 * We want to under-estimate the load of migration sources, to
 * balance conservatively.
 */
A
Alexey Dobriyan 已提交
1370
static unsigned long source_load(int cpu, int type)
L
Linus Torvalds 已提交
1371
{
1372
	struct rq *rq = cpu_rq(cpu);
I
Ingo Molnar 已提交
1373
	unsigned long total = weighted_cpuload(cpu);
1374

1375
	if (type == 0)
I
Ingo Molnar 已提交
1376
		return total;
1377

I
Ingo Molnar 已提交
1378
	return min(rq->cpu_load[type-1], total);
L
Linus Torvalds 已提交
1379 1380 1381
}

/*
1382 1383
 * Return a high guess at the load of a migration-target cpu weighted
 * according to the scheduling class and "nice" value.
L
Linus Torvalds 已提交
1384
 */
A
Alexey Dobriyan 已提交
1385
static unsigned long target_load(int cpu, int type)
L
Linus Torvalds 已提交
1386
{
1387
	struct rq *rq = cpu_rq(cpu);
I
Ingo Molnar 已提交
1388
	unsigned long total = weighted_cpuload(cpu);
1389

N
Nick Piggin 已提交
1390
	if (type == 0)
I
Ingo Molnar 已提交
1391
		return total;
1392

I
Ingo Molnar 已提交
1393
	return max(rq->cpu_load[type-1], total);
1394 1395 1396 1397 1398
}

/*
 * Return the average load per task on the cpu's run queue
 */
1399
static unsigned long cpu_avg_load_per_task(int cpu)
1400
{
1401
	struct rq *rq = cpu_rq(cpu);
I
Ingo Molnar 已提交
1402
	unsigned long total = weighted_cpuload(cpu);
1403 1404
	unsigned long n = rq->nr_running;

I
Ingo Molnar 已提交
1405
	return n ? total / n : SCHED_LOAD_SCALE;
L
Linus Torvalds 已提交
1406 1407
}

N
Nick Piggin 已提交
1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424
/*
 * find_idlest_group finds and returns the least busy CPU group within the
 * domain.
 */
static struct sched_group *
find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu)
{
	struct sched_group *idlest = NULL, *this = NULL, *group = sd->groups;
	unsigned long min_load = ULONG_MAX, this_load = 0;
	int load_idx = sd->forkexec_idx;
	int imbalance = 100 + (sd->imbalance_pct-100)/2;

	do {
		unsigned long load, avg_load;
		int local_group;
		int i;

1425 1426
		/* Skip over this group if it has no CPUs allowed */
		if (!cpus_intersects(group->cpumask, p->cpus_allowed))
1427
			continue;
1428

N
Nick Piggin 已提交
1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444
		local_group = cpu_isset(this_cpu, group->cpumask);

		/* Tally up the load of all CPUs in the group */
		avg_load = 0;

		for_each_cpu_mask(i, group->cpumask) {
			/* Bias balancing toward cpus of our domain */
			if (local_group)
				load = source_load(i, load_idx);
			else
				load = target_load(i, load_idx);

			avg_load += load;
		}

		/* Adjust by relative CPU power of the group */
1445 1446
		avg_load = sg_div_cpu_power(group,
				avg_load * SCHED_LOAD_SCALE);
N
Nick Piggin 已提交
1447 1448 1449 1450 1451 1452 1453 1454

		if (local_group) {
			this_load = avg_load;
			this = group;
		} else if (avg_load < min_load) {
			min_load = avg_load;
			idlest = group;
		}
1455
	} while (group = group->next, group != sd->groups);
N
Nick Piggin 已提交
1456 1457 1458 1459 1460 1461 1462

	if (!idlest || 100*this_load < imbalance*min_load)
		return NULL;
	return idlest;
}

/*
1463
 * find_idlest_cpu - find the idlest cpu among the cpus in group.
N
Nick Piggin 已提交
1464
 */
I
Ingo Molnar 已提交
1465 1466
static int
find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
N
Nick Piggin 已提交
1467
{
1468
	cpumask_t tmp;
N
Nick Piggin 已提交
1469 1470 1471 1472
	unsigned long load, min_load = ULONG_MAX;
	int idlest = -1;
	int i;

1473 1474 1475 1476
	/* Traverse only the allowed CPUs */
	cpus_and(tmp, group->cpumask, p->cpus_allowed);

	for_each_cpu_mask(i, tmp) {
1477
		load = weighted_cpuload(i);
N
Nick Piggin 已提交
1478 1479 1480 1481 1482 1483 1484 1485 1486 1487

		if (load < min_load || (load == min_load && i == this_cpu)) {
			min_load = load;
			idlest = i;
		}
	}

	return idlest;
}

N
Nick Piggin 已提交
1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502
/*
 * sched_balance_self: balance the current task (running on cpu) in domains
 * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
 * SD_BALANCE_EXEC.
 *
 * Balance, ie. select the least loaded group.
 *
 * Returns the target CPU number, or the same CPU if no balancing is needed.
 *
 * preempt must be disabled.
 */
static int sched_balance_self(int cpu, int flag)
{
	struct task_struct *t = current;
	struct sched_domain *tmp, *sd = NULL;
N
Nick Piggin 已提交
1503

1504
	for_each_domain(cpu, tmp) {
I
Ingo Molnar 已提交
1505 1506 1507
		/*
		 * If power savings logic is enabled for a domain, stop there.
		 */
1508 1509
		if (tmp->flags & SD_POWERSAVINGS_BALANCE)
			break;
N
Nick Piggin 已提交
1510 1511
		if (tmp->flags & flag)
			sd = tmp;
1512
	}
N
Nick Piggin 已提交
1513 1514 1515 1516

	while (sd) {
		cpumask_t span;
		struct sched_group *group;
1517 1518 1519 1520 1521 1522
		int new_cpu, weight;

		if (!(sd->flags & flag)) {
			sd = sd->child;
			continue;
		}
N
Nick Piggin 已提交
1523 1524 1525

		span = sd->span;
		group = find_idlest_group(sd, t, cpu);
1526 1527 1528 1529
		if (!group) {
			sd = sd->child;
			continue;
		}
N
Nick Piggin 已提交
1530

1531
		new_cpu = find_idlest_cpu(group, t, cpu);
1532 1533 1534 1535 1536
		if (new_cpu == -1 || new_cpu == cpu) {
			/* Now try balancing at a lower domain level of cpu */
			sd = sd->child;
			continue;
		}
N
Nick Piggin 已提交
1537

1538
		/* Now try balancing at a lower domain level of new_cpu */
N
Nick Piggin 已提交
1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554
		cpu = new_cpu;
		sd = NULL;
		weight = cpus_weight(span);
		for_each_domain(cpu, tmp) {
			if (weight <= cpus_weight(tmp->span))
				break;
			if (tmp->flags & flag)
				sd = tmp;
		}
		/* while loop will break here if sd == NULL */
	}

	return cpu;
}

#endif /* CONFIG_SMP */
L
Linus Torvalds 已提交
1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569

/***
 * try_to_wake_up - wake up a thread
 * @p: the to-be-woken-up thread
 * @state: the mask of task states that can be woken
 * @sync: do a synchronous wakeup?
 *
 * Put it on the run-queue if it's not already there. The "current"
 * thread is always on the run-queue (except when the actual
 * re-schedule is in progress), and as such you're allowed to do
 * the simpler "current->state = TASK_RUNNING" to mark yourself
 * runnable without the overhead of this.
 *
 * returns failure only if the task is already active.
 */
1570
static int try_to_wake_up(struct task_struct *p, unsigned int state, int sync)
L
Linus Torvalds 已提交
1571
{
1572
	int cpu, orig_cpu, this_cpu, success = 0;
L
Linus Torvalds 已提交
1573 1574
	unsigned long flags;
	long old_state;
1575
	struct rq *rq;
L
Linus Torvalds 已提交
1576 1577 1578 1579 1580 1581

	rq = task_rq_lock(p, &flags);
	old_state = p->state;
	if (!(old_state & state))
		goto out;

I
Ingo Molnar 已提交
1582
	if (p->se.on_rq)
L
Linus Torvalds 已提交
1583 1584 1585
		goto out_running;

	cpu = task_cpu(p);
1586
	orig_cpu = cpu;
L
Linus Torvalds 已提交
1587 1588 1589 1590 1591 1592
	this_cpu = smp_processor_id();

#ifdef CONFIG_SMP
	if (unlikely(task_running(rq, p)))
		goto out_activate;

1593 1594 1595
	cpu = p->sched_class->select_task_rq(p, sync);
	if (cpu != orig_cpu) {
		set_task_cpu(p, cpu);
L
Linus Torvalds 已提交
1596 1597 1598 1599 1600 1601
		task_rq_unlock(rq, &flags);
		/* might preempt at this point */
		rq = task_rq_lock(p, &flags);
		old_state = p->state;
		if (!(old_state & state))
			goto out;
I
Ingo Molnar 已提交
1602
		if (p->se.on_rq)
L
Linus Torvalds 已提交
1603 1604 1605 1606 1607 1608
			goto out_running;

		this_cpu = smp_processor_id();
		cpu = task_cpu(p);
	}

1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623
#ifdef CONFIG_SCHEDSTATS
	schedstat_inc(rq, ttwu_count);
	if (cpu == this_cpu)
		schedstat_inc(rq, ttwu_local);
	else {
		struct sched_domain *sd;
		for_each_domain(this_cpu, sd) {
			if (cpu_isset(cpu, sd->span)) {
				schedstat_inc(sd, ttwu_wake_remote);
				break;
			}
		}
	}
#endif

L
Linus Torvalds 已提交
1624 1625
out_activate:
#endif /* CONFIG_SMP */
1626 1627 1628 1629 1630 1631 1632 1633 1634
	schedstat_inc(p, se.nr_wakeups);
	if (sync)
		schedstat_inc(p, se.nr_wakeups_sync);
	if (orig_cpu != cpu)
		schedstat_inc(p, se.nr_wakeups_migrate);
	if (cpu == this_cpu)
		schedstat_inc(p, se.nr_wakeups_local);
	else
		schedstat_inc(p, se.nr_wakeups_remote);
I
Ingo Molnar 已提交
1635
	update_rq_clock(rq);
I
Ingo Molnar 已提交
1636
	activate_task(rq, p, 1);
I
Ingo Molnar 已提交
1637
	check_preempt_curr(rq, p);
L
Linus Torvalds 已提交
1638 1639 1640 1641
	success = 1;

out_running:
	p->state = TASK_RUNNING;
1642 1643 1644 1645
#ifdef CONFIG_SMP
	if (p->sched_class->task_wake_up)
		p->sched_class->task_wake_up(rq, p);
#endif
L
Linus Torvalds 已提交
1646 1647 1648 1649 1650 1651
out:
	task_rq_unlock(rq, &flags);

	return success;
}

1652
int fastcall wake_up_process(struct task_struct *p)
L
Linus Torvalds 已提交
1653 1654 1655 1656 1657 1658
{
	return try_to_wake_up(p, TASK_STOPPED | TASK_TRACED |
				 TASK_INTERRUPTIBLE | TASK_UNINTERRUPTIBLE, 0);
}
EXPORT_SYMBOL(wake_up_process);

1659
int fastcall wake_up_state(struct task_struct *p, unsigned int state)
L
Linus Torvalds 已提交
1660 1661 1662 1663 1664 1665 1666
{
	return try_to_wake_up(p, state, 0);
}

/*
 * Perform scheduler related setup for a newly forked process p.
 * p is forked by current.
I
Ingo Molnar 已提交
1667 1668 1669 1670 1671 1672 1673
 *
 * __sched_fork() is basic setup used by init_idle() too:
 */
static void __sched_fork(struct task_struct *p)
{
	p->se.exec_start		= 0;
	p->se.sum_exec_runtime		= 0;
1674
	p->se.prev_sum_exec_runtime	= 0;
I
Ingo Molnar 已提交
1675 1676 1677

#ifdef CONFIG_SCHEDSTATS
	p->se.wait_start		= 0;
I
Ingo Molnar 已提交
1678 1679 1680 1681 1682 1683
	p->se.sum_sleep_runtime		= 0;
	p->se.sleep_start		= 0;
	p->se.block_start		= 0;
	p->se.sleep_max			= 0;
	p->se.block_max			= 0;
	p->se.exec_max			= 0;
I
Ingo Molnar 已提交
1684
	p->se.slice_max			= 0;
I
Ingo Molnar 已提交
1685
	p->se.wait_max			= 0;
I
Ingo Molnar 已提交
1686
#endif
N
Nick Piggin 已提交
1687

P
Peter Zijlstra 已提交
1688
	INIT_LIST_HEAD(&p->rt.run_list);
I
Ingo Molnar 已提交
1689
	p->se.on_rq = 0;
N
Nick Piggin 已提交
1690

1691 1692 1693 1694
#ifdef CONFIG_PREEMPT_NOTIFIERS
	INIT_HLIST_HEAD(&p->preempt_notifiers);
#endif

L
Linus Torvalds 已提交
1695 1696 1697 1698 1699 1700 1701
	/*
	 * We mark the process as running here, but have not actually
	 * inserted it onto the runqueue yet. This guarantees that
	 * nobody will actually run it, and a signal or other external
	 * event cannot wake it up and insert it on the runqueue either.
	 */
	p->state = TASK_RUNNING;
I
Ingo Molnar 已提交
1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715
}

/*
 * fork()/clone()-time setup:
 */
void sched_fork(struct task_struct *p, int clone_flags)
{
	int cpu = get_cpu();

	__sched_fork(p);

#ifdef CONFIG_SMP
	cpu = sched_balance_self(cpu, SD_BALANCE_FORK);
#endif
I
Ingo Molnar 已提交
1716
	set_task_cpu(p, cpu);
1717 1718 1719 1720 1721

	/*
	 * Make sure we do not leak PI boosting priority to the child:
	 */
	p->prio = current->normal_prio;
H
Hiroshi Shimamoto 已提交
1722 1723
	if (!rt_prio(p->prio))
		p->sched_class = &fair_sched_class;
1724

1725
#if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
I
Ingo Molnar 已提交
1726
	if (likely(sched_info_on()))
1727
		memset(&p->sched_info, 0, sizeof(p->sched_info));
L
Linus Torvalds 已提交
1728
#endif
1729
#if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
1730 1731
	p->oncpu = 0;
#endif
L
Linus Torvalds 已提交
1732
#ifdef CONFIG_PREEMPT
1733
	/* Want to start with kernel preemption disabled. */
A
Al Viro 已提交
1734
	task_thread_info(p)->preempt_count = 1;
L
Linus Torvalds 已提交
1735
#endif
N
Nick Piggin 已提交
1736
	put_cpu();
L
Linus Torvalds 已提交
1737 1738 1739 1740 1741 1742 1743 1744 1745
}

/*
 * wake_up_new_task - wake up a newly created task for the first time.
 *
 * This function will do some initial scheduler statistics housekeeping
 * that must be done for every newly created context, then puts the task
 * on the runqueue and wakes it.
 */
1746
void fastcall wake_up_new_task(struct task_struct *p, unsigned long clone_flags)
L
Linus Torvalds 已提交
1747 1748
{
	unsigned long flags;
I
Ingo Molnar 已提交
1749
	struct rq *rq;
L
Linus Torvalds 已提交
1750 1751

	rq = task_rq_lock(p, &flags);
N
Nick Piggin 已提交
1752
	BUG_ON(p->state != TASK_RUNNING);
I
Ingo Molnar 已提交
1753
	update_rq_clock(rq);
L
Linus Torvalds 已提交
1754 1755 1756

	p->prio = effective_prio(p);

1757
	if (!p->sched_class->task_new || !current->se.on_rq) {
I
Ingo Molnar 已提交
1758
		activate_task(rq, p, 0);
L
Linus Torvalds 已提交
1759 1760
	} else {
		/*
I
Ingo Molnar 已提交
1761 1762
		 * Let the scheduling class do new task startup
		 * management (if any):
L
Linus Torvalds 已提交
1763
		 */
1764
		p->sched_class->task_new(rq, p);
1765
		inc_nr_running(p, rq);
L
Linus Torvalds 已提交
1766
	}
I
Ingo Molnar 已提交
1767
	check_preempt_curr(rq, p);
1768 1769 1770 1771
#ifdef CONFIG_SMP
	if (p->sched_class->task_wake_up)
		p->sched_class->task_wake_up(rq, p);
#endif
I
Ingo Molnar 已提交
1772
	task_rq_unlock(rq, &flags);
L
Linus Torvalds 已提交
1773 1774
}

1775 1776 1777
#ifdef CONFIG_PREEMPT_NOTIFIERS

/**
R
Randy Dunlap 已提交
1778 1779
 * preempt_notifier_register - tell me when current is being being preempted & rescheduled
 * @notifier: notifier struct to register
1780 1781 1782 1783 1784 1785 1786 1787 1788
 */
void preempt_notifier_register(struct preempt_notifier *notifier)
{
	hlist_add_head(&notifier->link, &current->preempt_notifiers);
}
EXPORT_SYMBOL_GPL(preempt_notifier_register);

/**
 * preempt_notifier_unregister - no longer interested in preemption notifications
R
Randy Dunlap 已提交
1789
 * @notifier: notifier struct to unregister
1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832
 *
 * This is safe to call from within a preemption notifier.
 */
void preempt_notifier_unregister(struct preempt_notifier *notifier)
{
	hlist_del(&notifier->link);
}
EXPORT_SYMBOL_GPL(preempt_notifier_unregister);

static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
{
	struct preempt_notifier *notifier;
	struct hlist_node *node;

	hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
		notifier->ops->sched_in(notifier, raw_smp_processor_id());
}

static void
fire_sched_out_preempt_notifiers(struct task_struct *curr,
				 struct task_struct *next)
{
	struct preempt_notifier *notifier;
	struct hlist_node *node;

	hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
		notifier->ops->sched_out(notifier, next);
}

#else

static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
{
}

static void
fire_sched_out_preempt_notifiers(struct task_struct *curr,
				 struct task_struct *next)
{
}

#endif

1833 1834 1835
/**
 * prepare_task_switch - prepare to switch tasks
 * @rq: the runqueue preparing to switch
R
Randy Dunlap 已提交
1836
 * @prev: the current task that is being switched out
1837 1838 1839 1840 1841 1842 1843 1844 1845
 * @next: the task we are going to switch to.
 *
 * This is called with the rq lock held and interrupts off. It must
 * be paired with a subsequent finish_task_switch after the context
 * switch.
 *
 * prepare_task_switch sets up locking and calls architecture specific
 * hooks.
 */
1846 1847 1848
static inline void
prepare_task_switch(struct rq *rq, struct task_struct *prev,
		    struct task_struct *next)
1849
{
1850
	fire_sched_out_preempt_notifiers(prev, next);
1851 1852 1853 1854
	prepare_lock_switch(rq, next);
	prepare_arch_switch(next);
}

L
Linus Torvalds 已提交
1855 1856
/**
 * finish_task_switch - clean up after a task-switch
1857
 * @rq: runqueue associated with task-switch
L
Linus Torvalds 已提交
1858 1859
 * @prev: the thread we just switched away from.
 *
1860 1861 1862 1863
 * finish_task_switch must be called after the context switch, paired
 * with a prepare_task_switch call before the context switch.
 * finish_task_switch will reconcile locking set up by prepare_task_switch,
 * and do any other architecture-specific cleanup actions.
L
Linus Torvalds 已提交
1864 1865
 *
 * Note that we may have delayed dropping an mm in context_switch(). If
I
Ingo Molnar 已提交
1866
 * so, we finish that here outside of the runqueue lock. (Doing it
L
Linus Torvalds 已提交
1867 1868 1869
 * with the lock held can cause deadlocks; see schedule() for
 * details.)
 */
A
Alexey Dobriyan 已提交
1870
static void finish_task_switch(struct rq *rq, struct task_struct *prev)
L
Linus Torvalds 已提交
1871 1872 1873
	__releases(rq->lock)
{
	struct mm_struct *mm = rq->prev_mm;
O
Oleg Nesterov 已提交
1874
	long prev_state;
L
Linus Torvalds 已提交
1875 1876 1877 1878 1879

	rq->prev_mm = NULL;

	/*
	 * A task struct has one reference for the use as "current".
1880
	 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
O
Oleg Nesterov 已提交
1881 1882
	 * schedule one last time. The schedule call will never return, and
	 * the scheduled task must drop that reference.
1883
	 * The test for TASK_DEAD must occur while the runqueue locks are
L
Linus Torvalds 已提交
1884 1885 1886 1887 1888
	 * still held, otherwise prev could be scheduled on another cpu, die
	 * there before we look at prev->state, and then the reference would
	 * be dropped twice.
	 *		Manfred Spraul <manfred@colorfullife.com>
	 */
O
Oleg Nesterov 已提交
1889
	prev_state = prev->state;
1890 1891
	finish_arch_switch(prev);
	finish_lock_switch(rq, prev);
1892 1893 1894 1895
#ifdef CONFIG_SMP
	if (current->sched_class->post_schedule)
		current->sched_class->post_schedule(rq);
#endif
S
Steven Rostedt 已提交
1896

1897
	fire_sched_in_preempt_notifiers(current);
L
Linus Torvalds 已提交
1898 1899
	if (mm)
		mmdrop(mm);
1900
	if (unlikely(prev_state == TASK_DEAD)) {
1901 1902 1903
		/*
		 * Remove function-return probe instances associated with this
		 * task and put them back on the free list.
I
Ingo Molnar 已提交
1904
		 */
1905
		kprobe_flush_task(prev);
L
Linus Torvalds 已提交
1906
		put_task_struct(prev);
1907
	}
L
Linus Torvalds 已提交
1908 1909 1910 1911 1912 1913
}

/**
 * schedule_tail - first thing a freshly forked thread must call.
 * @prev: the thread we just switched away from.
 */
1914
asmlinkage void schedule_tail(struct task_struct *prev)
L
Linus Torvalds 已提交
1915 1916
	__releases(rq->lock)
{
1917 1918
	struct rq *rq = this_rq();

1919 1920 1921 1922 1923
	finish_task_switch(rq, prev);
#ifdef __ARCH_WANT_UNLOCKED_CTXSW
	/* In this case, finish_task_switch does not reenable preemption */
	preempt_enable();
#endif
L
Linus Torvalds 已提交
1924
	if (current->set_child_tid)
1925
		put_user(task_pid_vnr(current), current->set_child_tid);
L
Linus Torvalds 已提交
1926 1927 1928 1929 1930 1931
}

/*
 * context_switch - switch to the new MM and the new
 * thread's register state.
 */
I
Ingo Molnar 已提交
1932
static inline void
1933
context_switch(struct rq *rq, struct task_struct *prev,
1934
	       struct task_struct *next)
L
Linus Torvalds 已提交
1935
{
I
Ingo Molnar 已提交
1936
	struct mm_struct *mm, *oldmm;
L
Linus Torvalds 已提交
1937

1938
	prepare_task_switch(rq, prev, next);
I
Ingo Molnar 已提交
1939 1940
	mm = next->mm;
	oldmm = prev->active_mm;
1941 1942 1943 1944 1945 1946 1947
	/*
	 * For paravirt, this is coupled with an exit in switch_to to
	 * combine the page table reload and the switch backend into
	 * one hypercall.
	 */
	arch_enter_lazy_cpu_mode();

I
Ingo Molnar 已提交
1948
	if (unlikely(!mm)) {
L
Linus Torvalds 已提交
1949 1950 1951 1952 1953 1954
		next->active_mm = oldmm;
		atomic_inc(&oldmm->mm_count);
		enter_lazy_tlb(oldmm, next);
	} else
		switch_mm(oldmm, mm, next);

I
Ingo Molnar 已提交
1955
	if (unlikely(!prev->mm)) {
L
Linus Torvalds 已提交
1956 1957 1958
		prev->active_mm = NULL;
		rq->prev_mm = oldmm;
	}
1959 1960 1961 1962 1963 1964 1965
	/*
	 * Since the runqueue lock will be released by the next
	 * task (which is an invalid locking op but in the case
	 * of the scheduler it's an obvious special-case), so we
	 * do an early lockdep release here:
	 */
#ifndef __ARCH_WANT_UNLOCKED_CTXSW
1966
	spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
1967
#endif
L
Linus Torvalds 已提交
1968 1969 1970 1971

	/* Here we just switch the register state and the stack. */
	switch_to(prev, next, prev);

I
Ingo Molnar 已提交
1972 1973 1974 1975 1976 1977 1978
	barrier();
	/*
	 * this_rq must be evaluated again because prev may have moved
	 * CPUs since it called schedule(), thus the 'rq' on its stack
	 * frame will be invalid.
	 */
	finish_task_switch(this_rq(), prev);
L
Linus Torvalds 已提交
1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001
}

/*
 * nr_running, nr_uninterruptible and nr_context_switches:
 *
 * externally visible scheduler statistics: current number of runnable
 * threads, current number of uninterruptible-sleeping threads, total
 * number of context switches performed since bootup.
 */
unsigned long nr_running(void)
{
	unsigned long i, sum = 0;

	for_each_online_cpu(i)
		sum += cpu_rq(i)->nr_running;

	return sum;
}

unsigned long nr_uninterruptible(void)
{
	unsigned long i, sum = 0;

2002
	for_each_possible_cpu(i)
L
Linus Torvalds 已提交
2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016
		sum += cpu_rq(i)->nr_uninterruptible;

	/*
	 * Since we read the counters lockless, it might be slightly
	 * inaccurate. Do not allow it to go below zero though:
	 */
	if (unlikely((long)sum < 0))
		sum = 0;

	return sum;
}

unsigned long long nr_context_switches(void)
{
2017 2018
	int i;
	unsigned long long sum = 0;
L
Linus Torvalds 已提交
2019

2020
	for_each_possible_cpu(i)
L
Linus Torvalds 已提交
2021 2022 2023 2024 2025 2026 2027 2028 2029
		sum += cpu_rq(i)->nr_switches;

	return sum;
}

unsigned long nr_iowait(void)
{
	unsigned long i, sum = 0;

2030
	for_each_possible_cpu(i)
L
Linus Torvalds 已提交
2031 2032 2033 2034 2035
		sum += atomic_read(&cpu_rq(i)->nr_iowait);

	return sum;
}

2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050
unsigned long nr_active(void)
{
	unsigned long i, running = 0, uninterruptible = 0;

	for_each_online_cpu(i) {
		running += cpu_rq(i)->nr_running;
		uninterruptible += cpu_rq(i)->nr_uninterruptible;
	}

	if (unlikely((long)uninterruptible < 0))
		uninterruptible = 0;

	return running + uninterruptible;
}

2051
/*
I
Ingo Molnar 已提交
2052 2053
 * Update rq->cpu_load[] statistics. This function is usually called every
 * scheduler tick (TICK_NSEC).
2054
 */
I
Ingo Molnar 已提交
2055
static void update_cpu_load(struct rq *this_rq)
2056
{
2057
	unsigned long this_load = this_rq->load.weight;
I
Ingo Molnar 已提交
2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069
	int i, scale;

	this_rq->nr_load_updates++;

	/* Update our load: */
	for (i = 0, scale = 1; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
		unsigned long old_load, new_load;

		/* scale is effectively 1 << i now, and >> i divides by scale */

		old_load = this_rq->cpu_load[i];
		new_load = this_load;
I
Ingo Molnar 已提交
2070 2071 2072 2073 2074 2075 2076
		/*
		 * Round up the averaging division if load is increasing. This
		 * prevents us from getting stuck on 9 if the load is 10, for
		 * example.
		 */
		if (new_load > old_load)
			new_load += scale-1;
I
Ingo Molnar 已提交
2077 2078
		this_rq->cpu_load[i] = (old_load*(scale-1) + new_load) >> i;
	}
2079 2080
}

I
Ingo Molnar 已提交
2081 2082
#ifdef CONFIG_SMP

L
Linus Torvalds 已提交
2083 2084 2085 2086 2087 2088
/*
 * double_rq_lock - safely lock two runqueues
 *
 * Note this does not disable interrupts like task_rq_lock,
 * you need to do so manually before calling.
 */
2089
static void double_rq_lock(struct rq *rq1, struct rq *rq2)
L
Linus Torvalds 已提交
2090 2091 2092
	__acquires(rq1->lock)
	__acquires(rq2->lock)
{
2093
	BUG_ON(!irqs_disabled());
L
Linus Torvalds 已提交
2094 2095 2096 2097
	if (rq1 == rq2) {
		spin_lock(&rq1->lock);
		__acquire(rq2->lock);	/* Fake it out ;) */
	} else {
2098
		if (rq1 < rq2) {
L
Linus Torvalds 已提交
2099 2100 2101 2102 2103 2104 2105
			spin_lock(&rq1->lock);
			spin_lock(&rq2->lock);
		} else {
			spin_lock(&rq2->lock);
			spin_lock(&rq1->lock);
		}
	}
2106 2107
	update_rq_clock(rq1);
	update_rq_clock(rq2);
L
Linus Torvalds 已提交
2108 2109 2110 2111 2112 2113 2114 2115
}

/*
 * double_rq_unlock - safely unlock two runqueues
 *
 * Note this does not restore interrupts like task_rq_unlock,
 * you need to do so manually after calling.
 */
2116
static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
L
Linus Torvalds 已提交
2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129
	__releases(rq1->lock)
	__releases(rq2->lock)
{
	spin_unlock(&rq1->lock);
	if (rq1 != rq2)
		spin_unlock(&rq2->lock);
	else
		__release(rq2->lock);
}

/*
 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
 */
S
Steven Rostedt 已提交
2130
static int double_lock_balance(struct rq *this_rq, struct rq *busiest)
L
Linus Torvalds 已提交
2131 2132 2133 2134
	__releases(this_rq->lock)
	__acquires(busiest->lock)
	__acquires(this_rq->lock)
{
S
Steven Rostedt 已提交
2135 2136
	int ret = 0;

2137 2138 2139 2140 2141
	if (unlikely(!irqs_disabled())) {
		/* printk() doesn't work good under rq->lock */
		spin_unlock(&this_rq->lock);
		BUG_ON(1);
	}
L
Linus Torvalds 已提交
2142
	if (unlikely(!spin_trylock(&busiest->lock))) {
2143
		if (busiest < this_rq) {
L
Linus Torvalds 已提交
2144 2145 2146
			spin_unlock(&this_rq->lock);
			spin_lock(&busiest->lock);
			spin_lock(&this_rq->lock);
S
Steven Rostedt 已提交
2147
			ret = 1;
L
Linus Torvalds 已提交
2148 2149 2150
		} else
			spin_lock(&busiest->lock);
	}
S
Steven Rostedt 已提交
2151
	return ret;
L
Linus Torvalds 已提交
2152 2153 2154 2155 2156
}

/*
 * If dest_cpu is allowed for this process, migrate the task to it.
 * This is accomplished by forcing the cpu_allowed mask to only
I
Ingo Molnar 已提交
2157
 * allow dest_cpu, which will force the cpu onto dest_cpu. Then
L
Linus Torvalds 已提交
2158 2159
 * the cpu_allowed mask is restored.
 */
2160
static void sched_migrate_task(struct task_struct *p, int dest_cpu)
L
Linus Torvalds 已提交
2161
{
2162
	struct migration_req req;
L
Linus Torvalds 已提交
2163
	unsigned long flags;
2164
	struct rq *rq;
L
Linus Torvalds 已提交
2165 2166 2167 2168 2169 2170 2171 2172 2173 2174

	rq = task_rq_lock(p, &flags);
	if (!cpu_isset(dest_cpu, p->cpus_allowed)
	    || unlikely(cpu_is_offline(dest_cpu)))
		goto out;

	/* force the process onto the specified CPU */
	if (migrate_task(p, dest_cpu, &req)) {
		/* Need to wait for migration thread (might exit: take ref). */
		struct task_struct *mt = rq->migration_thread;
2175

L
Linus Torvalds 已提交
2176 2177 2178 2179 2180
		get_task_struct(mt);
		task_rq_unlock(rq, &flags);
		wake_up_process(mt);
		put_task_struct(mt);
		wait_for_completion(&req.done);
2181

L
Linus Torvalds 已提交
2182 2183 2184 2185 2186 2187 2188
		return;
	}
out:
	task_rq_unlock(rq, &flags);
}

/*
N
Nick Piggin 已提交
2189 2190
 * sched_exec - execve() is a valuable balancing opportunity, because at
 * this point the task has the smallest effective memory and cache footprint.
L
Linus Torvalds 已提交
2191 2192 2193 2194
 */
void sched_exec(void)
{
	int new_cpu, this_cpu = get_cpu();
N
Nick Piggin 已提交
2195
	new_cpu = sched_balance_self(this_cpu, SD_BALANCE_EXEC);
L
Linus Torvalds 已提交
2196
	put_cpu();
N
Nick Piggin 已提交
2197 2198
	if (new_cpu != this_cpu)
		sched_migrate_task(current, new_cpu);
L
Linus Torvalds 已提交
2199 2200 2201 2202 2203 2204
}

/*
 * pull_task - move a task from a remote runqueue to the local runqueue.
 * Both runqueues must be locked.
 */
I
Ingo Molnar 已提交
2205 2206
static void pull_task(struct rq *src_rq, struct task_struct *p,
		      struct rq *this_rq, int this_cpu)
L
Linus Torvalds 已提交
2207
{
2208
	deactivate_task(src_rq, p, 0);
L
Linus Torvalds 已提交
2209
	set_task_cpu(p, this_cpu);
I
Ingo Molnar 已提交
2210
	activate_task(this_rq, p, 0);
L
Linus Torvalds 已提交
2211 2212 2213 2214
	/*
	 * Note that idle threads have a prio of MAX_PRIO, for this test
	 * to be always true for them.
	 */
I
Ingo Molnar 已提交
2215
	check_preempt_curr(this_rq, p);
L
Linus Torvalds 已提交
2216 2217 2218 2219 2220
}

/*
 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
 */
2221
static
2222
int can_migrate_task(struct task_struct *p, struct rq *rq, int this_cpu,
I
Ingo Molnar 已提交
2223
		     struct sched_domain *sd, enum cpu_idle_type idle,
I
Ingo Molnar 已提交
2224
		     int *all_pinned)
L
Linus Torvalds 已提交
2225 2226 2227 2228 2229 2230 2231
{
	/*
	 * We do not migrate tasks that are:
	 * 1) running (obviously), or
	 * 2) cannot be migrated to this CPU due to cpus_allowed, or
	 * 3) are cache-hot on their current CPU.
	 */
2232 2233
	if (!cpu_isset(this_cpu, p->cpus_allowed)) {
		schedstat_inc(p, se.nr_failed_migrations_affine);
L
Linus Torvalds 已提交
2234
		return 0;
2235
	}
2236 2237
	*all_pinned = 0;

2238 2239
	if (task_running(rq, p)) {
		schedstat_inc(p, se.nr_failed_migrations_running);
2240
		return 0;
2241
	}
L
Linus Torvalds 已提交
2242

2243 2244 2245 2246 2247 2248
	/*
	 * Aggressive migration if:
	 * 1) task is cache cold, or
	 * 2) too many balance attempts have failed.
	 */

2249 2250
	if (!task_hot(p, rq->clock, sd) ||
			sd->nr_balance_failed > sd->cache_nice_tries) {
2251
#ifdef CONFIG_SCHEDSTATS
2252
		if (task_hot(p, rq->clock, sd)) {
2253
			schedstat_inc(sd, lb_hot_gained[idle]);
2254 2255
			schedstat_inc(p, se.nr_forced_migrations);
		}
2256 2257 2258 2259
#endif
		return 1;
	}

2260 2261
	if (task_hot(p, rq->clock, sd)) {
		schedstat_inc(p, se.nr_failed_migrations_hot);
2262
		return 0;
2263
	}
L
Linus Torvalds 已提交
2264 2265 2266
	return 1;
}

2267 2268 2269 2270 2271
static unsigned long
balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
	      unsigned long max_load_move, struct sched_domain *sd,
	      enum cpu_idle_type idle, int *all_pinned,
	      int *this_best_prio, struct rq_iterator *iterator)
L
Linus Torvalds 已提交
2272
{
2273
	int loops = 0, pulled = 0, pinned = 0, skip_for_load;
I
Ingo Molnar 已提交
2274 2275
	struct task_struct *p;
	long rem_load_move = max_load_move;
L
Linus Torvalds 已提交
2276

2277
	if (max_load_move == 0)
L
Linus Torvalds 已提交
2278 2279
		goto out;

2280 2281
	pinned = 1;

L
Linus Torvalds 已提交
2282
	/*
I
Ingo Molnar 已提交
2283
	 * Start the load-balancing iterator:
L
Linus Torvalds 已提交
2284
	 */
I
Ingo Molnar 已提交
2285 2286
	p = iterator->start(iterator->arg);
next:
2287
	if (!p || loops++ > sysctl_sched_nr_migrate)
L
Linus Torvalds 已提交
2288
		goto out;
2289
	/*
2290
	 * To help distribute high priority tasks across CPUs we don't
2291 2292 2293
	 * skip a task if it will be the highest priority task (i.e. smallest
	 * prio value) on its new queue regardless of its load weight
	 */
I
Ingo Molnar 已提交
2294 2295
	skip_for_load = (p->se.load.weight >> 1) > rem_load_move +
							 SCHED_LOAD_SCALE_FUZZ;
2296
	if ((skip_for_load && p->prio >= *this_best_prio) ||
I
Ingo Molnar 已提交
2297 2298 2299
	    !can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
		p = iterator->next(iterator->arg);
		goto next;
L
Linus Torvalds 已提交
2300 2301
	}

I
Ingo Molnar 已提交
2302
	pull_task(busiest, p, this_rq, this_cpu);
L
Linus Torvalds 已提交
2303
	pulled++;
I
Ingo Molnar 已提交
2304
	rem_load_move -= p->se.load.weight;
L
Linus Torvalds 已提交
2305

2306
	/*
2307
	 * We only want to steal up to the prescribed amount of weighted load.
2308
	 */
2309
	if (rem_load_move > 0) {
2310 2311
		if (p->prio < *this_best_prio)
			*this_best_prio = p->prio;
I
Ingo Molnar 已提交
2312 2313
		p = iterator->next(iterator->arg);
		goto next;
L
Linus Torvalds 已提交
2314 2315 2316
	}
out:
	/*
2317
	 * Right now, this is one of only two places pull_task() is called,
L
Linus Torvalds 已提交
2318 2319 2320 2321
	 * so we can safely collect pull_task() stats here rather than
	 * inside pull_task().
	 */
	schedstat_add(sd, lb_gained[idle], pulled);
2322 2323 2324

	if (all_pinned)
		*all_pinned = pinned;
2325 2326

	return max_load_move - rem_load_move;
L
Linus Torvalds 已提交
2327 2328
}

I
Ingo Molnar 已提交
2329
/*
P
Peter Williams 已提交
2330 2331 2332
 * move_tasks tries to move up to max_load_move weighted load from busiest to
 * this_rq, as part of a balancing operation within domain "sd".
 * Returns 1 if successful and 0 otherwise.
I
Ingo Molnar 已提交
2333 2334 2335 2336
 *
 * Called with both runqueues locked.
 */
static int move_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
P
Peter Williams 已提交
2337
		      unsigned long max_load_move,
I
Ingo Molnar 已提交
2338 2339 2340
		      struct sched_domain *sd, enum cpu_idle_type idle,
		      int *all_pinned)
{
2341
	const struct sched_class *class = sched_class_highest;
P
Peter Williams 已提交
2342
	unsigned long total_load_moved = 0;
2343
	int this_best_prio = this_rq->curr->prio;
I
Ingo Molnar 已提交
2344 2345

	do {
P
Peter Williams 已提交
2346 2347
		total_load_moved +=
			class->load_balance(this_rq, this_cpu, busiest,
2348
				max_load_move - total_load_moved,
2349
				sd, idle, all_pinned, &this_best_prio);
I
Ingo Molnar 已提交
2350
		class = class->next;
P
Peter Williams 已提交
2351
	} while (class && max_load_move > total_load_moved);
I
Ingo Molnar 已提交
2352

P
Peter Williams 已提交
2353 2354 2355
	return total_load_moved > 0;
}

2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381
static int
iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
		   struct sched_domain *sd, enum cpu_idle_type idle,
		   struct rq_iterator *iterator)
{
	struct task_struct *p = iterator->start(iterator->arg);
	int pinned = 0;

	while (p) {
		if (can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
			pull_task(busiest, p, this_rq, this_cpu);
			/*
			 * Right now, this is only the second place pull_task()
			 * is called, so we can safely collect pull_task()
			 * stats here rather than inside pull_task().
			 */
			schedstat_inc(sd, lb_gained[idle]);

			return 1;
		}
		p = iterator->next(iterator->arg);
	}

	return 0;
}

P
Peter Williams 已提交
2382 2383 2384 2385 2386 2387 2388 2389 2390 2391
/*
 * move_one_task tries to move exactly one task from busiest to this_rq, as
 * part of active balancing operations within "domain".
 * Returns 1 if successful and 0 otherwise.
 *
 * Called with both runqueues locked.
 */
static int move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
			 struct sched_domain *sd, enum cpu_idle_type idle)
{
2392
	const struct sched_class *class;
P
Peter Williams 已提交
2393 2394

	for (class = sched_class_highest; class; class = class->next)
2395
		if (class->move_one_task(this_rq, this_cpu, busiest, sd, idle))
P
Peter Williams 已提交
2396 2397 2398
			return 1;

	return 0;
I
Ingo Molnar 已提交
2399 2400
}

L
Linus Torvalds 已提交
2401 2402
/*
 * find_busiest_group finds and returns the busiest CPU group within the
2403 2404
 * domain. It calculates and returns the amount of weighted load which
 * should be moved to restore balance via the imbalance parameter.
L
Linus Torvalds 已提交
2405 2406 2407
 */
static struct sched_group *
find_busiest_group(struct sched_domain *sd, int this_cpu,
I
Ingo Molnar 已提交
2408 2409
		   unsigned long *imbalance, enum cpu_idle_type idle,
		   int *sd_idle, cpumask_t *cpus, int *balance)
L
Linus Torvalds 已提交
2410 2411 2412
{
	struct sched_group *busiest = NULL, *this = NULL, *group = sd->groups;
	unsigned long max_load, avg_load, total_load, this_load, total_pwr;
2413
	unsigned long max_pull;
2414 2415
	unsigned long busiest_load_per_task, busiest_nr_running;
	unsigned long this_load_per_task, this_nr_running;
2416
	int load_idx, group_imb = 0;
2417 2418 2419 2420 2421 2422
#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
	int power_savings_balance = 1;
	unsigned long leader_nr_running = 0, min_load_per_task = 0;
	unsigned long min_nr_running = ULONG_MAX;
	struct sched_group *group_min = NULL, *group_leader = NULL;
#endif
L
Linus Torvalds 已提交
2423 2424

	max_load = this_load = total_load = total_pwr = 0;
2425 2426
	busiest_load_per_task = busiest_nr_running = 0;
	this_load_per_task = this_nr_running = 0;
I
Ingo Molnar 已提交
2427
	if (idle == CPU_NOT_IDLE)
N
Nick Piggin 已提交
2428
		load_idx = sd->busy_idx;
I
Ingo Molnar 已提交
2429
	else if (idle == CPU_NEWLY_IDLE)
N
Nick Piggin 已提交
2430 2431 2432
		load_idx = sd->newidle_idx;
	else
		load_idx = sd->idle_idx;
L
Linus Torvalds 已提交
2433 2434

	do {
2435
		unsigned long load, group_capacity, max_cpu_load, min_cpu_load;
L
Linus Torvalds 已提交
2436 2437
		int local_group;
		int i;
2438
		int __group_imb = 0;
2439
		unsigned int balance_cpu = -1, first_idle_cpu = 0;
2440
		unsigned long sum_nr_running, sum_weighted_load;
L
Linus Torvalds 已提交
2441 2442 2443

		local_group = cpu_isset(this_cpu, group->cpumask);

2444 2445 2446
		if (local_group)
			balance_cpu = first_cpu(group->cpumask);

L
Linus Torvalds 已提交
2447
		/* Tally up the load of all CPUs in the group */
2448
		sum_weighted_load = sum_nr_running = avg_load = 0;
2449 2450
		max_cpu_load = 0;
		min_cpu_load = ~0UL;
L
Linus Torvalds 已提交
2451 2452

		for_each_cpu_mask(i, group->cpumask) {
2453 2454 2455 2456 2457 2458
			struct rq *rq;

			if (!cpu_isset(i, *cpus))
				continue;

			rq = cpu_rq(i);
2459

2460
			if (*sd_idle && rq->nr_running)
N
Nick Piggin 已提交
2461 2462
				*sd_idle = 0;

L
Linus Torvalds 已提交
2463
			/* Bias balancing toward cpus of our domain */
2464 2465 2466 2467 2468 2469
			if (local_group) {
				if (idle_cpu(i) && !first_idle_cpu) {
					first_idle_cpu = 1;
					balance_cpu = i;
				}

N
Nick Piggin 已提交
2470
				load = target_load(i, load_idx);
2471
			} else {
N
Nick Piggin 已提交
2472
				load = source_load(i, load_idx);
2473 2474 2475 2476 2477
				if (load > max_cpu_load)
					max_cpu_load = load;
				if (min_cpu_load > load)
					min_cpu_load = load;
			}
L
Linus Torvalds 已提交
2478 2479

			avg_load += load;
2480
			sum_nr_running += rq->nr_running;
I
Ingo Molnar 已提交
2481
			sum_weighted_load += weighted_cpuload(i);
L
Linus Torvalds 已提交
2482 2483
		}

2484 2485 2486
		/*
		 * First idle cpu or the first cpu(busiest) in this sched group
		 * is eligible for doing load balancing at this and above
2487 2488
		 * domains. In the newly idle case, we will allow all the cpu's
		 * to do the newly idle load balance.
2489
		 */
2490 2491
		if (idle != CPU_NEWLY_IDLE && local_group &&
		    balance_cpu != this_cpu && balance) {
2492 2493 2494 2495
			*balance = 0;
			goto ret;
		}

L
Linus Torvalds 已提交
2496
		total_load += avg_load;
2497
		total_pwr += group->__cpu_power;
L
Linus Torvalds 已提交
2498 2499

		/* Adjust by relative CPU power of the group */
2500 2501
		avg_load = sg_div_cpu_power(group,
				avg_load * SCHED_LOAD_SCALE);
L
Linus Torvalds 已提交
2502

2503 2504 2505
		if ((max_cpu_load - min_cpu_load) > SCHED_LOAD_SCALE)
			__group_imb = 1;

2506
		group_capacity = group->__cpu_power / SCHED_LOAD_SCALE;
2507

L
Linus Torvalds 已提交
2508 2509 2510
		if (local_group) {
			this_load = avg_load;
			this = group;
2511 2512 2513
			this_nr_running = sum_nr_running;
			this_load_per_task = sum_weighted_load;
		} else if (avg_load > max_load &&
2514
			   (sum_nr_running > group_capacity || __group_imb)) {
L
Linus Torvalds 已提交
2515 2516
			max_load = avg_load;
			busiest = group;
2517 2518
			busiest_nr_running = sum_nr_running;
			busiest_load_per_task = sum_weighted_load;
2519
			group_imb = __group_imb;
L
Linus Torvalds 已提交
2520
		}
2521 2522 2523 2524 2525 2526

#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
		/*
		 * Busy processors will not participate in power savings
		 * balance.
		 */
I
Ingo Molnar 已提交
2527 2528 2529
		if (idle == CPU_NOT_IDLE ||
				!(sd->flags & SD_POWERSAVINGS_BALANCE))
			goto group_next;
2530 2531 2532 2533 2534 2535 2536 2537 2538

		/*
		 * If the local group is idle or completely loaded
		 * no need to do power savings balance at this domain
		 */
		if (local_group && (this_nr_running >= group_capacity ||
				    !this_nr_running))
			power_savings_balance = 0;

I
Ingo Molnar 已提交
2539
		/*
2540 2541
		 * If a group is already running at full capacity or idle,
		 * don't include that group in power savings calculations
I
Ingo Molnar 已提交
2542 2543
		 */
		if (!power_savings_balance || sum_nr_running >= group_capacity
2544
		    || !sum_nr_running)
I
Ingo Molnar 已提交
2545
			goto group_next;
2546

I
Ingo Molnar 已提交
2547
		/*
2548
		 * Calculate the group which has the least non-idle load.
I
Ingo Molnar 已提交
2549 2550 2551 2552 2553
		 * This is the group from where we need to pick up the load
		 * for saving power
		 */
		if ((sum_nr_running < min_nr_running) ||
		    (sum_nr_running == min_nr_running &&
2554 2555
		     first_cpu(group->cpumask) <
		     first_cpu(group_min->cpumask))) {
I
Ingo Molnar 已提交
2556 2557
			group_min = group;
			min_nr_running = sum_nr_running;
2558 2559
			min_load_per_task = sum_weighted_load /
						sum_nr_running;
I
Ingo Molnar 已提交
2560
		}
2561

I
Ingo Molnar 已提交
2562
		/*
2563
		 * Calculate the group which is almost near its
I
Ingo Molnar 已提交
2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574
		 * capacity but still has some space to pick up some load
		 * from other group and save more power
		 */
		if (sum_nr_running <= group_capacity - 1) {
			if (sum_nr_running > leader_nr_running ||
			    (sum_nr_running == leader_nr_running &&
			     first_cpu(group->cpumask) >
			      first_cpu(group_leader->cpumask))) {
				group_leader = group;
				leader_nr_running = sum_nr_running;
			}
2575
		}
2576 2577
group_next:
#endif
L
Linus Torvalds 已提交
2578 2579 2580
		group = group->next;
	} while (group != sd->groups);

2581
	if (!busiest || this_load >= max_load || busiest_nr_running == 0)
L
Linus Torvalds 已提交
2582 2583 2584 2585 2586 2587 2588 2589
		goto out_balanced;

	avg_load = (SCHED_LOAD_SCALE * total_load) / total_pwr;

	if (this_load >= avg_load ||
			100*max_load <= sd->imbalance_pct*this_load)
		goto out_balanced;

2590
	busiest_load_per_task /= busiest_nr_running;
2591 2592 2593
	if (group_imb)
		busiest_load_per_task = min(busiest_load_per_task, avg_load);

L
Linus Torvalds 已提交
2594 2595 2596 2597 2598 2599 2600 2601
	/*
	 * We're trying to get all the cpus to the average_load, so we don't
	 * want to push ourselves above the average load, nor do we wish to
	 * reduce the max loaded cpu below the average load, as either of these
	 * actions would just result in more rebalancing later, and ping-pong
	 * tasks around. Thus we look for the minimum possible imbalance.
	 * Negative imbalances (*we* are more loaded than anyone else) will
	 * be counted as no imbalance for these purposes -- we can't fix that
I
Ingo Molnar 已提交
2602
	 * by pulling tasks to us. Be careful of negative numbers as they'll
L
Linus Torvalds 已提交
2603 2604
	 * appear as very large values with unsigned longs.
	 */
2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616
	if (max_load <= busiest_load_per_task)
		goto out_balanced;

	/*
	 * In the presence of smp nice balancing, certain scenarios can have
	 * max load less than avg load(as we skip the groups at or below
	 * its cpu_power, while calculating max_load..)
	 */
	if (max_load < avg_load) {
		*imbalance = 0;
		goto small_imbalance;
	}
2617 2618

	/* Don't want to pull so many tasks that a group would go idle */
2619
	max_pull = min(max_load - avg_load, max_load - busiest_load_per_task);
2620

L
Linus Torvalds 已提交
2621
	/* How much load to actually move to equalise the imbalance */
2622 2623
	*imbalance = min(max_pull * busiest->__cpu_power,
				(avg_load - this_load) * this->__cpu_power)
L
Linus Torvalds 已提交
2624 2625
			/ SCHED_LOAD_SCALE;

2626 2627 2628 2629 2630 2631
	/*
	 * if *imbalance is less than the average load per runnable task
	 * there is no gaurantee that any tasks will be moved so we'll have
	 * a think about bumping its value to force at least one task to be
	 * moved
	 */
2632
	if (*imbalance < busiest_load_per_task) {
2633
		unsigned long tmp, pwr_now, pwr_move;
2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644
		unsigned int imbn;

small_imbalance:
		pwr_move = pwr_now = 0;
		imbn = 2;
		if (this_nr_running) {
			this_load_per_task /= this_nr_running;
			if (busiest_load_per_task > this_load_per_task)
				imbn = 1;
		} else
			this_load_per_task = SCHED_LOAD_SCALE;
L
Linus Torvalds 已提交
2645

I
Ingo Molnar 已提交
2646 2647
		if (max_load - this_load + SCHED_LOAD_SCALE_FUZZ >=
					busiest_load_per_task * imbn) {
2648
			*imbalance = busiest_load_per_task;
L
Linus Torvalds 已提交
2649 2650 2651 2652 2653 2654 2655 2656 2657
			return busiest;
		}

		/*
		 * OK, we don't have enough imbalance to justify moving tasks,
		 * however we may be able to increase total CPU power used by
		 * moving them.
		 */

2658 2659 2660 2661
		pwr_now += busiest->__cpu_power *
				min(busiest_load_per_task, max_load);
		pwr_now += this->__cpu_power *
				min(this_load_per_task, this_load);
L
Linus Torvalds 已提交
2662 2663 2664
		pwr_now /= SCHED_LOAD_SCALE;

		/* Amount of load we'd subtract */
2665 2666
		tmp = sg_div_cpu_power(busiest,
				busiest_load_per_task * SCHED_LOAD_SCALE);
L
Linus Torvalds 已提交
2667
		if (max_load > tmp)
2668
			pwr_move += busiest->__cpu_power *
2669
				min(busiest_load_per_task, max_load - tmp);
L
Linus Torvalds 已提交
2670 2671

		/* Amount of load we'd add */
2672
		if (max_load * busiest->__cpu_power <
2673
				busiest_load_per_task * SCHED_LOAD_SCALE)
2674 2675
			tmp = sg_div_cpu_power(this,
					max_load * busiest->__cpu_power);
L
Linus Torvalds 已提交
2676
		else
2677 2678 2679 2680
			tmp = sg_div_cpu_power(this,
				busiest_load_per_task * SCHED_LOAD_SCALE);
		pwr_move += this->__cpu_power *
				min(this_load_per_task, this_load + tmp);
L
Linus Torvalds 已提交
2681 2682 2683
		pwr_move /= SCHED_LOAD_SCALE;

		/* Move if we gain throughput */
2684 2685
		if (pwr_move > pwr_now)
			*imbalance = busiest_load_per_task;
L
Linus Torvalds 已提交
2686 2687 2688 2689 2690
	}

	return busiest;

out_balanced:
2691
#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
I
Ingo Molnar 已提交
2692
	if (idle == CPU_NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE))
2693
		goto ret;
L
Linus Torvalds 已提交
2694

2695 2696 2697 2698 2699
	if (this == group_leader && group_leader != group_min) {
		*imbalance = min_load_per_task;
		return group_min;
	}
#endif
2700
ret:
L
Linus Torvalds 已提交
2701 2702 2703 2704 2705 2706 2707
	*imbalance = 0;
	return NULL;
}

/*
 * find_busiest_queue - find the busiest runqueue among the cpus in group.
 */
2708
static struct rq *
I
Ingo Molnar 已提交
2709
find_busiest_queue(struct sched_group *group, enum cpu_idle_type idle,
2710
		   unsigned long imbalance, cpumask_t *cpus)
L
Linus Torvalds 已提交
2711
{
2712
	struct rq *busiest = NULL, *rq;
2713
	unsigned long max_load = 0;
L
Linus Torvalds 已提交
2714 2715 2716
	int i;

	for_each_cpu_mask(i, group->cpumask) {
I
Ingo Molnar 已提交
2717
		unsigned long wl;
2718 2719 2720 2721

		if (!cpu_isset(i, *cpus))
			continue;

2722
		rq = cpu_rq(i);
I
Ingo Molnar 已提交
2723
		wl = weighted_cpuload(i);
2724

I
Ingo Molnar 已提交
2725
		if (rq->nr_running == 1 && wl > imbalance)
2726
			continue;
L
Linus Torvalds 已提交
2727

I
Ingo Molnar 已提交
2728 2729
		if (wl > max_load) {
			max_load = wl;
2730
			busiest = rq;
L
Linus Torvalds 已提交
2731 2732 2733 2734 2735 2736
		}
	}

	return busiest;
}

2737 2738 2739 2740 2741 2742
/*
 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
 * so long as it is large enough.
 */
#define MAX_PINNED_INTERVAL	512

L
Linus Torvalds 已提交
2743 2744 2745 2746
/*
 * Check this_cpu to ensure it is balanced within domain. Attempt to move
 * tasks if there is an imbalance.
 */
2747
static int load_balance(int this_cpu, struct rq *this_rq,
I
Ingo Molnar 已提交
2748
			struct sched_domain *sd, enum cpu_idle_type idle,
2749
			int *balance)
L
Linus Torvalds 已提交
2750
{
P
Peter Williams 已提交
2751
	int ld_moved, all_pinned = 0, active_balance = 0, sd_idle = 0;
L
Linus Torvalds 已提交
2752 2753
	struct sched_group *group;
	unsigned long imbalance;
2754
	struct rq *busiest;
2755
	cpumask_t cpus = CPU_MASK_ALL;
2756
	unsigned long flags;
N
Nick Piggin 已提交
2757

2758 2759 2760
	/*
	 * When power savings policy is enabled for the parent domain, idle
	 * sibling can pick up load irrespective of busy siblings. In this case,
I
Ingo Molnar 已提交
2761
	 * let the state of idle sibling percolate up as CPU_IDLE, instead of
I
Ingo Molnar 已提交
2762
	 * portraying it as CPU_NOT_IDLE.
2763
	 */
I
Ingo Molnar 已提交
2764
	if (idle != CPU_NOT_IDLE && sd->flags & SD_SHARE_CPUPOWER &&
2765
	    !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
N
Nick Piggin 已提交
2766
		sd_idle = 1;
L
Linus Torvalds 已提交
2767

2768
	schedstat_inc(sd, lb_count[idle]);
L
Linus Torvalds 已提交
2769

2770 2771
redo:
	group = find_busiest_group(sd, this_cpu, &imbalance, idle, &sd_idle,
2772 2773
				   &cpus, balance);

2774
	if (*balance == 0)
2775 2776
		goto out_balanced;

L
Linus Torvalds 已提交
2777 2778 2779 2780 2781
	if (!group) {
		schedstat_inc(sd, lb_nobusyg[idle]);
		goto out_balanced;
	}

2782
	busiest = find_busiest_queue(group, idle, imbalance, &cpus);
L
Linus Torvalds 已提交
2783 2784 2785 2786 2787
	if (!busiest) {
		schedstat_inc(sd, lb_nobusyq[idle]);
		goto out_balanced;
	}

N
Nick Piggin 已提交
2788
	BUG_ON(busiest == this_rq);
L
Linus Torvalds 已提交
2789 2790 2791

	schedstat_add(sd, lb_imbalance[idle], imbalance);

P
Peter Williams 已提交
2792
	ld_moved = 0;
L
Linus Torvalds 已提交
2793 2794 2795 2796
	if (busiest->nr_running > 1) {
		/*
		 * Attempt to move tasks. If find_busiest_group has found
		 * an imbalance but busiest->nr_running <= 1, the group is
P
Peter Williams 已提交
2797
		 * still unbalanced. ld_moved simply stays zero, so it is
L
Linus Torvalds 已提交
2798 2799
		 * correctly treated as an imbalance.
		 */
2800
		local_irq_save(flags);
N
Nick Piggin 已提交
2801
		double_rq_lock(this_rq, busiest);
P
Peter Williams 已提交
2802
		ld_moved = move_tasks(this_rq, this_cpu, busiest,
2803
				      imbalance, sd, idle, &all_pinned);
N
Nick Piggin 已提交
2804
		double_rq_unlock(this_rq, busiest);
2805
		local_irq_restore(flags);
2806

2807 2808 2809
		/*
		 * some other cpu did the load balance for us.
		 */
P
Peter Williams 已提交
2810
		if (ld_moved && this_cpu != smp_processor_id())
2811 2812
			resched_cpu(this_cpu);

2813
		/* All tasks on this runqueue were pinned by CPU affinity */
2814 2815 2816 2817
		if (unlikely(all_pinned)) {
			cpu_clear(cpu_of(busiest), cpus);
			if (!cpus_empty(cpus))
				goto redo;
2818
			goto out_balanced;
2819
		}
L
Linus Torvalds 已提交
2820
	}
2821

P
Peter Williams 已提交
2822
	if (!ld_moved) {
L
Linus Torvalds 已提交
2823 2824 2825 2826 2827
		schedstat_inc(sd, lb_failed[idle]);
		sd->nr_balance_failed++;

		if (unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2)) {

2828
			spin_lock_irqsave(&busiest->lock, flags);
2829 2830 2831 2832 2833

			/* don't kick the migration_thread, if the curr
			 * task on busiest cpu can't be moved to this_cpu
			 */
			if (!cpu_isset(this_cpu, busiest->curr->cpus_allowed)) {
2834
				spin_unlock_irqrestore(&busiest->lock, flags);
2835 2836 2837 2838
				all_pinned = 1;
				goto out_one_pinned;
			}

L
Linus Torvalds 已提交
2839 2840 2841
			if (!busiest->active_balance) {
				busiest->active_balance = 1;
				busiest->push_cpu = this_cpu;
2842
				active_balance = 1;
L
Linus Torvalds 已提交
2843
			}
2844
			spin_unlock_irqrestore(&busiest->lock, flags);
2845
			if (active_balance)
L
Linus Torvalds 已提交
2846 2847 2848 2849 2850 2851
				wake_up_process(busiest->migration_thread);

			/*
			 * We've kicked active balancing, reset the failure
			 * counter.
			 */
2852
			sd->nr_balance_failed = sd->cache_nice_tries+1;
L
Linus Torvalds 已提交
2853
		}
2854
	} else
L
Linus Torvalds 已提交
2855 2856
		sd->nr_balance_failed = 0;

2857
	if (likely(!active_balance)) {
L
Linus Torvalds 已提交
2858 2859
		/* We were unbalanced, so reset the balancing interval */
		sd->balance_interval = sd->min_interval;
2860 2861 2862 2863 2864 2865 2866 2867 2868
	} else {
		/*
		 * If we've begun active balancing, start to back off. This
		 * case may not be covered by the all_pinned logic if there
		 * is only 1 task on the busy runqueue (because we don't call
		 * move_tasks).
		 */
		if (sd->balance_interval < sd->max_interval)
			sd->balance_interval *= 2;
L
Linus Torvalds 已提交
2869 2870
	}

P
Peter Williams 已提交
2871
	if (!ld_moved && !sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
2872
	    !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
N
Nick Piggin 已提交
2873
		return -1;
P
Peter Williams 已提交
2874
	return ld_moved;
L
Linus Torvalds 已提交
2875 2876 2877 2878

out_balanced:
	schedstat_inc(sd, lb_balanced[idle]);

2879
	sd->nr_balance_failed = 0;
2880 2881

out_one_pinned:
L
Linus Torvalds 已提交
2882
	/* tune up the balancing interval */
2883 2884
	if ((all_pinned && sd->balance_interval < MAX_PINNED_INTERVAL) ||
			(sd->balance_interval < sd->max_interval))
L
Linus Torvalds 已提交
2885 2886
		sd->balance_interval *= 2;

2887
	if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
2888
	    !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
N
Nick Piggin 已提交
2889
		return -1;
L
Linus Torvalds 已提交
2890 2891 2892 2893 2894 2895 2896
	return 0;
}

/*
 * Check this_cpu to ensure it is balanced within domain. Attempt to move
 * tasks if there is an imbalance.
 *
I
Ingo Molnar 已提交
2897
 * Called from schedule when this_rq is about to become idle (CPU_NEWLY_IDLE).
L
Linus Torvalds 已提交
2898 2899
 * this_rq is locked.
 */
2900
static int
2901
load_balance_newidle(int this_cpu, struct rq *this_rq, struct sched_domain *sd)
L
Linus Torvalds 已提交
2902 2903
{
	struct sched_group *group;
2904
	struct rq *busiest = NULL;
L
Linus Torvalds 已提交
2905
	unsigned long imbalance;
P
Peter Williams 已提交
2906
	int ld_moved = 0;
N
Nick Piggin 已提交
2907
	int sd_idle = 0;
2908
	int all_pinned = 0;
2909
	cpumask_t cpus = CPU_MASK_ALL;
N
Nick Piggin 已提交
2910

2911 2912 2913 2914
	/*
	 * When power savings policy is enabled for the parent domain, idle
	 * sibling can pick up load irrespective of busy siblings. In this case,
	 * let the state of idle sibling percolate up as IDLE, instead of
I
Ingo Molnar 已提交
2915
	 * portraying it as CPU_NOT_IDLE.
2916 2917 2918
	 */
	if (sd->flags & SD_SHARE_CPUPOWER &&
	    !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
N
Nick Piggin 已提交
2919
		sd_idle = 1;
L
Linus Torvalds 已提交
2920

2921
	schedstat_inc(sd, lb_count[CPU_NEWLY_IDLE]);
2922
redo:
I
Ingo Molnar 已提交
2923
	group = find_busiest_group(sd, this_cpu, &imbalance, CPU_NEWLY_IDLE,
2924
				   &sd_idle, &cpus, NULL);
L
Linus Torvalds 已提交
2925
	if (!group) {
I
Ingo Molnar 已提交
2926
		schedstat_inc(sd, lb_nobusyg[CPU_NEWLY_IDLE]);
2927
		goto out_balanced;
L
Linus Torvalds 已提交
2928 2929
	}

I
Ingo Molnar 已提交
2930
	busiest = find_busiest_queue(group, CPU_NEWLY_IDLE, imbalance,
2931
				&cpus);
N
Nick Piggin 已提交
2932
	if (!busiest) {
I
Ingo Molnar 已提交
2933
		schedstat_inc(sd, lb_nobusyq[CPU_NEWLY_IDLE]);
2934
		goto out_balanced;
L
Linus Torvalds 已提交
2935 2936
	}

N
Nick Piggin 已提交
2937 2938
	BUG_ON(busiest == this_rq);

I
Ingo Molnar 已提交
2939
	schedstat_add(sd, lb_imbalance[CPU_NEWLY_IDLE], imbalance);
2940

P
Peter Williams 已提交
2941
	ld_moved = 0;
2942 2943 2944
	if (busiest->nr_running > 1) {
		/* Attempt to move tasks */
		double_lock_balance(this_rq, busiest);
2945 2946
		/* this_rq->clock is already updated */
		update_rq_clock(busiest);
P
Peter Williams 已提交
2947
		ld_moved = move_tasks(this_rq, this_cpu, busiest,
2948 2949
					imbalance, sd, CPU_NEWLY_IDLE,
					&all_pinned);
2950
		spin_unlock(&busiest->lock);
2951

2952
		if (unlikely(all_pinned)) {
2953 2954 2955 2956
			cpu_clear(cpu_of(busiest), cpus);
			if (!cpus_empty(cpus))
				goto redo;
		}
2957 2958
	}

P
Peter Williams 已提交
2959
	if (!ld_moved) {
I
Ingo Molnar 已提交
2960
		schedstat_inc(sd, lb_failed[CPU_NEWLY_IDLE]);
2961 2962
		if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
		    !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
N
Nick Piggin 已提交
2963 2964
			return -1;
	} else
2965
		sd->nr_balance_failed = 0;
L
Linus Torvalds 已提交
2966

P
Peter Williams 已提交
2967
	return ld_moved;
2968 2969

out_balanced:
I
Ingo Molnar 已提交
2970
	schedstat_inc(sd, lb_balanced[CPU_NEWLY_IDLE]);
2971
	if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
2972
	    !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
N
Nick Piggin 已提交
2973
		return -1;
2974
	sd->nr_balance_failed = 0;
2975

2976
	return 0;
L
Linus Torvalds 已提交
2977 2978 2979 2980 2981 2982
}

/*
 * idle_balance is called by schedule() if this_cpu is about to become
 * idle. Attempts to pull tasks from other CPUs.
 */
2983
static void idle_balance(int this_cpu, struct rq *this_rq)
L
Linus Torvalds 已提交
2984 2985
{
	struct sched_domain *sd;
I
Ingo Molnar 已提交
2986 2987
	int pulled_task = -1;
	unsigned long next_balance = jiffies + HZ;
L
Linus Torvalds 已提交
2988 2989

	for_each_domain(this_cpu, sd) {
2990 2991 2992 2993 2994 2995
		unsigned long interval;

		if (!(sd->flags & SD_LOAD_BALANCE))
			continue;

		if (sd->flags & SD_BALANCE_NEWIDLE)
2996
			/* If we've pulled tasks over stop searching: */
2997
			pulled_task = load_balance_newidle(this_cpu,
2998 2999 3000 3001 3002 3003 3004
								this_rq, sd);

		interval = msecs_to_jiffies(sd->balance_interval);
		if (time_after(next_balance, sd->last_balance + interval))
			next_balance = sd->last_balance + interval;
		if (pulled_task)
			break;
L
Linus Torvalds 已提交
3005
	}
I
Ingo Molnar 已提交
3006
	if (pulled_task || time_after(jiffies, this_rq->next_balance)) {
3007 3008 3009 3010 3011
		/*
		 * We are going idle. next_balance may be set based on
		 * a busy processor. So reset next_balance.
		 */
		this_rq->next_balance = next_balance;
I
Ingo Molnar 已提交
3012
	}
L
Linus Torvalds 已提交
3013 3014 3015 3016 3017 3018 3019 3020 3021 3022
}

/*
 * active_load_balance is run by migration threads. It pushes running tasks
 * off the busiest CPU onto idle CPUs. It requires at least 1 task to be
 * running on each physical CPU where possible, and avoids physical /
 * logical imbalances.
 *
 * Called with busiest_rq locked.
 */
3023
static void active_load_balance(struct rq *busiest_rq, int busiest_cpu)
L
Linus Torvalds 已提交
3024
{
3025
	int target_cpu = busiest_rq->push_cpu;
3026 3027
	struct sched_domain *sd;
	struct rq *target_rq;
3028

3029
	/* Is there any task to move? */
3030 3031 3032 3033
	if (busiest_rq->nr_running <= 1)
		return;

	target_rq = cpu_rq(target_cpu);
L
Linus Torvalds 已提交
3034 3035

	/*
3036
	 * This condition is "impossible", if it occurs
I
Ingo Molnar 已提交
3037
	 * we need to fix it. Originally reported by
3038
	 * Bjorn Helgaas on a 128-cpu setup.
L
Linus Torvalds 已提交
3039
	 */
3040
	BUG_ON(busiest_rq == target_rq);
L
Linus Torvalds 已提交
3041

3042 3043
	/* move a task from busiest_rq to target_rq */
	double_lock_balance(busiest_rq, target_rq);
3044 3045
	update_rq_clock(busiest_rq);
	update_rq_clock(target_rq);
3046 3047

	/* Search for an sd spanning us and the target CPU. */
3048
	for_each_domain(target_cpu, sd) {
3049
		if ((sd->flags & SD_LOAD_BALANCE) &&
3050
		    cpu_isset(busiest_cpu, sd->span))
3051
				break;
3052
	}
3053

3054
	if (likely(sd)) {
3055
		schedstat_inc(sd, alb_count);
3056

P
Peter Williams 已提交
3057 3058
		if (move_one_task(target_rq, target_cpu, busiest_rq,
				  sd, CPU_IDLE))
3059 3060 3061 3062
			schedstat_inc(sd, alb_pushed);
		else
			schedstat_inc(sd, alb_failed);
	}
3063
	spin_unlock(&target_rq->lock);
L
Linus Torvalds 已提交
3064 3065
}

3066 3067 3068
#ifdef CONFIG_NO_HZ
static struct {
	atomic_t load_balancer;
I
Ingo Molnar 已提交
3069
	cpumask_t cpu_mask;
3070 3071 3072 3073 3074
} nohz ____cacheline_aligned = {
	.load_balancer = ATOMIC_INIT(-1),
	.cpu_mask = CPU_MASK_NONE,
};

3075
/*
3076 3077 3078 3079 3080 3081 3082 3083 3084 3085
 * This routine will try to nominate the ilb (idle load balancing)
 * owner among the cpus whose ticks are stopped. ilb owner will do the idle
 * load balancing on behalf of all those cpus. If all the cpus in the system
 * go into this tickless mode, then there will be no ilb owner (as there is
 * no need for one) and all the cpus will sleep till the next wakeup event
 * arrives...
 *
 * For the ilb owner, tick is not stopped. And this tick will be used
 * for idle load balancing. ilb owner will still be part of
 * nohz.cpu_mask..
3086
 *
3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142
 * While stopping the tick, this cpu will become the ilb owner if there
 * is no other owner. And will be the owner till that cpu becomes busy
 * or if all cpus in the system stop their ticks at which point
 * there is no need for ilb owner.
 *
 * When the ilb owner becomes busy, it nominates another owner, during the
 * next busy scheduler_tick()
 */
int select_nohz_load_balancer(int stop_tick)
{
	int cpu = smp_processor_id();

	if (stop_tick) {
		cpu_set(cpu, nohz.cpu_mask);
		cpu_rq(cpu)->in_nohz_recently = 1;

		/*
		 * If we are going offline and still the leader, give up!
		 */
		if (cpu_is_offline(cpu) &&
		    atomic_read(&nohz.load_balancer) == cpu) {
			if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
				BUG();
			return 0;
		}

		/* time for ilb owner also to sleep */
		if (cpus_weight(nohz.cpu_mask) == num_online_cpus()) {
			if (atomic_read(&nohz.load_balancer) == cpu)
				atomic_set(&nohz.load_balancer, -1);
			return 0;
		}

		if (atomic_read(&nohz.load_balancer) == -1) {
			/* make me the ilb owner */
			if (atomic_cmpxchg(&nohz.load_balancer, -1, cpu) == -1)
				return 1;
		} else if (atomic_read(&nohz.load_balancer) == cpu)
			return 1;
	} else {
		if (!cpu_isset(cpu, nohz.cpu_mask))
			return 0;

		cpu_clear(cpu, nohz.cpu_mask);

		if (atomic_read(&nohz.load_balancer) == cpu)
			if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
				BUG();
	}
	return 0;
}
#endif

static DEFINE_SPINLOCK(balancing);

/*
3143 3144 3145 3146 3147
 * It checks each scheduling domain to see if it is due to be balanced,
 * and initiates a balancing operation if so.
 *
 * Balancing parameters are set up in arch_init_sched_domains.
 */
A
Alexey Dobriyan 已提交
3148
static void rebalance_domains(int cpu, enum cpu_idle_type idle)
3149
{
3150 3151
	int balance = 1;
	struct rq *rq = cpu_rq(cpu);
3152 3153
	unsigned long interval;
	struct sched_domain *sd;
3154
	/* Earliest time when we have to do rebalance again */
3155
	unsigned long next_balance = jiffies + 60*HZ;
3156
	int update_next_balance = 0;
L
Linus Torvalds 已提交
3157

3158
	for_each_domain(cpu, sd) {
L
Linus Torvalds 已提交
3159 3160 3161 3162
		if (!(sd->flags & SD_LOAD_BALANCE))
			continue;

		interval = sd->balance_interval;
I
Ingo Molnar 已提交
3163
		if (idle != CPU_IDLE)
L
Linus Torvalds 已提交
3164 3165 3166 3167 3168 3169
			interval *= sd->busy_factor;

		/* scale ms to jiffies */
		interval = msecs_to_jiffies(interval);
		if (unlikely(!interval))
			interval = 1;
I
Ingo Molnar 已提交
3170 3171 3172
		if (interval > HZ*NR_CPUS/10)
			interval = HZ*NR_CPUS/10;

L
Linus Torvalds 已提交
3173

3174 3175 3176 3177 3178
		if (sd->flags & SD_SERIALIZE) {
			if (!spin_trylock(&balancing))
				goto out;
		}

3179
		if (time_after_eq(jiffies, sd->last_balance + interval)) {
3180
			if (load_balance(cpu, rq, sd, idle, &balance)) {
3181 3182
				/*
				 * We've pulled tasks over so either we're no
N
Nick Piggin 已提交
3183 3184 3185
				 * longer idle, or one of our SMT siblings is
				 * not idle.
				 */
I
Ingo Molnar 已提交
3186
				idle = CPU_NOT_IDLE;
L
Linus Torvalds 已提交
3187
			}
3188
			sd->last_balance = jiffies;
L
Linus Torvalds 已提交
3189
		}
3190 3191 3192
		if (sd->flags & SD_SERIALIZE)
			spin_unlock(&balancing);
out:
3193
		if (time_after(next_balance, sd->last_balance + interval)) {
3194
			next_balance = sd->last_balance + interval;
3195 3196
			update_next_balance = 1;
		}
3197 3198 3199 3200 3201 3202 3203 3204

		/*
		 * Stop the load balance at this level. There is another
		 * CPU in our sched group which is doing load balancing more
		 * actively.
		 */
		if (!balance)
			break;
L
Linus Torvalds 已提交
3205
	}
3206 3207 3208 3209 3210 3211 3212 3213

	/*
	 * next_balance will be updated only when there is a need.
	 * When the cpu is attached to null domain for ex, it will not be
	 * updated.
	 */
	if (likely(update_next_balance))
		rq->next_balance = next_balance;
3214 3215 3216 3217 3218 3219 3220 3221 3222
}

/*
 * run_rebalance_domains is triggered when needed from the scheduler tick.
 * In CONFIG_NO_HZ case, the idle load balance owner will do the
 * rebalancing for all the cpus for whom scheduler ticks are stopped.
 */
static void run_rebalance_domains(struct softirq_action *h)
{
I
Ingo Molnar 已提交
3223 3224 3225 3226
	int this_cpu = smp_processor_id();
	struct rq *this_rq = cpu_rq(this_cpu);
	enum cpu_idle_type idle = this_rq->idle_at_tick ?
						CPU_IDLE : CPU_NOT_IDLE;
3227

I
Ingo Molnar 已提交
3228
	rebalance_domains(this_cpu, idle);
3229 3230 3231 3232 3233 3234 3235

#ifdef CONFIG_NO_HZ
	/*
	 * If this cpu is the owner for idle load balancing, then do the
	 * balancing on behalf of the other idle cpus whose ticks are
	 * stopped.
	 */
I
Ingo Molnar 已提交
3236 3237
	if (this_rq->idle_at_tick &&
	    atomic_read(&nohz.load_balancer) == this_cpu) {
3238 3239 3240 3241
		cpumask_t cpus = nohz.cpu_mask;
		struct rq *rq;
		int balance_cpu;

I
Ingo Molnar 已提交
3242
		cpu_clear(this_cpu, cpus);
3243 3244 3245 3246 3247 3248 3249 3250 3251
		for_each_cpu_mask(balance_cpu, cpus) {
			/*
			 * If this cpu gets work to do, stop the load balancing
			 * work being done for other cpus. Next load
			 * balancing owner will pick it up.
			 */
			if (need_resched())
				break;

3252
			rebalance_domains(balance_cpu, CPU_IDLE);
3253 3254

			rq = cpu_rq(balance_cpu);
I
Ingo Molnar 已提交
3255 3256
			if (time_after(this_rq->next_balance, rq->next_balance))
				this_rq->next_balance = rq->next_balance;
3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268
		}
	}
#endif
}

/*
 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
 *
 * In case of CONFIG_NO_HZ, this is the place where we nominate a new
 * idle load balancing owner or decide to stop the periodic load balancing,
 * if the whole system is idle.
 */
I
Ingo Molnar 已提交
3269
static inline void trigger_load_balance(struct rq *rq, int cpu)
3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320
{
#ifdef CONFIG_NO_HZ
	/*
	 * If we were in the nohz mode recently and busy at the current
	 * scheduler tick, then check if we need to nominate new idle
	 * load balancer.
	 */
	if (rq->in_nohz_recently && !rq->idle_at_tick) {
		rq->in_nohz_recently = 0;

		if (atomic_read(&nohz.load_balancer) == cpu) {
			cpu_clear(cpu, nohz.cpu_mask);
			atomic_set(&nohz.load_balancer, -1);
		}

		if (atomic_read(&nohz.load_balancer) == -1) {
			/*
			 * simple selection for now: Nominate the
			 * first cpu in the nohz list to be the next
			 * ilb owner.
			 *
			 * TBD: Traverse the sched domains and nominate
			 * the nearest cpu in the nohz.cpu_mask.
			 */
			int ilb = first_cpu(nohz.cpu_mask);

			if (ilb != NR_CPUS)
				resched_cpu(ilb);
		}
	}

	/*
	 * If this cpu is idle and doing idle load balancing for all the
	 * cpus with ticks stopped, is it time for that to stop?
	 */
	if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) == cpu &&
	    cpus_weight(nohz.cpu_mask) == num_online_cpus()) {
		resched_cpu(cpu);
		return;
	}

	/*
	 * If this cpu is idle and the idle load balancing is done by
	 * someone else, then no need raise the SCHED_SOFTIRQ
	 */
	if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) != cpu &&
	    cpu_isset(cpu, nohz.cpu_mask))
		return;
#endif
	if (time_after_eq(jiffies, rq->next_balance))
		raise_softirq(SCHED_SOFTIRQ);
L
Linus Torvalds 已提交
3321
}
I
Ingo Molnar 已提交
3322 3323 3324

#else	/* CONFIG_SMP */

L
Linus Torvalds 已提交
3325 3326 3327
/*
 * on UP we do not need to balance between CPUs:
 */
3328
static inline void idle_balance(int cpu, struct rq *rq)
L
Linus Torvalds 已提交
3329 3330
{
}
I
Ingo Molnar 已提交
3331

L
Linus Torvalds 已提交
3332 3333 3334 3335 3336 3337 3338
#endif

DEFINE_PER_CPU(struct kernel_stat, kstat);

EXPORT_PER_CPU_SYMBOL(kstat);

/*
3339 3340
 * Return p->sum_exec_runtime plus any more ns on the sched_clock
 * that have not yet been banked in case the task is currently running.
L
Linus Torvalds 已提交
3341
 */
3342
unsigned long long task_sched_runtime(struct task_struct *p)
L
Linus Torvalds 已提交
3343 3344
{
	unsigned long flags;
3345 3346
	u64 ns, delta_exec;
	struct rq *rq;
3347

3348 3349
	rq = task_rq_lock(p, &flags);
	ns = p->se.sum_exec_runtime;
3350
	if (task_current(rq, p)) {
I
Ingo Molnar 已提交
3351 3352
		update_rq_clock(rq);
		delta_exec = rq->clock - p->se.exec_start;
3353 3354 3355 3356
		if ((s64)delta_exec > 0)
			ns += delta_exec;
	}
	task_rq_unlock(rq, &flags);
3357

L
Linus Torvalds 已提交
3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380
	return ns;
}

/*
 * Account user cpu time to a process.
 * @p: the process that the cpu time gets accounted to
 * @cputime: the cpu time spent in user space since the last update
 */
void account_user_time(struct task_struct *p, cputime_t cputime)
{
	struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
	cputime64_t tmp;

	p->utime = cputime_add(p->utime, cputime);

	/* Add user time to cpustat. */
	tmp = cputime_to_cputime64(cputime);
	if (TASK_NICE(p) > 0)
		cpustat->nice = cputime64_add(cpustat->nice, tmp);
	else
		cpustat->user = cputime64_add(cpustat->user, tmp);
}

3381 3382 3383 3384 3385
/*
 * Account guest cpu time to a process.
 * @p: the process that the cpu time gets accounted to
 * @cputime: the cpu time spent in virtual machine since the last update
 */
3386
static void account_guest_time(struct task_struct *p, cputime_t cputime)
3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399
{
	cputime64_t tmp;
	struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;

	tmp = cputime_to_cputime64(cputime);

	p->utime = cputime_add(p->utime, cputime);
	p->gtime = cputime_add(p->gtime, cputime);

	cpustat->user = cputime64_add(cpustat->user, tmp);
	cpustat->guest = cputime64_add(cpustat->guest, tmp);
}

3400 3401 3402 3403 3404 3405 3406 3407 3408 3409
/*
 * Account scaled user cpu time to a process.
 * @p: the process that the cpu time gets accounted to
 * @cputime: the cpu time spent in user space since the last update
 */
void account_user_time_scaled(struct task_struct *p, cputime_t cputime)
{
	p->utimescaled = cputime_add(p->utimescaled, cputime);
}

L
Linus Torvalds 已提交
3410 3411 3412 3413 3414 3415 3416 3417 3418 3419
/*
 * Account system cpu time to a process.
 * @p: the process that the cpu time gets accounted to
 * @hardirq_offset: the offset to subtract from hardirq_count()
 * @cputime: the cpu time spent in kernel space since the last update
 */
void account_system_time(struct task_struct *p, int hardirq_offset,
			 cputime_t cputime)
{
	struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3420
	struct rq *rq = this_rq();
L
Linus Torvalds 已提交
3421 3422
	cputime64_t tmp;

3423 3424
	if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0))
		return account_guest_time(p, cputime);
3425

L
Linus Torvalds 已提交
3426 3427 3428 3429 3430 3431 3432 3433
	p->stime = cputime_add(p->stime, cputime);

	/* Add system time to cpustat. */
	tmp = cputime_to_cputime64(cputime);
	if (hardirq_count() - hardirq_offset)
		cpustat->irq = cputime64_add(cpustat->irq, tmp);
	else if (softirq_count())
		cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
3434
	else if (p != rq->idle)
L
Linus Torvalds 已提交
3435
		cpustat->system = cputime64_add(cpustat->system, tmp);
3436
	else if (atomic_read(&rq->nr_iowait) > 0)
L
Linus Torvalds 已提交
3437 3438 3439 3440 3441 3442 3443
		cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
	else
		cpustat->idle = cputime64_add(cpustat->idle, tmp);
	/* Account for system time used */
	acct_update_integrals(p);
}

3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454
/*
 * Account scaled system cpu time to a process.
 * @p: the process that the cpu time gets accounted to
 * @hardirq_offset: the offset to subtract from hardirq_count()
 * @cputime: the cpu time spent in kernel space since the last update
 */
void account_system_time_scaled(struct task_struct *p, cputime_t cputime)
{
	p->stimescaled = cputime_add(p->stimescaled, cputime);
}

L
Linus Torvalds 已提交
3455 3456 3457 3458 3459 3460 3461 3462 3463
/*
 * Account for involuntary wait time.
 * @p: the process from which the cpu time has been stolen
 * @steal: the cpu time spent in involuntary wait
 */
void account_steal_time(struct task_struct *p, cputime_t steal)
{
	struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
	cputime64_t tmp = cputime_to_cputime64(steal);
3464
	struct rq *rq = this_rq();
L
Linus Torvalds 已提交
3465 3466 3467 3468 3469 3470 3471

	if (p == rq->idle) {
		p->stime = cputime_add(p->stime, steal);
		if (atomic_read(&rq->nr_iowait) > 0)
			cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
		else
			cpustat->idle = cputime64_add(cpustat->idle, tmp);
3472
	} else
L
Linus Torvalds 已提交
3473 3474 3475
		cpustat->steal = cputime64_add(cpustat->steal, tmp);
}

3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486
/*
 * This function gets called by the timer code, with HZ frequency.
 * We call it with interrupts disabled.
 *
 * It also gets called by the fork code, when changing the parent's
 * timeslices.
 */
void scheduler_tick(void)
{
	int cpu = smp_processor_id();
	struct rq *rq = cpu_rq(cpu);
I
Ingo Molnar 已提交
3487
	struct task_struct *curr = rq->curr;
3488
	u64 next_tick = rq->tick_timestamp + TICK_NSEC;
I
Ingo Molnar 已提交
3489 3490

	spin_lock(&rq->lock);
3491
	__update_rq_clock(rq);
3492 3493 3494 3495 3496 3497
	/*
	 * Let rq->clock advance by at least TICK_NSEC:
	 */
	if (unlikely(rq->clock < next_tick))
		rq->clock = next_tick;
	rq->tick_timestamp = rq->clock;
3498
	update_cpu_load(rq);
I
Ingo Molnar 已提交
3499 3500 3501
	if (curr != rq->idle) /* FIXME: needed? */
		curr->sched_class->task_tick(rq, curr);
	spin_unlock(&rq->lock);
3502

3503
#ifdef CONFIG_SMP
I
Ingo Molnar 已提交
3504 3505
	rq->idle_at_tick = idle_cpu(cpu);
	trigger_load_balance(rq, cpu);
3506
#endif
L
Linus Torvalds 已提交
3507 3508 3509 3510 3511 3512 3513 3514 3515
}

#if defined(CONFIG_PREEMPT) && defined(CONFIG_DEBUG_PREEMPT)

void fastcall add_preempt_count(int val)
{
	/*
	 * Underflow?
	 */
3516 3517
	if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
		return;
L
Linus Torvalds 已提交
3518 3519 3520 3521
	preempt_count() += val;
	/*
	 * Spinlock count overflowing soon?
	 */
3522 3523
	DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
				PREEMPT_MASK - 10);
L
Linus Torvalds 已提交
3524 3525 3526 3527 3528 3529 3530 3531
}
EXPORT_SYMBOL(add_preempt_count);

void fastcall sub_preempt_count(int val)
{
	/*
	 * Underflow?
	 */
3532 3533
	if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
		return;
L
Linus Torvalds 已提交
3534 3535 3536
	/*
	 * Is the spinlock portion underflowing?
	 */
3537 3538 3539 3540
	if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
			!(preempt_count() & PREEMPT_MASK)))
		return;

L
Linus Torvalds 已提交
3541 3542 3543 3544 3545 3546 3547
	preempt_count() -= val;
}
EXPORT_SYMBOL(sub_preempt_count);

#endif

/*
I
Ingo Molnar 已提交
3548
 * Print scheduling while atomic bug:
L
Linus Torvalds 已提交
3549
 */
I
Ingo Molnar 已提交
3550
static noinline void __schedule_bug(struct task_struct *prev)
L
Linus Torvalds 已提交
3551
{
3552 3553 3554 3555 3556
	struct pt_regs *regs = get_irq_regs();

	printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
		prev->comm, prev->pid, preempt_count());

I
Ingo Molnar 已提交
3557 3558 3559
	debug_show_held_locks(prev);
	if (irqs_disabled())
		print_irqtrace_events(prev);
3560 3561 3562 3563 3564

	if (regs)
		show_regs(regs);
	else
		dump_stack();
I
Ingo Molnar 已提交
3565
}
L
Linus Torvalds 已提交
3566

I
Ingo Molnar 已提交
3567 3568 3569 3570 3571
/*
 * Various schedule()-time debugging checks and statistics:
 */
static inline void schedule_debug(struct task_struct *prev)
{
L
Linus Torvalds 已提交
3572
	/*
I
Ingo Molnar 已提交
3573
	 * Test if we are atomic. Since do_exit() needs to call into
L
Linus Torvalds 已提交
3574 3575 3576
	 * schedule() atomically, we ignore that path for now.
	 * Otherwise, whine if we are scheduling when we should not be.
	 */
I
Ingo Molnar 已提交
3577 3578 3579
	if (unlikely(in_atomic_preempt_off()) && unlikely(!prev->exit_state))
		__schedule_bug(prev);

L
Linus Torvalds 已提交
3580 3581
	profile_hit(SCHED_PROFILING, __builtin_return_address(0));

3582
	schedstat_inc(this_rq(), sched_count);
I
Ingo Molnar 已提交
3583 3584
#ifdef CONFIG_SCHEDSTATS
	if (unlikely(prev->lock_depth >= 0)) {
3585 3586
		schedstat_inc(this_rq(), bkl_count);
		schedstat_inc(prev, sched_info.bkl_count);
I
Ingo Molnar 已提交
3587 3588
	}
#endif
I
Ingo Molnar 已提交
3589 3590 3591 3592 3593 3594
}

/*
 * Pick up the highest-prio task:
 */
static inline struct task_struct *
3595
pick_next_task(struct rq *rq, struct task_struct *prev)
I
Ingo Molnar 已提交
3596
{
3597
	const struct sched_class *class;
I
Ingo Molnar 已提交
3598
	struct task_struct *p;
L
Linus Torvalds 已提交
3599 3600

	/*
I
Ingo Molnar 已提交
3601 3602
	 * Optimization: we know that if all tasks are in
	 * the fair class we can call that function directly:
L
Linus Torvalds 已提交
3603
	 */
I
Ingo Molnar 已提交
3604
	if (likely(rq->nr_running == rq->cfs.nr_running)) {
3605
		p = fair_sched_class.pick_next_task(rq);
I
Ingo Molnar 已提交
3606 3607
		if (likely(p))
			return p;
L
Linus Torvalds 已提交
3608 3609
	}

I
Ingo Molnar 已提交
3610 3611
	class = sched_class_highest;
	for ( ; ; ) {
3612
		p = class->pick_next_task(rq);
I
Ingo Molnar 已提交
3613 3614 3615 3616 3617 3618 3619 3620 3621
		if (p)
			return p;
		/*
		 * Will never be NULL as the idle class always
		 * returns a non-NULL p:
		 */
		class = class->next;
	}
}
L
Linus Torvalds 已提交
3622

I
Ingo Molnar 已提交
3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644
/*
 * schedule() is the main scheduler function.
 */
asmlinkage void __sched schedule(void)
{
	struct task_struct *prev, *next;
	long *switch_count;
	struct rq *rq;
	int cpu;

need_resched:
	preempt_disable();
	cpu = smp_processor_id();
	rq = cpu_rq(cpu);
	rcu_qsctr_inc(cpu);
	prev = rq->curr;
	switch_count = &prev->nivcsw;

	release_kernel_lock(prev);
need_resched_nonpreemptible:

	schedule_debug(prev);
L
Linus Torvalds 已提交
3645

3646 3647 3648 3649
	/*
	 * Do the rq-clock update outside the rq lock:
	 */
	local_irq_disable();
I
Ingo Molnar 已提交
3650
	__update_rq_clock(rq);
3651 3652
	spin_lock(&rq->lock);
	clear_tsk_need_resched(prev);
L
Linus Torvalds 已提交
3653 3654 3655

	if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
		if (unlikely((prev->state & TASK_INTERRUPTIBLE) &&
I
Ingo Molnar 已提交
3656
				unlikely(signal_pending(prev)))) {
L
Linus Torvalds 已提交
3657
			prev->state = TASK_RUNNING;
I
Ingo Molnar 已提交
3658
		} else {
3659
			deactivate_task(rq, prev, 1);
L
Linus Torvalds 已提交
3660
		}
I
Ingo Molnar 已提交
3661
		switch_count = &prev->nvcsw;
L
Linus Torvalds 已提交
3662 3663
	}

3664 3665 3666 3667
#ifdef CONFIG_SMP
	if (prev->sched_class->pre_schedule)
		prev->sched_class->pre_schedule(rq, prev);
#endif
3668

I
Ingo Molnar 已提交
3669
	if (unlikely(!rq->nr_running))
L
Linus Torvalds 已提交
3670 3671
		idle_balance(cpu, rq);

3672
	prev->sched_class->put_prev_task(rq, prev);
3673
	next = pick_next_task(rq, prev);
L
Linus Torvalds 已提交
3674 3675

	sched_info_switch(prev, next);
I
Ingo Molnar 已提交
3676

L
Linus Torvalds 已提交
3677 3678 3679 3680 3681
	if (likely(prev != next)) {
		rq->nr_switches++;
		rq->curr = next;
		++*switch_count;

I
Ingo Molnar 已提交
3682
		context_switch(rq, prev, next); /* unlocks the rq */
L
Linus Torvalds 已提交
3683 3684 3685
	} else
		spin_unlock_irq(&rq->lock);

I
Ingo Molnar 已提交
3686 3687 3688
	if (unlikely(reacquire_kernel_lock(current) < 0)) {
		cpu = smp_processor_id();
		rq = cpu_rq(cpu);
L
Linus Torvalds 已提交
3689
		goto need_resched_nonpreemptible;
I
Ingo Molnar 已提交
3690
	}
L
Linus Torvalds 已提交
3691 3692 3693 3694 3695 3696 3697 3698
	preempt_enable_no_resched();
	if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
		goto need_resched;
}
EXPORT_SYMBOL(schedule);

#ifdef CONFIG_PREEMPT
/*
3699
 * this is the entry point to schedule() from in-kernel preemption
I
Ingo Molnar 已提交
3700
 * off of preempt_enable. Kernel preemptions off return from interrupt
L
Linus Torvalds 已提交
3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711
 * occur there and call schedule directly.
 */
asmlinkage void __sched preempt_schedule(void)
{
	struct thread_info *ti = current_thread_info();
#ifdef CONFIG_PREEMPT_BKL
	struct task_struct *task = current;
	int saved_lock_depth;
#endif
	/*
	 * If there is a non-zero preempt_count or interrupts are disabled,
I
Ingo Molnar 已提交
3712
	 * we do not want to preempt the current task. Just return..
L
Linus Torvalds 已提交
3713
	 */
N
Nick Piggin 已提交
3714
	if (likely(ti->preempt_count || irqs_disabled()))
L
Linus Torvalds 已提交
3715 3716
		return;

3717 3718 3719 3720 3721 3722 3723 3724
	do {
		add_preempt_count(PREEMPT_ACTIVE);

		/*
		 * We keep the big kernel semaphore locked, but we
		 * clear ->lock_depth so that schedule() doesnt
		 * auto-release the semaphore:
		 */
L
Linus Torvalds 已提交
3725
#ifdef CONFIG_PREEMPT_BKL
3726 3727
		saved_lock_depth = task->lock_depth;
		task->lock_depth = -1;
L
Linus Torvalds 已提交
3728
#endif
3729
		schedule();
L
Linus Torvalds 已提交
3730
#ifdef CONFIG_PREEMPT_BKL
3731
		task->lock_depth = saved_lock_depth;
L
Linus Torvalds 已提交
3732
#endif
3733
		sub_preempt_count(PREEMPT_ACTIVE);
L
Linus Torvalds 已提交
3734

3735 3736 3737 3738 3739 3740
		/*
		 * Check again in case we missed a preemption opportunity
		 * between schedule and now.
		 */
		barrier();
	} while (unlikely(test_thread_flag(TIF_NEED_RESCHED)));
L
Linus Torvalds 已提交
3741 3742 3743 3744
}
EXPORT_SYMBOL(preempt_schedule);

/*
3745
 * this is the entry point to schedule() from kernel preemption
L
Linus Torvalds 已提交
3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756
 * off of irq context.
 * Note, that this is called and return with irqs disabled. This will
 * protect us against recursive calling from irq.
 */
asmlinkage void __sched preempt_schedule_irq(void)
{
	struct thread_info *ti = current_thread_info();
#ifdef CONFIG_PREEMPT_BKL
	struct task_struct *task = current;
	int saved_lock_depth;
#endif
3757
	/* Catch callers which need to be fixed */
L
Linus Torvalds 已提交
3758 3759
	BUG_ON(ti->preempt_count || !irqs_disabled());

3760 3761 3762 3763 3764 3765 3766 3767
	do {
		add_preempt_count(PREEMPT_ACTIVE);

		/*
		 * We keep the big kernel semaphore locked, but we
		 * clear ->lock_depth so that schedule() doesnt
		 * auto-release the semaphore:
		 */
L
Linus Torvalds 已提交
3768
#ifdef CONFIG_PREEMPT_BKL
3769 3770
		saved_lock_depth = task->lock_depth;
		task->lock_depth = -1;
L
Linus Torvalds 已提交
3771
#endif
3772 3773 3774
		local_irq_enable();
		schedule();
		local_irq_disable();
L
Linus Torvalds 已提交
3775
#ifdef CONFIG_PREEMPT_BKL
3776
		task->lock_depth = saved_lock_depth;
L
Linus Torvalds 已提交
3777
#endif
3778
		sub_preempt_count(PREEMPT_ACTIVE);
L
Linus Torvalds 已提交
3779

3780 3781 3782 3783 3784 3785
		/*
		 * Check again in case we missed a preemption opportunity
		 * between schedule and now.
		 */
		barrier();
	} while (unlikely(test_thread_flag(TIF_NEED_RESCHED)));
L
Linus Torvalds 已提交
3786 3787 3788 3789
}

#endif /* CONFIG_PREEMPT */

I
Ingo Molnar 已提交
3790 3791
int default_wake_function(wait_queue_t *curr, unsigned mode, int sync,
			  void *key)
L
Linus Torvalds 已提交
3792
{
3793
	return try_to_wake_up(curr->private, mode, sync);
L
Linus Torvalds 已提交
3794 3795 3796 3797
}
EXPORT_SYMBOL(default_wake_function);

/*
I
Ingo Molnar 已提交
3798 3799
 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
L
Linus Torvalds 已提交
3800 3801 3802
 * number) then we wake all the non-exclusive tasks and one exclusive task.
 *
 * There are circumstances in which we can try to wake a task which has already
I
Ingo Molnar 已提交
3803
 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
L
Linus Torvalds 已提交
3804 3805 3806 3807 3808
 * zero in this (rare) case, and we handle it by continuing to scan the queue.
 */
static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
			     int nr_exclusive, int sync, void *key)
{
3809
	wait_queue_t *curr, *next;
L
Linus Torvalds 已提交
3810

3811
	list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
3812 3813
		unsigned flags = curr->flags;

L
Linus Torvalds 已提交
3814
		if (curr->func(curr, mode, sync, key) &&
3815
				(flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
L
Linus Torvalds 已提交
3816 3817 3818 3819 3820 3821 3822 3823 3824
			break;
	}
}

/**
 * __wake_up - wake up threads blocked on a waitqueue.
 * @q: the waitqueue
 * @mode: which threads
 * @nr_exclusive: how many wake-one or wake-many threads to wake up
3825
 * @key: is directly passed to the wakeup function
L
Linus Torvalds 已提交
3826 3827
 */
void fastcall __wake_up(wait_queue_head_t *q, unsigned int mode,
I
Ingo Molnar 已提交
3828
			int nr_exclusive, void *key)
L
Linus Torvalds 已提交
3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846
{
	unsigned long flags;

	spin_lock_irqsave(&q->lock, flags);
	__wake_up_common(q, mode, nr_exclusive, 0, key);
	spin_unlock_irqrestore(&q->lock, flags);
}
EXPORT_SYMBOL(__wake_up);

/*
 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
 */
void fastcall __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
{
	__wake_up_common(q, mode, 1, 0, NULL);
}

/**
3847
 * __wake_up_sync - wake up threads blocked on a waitqueue.
L
Linus Torvalds 已提交
3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858
 * @q: the waitqueue
 * @mode: which threads
 * @nr_exclusive: how many wake-one or wake-many threads to wake up
 *
 * The sync wakeup differs that the waker knows that it will schedule
 * away soon, so while the target thread will be woken up, it will not
 * be migrated to another CPU - ie. the two threads are 'synchronized'
 * with each other. This can prevent needless bouncing between CPUs.
 *
 * On UP it can prevent extra preemption.
 */
I
Ingo Molnar 已提交
3859 3860
void fastcall
__wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
L
Linus Torvalds 已提交
3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876
{
	unsigned long flags;
	int sync = 1;

	if (unlikely(!q))
		return;

	if (unlikely(!nr_exclusive))
		sync = 0;

	spin_lock_irqsave(&q->lock, flags);
	__wake_up_common(q, mode, nr_exclusive, sync, NULL);
	spin_unlock_irqrestore(&q->lock, flags);
}
EXPORT_SYMBOL_GPL(__wake_up_sync);	/* For internal use only */

3877
void complete(struct completion *x)
L
Linus Torvalds 已提交
3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888
{
	unsigned long flags;

	spin_lock_irqsave(&x->wait.lock, flags);
	x->done++;
	__wake_up_common(&x->wait, TASK_UNINTERRUPTIBLE | TASK_INTERRUPTIBLE,
			 1, 0, NULL);
	spin_unlock_irqrestore(&x->wait.lock, flags);
}
EXPORT_SYMBOL(complete);

3889
void complete_all(struct completion *x)
L
Linus Torvalds 已提交
3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900
{
	unsigned long flags;

	spin_lock_irqsave(&x->wait.lock, flags);
	x->done += UINT_MAX/2;
	__wake_up_common(&x->wait, TASK_UNINTERRUPTIBLE | TASK_INTERRUPTIBLE,
			 0, 0, NULL);
	spin_unlock_irqrestore(&x->wait.lock, flags);
}
EXPORT_SYMBOL(complete_all);

3901 3902
static inline long __sched
do_wait_for_common(struct completion *x, long timeout, int state)
L
Linus Torvalds 已提交
3903 3904 3905 3906 3907 3908 3909
{
	if (!x->done) {
		DECLARE_WAITQUEUE(wait, current);

		wait.flags |= WQ_FLAG_EXCLUSIVE;
		__add_wait_queue_tail(&x->wait, &wait);
		do {
3910 3911 3912 3913 3914 3915
			if (state == TASK_INTERRUPTIBLE &&
			    signal_pending(current)) {
				__remove_wait_queue(&x->wait, &wait);
				return -ERESTARTSYS;
			}
			__set_current_state(state);
L
Linus Torvalds 已提交
3916 3917 3918 3919 3920
			spin_unlock_irq(&x->wait.lock);
			timeout = schedule_timeout(timeout);
			spin_lock_irq(&x->wait.lock);
			if (!timeout) {
				__remove_wait_queue(&x->wait, &wait);
3921
				return timeout;
L
Linus Torvalds 已提交
3922 3923 3924 3925 3926 3927 3928 3929
			}
		} while (!x->done);
		__remove_wait_queue(&x->wait, &wait);
	}
	x->done--;
	return timeout;
}

3930 3931
static long __sched
wait_for_common(struct completion *x, long timeout, int state)
L
Linus Torvalds 已提交
3932 3933 3934 3935
{
	might_sleep();

	spin_lock_irq(&x->wait.lock);
3936
	timeout = do_wait_for_common(x, timeout, state);
L
Linus Torvalds 已提交
3937
	spin_unlock_irq(&x->wait.lock);
3938 3939
	return timeout;
}
L
Linus Torvalds 已提交
3940

3941
void __sched wait_for_completion(struct completion *x)
3942 3943
{
	wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
L
Linus Torvalds 已提交
3944
}
3945
EXPORT_SYMBOL(wait_for_completion);
L
Linus Torvalds 已提交
3946

3947
unsigned long __sched
3948
wait_for_completion_timeout(struct completion *x, unsigned long timeout)
L
Linus Torvalds 已提交
3949
{
3950
	return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
L
Linus Torvalds 已提交
3951
}
3952
EXPORT_SYMBOL(wait_for_completion_timeout);
L
Linus Torvalds 已提交
3953

3954
int __sched wait_for_completion_interruptible(struct completion *x)
I
Ingo Molnar 已提交
3955
{
3956 3957 3958 3959
	long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
	if (t == -ERESTARTSYS)
		return t;
	return 0;
I
Ingo Molnar 已提交
3960
}
3961
EXPORT_SYMBOL(wait_for_completion_interruptible);
L
Linus Torvalds 已提交
3962

3963
unsigned long __sched
3964 3965
wait_for_completion_interruptible_timeout(struct completion *x,
					  unsigned long timeout)
I
Ingo Molnar 已提交
3966
{
3967
	return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
I
Ingo Molnar 已提交
3968
}
3969
EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
L
Linus Torvalds 已提交
3970

3971 3972
static long __sched
sleep_on_common(wait_queue_head_t *q, int state, long timeout)
L
Linus Torvalds 已提交
3973
{
I
Ingo Molnar 已提交
3974 3975 3976 3977
	unsigned long flags;
	wait_queue_t wait;

	init_waitqueue_entry(&wait, current);
L
Linus Torvalds 已提交
3978

3979
	__set_current_state(state);
L
Linus Torvalds 已提交
3980

3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994
	spin_lock_irqsave(&q->lock, flags);
	__add_wait_queue(q, &wait);
	spin_unlock(&q->lock);
	timeout = schedule_timeout(timeout);
	spin_lock_irq(&q->lock);
	__remove_wait_queue(q, &wait);
	spin_unlock_irqrestore(&q->lock, flags);

	return timeout;
}

void __sched interruptible_sleep_on(wait_queue_head_t *q)
{
	sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
L
Linus Torvalds 已提交
3995 3996 3997
}
EXPORT_SYMBOL(interruptible_sleep_on);

I
Ingo Molnar 已提交
3998
long __sched
I
Ingo Molnar 已提交
3999
interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
L
Linus Torvalds 已提交
4000
{
4001
	return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
L
Linus Torvalds 已提交
4002 4003 4004
}
EXPORT_SYMBOL(interruptible_sleep_on_timeout);

I
Ingo Molnar 已提交
4005
void __sched sleep_on(wait_queue_head_t *q)
L
Linus Torvalds 已提交
4006
{
4007
	sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
L
Linus Torvalds 已提交
4008 4009 4010
}
EXPORT_SYMBOL(sleep_on);

I
Ingo Molnar 已提交
4011
long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
L
Linus Torvalds 已提交
4012
{
4013
	return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
L
Linus Torvalds 已提交
4014 4015 4016
}
EXPORT_SYMBOL(sleep_on_timeout);

4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028
#ifdef CONFIG_RT_MUTEXES

/*
 * rt_mutex_setprio - set the current priority of a task
 * @p: task
 * @prio: prio value (kernel-internal form)
 *
 * This function changes the 'effective' priority of a task. It does
 * not touch ->normal_prio like __setscheduler().
 *
 * Used by the rt_mutex code to implement priority inheritance logic.
 */
4029
void rt_mutex_setprio(struct task_struct *p, int prio)
4030 4031
{
	unsigned long flags;
4032
	int oldprio, on_rq, running;
4033
	struct rq *rq;
4034
	const struct sched_class *prev_class = p->sched_class;
4035 4036 4037 4038

	BUG_ON(prio < 0 || prio > MAX_PRIO);

	rq = task_rq_lock(p, &flags);
I
Ingo Molnar 已提交
4039
	update_rq_clock(rq);
4040

4041
	oldprio = p->prio;
I
Ingo Molnar 已提交
4042
	on_rq = p->se.on_rq;
4043
	running = task_current(rq, p);
4044
	if (on_rq) {
4045
		dequeue_task(rq, p, 0);
4046 4047 4048
		if (running)
			p->sched_class->put_prev_task(rq, p);
	}
I
Ingo Molnar 已提交
4049 4050 4051 4052 4053 4054

	if (rt_prio(prio))
		p->sched_class = &rt_sched_class;
	else
		p->sched_class = &fair_sched_class;

4055 4056
	p->prio = prio;

I
Ingo Molnar 已提交
4057
	if (on_rq) {
4058 4059
		if (running)
			p->sched_class->set_curr_task(rq);
4060

4061
		enqueue_task(rq, p, 0);
4062 4063

		check_class_changed(rq, p, prev_class, oldprio, running);
4064 4065 4066 4067 4068 4069
	}
	task_rq_unlock(rq, &flags);
}

#endif

4070
void set_user_nice(struct task_struct *p, long nice)
L
Linus Torvalds 已提交
4071
{
I
Ingo Molnar 已提交
4072
	int old_prio, delta, on_rq;
L
Linus Torvalds 已提交
4073
	unsigned long flags;
4074
	struct rq *rq;
L
Linus Torvalds 已提交
4075 4076 4077 4078 4079 4080 4081 4082

	if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
		return;
	/*
	 * We have to be careful, if called from sys_setpriority(),
	 * the task might be in the middle of scheduling on another CPU.
	 */
	rq = task_rq_lock(p, &flags);
I
Ingo Molnar 已提交
4083
	update_rq_clock(rq);
L
Linus Torvalds 已提交
4084 4085 4086 4087
	/*
	 * The RT priorities are set via sched_setscheduler(), but we still
	 * allow the 'normal' nice value to be set - but as expected
	 * it wont have any effect on scheduling until the task is
I
Ingo Molnar 已提交
4088
	 * SCHED_FIFO/SCHED_RR:
L
Linus Torvalds 已提交
4089
	 */
4090
	if (task_has_rt_policy(p)) {
L
Linus Torvalds 已提交
4091 4092 4093
		p->static_prio = NICE_TO_PRIO(nice);
		goto out_unlock;
	}
I
Ingo Molnar 已提交
4094
	on_rq = p->se.on_rq;
4095
	if (on_rq)
4096
		dequeue_task(rq, p, 0);
L
Linus Torvalds 已提交
4097 4098

	p->static_prio = NICE_TO_PRIO(nice);
4099
	set_load_weight(p);
4100 4101 4102
	old_prio = p->prio;
	p->prio = effective_prio(p);
	delta = p->prio - old_prio;
L
Linus Torvalds 已提交
4103

I
Ingo Molnar 已提交
4104
	if (on_rq) {
4105
		enqueue_task(rq, p, 0);
L
Linus Torvalds 已提交
4106
		/*
4107 4108
		 * If the task increased its priority or is running and
		 * lowered its priority, then reschedule its CPU:
L
Linus Torvalds 已提交
4109
		 */
4110
		if (delta < 0 || (delta > 0 && task_running(rq, p)))
L
Linus Torvalds 已提交
4111 4112 4113 4114 4115 4116 4117
			resched_task(rq->curr);
	}
out_unlock:
	task_rq_unlock(rq, &flags);
}
EXPORT_SYMBOL(set_user_nice);

M
Matt Mackall 已提交
4118 4119 4120 4121 4122
/*
 * can_nice - check if a task can reduce its nice value
 * @p: task
 * @nice: nice value
 */
4123
int can_nice(const struct task_struct *p, const int nice)
M
Matt Mackall 已提交
4124
{
4125 4126
	/* convert nice value [19,-20] to rlimit style value [1,40] */
	int nice_rlim = 20 - nice;
4127

M
Matt Mackall 已提交
4128 4129 4130 4131
	return (nice_rlim <= p->signal->rlim[RLIMIT_NICE].rlim_cur ||
		capable(CAP_SYS_NICE));
}

L
Linus Torvalds 已提交
4132 4133 4134 4135 4136 4137 4138 4139 4140 4141 4142
#ifdef __ARCH_WANT_SYS_NICE

/*
 * sys_nice - change the priority of the current process.
 * @increment: priority increment
 *
 * sys_setpriority is a more generic, but much slower function that
 * does similar things.
 */
asmlinkage long sys_nice(int increment)
{
4143
	long nice, retval;
L
Linus Torvalds 已提交
4144 4145 4146 4147 4148 4149

	/*
	 * Setpriority might change our priority at the same moment.
	 * We don't have to worry. Conceptually one call occurs first
	 * and we have a single winner.
	 */
M
Matt Mackall 已提交
4150 4151
	if (increment < -40)
		increment = -40;
L
Linus Torvalds 已提交
4152 4153 4154 4155 4156 4157 4158 4159 4160
	if (increment > 40)
		increment = 40;

	nice = PRIO_TO_NICE(current->static_prio) + increment;
	if (nice < -20)
		nice = -20;
	if (nice > 19)
		nice = 19;

M
Matt Mackall 已提交
4161 4162 4163
	if (increment < 0 && !can_nice(current, nice))
		return -EPERM;

L
Linus Torvalds 已提交
4164 4165 4166 4167 4168 4169 4170 4171 4172 4173 4174 4175 4176 4177 4178 4179 4180 4181
	retval = security_task_setnice(current, nice);
	if (retval)
		return retval;

	set_user_nice(current, nice);
	return 0;
}

#endif

/**
 * task_prio - return the priority value of a given task.
 * @p: the task in question.
 *
 * This is the priority value as seen by users in /proc.
 * RT tasks are offset by -200. Normal tasks are centered
 * around 0, value goes from -16 to +15.
 */
4182
int task_prio(const struct task_struct *p)
L
Linus Torvalds 已提交
4183 4184 4185 4186 4187 4188 4189 4190
{
	return p->prio - MAX_RT_PRIO;
}

/**
 * task_nice - return the nice value of a given task.
 * @p: the task in question.
 */
4191
int task_nice(const struct task_struct *p)
L
Linus Torvalds 已提交
4192 4193 4194 4195 4196 4197 4198 4199 4200 4201 4202 4203 4204 4205 4206 4207 4208 4209
{
	return TASK_NICE(p);
}
EXPORT_SYMBOL_GPL(task_nice);

/**
 * idle_cpu - is a given cpu idle currently?
 * @cpu: the processor in question.
 */
int idle_cpu(int cpu)
{
	return cpu_curr(cpu) == cpu_rq(cpu)->idle;
}

/**
 * idle_task - return the idle task for a given cpu.
 * @cpu: the processor in question.
 */
4210
struct task_struct *idle_task(int cpu)
L
Linus Torvalds 已提交
4211 4212 4213 4214 4215 4216 4217 4218
{
	return cpu_rq(cpu)->idle;
}

/**
 * find_process_by_pid - find a process with a matching PID value.
 * @pid: the pid in question.
 */
A
Alexey Dobriyan 已提交
4219
static struct task_struct *find_process_by_pid(pid_t pid)
L
Linus Torvalds 已提交
4220
{
4221
	return pid ? find_task_by_vpid(pid) : current;
L
Linus Torvalds 已提交
4222 4223 4224
}

/* Actually do priority change: must hold rq lock. */
I
Ingo Molnar 已提交
4225 4226
static void
__setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
L
Linus Torvalds 已提交
4227
{
I
Ingo Molnar 已提交
4228
	BUG_ON(p->se.on_rq);
4229

L
Linus Torvalds 已提交
4230
	p->policy = policy;
I
Ingo Molnar 已提交
4231 4232 4233 4234 4235 4236 4237 4238 4239 4240 4241 4242
	switch (p->policy) {
	case SCHED_NORMAL:
	case SCHED_BATCH:
	case SCHED_IDLE:
		p->sched_class = &fair_sched_class;
		break;
	case SCHED_FIFO:
	case SCHED_RR:
		p->sched_class = &rt_sched_class;
		break;
	}

L
Linus Torvalds 已提交
4243
	p->rt_priority = prio;
4244 4245 4246
	p->normal_prio = normal_prio(p);
	/* we are holding p->pi_lock already */
	p->prio = rt_mutex_getprio(p);
4247
	set_load_weight(p);
L
Linus Torvalds 已提交
4248 4249 4250
}

/**
4251
 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
L
Linus Torvalds 已提交
4252 4253 4254
 * @p: the task in question.
 * @policy: new policy.
 * @param: structure containing the new RT priority.
4255
 *
4256
 * NOTE that the task may be already dead.
L
Linus Torvalds 已提交
4257
 */
I
Ingo Molnar 已提交
4258 4259
int sched_setscheduler(struct task_struct *p, int policy,
		       struct sched_param *param)
L
Linus Torvalds 已提交
4260
{
4261
	int retval, oldprio, oldpolicy = -1, on_rq, running;
L
Linus Torvalds 已提交
4262
	unsigned long flags;
4263
	const struct sched_class *prev_class = p->sched_class;
4264
	struct rq *rq;
L
Linus Torvalds 已提交
4265

4266 4267
	/* may grab non-irq protected spin_locks */
	BUG_ON(in_interrupt());
L
Linus Torvalds 已提交
4268 4269 4270 4271 4272
recheck:
	/* double check policy once rq lock held */
	if (policy < 0)
		policy = oldpolicy = p->policy;
	else if (policy != SCHED_FIFO && policy != SCHED_RR &&
I
Ingo Molnar 已提交
4273 4274
			policy != SCHED_NORMAL && policy != SCHED_BATCH &&
			policy != SCHED_IDLE)
4275
		return -EINVAL;
L
Linus Torvalds 已提交
4276 4277
	/*
	 * Valid priorities for SCHED_FIFO and SCHED_RR are
I
Ingo Molnar 已提交
4278 4279
	 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
	 * SCHED_BATCH and SCHED_IDLE is 0.
L
Linus Torvalds 已提交
4280 4281
	 */
	if (param->sched_priority < 0 ||
I
Ingo Molnar 已提交
4282
	    (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
4283
	    (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
L
Linus Torvalds 已提交
4284
		return -EINVAL;
4285
	if (rt_policy(policy) != (param->sched_priority != 0))
L
Linus Torvalds 已提交
4286 4287
		return -EINVAL;

4288 4289 4290 4291
	/*
	 * Allow unprivileged RT tasks to decrease priority:
	 */
	if (!capable(CAP_SYS_NICE)) {
4292
		if (rt_policy(policy)) {
4293 4294 4295 4296 4297 4298 4299 4300 4301 4302 4303 4304 4305 4306 4307 4308
			unsigned long rlim_rtprio;

			if (!lock_task_sighand(p, &flags))
				return -ESRCH;
			rlim_rtprio = p->signal->rlim[RLIMIT_RTPRIO].rlim_cur;
			unlock_task_sighand(p, &flags);

			/* can't set/change the rt policy */
			if (policy != p->policy && !rlim_rtprio)
				return -EPERM;

			/* can't increase priority */
			if (param->sched_priority > p->rt_priority &&
			    param->sched_priority > rlim_rtprio)
				return -EPERM;
		}
I
Ingo Molnar 已提交
4309 4310 4311 4312 4313 4314
		/*
		 * Like positive nice levels, dont allow tasks to
		 * move out of SCHED_IDLE either:
		 */
		if (p->policy == SCHED_IDLE && policy != SCHED_IDLE)
			return -EPERM;
4315

4316 4317 4318 4319 4320
		/* can't change other user's priorities */
		if ((current->euid != p->euid) &&
		    (current->euid != p->uid))
			return -EPERM;
	}
L
Linus Torvalds 已提交
4321 4322 4323 4324

	retval = security_task_setscheduler(p, policy, param);
	if (retval)
		return retval;
4325 4326 4327 4328 4329
	/*
	 * make sure no PI-waiters arrive (or leave) while we are
	 * changing the priority of the task:
	 */
	spin_lock_irqsave(&p->pi_lock, flags);
L
Linus Torvalds 已提交
4330 4331 4332 4333
	/*
	 * To be able to change p->policy safely, the apropriate
	 * runqueue lock must be held.
	 */
4334
	rq = __task_rq_lock(p);
L
Linus Torvalds 已提交
4335 4336 4337
	/* recheck policy now with rq lock held */
	if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
		policy = oldpolicy = -1;
4338 4339
		__task_rq_unlock(rq);
		spin_unlock_irqrestore(&p->pi_lock, flags);
L
Linus Torvalds 已提交
4340 4341
		goto recheck;
	}
I
Ingo Molnar 已提交
4342
	update_rq_clock(rq);
I
Ingo Molnar 已提交
4343
	on_rq = p->se.on_rq;
4344
	running = task_current(rq, p);
4345
	if (on_rq) {
4346
		deactivate_task(rq, p, 0);
4347 4348 4349
		if (running)
			p->sched_class->put_prev_task(rq, p);
	}
4350

L
Linus Torvalds 已提交
4351
	oldprio = p->prio;
I
Ingo Molnar 已提交
4352
	__setscheduler(rq, p, policy, param->sched_priority);
4353

I
Ingo Molnar 已提交
4354
	if (on_rq) {
4355 4356
		if (running)
			p->sched_class->set_curr_task(rq);
4357

I
Ingo Molnar 已提交
4358
		activate_task(rq, p, 0);
4359 4360

		check_class_changed(rq, p, prev_class, oldprio, running);
L
Linus Torvalds 已提交
4361
	}
4362 4363 4364
	__task_rq_unlock(rq);
	spin_unlock_irqrestore(&p->pi_lock, flags);

4365 4366
	rt_mutex_adjust_pi(p);

L
Linus Torvalds 已提交
4367 4368 4369 4370
	return 0;
}
EXPORT_SYMBOL_GPL(sched_setscheduler);

I
Ingo Molnar 已提交
4371 4372
static int
do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
L
Linus Torvalds 已提交
4373 4374 4375
{
	struct sched_param lparam;
	struct task_struct *p;
4376
	int retval;
L
Linus Torvalds 已提交
4377 4378 4379 4380 4381

	if (!param || pid < 0)
		return -EINVAL;
	if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
		return -EFAULT;
4382 4383 4384

	rcu_read_lock();
	retval = -ESRCH;
L
Linus Torvalds 已提交
4385
	p = find_process_by_pid(pid);
4386 4387 4388
	if (p != NULL)
		retval = sched_setscheduler(p, policy, &lparam);
	rcu_read_unlock();
4389

L
Linus Torvalds 已提交
4390 4391 4392 4393 4394 4395 4396 4397 4398
	return retval;
}

/**
 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
 * @pid: the pid in question.
 * @policy: new policy.
 * @param: structure containing the new RT priority.
 */
I
Ingo Molnar 已提交
4399 4400
asmlinkage long
sys_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
L
Linus Torvalds 已提交
4401
{
4402 4403 4404 4405
	/* negative values for policy are not valid */
	if (policy < 0)
		return -EINVAL;

L
Linus Torvalds 已提交
4406 4407 4408 4409 4410 4411 4412 4413 4414 4415 4416 4417 4418 4419 4420 4421 4422 4423 4424
	return do_sched_setscheduler(pid, policy, param);
}

/**
 * sys_sched_setparam - set/change the RT priority of a thread
 * @pid: the pid in question.
 * @param: structure containing the new RT priority.
 */
asmlinkage long sys_sched_setparam(pid_t pid, struct sched_param __user *param)
{
	return do_sched_setscheduler(pid, -1, param);
}

/**
 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
 * @pid: the pid in question.
 */
asmlinkage long sys_sched_getscheduler(pid_t pid)
{
4425
	struct task_struct *p;
4426
	int retval;
L
Linus Torvalds 已提交
4427 4428

	if (pid < 0)
4429
		return -EINVAL;
L
Linus Torvalds 已提交
4430 4431 4432 4433 4434 4435 4436 4437 4438 4439 4440 4441 4442 4443 4444 4445 4446 4447 4448 4449 4450

	retval = -ESRCH;
	read_lock(&tasklist_lock);
	p = find_process_by_pid(pid);
	if (p) {
		retval = security_task_getscheduler(p);
		if (!retval)
			retval = p->policy;
	}
	read_unlock(&tasklist_lock);
	return retval;
}

/**
 * sys_sched_getscheduler - get the RT priority of a thread
 * @pid: the pid in question.
 * @param: structure containing the RT priority.
 */
asmlinkage long sys_sched_getparam(pid_t pid, struct sched_param __user *param)
{
	struct sched_param lp;
4451
	struct task_struct *p;
4452
	int retval;
L
Linus Torvalds 已提交
4453 4454

	if (!param || pid < 0)
4455
		return -EINVAL;
L
Linus Torvalds 已提交
4456 4457 4458 4459 4460 4461 4462 4463 4464 4465 4466 4467 4468 4469 4470 4471 4472 4473 4474 4475 4476 4477 4478 4479 4480 4481 4482 4483 4484

	read_lock(&tasklist_lock);
	p = find_process_by_pid(pid);
	retval = -ESRCH;
	if (!p)
		goto out_unlock;

	retval = security_task_getscheduler(p);
	if (retval)
		goto out_unlock;

	lp.sched_priority = p->rt_priority;
	read_unlock(&tasklist_lock);

	/*
	 * This one might sleep, we cannot do it with a spinlock held ...
	 */
	retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;

	return retval;

out_unlock:
	read_unlock(&tasklist_lock);
	return retval;
}

long sched_setaffinity(pid_t pid, cpumask_t new_mask)
{
	cpumask_t cpus_allowed;
4485 4486
	struct task_struct *p;
	int retval;
L
Linus Torvalds 已提交
4487

4488
	get_online_cpus();
L
Linus Torvalds 已提交
4489 4490 4491 4492 4493
	read_lock(&tasklist_lock);

	p = find_process_by_pid(pid);
	if (!p) {
		read_unlock(&tasklist_lock);
4494
		put_online_cpus();
L
Linus Torvalds 已提交
4495 4496 4497 4498 4499
		return -ESRCH;
	}

	/*
	 * It is not safe to call set_cpus_allowed with the
I
Ingo Molnar 已提交
4500
	 * tasklist_lock held. We will bump the task_struct's
L
Linus Torvalds 已提交
4501 4502 4503 4504 4505 4506 4507 4508 4509 4510
	 * usage count and then drop tasklist_lock.
	 */
	get_task_struct(p);
	read_unlock(&tasklist_lock);

	retval = -EPERM;
	if ((current->euid != p->euid) && (current->euid != p->uid) &&
			!capable(CAP_SYS_NICE))
		goto out_unlock;

4511 4512 4513 4514
	retval = security_task_setscheduler(p, 0, NULL);
	if (retval)
		goto out_unlock;

L
Linus Torvalds 已提交
4515 4516
	cpus_allowed = cpuset_cpus_allowed(p);
	cpus_and(new_mask, new_mask, cpus_allowed);
P
Paul Menage 已提交
4517
 again:
L
Linus Torvalds 已提交
4518 4519
	retval = set_cpus_allowed(p, new_mask);

P
Paul Menage 已提交
4520 4521 4522 4523 4524 4525 4526 4527 4528 4529 4530 4531
	if (!retval) {
		cpus_allowed = cpuset_cpus_allowed(p);
		if (!cpus_subset(new_mask, cpus_allowed)) {
			/*
			 * We must have raced with a concurrent cpuset
			 * update. Just reset the cpus_allowed to the
			 * cpuset's cpus_allowed
			 */
			new_mask = cpus_allowed;
			goto again;
		}
	}
L
Linus Torvalds 已提交
4532 4533
out_unlock:
	put_task_struct(p);
4534
	put_online_cpus();
L
Linus Torvalds 已提交
4535 4536 4537 4538 4539 4540 4541 4542 4543 4544 4545 4546 4547 4548 4549 4550 4551 4552 4553 4554 4555 4556 4557 4558 4559 4560 4561 4562 4563 4564 4565 4566 4567 4568 4569 4570 4571 4572 4573 4574
	return retval;
}

static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
			     cpumask_t *new_mask)
{
	if (len < sizeof(cpumask_t)) {
		memset(new_mask, 0, sizeof(cpumask_t));
	} else if (len > sizeof(cpumask_t)) {
		len = sizeof(cpumask_t);
	}
	return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
}

/**
 * sys_sched_setaffinity - set the cpu affinity of a process
 * @pid: pid of the process
 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
 * @user_mask_ptr: user-space pointer to the new cpu mask
 */
asmlinkage long sys_sched_setaffinity(pid_t pid, unsigned int len,
				      unsigned long __user *user_mask_ptr)
{
	cpumask_t new_mask;
	int retval;

	retval = get_user_cpu_mask(user_mask_ptr, len, &new_mask);
	if (retval)
		return retval;

	return sched_setaffinity(pid, new_mask);
}

/*
 * Represents all cpu's present in the system
 * In systems capable of hotplug, this map could dynamically grow
 * as new cpu's are detected in the system via any platform specific
 * method, such as ACPI for e.g.
 */

4575
cpumask_t cpu_present_map __read_mostly;
L
Linus Torvalds 已提交
4576 4577 4578
EXPORT_SYMBOL(cpu_present_map);

#ifndef CONFIG_SMP
4579
cpumask_t cpu_online_map __read_mostly = CPU_MASK_ALL;
4580 4581
EXPORT_SYMBOL(cpu_online_map);

4582
cpumask_t cpu_possible_map __read_mostly = CPU_MASK_ALL;
4583
EXPORT_SYMBOL(cpu_possible_map);
L
Linus Torvalds 已提交
4584 4585 4586 4587
#endif

long sched_getaffinity(pid_t pid, cpumask_t *mask)
{
4588
	struct task_struct *p;
L
Linus Torvalds 已提交
4589 4590
	int retval;

4591
	get_online_cpus();
L
Linus Torvalds 已提交
4592 4593 4594 4595 4596 4597 4598
	read_lock(&tasklist_lock);

	retval = -ESRCH;
	p = find_process_by_pid(pid);
	if (!p)
		goto out_unlock;

4599 4600 4601 4602
	retval = security_task_getscheduler(p);
	if (retval)
		goto out_unlock;

4603
	cpus_and(*mask, p->cpus_allowed, cpu_online_map);
L
Linus Torvalds 已提交
4604 4605 4606

out_unlock:
	read_unlock(&tasklist_lock);
4607
	put_online_cpus();
L
Linus Torvalds 已提交
4608

4609
	return retval;
L
Linus Torvalds 已提交
4610 4611 4612 4613 4614 4615 4616 4617 4618 4619 4620 4621 4622 4623 4624 4625 4626 4627 4628 4629 4630 4631 4632 4633 4634 4635 4636 4637 4638 4639
}

/**
 * sys_sched_getaffinity - get the cpu affinity of a process
 * @pid: pid of the process
 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
 * @user_mask_ptr: user-space pointer to hold the current cpu mask
 */
asmlinkage long sys_sched_getaffinity(pid_t pid, unsigned int len,
				      unsigned long __user *user_mask_ptr)
{
	int ret;
	cpumask_t mask;

	if (len < sizeof(cpumask_t))
		return -EINVAL;

	ret = sched_getaffinity(pid, &mask);
	if (ret < 0)
		return ret;

	if (copy_to_user(user_mask_ptr, &mask, sizeof(cpumask_t)))
		return -EFAULT;

	return sizeof(cpumask_t);
}

/**
 * sys_sched_yield - yield the current processor to other threads.
 *
I
Ingo Molnar 已提交
4640 4641
 * This function yields the current CPU to other tasks. If there are no
 * other threads running on this CPU then this function will return.
L
Linus Torvalds 已提交
4642 4643 4644
 */
asmlinkage long sys_sched_yield(void)
{
4645
	struct rq *rq = this_rq_lock();
L
Linus Torvalds 已提交
4646

4647
	schedstat_inc(rq, yld_count);
4648
	current->sched_class->yield_task(rq);
L
Linus Torvalds 已提交
4649 4650 4651 4652 4653 4654

	/*
	 * Since we are going to call schedule() anyway, there's
	 * no need to preempt or enable interrupts:
	 */
	__release(rq->lock);
4655
	spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
L
Linus Torvalds 已提交
4656 4657 4658 4659 4660 4661 4662 4663
	_raw_spin_unlock(&rq->lock);
	preempt_enable_no_resched();

	schedule();

	return 0;
}

A
Andrew Morton 已提交
4664
static void __cond_resched(void)
L
Linus Torvalds 已提交
4665
{
4666 4667 4668
#ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
	__might_sleep(__FILE__, __LINE__);
#endif
4669 4670 4671 4672 4673
	/*
	 * The BKS might be reacquired before we have dropped
	 * PREEMPT_ACTIVE, which could trigger a second
	 * cond_resched() call.
	 */
L
Linus Torvalds 已提交
4674 4675 4676 4677 4678 4679 4680 4681 4682
	do {
		add_preempt_count(PREEMPT_ACTIVE);
		schedule();
		sub_preempt_count(PREEMPT_ACTIVE);
	} while (need_resched());
}

int __sched cond_resched(void)
{
4683 4684
	if (need_resched() && !(preempt_count() & PREEMPT_ACTIVE) &&
					system_state == SYSTEM_RUNNING) {
L
Linus Torvalds 已提交
4685 4686 4687 4688 4689 4690 4691 4692 4693 4694 4695
		__cond_resched();
		return 1;
	}
	return 0;
}
EXPORT_SYMBOL(cond_resched);

/*
 * cond_resched_lock() - if a reschedule is pending, drop the given lock,
 * call schedule, and on return reacquire the lock.
 *
I
Ingo Molnar 已提交
4696
 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
L
Linus Torvalds 已提交
4697 4698 4699
 * operations here to prevent schedule() from being called twice (once via
 * spin_unlock(), once by hand).
 */
I
Ingo Molnar 已提交
4700
int cond_resched_lock(spinlock_t *lock)
L
Linus Torvalds 已提交
4701
{
J
Jan Kara 已提交
4702 4703
	int ret = 0;

L
Linus Torvalds 已提交
4704 4705 4706
	if (need_lockbreak(lock)) {
		spin_unlock(lock);
		cpu_relax();
J
Jan Kara 已提交
4707
		ret = 1;
L
Linus Torvalds 已提交
4708 4709
		spin_lock(lock);
	}
4710
	if (need_resched() && system_state == SYSTEM_RUNNING) {
4711
		spin_release(&lock->dep_map, 1, _THIS_IP_);
L
Linus Torvalds 已提交
4712 4713 4714
		_raw_spin_unlock(lock);
		preempt_enable_no_resched();
		__cond_resched();
J
Jan Kara 已提交
4715
		ret = 1;
L
Linus Torvalds 已提交
4716 4717
		spin_lock(lock);
	}
J
Jan Kara 已提交
4718
	return ret;
L
Linus Torvalds 已提交
4719 4720 4721 4722 4723 4724 4725
}
EXPORT_SYMBOL(cond_resched_lock);

int __sched cond_resched_softirq(void)
{
	BUG_ON(!in_softirq());

4726
	if (need_resched() && system_state == SYSTEM_RUNNING) {
4727
		local_bh_enable();
L
Linus Torvalds 已提交
4728 4729 4730 4731 4732 4733 4734 4735 4736 4737 4738
		__cond_resched();
		local_bh_disable();
		return 1;
	}
	return 0;
}
EXPORT_SYMBOL(cond_resched_softirq);

/**
 * yield - yield the current processor to other threads.
 *
4739
 * This is a shortcut for kernel-space yielding - it marks the
L
Linus Torvalds 已提交
4740 4741 4742 4743 4744 4745 4746 4747 4748 4749
 * thread runnable and calls sys_sched_yield().
 */
void __sched yield(void)
{
	set_current_state(TASK_RUNNING);
	sys_sched_yield();
}
EXPORT_SYMBOL(yield);

/*
I
Ingo Molnar 已提交
4750
 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
L
Linus Torvalds 已提交
4751 4752 4753 4754 4755 4756 4757
 * that process accounting knows that this is a task in IO wait state.
 *
 * But don't do that if it is a deliberate, throttling IO wait (this task
 * has set its backing_dev_info: the queue against which it should throttle)
 */
void __sched io_schedule(void)
{
4758
	struct rq *rq = &__raw_get_cpu_var(runqueues);
L
Linus Torvalds 已提交
4759

4760
	delayacct_blkio_start();
L
Linus Torvalds 已提交
4761 4762 4763
	atomic_inc(&rq->nr_iowait);
	schedule();
	atomic_dec(&rq->nr_iowait);
4764
	delayacct_blkio_end();
L
Linus Torvalds 已提交
4765 4766 4767 4768 4769
}
EXPORT_SYMBOL(io_schedule);

long __sched io_schedule_timeout(long timeout)
{
4770
	struct rq *rq = &__raw_get_cpu_var(runqueues);
L
Linus Torvalds 已提交
4771 4772
	long ret;

4773
	delayacct_blkio_start();
L
Linus Torvalds 已提交
4774 4775 4776
	atomic_inc(&rq->nr_iowait);
	ret = schedule_timeout(timeout);
	atomic_dec(&rq->nr_iowait);
4777
	delayacct_blkio_end();
L
Linus Torvalds 已提交
4778 4779 4780 4781 4782 4783 4784 4785 4786 4787 4788 4789 4790 4791 4792 4793 4794 4795 4796 4797
	return ret;
}

/**
 * sys_sched_get_priority_max - return maximum RT priority.
 * @policy: scheduling class.
 *
 * this syscall returns the maximum rt_priority that can be used
 * by a given scheduling class.
 */
asmlinkage long sys_sched_get_priority_max(int policy)
{
	int ret = -EINVAL;

	switch (policy) {
	case SCHED_FIFO:
	case SCHED_RR:
		ret = MAX_USER_RT_PRIO-1;
		break;
	case SCHED_NORMAL:
4798
	case SCHED_BATCH:
I
Ingo Molnar 已提交
4799
	case SCHED_IDLE:
L
Linus Torvalds 已提交
4800 4801 4802 4803 4804 4805 4806 4807 4808 4809 4810 4811 4812 4813 4814 4815 4816 4817 4818 4819 4820 4821 4822
		ret = 0;
		break;
	}
	return ret;
}

/**
 * sys_sched_get_priority_min - return minimum RT priority.
 * @policy: scheduling class.
 *
 * this syscall returns the minimum rt_priority that can be used
 * by a given scheduling class.
 */
asmlinkage long sys_sched_get_priority_min(int policy)
{
	int ret = -EINVAL;

	switch (policy) {
	case SCHED_FIFO:
	case SCHED_RR:
		ret = 1;
		break;
	case SCHED_NORMAL:
4823
	case SCHED_BATCH:
I
Ingo Molnar 已提交
4824
	case SCHED_IDLE:
L
Linus Torvalds 已提交
4825 4826 4827 4828 4829 4830 4831 4832 4833 4834 4835 4836 4837 4838 4839 4840
		ret = 0;
	}
	return ret;
}

/**
 * sys_sched_rr_get_interval - return the default timeslice of a process.
 * @pid: pid of the process.
 * @interval: userspace pointer to the timeslice value.
 *
 * this syscall writes the default timeslice value of a given process
 * into the user-space timespec buffer. A value of '0' means infinity.
 */
asmlinkage
long sys_sched_rr_get_interval(pid_t pid, struct timespec __user *interval)
{
4841
	struct task_struct *p;
D
Dmitry Adamushko 已提交
4842
	unsigned int time_slice;
4843
	int retval;
L
Linus Torvalds 已提交
4844 4845 4846
	struct timespec t;

	if (pid < 0)
4847
		return -EINVAL;
L
Linus Torvalds 已提交
4848 4849 4850 4851 4852 4853 4854 4855 4856 4857 4858

	retval = -ESRCH;
	read_lock(&tasklist_lock);
	p = find_process_by_pid(pid);
	if (!p)
		goto out_unlock;

	retval = security_task_getscheduler(p);
	if (retval)
		goto out_unlock;

4859 4860 4861 4862 4863 4864
	/*
	 * Time slice is 0 for SCHED_FIFO tasks and for SCHED_OTHER
	 * tasks that are on an otherwise idle runqueue:
	 */
	time_slice = 0;
	if (p->policy == SCHED_RR) {
D
Dmitry Adamushko 已提交
4865
		time_slice = DEF_TIMESLICE;
4866
	} else {
D
Dmitry Adamushko 已提交
4867 4868 4869 4870 4871
		struct sched_entity *se = &p->se;
		unsigned long flags;
		struct rq *rq;

		rq = task_rq_lock(p, &flags);
4872 4873
		if (rq->cfs.load.weight)
			time_slice = NS_TO_JIFFIES(sched_slice(&rq->cfs, se));
D
Dmitry Adamushko 已提交
4874 4875
		task_rq_unlock(rq, &flags);
	}
L
Linus Torvalds 已提交
4876
	read_unlock(&tasklist_lock);
D
Dmitry Adamushko 已提交
4877
	jiffies_to_timespec(time_slice, &t);
L
Linus Torvalds 已提交
4878 4879
	retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
	return retval;
4880

L
Linus Torvalds 已提交
4881 4882 4883 4884 4885
out_unlock:
	read_unlock(&tasklist_lock);
	return retval;
}

4886
static const char stat_nam[] = "RSDTtZX";
4887

4888
void sched_show_task(struct task_struct *p)
L
Linus Torvalds 已提交
4889 4890
{
	unsigned long free = 0;
4891
	unsigned state;
L
Linus Torvalds 已提交
4892 4893

	state = p->state ? __ffs(p->state) + 1 : 0;
I
Ingo Molnar 已提交
4894
	printk(KERN_INFO "%-13.13s %c", p->comm,
4895
		state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
4896
#if BITS_PER_LONG == 32
L
Linus Torvalds 已提交
4897
	if (state == TASK_RUNNING)
I
Ingo Molnar 已提交
4898
		printk(KERN_CONT " running  ");
L
Linus Torvalds 已提交
4899
	else
I
Ingo Molnar 已提交
4900
		printk(KERN_CONT " %08lx ", thread_saved_pc(p));
L
Linus Torvalds 已提交
4901 4902
#else
	if (state == TASK_RUNNING)
I
Ingo Molnar 已提交
4903
		printk(KERN_CONT "  running task    ");
L
Linus Torvalds 已提交
4904
	else
I
Ingo Molnar 已提交
4905
		printk(KERN_CONT " %016lx ", thread_saved_pc(p));
L
Linus Torvalds 已提交
4906 4907 4908
#endif
#ifdef CONFIG_DEBUG_STACK_USAGE
	{
4909
		unsigned long *n = end_of_stack(p);
L
Linus Torvalds 已提交
4910 4911
		while (!*n)
			n++;
4912
		free = (unsigned long)n - (unsigned long)end_of_stack(p);
L
Linus Torvalds 已提交
4913 4914
	}
#endif
4915
	printk(KERN_CONT "%5lu %5d %6d\n", free,
R
Roland McGrath 已提交
4916
		task_pid_nr(p), task_pid_nr(p->real_parent));
L
Linus Torvalds 已提交
4917 4918 4919 4920 4921

	if (state != TASK_RUNNING)
		show_stack(p, NULL);
}

I
Ingo Molnar 已提交
4922
void show_state_filter(unsigned long state_filter)
L
Linus Torvalds 已提交
4923
{
4924
	struct task_struct *g, *p;
L
Linus Torvalds 已提交
4925

4926 4927 4928
#if BITS_PER_LONG == 32
	printk(KERN_INFO
		"  task                PC stack   pid father\n");
L
Linus Torvalds 已提交
4929
#else
4930 4931
	printk(KERN_INFO
		"  task                        PC stack   pid father\n");
L
Linus Torvalds 已提交
4932 4933 4934 4935 4936 4937 4938 4939
#endif
	read_lock(&tasklist_lock);
	do_each_thread(g, p) {
		/*
		 * reset the NMI-timeout, listing all files on a slow
		 * console might take alot of time:
		 */
		touch_nmi_watchdog();
I
Ingo Molnar 已提交
4940
		if (!state_filter || (p->state & state_filter))
4941
			sched_show_task(p);
L
Linus Torvalds 已提交
4942 4943
	} while_each_thread(g, p);

4944 4945
	touch_all_softlockup_watchdogs();

I
Ingo Molnar 已提交
4946 4947 4948
#ifdef CONFIG_SCHED_DEBUG
	sysrq_sched_debug_show();
#endif
L
Linus Torvalds 已提交
4949
	read_unlock(&tasklist_lock);
I
Ingo Molnar 已提交
4950 4951 4952 4953 4954
	/*
	 * Only show locks if all tasks are dumped:
	 */
	if (state_filter == -1)
		debug_show_all_locks();
L
Linus Torvalds 已提交
4955 4956
}

I
Ingo Molnar 已提交
4957 4958
void __cpuinit init_idle_bootup_task(struct task_struct *idle)
{
I
Ingo Molnar 已提交
4959
	idle->sched_class = &idle_sched_class;
I
Ingo Molnar 已提交
4960 4961
}

4962 4963 4964 4965 4966 4967 4968 4969
/**
 * init_idle - set up an idle thread for a given CPU
 * @idle: task in question
 * @cpu: cpu the idle task belongs to
 *
 * NOTE: this function does not set the idle thread's NEED_RESCHED
 * flag, to make booting more robust.
 */
4970
void __cpuinit init_idle(struct task_struct *idle, int cpu)
L
Linus Torvalds 已提交
4971
{
4972
	struct rq *rq = cpu_rq(cpu);
L
Linus Torvalds 已提交
4973 4974
	unsigned long flags;

I
Ingo Molnar 已提交
4975 4976 4977
	__sched_fork(idle);
	idle->se.exec_start = sched_clock();

4978
	idle->prio = idle->normal_prio = MAX_PRIO;
L
Linus Torvalds 已提交
4979
	idle->cpus_allowed = cpumask_of_cpu(cpu);
I
Ingo Molnar 已提交
4980
	__set_task_cpu(idle, cpu);
L
Linus Torvalds 已提交
4981 4982 4983

	spin_lock_irqsave(&rq->lock, flags);
	rq->curr = rq->idle = idle;
4984 4985 4986
#if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
	idle->oncpu = 1;
#endif
L
Linus Torvalds 已提交
4987 4988 4989 4990
	spin_unlock_irqrestore(&rq->lock, flags);

	/* Set the preempt count _outside_ the spinlocks! */
#if defined(CONFIG_PREEMPT) && !defined(CONFIG_PREEMPT_BKL)
A
Al Viro 已提交
4991
	task_thread_info(idle)->preempt_count = (idle->lock_depth >= 0);
L
Linus Torvalds 已提交
4992
#else
A
Al Viro 已提交
4993
	task_thread_info(idle)->preempt_count = 0;
L
Linus Torvalds 已提交
4994
#endif
I
Ingo Molnar 已提交
4995 4996 4997 4998
	/*
	 * The idle tasks have their own, simple scheduling class:
	 */
	idle->sched_class = &idle_sched_class;
L
Linus Torvalds 已提交
4999 5000 5001 5002 5003 5004 5005 5006 5007 5008 5009
}

/*
 * In a system that switches off the HZ timer nohz_cpu_mask
 * indicates which cpus entered this state. This is used
 * in the rcu update to wait only for active cpus. For system
 * which do not switch off the HZ timer nohz_cpu_mask should
 * always be CPU_MASK_NONE.
 */
cpumask_t nohz_cpu_mask = CPU_MASK_NONE;

I
Ingo Molnar 已提交
5010 5011 5012 5013 5014 5015 5016 5017 5018 5019 5020 5021 5022 5023 5024 5025 5026 5027 5028 5029 5030 5031 5032 5033 5034 5035
/*
 * Increase the granularity value when there are more CPUs,
 * because with more CPUs the 'effective latency' as visible
 * to users decreases. But the relationship is not linear,
 * so pick a second-best guess by going with the log2 of the
 * number of CPUs.
 *
 * This idea comes from the SD scheduler of Con Kolivas:
 */
static inline void sched_init_granularity(void)
{
	unsigned int factor = 1 + ilog2(num_online_cpus());
	const unsigned long limit = 200000000;

	sysctl_sched_min_granularity *= factor;
	if (sysctl_sched_min_granularity > limit)
		sysctl_sched_min_granularity = limit;

	sysctl_sched_latency *= factor;
	if (sysctl_sched_latency > limit)
		sysctl_sched_latency = limit;

	sysctl_sched_wakeup_granularity *= factor;
	sysctl_sched_batch_wakeup_granularity *= factor;
}

L
Linus Torvalds 已提交
5036 5037 5038 5039
#ifdef CONFIG_SMP
/*
 * This is how migration works:
 *
5040
 * 1) we queue a struct migration_req structure in the source CPU's
L
Linus Torvalds 已提交
5041 5042 5043 5044 5045 5046 5047 5048 5049 5050 5051 5052 5053 5054 5055 5056 5057 5058
 *    runqueue and wake up that CPU's migration thread.
 * 2) we down() the locked semaphore => thread blocks.
 * 3) migration thread wakes up (implicitly it forces the migrated
 *    thread off the CPU)
 * 4) it gets the migration request and checks whether the migrated
 *    task is still in the wrong runqueue.
 * 5) if it's in the wrong runqueue then the migration thread removes
 *    it and puts it into the right queue.
 * 6) migration thread up()s the semaphore.
 * 7) we wake up and the migration is done.
 */

/*
 * Change a given task's CPU affinity. Migrate the thread to a
 * proper CPU and schedule it away if the CPU it's executing on
 * is removed from the allowed bitmask.
 *
 * NOTE: the caller must have a valid reference to the task, the
I
Ingo Molnar 已提交
5059
 * task must not exit() & deallocate itself prematurely. The
L
Linus Torvalds 已提交
5060 5061
 * call is not atomic; no spinlocks may be held.
 */
5062
int set_cpus_allowed(struct task_struct *p, cpumask_t new_mask)
L
Linus Torvalds 已提交
5063
{
5064
	struct migration_req req;
L
Linus Torvalds 已提交
5065
	unsigned long flags;
5066
	struct rq *rq;
5067
	int ret = 0;
L
Linus Torvalds 已提交
5068 5069 5070 5071 5072 5073 5074

	rq = task_rq_lock(p, &flags);
	if (!cpus_intersects(new_mask, cpu_online_map)) {
		ret = -EINVAL;
		goto out;
	}

5075 5076 5077
	if (p->sched_class->set_cpus_allowed)
		p->sched_class->set_cpus_allowed(p, &new_mask);
	else {
I
Ingo Molnar 已提交
5078
		p->cpus_allowed = new_mask;
5079 5080 5081
		p->nr_cpus_allowed = cpus_weight(new_mask);
	}

L
Linus Torvalds 已提交
5082 5083 5084 5085 5086 5087 5088 5089 5090 5091 5092 5093 5094 5095
	/* Can the task run on the task's current CPU? If so, we're done */
	if (cpu_isset(task_cpu(p), new_mask))
		goto out;

	if (migrate_task(p, any_online_cpu(new_mask), &req)) {
		/* Need help from migration thread: drop lock and wait. */
		task_rq_unlock(rq, &flags);
		wake_up_process(rq->migration_thread);
		wait_for_completion(&req.done);
		tlb_migrate_finish(p->mm);
		return 0;
	}
out:
	task_rq_unlock(rq, &flags);
5096

L
Linus Torvalds 已提交
5097 5098 5099 5100 5101
	return ret;
}
EXPORT_SYMBOL_GPL(set_cpus_allowed);

/*
I
Ingo Molnar 已提交
5102
 * Move (not current) task off this cpu, onto dest cpu. We're doing
L
Linus Torvalds 已提交
5103 5104 5105 5106 5107 5108
 * this because either it can't run here any more (set_cpus_allowed()
 * away from this CPU, or CPU going down), or because we're
 * attempting to rebalance this task on exec (sched_exec).
 *
 * So we race with normal scheduler movements, but that's OK, as long
 * as the task is no longer on this CPU.
5109 5110
 *
 * Returns non-zero if task was successfully migrated.
L
Linus Torvalds 已提交
5111
 */
5112
static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
L
Linus Torvalds 已提交
5113
{
5114
	struct rq *rq_dest, *rq_src;
I
Ingo Molnar 已提交
5115
	int ret = 0, on_rq;
L
Linus Torvalds 已提交
5116 5117

	if (unlikely(cpu_is_offline(dest_cpu)))
5118
		return ret;
L
Linus Torvalds 已提交
5119 5120 5121 5122 5123 5124 5125 5126 5127 5128 5129 5130

	rq_src = cpu_rq(src_cpu);
	rq_dest = cpu_rq(dest_cpu);

	double_rq_lock(rq_src, rq_dest);
	/* Already moved. */
	if (task_cpu(p) != src_cpu)
		goto out;
	/* Affinity changed (again). */
	if (!cpu_isset(dest_cpu, p->cpus_allowed))
		goto out;

I
Ingo Molnar 已提交
5131
	on_rq = p->se.on_rq;
5132
	if (on_rq)
5133
		deactivate_task(rq_src, p, 0);
5134

L
Linus Torvalds 已提交
5135
	set_task_cpu(p, dest_cpu);
I
Ingo Molnar 已提交
5136 5137 5138
	if (on_rq) {
		activate_task(rq_dest, p, 0);
		check_preempt_curr(rq_dest, p);
L
Linus Torvalds 已提交
5139
	}
5140
	ret = 1;
L
Linus Torvalds 已提交
5141 5142
out:
	double_rq_unlock(rq_src, rq_dest);
5143
	return ret;
L
Linus Torvalds 已提交
5144 5145 5146 5147 5148 5149 5150
}

/*
 * migration_thread - this is a highprio system thread that performs
 * thread migration by bumping thread off CPU then 'pushing' onto
 * another runqueue.
 */
I
Ingo Molnar 已提交
5151
static int migration_thread(void *data)
L
Linus Torvalds 已提交
5152 5153
{
	int cpu = (long)data;
5154
	struct rq *rq;
L
Linus Torvalds 已提交
5155 5156 5157 5158 5159 5160

	rq = cpu_rq(cpu);
	BUG_ON(rq->migration_thread != current);

	set_current_state(TASK_INTERRUPTIBLE);
	while (!kthread_should_stop()) {
5161
		struct migration_req *req;
L
Linus Torvalds 已提交
5162 5163 5164 5165 5166 5167 5168 5169 5170 5171 5172 5173 5174 5175 5176 5177 5178 5179 5180 5181 5182 5183
		struct list_head *head;

		spin_lock_irq(&rq->lock);

		if (cpu_is_offline(cpu)) {
			spin_unlock_irq(&rq->lock);
			goto wait_to_die;
		}

		if (rq->active_balance) {
			active_load_balance(rq, cpu);
			rq->active_balance = 0;
		}

		head = &rq->migration_queue;

		if (list_empty(head)) {
			spin_unlock_irq(&rq->lock);
			schedule();
			set_current_state(TASK_INTERRUPTIBLE);
			continue;
		}
5184
		req = list_entry(head->next, struct migration_req, list);
L
Linus Torvalds 已提交
5185 5186
		list_del_init(head->next);

N
Nick Piggin 已提交
5187 5188 5189
		spin_unlock(&rq->lock);
		__migrate_task(req->task, cpu, req->dest_cpu);
		local_irq_enable();
L
Linus Torvalds 已提交
5190 5191 5192 5193 5194 5195 5196 5197 5198 5199 5200 5201 5202 5203 5204 5205 5206 5207

		complete(&req->done);
	}
	__set_current_state(TASK_RUNNING);
	return 0;

wait_to_die:
	/* Wait for kthread_stop */
	set_current_state(TASK_INTERRUPTIBLE);
	while (!kthread_should_stop()) {
		schedule();
		set_current_state(TASK_INTERRUPTIBLE);
	}
	__set_current_state(TASK_RUNNING);
	return 0;
}

#ifdef CONFIG_HOTPLUG_CPU
5208 5209 5210 5211 5212 5213 5214 5215 5216 5217 5218

static int __migrate_task_irq(struct task_struct *p, int src_cpu, int dest_cpu)
{
	int ret;

	local_irq_disable();
	ret = __migrate_task(p, src_cpu, dest_cpu);
	local_irq_enable();
	return ret;
}

5219
/*
5220
 * Figure out where task on dead CPU should go, use force if necessary.
5221 5222
 * NOTE: interrupts should be disabled by the caller
 */
5223
static void move_task_off_dead_cpu(int dead_cpu, struct task_struct *p)
L
Linus Torvalds 已提交
5224
{
5225
	unsigned long flags;
L
Linus Torvalds 已提交
5226
	cpumask_t mask;
5227 5228
	struct rq *rq;
	int dest_cpu;
L
Linus Torvalds 已提交
5229

5230 5231 5232 5233 5234 5235 5236 5237 5238 5239 5240 5241
	do {
		/* On same node? */
		mask = node_to_cpumask(cpu_to_node(dead_cpu));
		cpus_and(mask, mask, p->cpus_allowed);
		dest_cpu = any_online_cpu(mask);

		/* On any allowed CPU? */
		if (dest_cpu == NR_CPUS)
			dest_cpu = any_online_cpu(p->cpus_allowed);

		/* No more Mr. Nice Guy. */
		if (dest_cpu == NR_CPUS) {
5242 5243 5244 5245 5246
			cpumask_t cpus_allowed = cpuset_cpus_allowed_locked(p);
			/*
			 * Try to stay on the same cpuset, where the
			 * current cpuset may be a subset of all cpus.
			 * The cpuset_cpus_allowed_locked() variant of
I
Ingo Molnar 已提交
5247
			 * cpuset_cpus_allowed() will not block. It must be
5248 5249
			 * called within calls to cpuset_lock/cpuset_unlock.
			 */
5250
			rq = task_rq_lock(p, &flags);
5251
			p->cpus_allowed = cpus_allowed;
5252 5253
			dest_cpu = any_online_cpu(p->cpus_allowed);
			task_rq_unlock(rq, &flags);
L
Linus Torvalds 已提交
5254

5255 5256 5257 5258 5259
			/*
			 * Don't tell them about moving exiting tasks or
			 * kernel threads (both mm NULL), since they never
			 * leave kernel.
			 */
I
Ingo Molnar 已提交
5260
			if (p->mm && printk_ratelimit()) {
5261 5262
				printk(KERN_INFO "process %d (%s) no "
				       "longer affine to cpu%d\n",
I
Ingo Molnar 已提交
5263 5264
					task_pid_nr(p), p->comm, dead_cpu);
			}
5265
		}
5266
	} while (!__migrate_task_irq(p, dead_cpu, dest_cpu));
L
Linus Torvalds 已提交
5267 5268 5269 5270 5271 5272 5273 5274 5275
}

/*
 * While a dead CPU has no uninterruptible tasks queued at this point,
 * it might still have a nonzero ->nr_uninterruptible counter, because
 * for performance reasons the counter is not stricly tracking tasks to
 * their home CPUs. So we just add the counter to another CPU's counter,
 * to keep the global sum constant after CPU-down:
 */
5276
static void migrate_nr_uninterruptible(struct rq *rq_src)
L
Linus Torvalds 已提交
5277
{
5278
	struct rq *rq_dest = cpu_rq(any_online_cpu(CPU_MASK_ALL));
L
Linus Torvalds 已提交
5279 5280 5281 5282 5283 5284 5285 5286 5287 5288 5289 5290 5291
	unsigned long flags;

	local_irq_save(flags);
	double_rq_lock(rq_src, rq_dest);
	rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
	rq_src->nr_uninterruptible = 0;
	double_rq_unlock(rq_src, rq_dest);
	local_irq_restore(flags);
}

/* Run through task list and migrate tasks from the dead cpu. */
static void migrate_live_tasks(int src_cpu)
{
5292
	struct task_struct *p, *t;
L
Linus Torvalds 已提交
5293

5294
	read_lock(&tasklist_lock);
L
Linus Torvalds 已提交
5295

5296 5297
	do_each_thread(t, p) {
		if (p == current)
L
Linus Torvalds 已提交
5298 5299
			continue;

5300 5301 5302
		if (task_cpu(p) == src_cpu)
			move_task_off_dead_cpu(src_cpu, p);
	} while_each_thread(t, p);
L
Linus Torvalds 已提交
5303

5304
	read_unlock(&tasklist_lock);
L
Linus Torvalds 已提交
5305 5306
}

I
Ingo Molnar 已提交
5307 5308
/*
 * Schedules idle task to be the next runnable task on current CPU.
5309 5310
 * It does so by boosting its priority to highest possible.
 * Used by CPU offline code.
L
Linus Torvalds 已提交
5311 5312 5313
 */
void sched_idle_next(void)
{
5314
	int this_cpu = smp_processor_id();
5315
	struct rq *rq = cpu_rq(this_cpu);
L
Linus Torvalds 已提交
5316 5317 5318 5319
	struct task_struct *p = rq->idle;
	unsigned long flags;

	/* cpu has to be offline */
5320
	BUG_ON(cpu_online(this_cpu));
L
Linus Torvalds 已提交
5321

5322 5323 5324
	/*
	 * Strictly not necessary since rest of the CPUs are stopped by now
	 * and interrupts disabled on the current cpu.
L
Linus Torvalds 已提交
5325 5326 5327
	 */
	spin_lock_irqsave(&rq->lock, flags);

I
Ingo Molnar 已提交
5328
	__setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
5329

5330 5331
	update_rq_clock(rq);
	activate_task(rq, p, 0);
L
Linus Torvalds 已提交
5332 5333 5334 5335

	spin_unlock_irqrestore(&rq->lock, flags);
}

5336 5337
/*
 * Ensures that the idle task is using init_mm right before its cpu goes
L
Linus Torvalds 已提交
5338 5339 5340 5341 5342 5343 5344 5345 5346 5347 5348 5349 5350
 * offline.
 */
void idle_task_exit(void)
{
	struct mm_struct *mm = current->active_mm;

	BUG_ON(cpu_online(smp_processor_id()));

	if (mm != &init_mm)
		switch_mm(mm, &init_mm, current);
	mmdrop(mm);
}

5351
/* called under rq->lock with disabled interrupts */
5352
static void migrate_dead(unsigned int dead_cpu, struct task_struct *p)
L
Linus Torvalds 已提交
5353
{
5354
	struct rq *rq = cpu_rq(dead_cpu);
L
Linus Torvalds 已提交
5355 5356

	/* Must be exiting, otherwise would be on tasklist. */
E
Eugene Teo 已提交
5357
	BUG_ON(!p->exit_state);
L
Linus Torvalds 已提交
5358 5359

	/* Cannot have done final schedule yet: would have vanished. */
5360
	BUG_ON(p->state == TASK_DEAD);
L
Linus Torvalds 已提交
5361

5362
	get_task_struct(p);
L
Linus Torvalds 已提交
5363 5364 5365

	/*
	 * Drop lock around migration; if someone else moves it,
I
Ingo Molnar 已提交
5366
	 * that's OK. No task can be added to this CPU, so iteration is
L
Linus Torvalds 已提交
5367 5368
	 * fine.
	 */
5369
	spin_unlock_irq(&rq->lock);
5370
	move_task_off_dead_cpu(dead_cpu, p);
5371
	spin_lock_irq(&rq->lock);
L
Linus Torvalds 已提交
5372

5373
	put_task_struct(p);
L
Linus Torvalds 已提交
5374 5375 5376 5377 5378
}

/* release_task() removes task from tasklist, so we won't find dead tasks. */
static void migrate_dead_tasks(unsigned int dead_cpu)
{
5379
	struct rq *rq = cpu_rq(dead_cpu);
I
Ingo Molnar 已提交
5380
	struct task_struct *next;
5381

I
Ingo Molnar 已提交
5382 5383 5384
	for ( ; ; ) {
		if (!rq->nr_running)
			break;
I
Ingo Molnar 已提交
5385
		update_rq_clock(rq);
5386
		next = pick_next_task(rq, rq->curr);
I
Ingo Molnar 已提交
5387 5388 5389
		if (!next)
			break;
		migrate_dead(dead_cpu, next);
5390

L
Linus Torvalds 已提交
5391 5392 5393 5394
	}
}
#endif /* CONFIG_HOTPLUG_CPU */

5395 5396 5397
#if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)

static struct ctl_table sd_ctl_dir[] = {
5398 5399
	{
		.procname	= "sched_domain",
5400
		.mode		= 0555,
5401
	},
I
Ingo Molnar 已提交
5402
	{0, },
5403 5404 5405
};

static struct ctl_table sd_ctl_root[] = {
5406
	{
5407
		.ctl_name	= CTL_KERN,
5408
		.procname	= "kernel",
5409
		.mode		= 0555,
5410 5411
		.child		= sd_ctl_dir,
	},
I
Ingo Molnar 已提交
5412
	{0, },
5413 5414 5415 5416 5417
};

static struct ctl_table *sd_alloc_ctl_entry(int n)
{
	struct ctl_table *entry =
5418
		kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
5419 5420 5421 5422

	return entry;
}

5423 5424
static void sd_free_ctl_entry(struct ctl_table **tablep)
{
5425
	struct ctl_table *entry;
5426

5427 5428 5429
	/*
	 * In the intermediate directories, both the child directory and
	 * procname are dynamically allocated and could fail but the mode
I
Ingo Molnar 已提交
5430
	 * will always be set. In the lowest directory the names are
5431 5432 5433
	 * static strings and all have proc handlers.
	 */
	for (entry = *tablep; entry->mode; entry++) {
5434 5435
		if (entry->child)
			sd_free_ctl_entry(&entry->child);
5436 5437 5438
		if (entry->proc_handler == NULL)
			kfree(entry->procname);
	}
5439 5440 5441 5442 5443

	kfree(*tablep);
	*tablep = NULL;
}

5444
static void
5445
set_table_entry(struct ctl_table *entry,
5446 5447 5448 5449 5450 5451 5452 5453 5454 5455 5456 5457 5458
		const char *procname, void *data, int maxlen,
		mode_t mode, proc_handler *proc_handler)
{
	entry->procname = procname;
	entry->data = data;
	entry->maxlen = maxlen;
	entry->mode = mode;
	entry->proc_handler = proc_handler;
}

static struct ctl_table *
sd_alloc_ctl_domain_table(struct sched_domain *sd)
{
5459
	struct ctl_table *table = sd_alloc_ctl_entry(12);
5460

5461 5462 5463
	if (table == NULL)
		return NULL;

5464
	set_table_entry(&table[0], "min_interval", &sd->min_interval,
5465
		sizeof(long), 0644, proc_doulongvec_minmax);
5466
	set_table_entry(&table[1], "max_interval", &sd->max_interval,
5467
		sizeof(long), 0644, proc_doulongvec_minmax);
5468
	set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
5469
		sizeof(int), 0644, proc_dointvec_minmax);
5470
	set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
5471
		sizeof(int), 0644, proc_dointvec_minmax);
5472
	set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
5473
		sizeof(int), 0644, proc_dointvec_minmax);
5474
	set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
5475
		sizeof(int), 0644, proc_dointvec_minmax);
5476
	set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
5477
		sizeof(int), 0644, proc_dointvec_minmax);
5478
	set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
5479
		sizeof(int), 0644, proc_dointvec_minmax);
5480
	set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
5481
		sizeof(int), 0644, proc_dointvec_minmax);
5482
	set_table_entry(&table[9], "cache_nice_tries",
5483 5484
		&sd->cache_nice_tries,
		sizeof(int), 0644, proc_dointvec_minmax);
5485
	set_table_entry(&table[10], "flags", &sd->flags,
5486
		sizeof(int), 0644, proc_dointvec_minmax);
5487
	/* &table[11] is terminator */
5488 5489 5490 5491

	return table;
}

5492
static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
5493 5494 5495 5496 5497 5498 5499 5500 5501
{
	struct ctl_table *entry, *table;
	struct sched_domain *sd;
	int domain_num = 0, i;
	char buf[32];

	for_each_domain(cpu, sd)
		domain_num++;
	entry = table = sd_alloc_ctl_entry(domain_num + 1);
5502 5503
	if (table == NULL)
		return NULL;
5504 5505 5506 5507 5508

	i = 0;
	for_each_domain(cpu, sd) {
		snprintf(buf, 32, "domain%d", i);
		entry->procname = kstrdup(buf, GFP_KERNEL);
5509
		entry->mode = 0555;
5510 5511 5512 5513 5514 5515 5516 5517
		entry->child = sd_alloc_ctl_domain_table(sd);
		entry++;
		i++;
	}
	return table;
}

static struct ctl_table_header *sd_sysctl_header;
5518
static void register_sched_domain_sysctl(void)
5519 5520 5521 5522 5523
{
	int i, cpu_num = num_online_cpus();
	struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
	char buf[32];

5524 5525 5526
	WARN_ON(sd_ctl_dir[0].child);
	sd_ctl_dir[0].child = entry;

5527 5528 5529
	if (entry == NULL)
		return;

5530
	for_each_online_cpu(i) {
5531 5532
		snprintf(buf, 32, "cpu%d", i);
		entry->procname = kstrdup(buf, GFP_KERNEL);
5533
		entry->mode = 0555;
5534
		entry->child = sd_alloc_ctl_cpu_table(i);
5535
		entry++;
5536
	}
5537 5538

	WARN_ON(sd_sysctl_header);
5539 5540
	sd_sysctl_header = register_sysctl_table(sd_ctl_root);
}
5541

5542
/* may be called multiple times per register */
5543 5544
static void unregister_sched_domain_sysctl(void)
{
5545 5546
	if (sd_sysctl_header)
		unregister_sysctl_table(sd_sysctl_header);
5547
	sd_sysctl_header = NULL;
5548 5549
	if (sd_ctl_dir[0].child)
		sd_free_ctl_entry(&sd_ctl_dir[0].child);
5550
}
5551
#else
5552 5553 5554 5555
static void register_sched_domain_sysctl(void)
{
}
static void unregister_sched_domain_sysctl(void)
5556 5557 5558 5559
{
}
#endif

L
Linus Torvalds 已提交
5560 5561 5562 5563
/*
 * migration_call - callback that gets triggered when a CPU is added.
 * Here we can start up the necessary migration thread for the new CPU.
 */
5564 5565
static int __cpuinit
migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
L
Linus Torvalds 已提交
5566 5567
{
	struct task_struct *p;
5568
	int cpu = (long)hcpu;
L
Linus Torvalds 已提交
5569
	unsigned long flags;
5570
	struct rq *rq;
L
Linus Torvalds 已提交
5571 5572

	switch (action) {
5573

L
Linus Torvalds 已提交
5574
	case CPU_UP_PREPARE:
5575
	case CPU_UP_PREPARE_FROZEN:
I
Ingo Molnar 已提交
5576
		p = kthread_create(migration_thread, hcpu, "migration/%d", cpu);
L
Linus Torvalds 已提交
5577 5578 5579 5580 5581
		if (IS_ERR(p))
			return NOTIFY_BAD;
		kthread_bind(p, cpu);
		/* Must be high prio: stop_machine expects to yield to it. */
		rq = task_rq_lock(p, &flags);
I
Ingo Molnar 已提交
5582
		__setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
L
Linus Torvalds 已提交
5583 5584 5585
		task_rq_unlock(rq, &flags);
		cpu_rq(cpu)->migration_thread = p;
		break;
5586

L
Linus Torvalds 已提交
5587
	case CPU_ONLINE:
5588
	case CPU_ONLINE_FROZEN:
5589
		/* Strictly unnecessary, as first user will wake it. */
L
Linus Torvalds 已提交
5590
		wake_up_process(cpu_rq(cpu)->migration_thread);
G
Gregory Haskins 已提交
5591 5592 5593 5594 5595 5596 5597 5598 5599

		/* Update our root-domain */
		rq = cpu_rq(cpu);
		spin_lock_irqsave(&rq->lock, flags);
		if (rq->rd) {
			BUG_ON(!cpu_isset(cpu, rq->rd->span));
			cpu_set(cpu, rq->rd->online);
		}
		spin_unlock_irqrestore(&rq->lock, flags);
L
Linus Torvalds 已提交
5600
		break;
5601

L
Linus Torvalds 已提交
5602 5603
#ifdef CONFIG_HOTPLUG_CPU
	case CPU_UP_CANCELED:
5604
	case CPU_UP_CANCELED_FROZEN:
5605 5606
		if (!cpu_rq(cpu)->migration_thread)
			break;
I
Ingo Molnar 已提交
5607
		/* Unbind it from offline cpu so it can run. Fall thru. */
5608 5609
		kthread_bind(cpu_rq(cpu)->migration_thread,
			     any_online_cpu(cpu_online_map));
L
Linus Torvalds 已提交
5610 5611 5612
		kthread_stop(cpu_rq(cpu)->migration_thread);
		cpu_rq(cpu)->migration_thread = NULL;
		break;
5613

L
Linus Torvalds 已提交
5614
	case CPU_DEAD:
5615
	case CPU_DEAD_FROZEN:
5616
		cpuset_lock(); /* around calls to cpuset_cpus_allowed_lock() */
L
Linus Torvalds 已提交
5617 5618 5619 5620 5621
		migrate_live_tasks(cpu);
		rq = cpu_rq(cpu);
		kthread_stop(rq->migration_thread);
		rq->migration_thread = NULL;
		/* Idle task back to normal (off runqueue, low prio) */
5622
		spin_lock_irq(&rq->lock);
I
Ingo Molnar 已提交
5623
		update_rq_clock(rq);
5624
		deactivate_task(rq, rq->idle, 0);
L
Linus Torvalds 已提交
5625
		rq->idle->static_prio = MAX_PRIO;
I
Ingo Molnar 已提交
5626 5627
		__setscheduler(rq, rq->idle, SCHED_NORMAL, 0);
		rq->idle->sched_class = &idle_sched_class;
L
Linus Torvalds 已提交
5628
		migrate_dead_tasks(cpu);
5629
		spin_unlock_irq(&rq->lock);
5630
		cpuset_unlock();
L
Linus Torvalds 已提交
5631 5632 5633
		migrate_nr_uninterruptible(rq);
		BUG_ON(rq->nr_running != 0);

I
Ingo Molnar 已提交
5634 5635 5636 5637 5638
		/*
		 * No need to migrate the tasks: it was best-effort if
		 * they didn't take sched_hotcpu_mutex. Just wake up
		 * the requestors.
		 */
L
Linus Torvalds 已提交
5639 5640
		spin_lock_irq(&rq->lock);
		while (!list_empty(&rq->migration_queue)) {
5641 5642
			struct migration_req *req;

L
Linus Torvalds 已提交
5643
			req = list_entry(rq->migration_queue.next,
5644
					 struct migration_req, list);
L
Linus Torvalds 已提交
5645 5646 5647 5648 5649
			list_del_init(&req->list);
			complete(&req->done);
		}
		spin_unlock_irq(&rq->lock);
		break;
G
Gregory Haskins 已提交
5650 5651 5652 5653 5654 5655 5656 5657 5658 5659 5660

	case CPU_DOWN_PREPARE:
		/* Update our root-domain */
		rq = cpu_rq(cpu);
		spin_lock_irqsave(&rq->lock, flags);
		if (rq->rd) {
			BUG_ON(!cpu_isset(cpu, rq->rd->span));
			cpu_clear(cpu, rq->rd->online);
		}
		spin_unlock_irqrestore(&rq->lock, flags);
		break;
L
Linus Torvalds 已提交
5661 5662 5663 5664 5665 5666 5667 5668
#endif
	}
	return NOTIFY_OK;
}

/* Register at highest priority so that task migration (migrate_all_tasks)
 * happens before everything else.
 */
5669
static struct notifier_block __cpuinitdata migration_notifier = {
L
Linus Torvalds 已提交
5670 5671 5672 5673
	.notifier_call = migration_call,
	.priority = 10
};

5674
void __init migration_init(void)
L
Linus Torvalds 已提交
5675 5676
{
	void *cpu = (void *)(long)smp_processor_id();
5677
	int err;
5678 5679

	/* Start one for the boot CPU: */
5680 5681
	err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
	BUG_ON(err == NOTIFY_BAD);
L
Linus Torvalds 已提交
5682 5683 5684 5685 5686 5687
	migration_call(&migration_notifier, CPU_ONLINE, cpu);
	register_cpu_notifier(&migration_notifier);
}
#endif

#ifdef CONFIG_SMP
5688 5689 5690 5691 5692

/* Number of possible processor ids */
int nr_cpu_ids __read_mostly = NR_CPUS;
EXPORT_SYMBOL(nr_cpu_ids);

5693
#ifdef CONFIG_SCHED_DEBUG
I
Ingo Molnar 已提交
5694 5695

static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level)
L
Linus Torvalds 已提交
5696
{
I
Ingo Molnar 已提交
5697 5698 5699
	struct sched_group *group = sd->groups;
	cpumask_t groupmask;
	char str[NR_CPUS];
L
Linus Torvalds 已提交
5700

I
Ingo Molnar 已提交
5701 5702 5703 5704 5705 5706 5707 5708 5709 5710 5711
	cpumask_scnprintf(str, NR_CPUS, sd->span);
	cpus_clear(groupmask);

	printk(KERN_DEBUG "%*s domain %d: ", level, "", level);

	if (!(sd->flags & SD_LOAD_BALANCE)) {
		printk("does not load-balance\n");
		if (sd->parent)
			printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
					" has parent");
		return -1;
N
Nick Piggin 已提交
5712 5713
	}

I
Ingo Molnar 已提交
5714 5715 5716 5717 5718 5719 5720 5721 5722 5723
	printk(KERN_CONT "span %s\n", str);

	if (!cpu_isset(cpu, sd->span)) {
		printk(KERN_ERR "ERROR: domain->span does not contain "
				"CPU%d\n", cpu);
	}
	if (!cpu_isset(cpu, group->cpumask)) {
		printk(KERN_ERR "ERROR: domain->groups does not contain"
				" CPU%d\n", cpu);
	}
L
Linus Torvalds 已提交
5724

I
Ingo Molnar 已提交
5725
	printk(KERN_DEBUG "%*s groups:", level + 1, "");
L
Linus Torvalds 已提交
5726
	do {
I
Ingo Molnar 已提交
5727 5728 5729
		if (!group) {
			printk("\n");
			printk(KERN_ERR "ERROR: group is NULL\n");
L
Linus Torvalds 已提交
5730 5731 5732
			break;
		}

I
Ingo Molnar 已提交
5733 5734 5735 5736 5737 5738
		if (!group->__cpu_power) {
			printk(KERN_CONT "\n");
			printk(KERN_ERR "ERROR: domain->cpu_power not "
					"set\n");
			break;
		}
L
Linus Torvalds 已提交
5739

I
Ingo Molnar 已提交
5740 5741 5742 5743 5744
		if (!cpus_weight(group->cpumask)) {
			printk(KERN_CONT "\n");
			printk(KERN_ERR "ERROR: empty group\n");
			break;
		}
L
Linus Torvalds 已提交
5745

I
Ingo Molnar 已提交
5746 5747 5748 5749 5750
		if (cpus_intersects(groupmask, group->cpumask)) {
			printk(KERN_CONT "\n");
			printk(KERN_ERR "ERROR: repeated CPUs\n");
			break;
		}
L
Linus Torvalds 已提交
5751

I
Ingo Molnar 已提交
5752
		cpus_or(groupmask, groupmask, group->cpumask);
L
Linus Torvalds 已提交
5753

I
Ingo Molnar 已提交
5754 5755
		cpumask_scnprintf(str, NR_CPUS, group->cpumask);
		printk(KERN_CONT " %s", str);
L
Linus Torvalds 已提交
5756

I
Ingo Molnar 已提交
5757 5758 5759
		group = group->next;
	} while (group != sd->groups);
	printk(KERN_CONT "\n");
L
Linus Torvalds 已提交
5760

I
Ingo Molnar 已提交
5761 5762
	if (!cpus_equal(sd->span, groupmask))
		printk(KERN_ERR "ERROR: groups don't span domain->span\n");
L
Linus Torvalds 已提交
5763

I
Ingo Molnar 已提交
5764 5765 5766 5767 5768
	if (sd->parent && !cpus_subset(groupmask, sd->parent->span))
		printk(KERN_ERR "ERROR: parent span is not a superset "
			"of domain->span\n");
	return 0;
}
L
Linus Torvalds 已提交
5769

I
Ingo Molnar 已提交
5770 5771 5772
static void sched_domain_debug(struct sched_domain *sd, int cpu)
{
	int level = 0;
L
Linus Torvalds 已提交
5773

I
Ingo Molnar 已提交
5774 5775 5776 5777
	if (!sd) {
		printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
		return;
	}
L
Linus Torvalds 已提交
5778

I
Ingo Molnar 已提交
5779 5780 5781 5782 5783
	printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);

	for (;;) {
		if (sched_domain_debug_one(sd, cpu, level))
			break;
L
Linus Torvalds 已提交
5784 5785
		level++;
		sd = sd->parent;
5786
		if (!sd)
I
Ingo Molnar 已提交
5787 5788
			break;
	}
L
Linus Torvalds 已提交
5789 5790
}
#else
5791
# define sched_domain_debug(sd, cpu) do { } while (0)
L
Linus Torvalds 已提交
5792 5793
#endif

5794
static int sd_degenerate(struct sched_domain *sd)
5795 5796 5797 5798 5799 5800 5801 5802
{
	if (cpus_weight(sd->span) == 1)
		return 1;

	/* Following flags need at least 2 groups */
	if (sd->flags & (SD_LOAD_BALANCE |
			 SD_BALANCE_NEWIDLE |
			 SD_BALANCE_FORK |
5803 5804 5805
			 SD_BALANCE_EXEC |
			 SD_SHARE_CPUPOWER |
			 SD_SHARE_PKG_RESOURCES)) {
5806 5807 5808 5809 5810 5811 5812 5813 5814 5815 5816 5817 5818
		if (sd->groups != sd->groups->next)
			return 0;
	}

	/* Following flags don't use groups */
	if (sd->flags & (SD_WAKE_IDLE |
			 SD_WAKE_AFFINE |
			 SD_WAKE_BALANCE))
		return 0;

	return 1;
}

5819 5820
static int
sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
5821 5822 5823 5824 5825 5826 5827 5828 5829 5830 5831 5832 5833 5834 5835 5836 5837 5838
{
	unsigned long cflags = sd->flags, pflags = parent->flags;

	if (sd_degenerate(parent))
		return 1;

	if (!cpus_equal(sd->span, parent->span))
		return 0;

	/* Does parent contain flags not in child? */
	/* WAKE_BALANCE is a subset of WAKE_AFFINE */
	if (cflags & SD_WAKE_AFFINE)
		pflags &= ~SD_WAKE_BALANCE;
	/* Flags needing groups don't count if only 1 group in parent */
	if (parent->groups == parent->groups->next) {
		pflags &= ~(SD_LOAD_BALANCE |
				SD_BALANCE_NEWIDLE |
				SD_BALANCE_FORK |
5839 5840 5841
				SD_BALANCE_EXEC |
				SD_SHARE_CPUPOWER |
				SD_SHARE_PKG_RESOURCES);
5842 5843 5844 5845 5846 5847 5848
	}
	if (~cflags & pflags)
		return 0;

	return 1;
}

G
Gregory Haskins 已提交
5849 5850 5851 5852 5853 5854 5855 5856 5857 5858
static void rq_attach_root(struct rq *rq, struct root_domain *rd)
{
	unsigned long flags;
	const struct sched_class *class;

	spin_lock_irqsave(&rq->lock, flags);

	if (rq->rd) {
		struct root_domain *old_rd = rq->rd;

I
Ingo Molnar 已提交
5859
		for (class = sched_class_highest; class; class = class->next) {
G
Gregory Haskins 已提交
5860 5861
			if (class->leave_domain)
				class->leave_domain(rq);
I
Ingo Molnar 已提交
5862
		}
G
Gregory Haskins 已提交
5863

5864 5865 5866
		cpu_clear(rq->cpu, old_rd->span);
		cpu_clear(rq->cpu, old_rd->online);

G
Gregory Haskins 已提交
5867 5868 5869 5870 5871 5872 5873
		if (atomic_dec_and_test(&old_rd->refcount))
			kfree(old_rd);
	}

	atomic_inc(&rd->refcount);
	rq->rd = rd;

5874 5875 5876 5877
	cpu_set(rq->cpu, rd->span);
	if (cpu_isset(rq->cpu, cpu_online_map))
		cpu_set(rq->cpu, rd->online);

I
Ingo Molnar 已提交
5878
	for (class = sched_class_highest; class; class = class->next) {
G
Gregory Haskins 已提交
5879 5880
		if (class->join_domain)
			class->join_domain(rq);
I
Ingo Molnar 已提交
5881
	}
G
Gregory Haskins 已提交
5882 5883 5884 5885

	spin_unlock_irqrestore(&rq->lock, flags);
}

5886
static void init_rootdomain(struct root_domain *rd)
G
Gregory Haskins 已提交
5887 5888 5889
{
	memset(rd, 0, sizeof(*rd));

5890 5891
	cpus_clear(rd->span);
	cpus_clear(rd->online);
G
Gregory Haskins 已提交
5892 5893 5894 5895
}

static void init_defrootdomain(void)
{
5896
	init_rootdomain(&def_root_domain);
G
Gregory Haskins 已提交
5897 5898 5899
	atomic_set(&def_root_domain.refcount, 1);
}

5900
static struct root_domain *alloc_rootdomain(void)
G
Gregory Haskins 已提交
5901 5902 5903 5904 5905 5906 5907
{
	struct root_domain *rd;

	rd = kmalloc(sizeof(*rd), GFP_KERNEL);
	if (!rd)
		return NULL;

5908
	init_rootdomain(rd);
G
Gregory Haskins 已提交
5909 5910 5911 5912

	return rd;
}

L
Linus Torvalds 已提交
5913
/*
I
Ingo Molnar 已提交
5914
 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
L
Linus Torvalds 已提交
5915 5916
 * hold the hotplug lock.
 */
I
Ingo Molnar 已提交
5917 5918
static void
cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
L
Linus Torvalds 已提交
5919
{
5920
	struct rq *rq = cpu_rq(cpu);
5921 5922 5923 5924 5925 5926 5927
	struct sched_domain *tmp;

	/* Remove the sched domains which do not contribute to scheduling. */
	for (tmp = sd; tmp; tmp = tmp->parent) {
		struct sched_domain *parent = tmp->parent;
		if (!parent)
			break;
5928
		if (sd_parent_degenerate(tmp, parent)) {
5929
			tmp->parent = parent->parent;
5930 5931 5932
			if (parent->parent)
				parent->parent->child = tmp;
		}
5933 5934
	}

5935
	if (sd && sd_degenerate(sd)) {
5936
		sd = sd->parent;
5937 5938 5939
		if (sd)
			sd->child = NULL;
	}
L
Linus Torvalds 已提交
5940 5941 5942

	sched_domain_debug(sd, cpu);

G
Gregory Haskins 已提交
5943
	rq_attach_root(rq, rd);
N
Nick Piggin 已提交
5944
	rcu_assign_pointer(rq->sd, sd);
L
Linus Torvalds 已提交
5945 5946 5947
}

/* cpus with isolated domains */
5948
static cpumask_t cpu_isolated_map = CPU_MASK_NONE;
L
Linus Torvalds 已提交
5949 5950 5951 5952 5953 5954 5955 5956 5957 5958 5959 5960 5961 5962

/* Setup the mask of cpus configured for isolated domains */
static int __init isolated_cpu_setup(char *str)
{
	int ints[NR_CPUS], i;

	str = get_options(str, ARRAY_SIZE(ints), ints);
	cpus_clear(cpu_isolated_map);
	for (i = 1; i <= ints[0]; i++)
		if (ints[i] < NR_CPUS)
			cpu_set(ints[i], cpu_isolated_map);
	return 1;
}

I
Ingo Molnar 已提交
5963
__setup("isolcpus=", isolated_cpu_setup);
L
Linus Torvalds 已提交
5964 5965

/*
5966 5967 5968 5969
 * init_sched_build_groups takes the cpumask we wish to span, and a pointer
 * to a function which identifies what group(along with sched group) a CPU
 * belongs to. The return value of group_fn must be a >= 0 and < NR_CPUS
 * (due to the fact that we keep track of groups covered with a cpumask_t).
L
Linus Torvalds 已提交
5970 5971 5972 5973 5974
 *
 * init_sched_build_groups will build a circular linked list of the groups
 * covered by the given span, and will set each group's ->cpumask correctly,
 * and ->cpu_power to 0.
 */
5975
static void
5976 5977 5978
init_sched_build_groups(cpumask_t span, const cpumask_t *cpu_map,
			int (*group_fn)(int cpu, const cpumask_t *cpu_map,
					struct sched_group **sg))
L
Linus Torvalds 已提交
5979 5980 5981 5982 5983 5984
{
	struct sched_group *first = NULL, *last = NULL;
	cpumask_t covered = CPU_MASK_NONE;
	int i;

	for_each_cpu_mask(i, span) {
5985 5986
		struct sched_group *sg;
		int group = group_fn(i, cpu_map, &sg);
L
Linus Torvalds 已提交
5987 5988 5989 5990 5991 5992
		int j;

		if (cpu_isset(i, covered))
			continue;

		sg->cpumask = CPU_MASK_NONE;
5993
		sg->__cpu_power = 0;
L
Linus Torvalds 已提交
5994 5995

		for_each_cpu_mask(j, span) {
5996
			if (group_fn(j, cpu_map, NULL) != group)
L
Linus Torvalds 已提交
5997 5998 5999 6000 6001 6002 6003 6004 6005 6006 6007 6008 6009 6010
				continue;

			cpu_set(j, covered);
			cpu_set(j, sg->cpumask);
		}
		if (!first)
			first = sg;
		if (last)
			last->next = sg;
		last = sg;
	}
	last->next = first;
}

6011
#define SD_NODES_PER_DOMAIN 16
L
Linus Torvalds 已提交
6012

6013
#ifdef CONFIG_NUMA
6014

6015 6016 6017 6018 6019
/**
 * find_next_best_node - find the next node to include in a sched_domain
 * @node: node whose sched_domain we're building
 * @used_nodes: nodes already in the sched_domain
 *
I
Ingo Molnar 已提交
6020
 * Find the next node to include in a given scheduling domain. Simply
6021 6022 6023 6024 6025 6026 6027 6028 6029 6030 6031 6032 6033 6034 6035 6036 6037 6038 6039 6040 6041 6042 6043 6044 6045 6046 6047 6048 6049 6050 6051 6052 6053 6054 6055 6056 6057 6058 6059
 * finds the closest node not already in the @used_nodes map.
 *
 * Should use nodemask_t.
 */
static int find_next_best_node(int node, unsigned long *used_nodes)
{
	int i, n, val, min_val, best_node = 0;

	min_val = INT_MAX;

	for (i = 0; i < MAX_NUMNODES; i++) {
		/* Start at @node */
		n = (node + i) % MAX_NUMNODES;

		if (!nr_cpus_node(n))
			continue;

		/* Skip already used nodes */
		if (test_bit(n, used_nodes))
			continue;

		/* Simple min distance search */
		val = node_distance(node, n);

		if (val < min_val) {
			min_val = val;
			best_node = n;
		}
	}

	set_bit(best_node, used_nodes);
	return best_node;
}

/**
 * sched_domain_node_span - get a cpumask for a node's sched_domain
 * @node: node whose cpumask we're constructing
 * @size: number of nodes to include in this span
 *
I
Ingo Molnar 已提交
6060
 * Given a node, construct a good cpumask for its sched_domain to span. It
6061 6062 6063 6064 6065 6066
 * should be one that prevents unnecessary balancing, but also spreads tasks
 * out optimally.
 */
static cpumask_t sched_domain_node_span(int node)
{
	DECLARE_BITMAP(used_nodes, MAX_NUMNODES);
6067 6068
	cpumask_t span, nodemask;
	int i;
6069 6070 6071 6072 6073 6074 6075 6076 6077 6078

	cpus_clear(span);
	bitmap_zero(used_nodes, MAX_NUMNODES);

	nodemask = node_to_cpumask(node);
	cpus_or(span, span, nodemask);
	set_bit(node, used_nodes);

	for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
		int next_node = find_next_best_node(node, used_nodes);
6079

6080 6081 6082 6083 6084 6085 6086 6087
		nodemask = node_to_cpumask(next_node);
		cpus_or(span, span, nodemask);
	}

	return span;
}
#endif

6088
int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
6089

6090
/*
6091
 * SMT sched-domains:
6092
 */
L
Linus Torvalds 已提交
6093 6094
#ifdef CONFIG_SCHED_SMT
static DEFINE_PER_CPU(struct sched_domain, cpu_domains);
6095
static DEFINE_PER_CPU(struct sched_group, sched_group_cpus);
6096

I
Ingo Molnar 已提交
6097 6098
static int
cpu_to_cpu_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg)
L
Linus Torvalds 已提交
6099
{
6100 6101
	if (sg)
		*sg = &per_cpu(sched_group_cpus, cpu);
L
Linus Torvalds 已提交
6102 6103 6104 6105
	return cpu;
}
#endif

6106 6107 6108
/*
 * multi-core sched-domains:
 */
6109 6110
#ifdef CONFIG_SCHED_MC
static DEFINE_PER_CPU(struct sched_domain, core_domains);
6111
static DEFINE_PER_CPU(struct sched_group, sched_group_core);
6112 6113 6114
#endif

#if defined(CONFIG_SCHED_MC) && defined(CONFIG_SCHED_SMT)
I
Ingo Molnar 已提交
6115 6116
static int
cpu_to_core_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg)
6117
{
6118
	int group;
6119
	cpumask_t mask = per_cpu(cpu_sibling_map, cpu);
6120
	cpus_and(mask, mask, *cpu_map);
6121 6122 6123 6124
	group = first_cpu(mask);
	if (sg)
		*sg = &per_cpu(sched_group_core, group);
	return group;
6125 6126
}
#elif defined(CONFIG_SCHED_MC)
I
Ingo Molnar 已提交
6127 6128
static int
cpu_to_core_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg)
6129
{
6130 6131
	if (sg)
		*sg = &per_cpu(sched_group_core, cpu);
6132 6133 6134 6135
	return cpu;
}
#endif

L
Linus Torvalds 已提交
6136
static DEFINE_PER_CPU(struct sched_domain, phys_domains);
6137
static DEFINE_PER_CPU(struct sched_group, sched_group_phys);
6138

I
Ingo Molnar 已提交
6139 6140
static int
cpu_to_phys_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg)
L
Linus Torvalds 已提交
6141
{
6142
	int group;
6143
#ifdef CONFIG_SCHED_MC
6144
	cpumask_t mask = cpu_coregroup_map(cpu);
6145
	cpus_and(mask, mask, *cpu_map);
6146
	group = first_cpu(mask);
6147
#elif defined(CONFIG_SCHED_SMT)
6148
	cpumask_t mask = per_cpu(cpu_sibling_map, cpu);
6149
	cpus_and(mask, mask, *cpu_map);
6150
	group = first_cpu(mask);
L
Linus Torvalds 已提交
6151
#else
6152
	group = cpu;
L
Linus Torvalds 已提交
6153
#endif
6154 6155 6156
	if (sg)
		*sg = &per_cpu(sched_group_phys, group);
	return group;
L
Linus Torvalds 已提交
6157 6158 6159 6160
}

#ifdef CONFIG_NUMA
/*
6161 6162 6163
 * The init_sched_build_groups can't handle what we want to do with node
 * groups, so roll our own. Now each node has its own list of groups which
 * gets dynamically allocated.
L
Linus Torvalds 已提交
6164
 */
6165
static DEFINE_PER_CPU(struct sched_domain, node_domains);
6166
static struct sched_group **sched_group_nodes_bycpu[NR_CPUS];
L
Linus Torvalds 已提交
6167

6168
static DEFINE_PER_CPU(struct sched_domain, allnodes_domains);
6169
static DEFINE_PER_CPU(struct sched_group, sched_group_allnodes);
6170

6171 6172
static int cpu_to_allnodes_group(int cpu, const cpumask_t *cpu_map,
				 struct sched_group **sg)
6173
{
6174 6175 6176 6177 6178 6179 6180 6181 6182
	cpumask_t nodemask = node_to_cpumask(cpu_to_node(cpu));
	int group;

	cpus_and(nodemask, nodemask, *cpu_map);
	group = first_cpu(nodemask);

	if (sg)
		*sg = &per_cpu(sched_group_allnodes, group);
	return group;
L
Linus Torvalds 已提交
6183
}
6184

6185 6186 6187 6188 6189 6190 6191
static void init_numa_sched_groups_power(struct sched_group *group_head)
{
	struct sched_group *sg = group_head;
	int j;

	if (!sg)
		return;
6192 6193 6194
	do {
		for_each_cpu_mask(j, sg->cpumask) {
			struct sched_domain *sd;
6195

6196 6197 6198 6199 6200 6201 6202 6203
			sd = &per_cpu(phys_domains, j);
			if (j != first_cpu(sd->groups->cpumask)) {
				/*
				 * Only add "power" once for each
				 * physical package.
				 */
				continue;
			}
6204

6205 6206 6207 6208
			sg_inc_cpu_power(sg, sd->groups->__cpu_power);
		}
		sg = sg->next;
	} while (sg != group_head);
6209
}
L
Linus Torvalds 已提交
6210 6211
#endif

6212
#ifdef CONFIG_NUMA
6213 6214 6215
/* Free memory allocated for various sched_group structures */
static void free_sched_groups(const cpumask_t *cpu_map)
{
6216
	int cpu, i;
6217 6218 6219 6220 6221 6222 6223 6224 6225 6226 6227 6228 6229 6230 6231 6232 6233 6234 6235 6236 6237 6238 6239 6240 6241 6242 6243 6244 6245 6246

	for_each_cpu_mask(cpu, *cpu_map) {
		struct sched_group **sched_group_nodes
			= sched_group_nodes_bycpu[cpu];

		if (!sched_group_nodes)
			continue;

		for (i = 0; i < MAX_NUMNODES; i++) {
			cpumask_t nodemask = node_to_cpumask(i);
			struct sched_group *oldsg, *sg = sched_group_nodes[i];

			cpus_and(nodemask, nodemask, *cpu_map);
			if (cpus_empty(nodemask))
				continue;

			if (sg == NULL)
				continue;
			sg = sg->next;
next_sg:
			oldsg = sg;
			sg = sg->next;
			kfree(oldsg);
			if (oldsg != sched_group_nodes[i])
				goto next_sg;
		}
		kfree(sched_group_nodes);
		sched_group_nodes_bycpu[cpu] = NULL;
	}
}
6247 6248 6249 6250 6251
#else
static void free_sched_groups(const cpumask_t *cpu_map)
{
}
#endif
6252

6253 6254 6255 6256 6257 6258 6259 6260 6261 6262 6263 6264 6265 6266 6267 6268 6269 6270 6271 6272 6273 6274 6275 6276 6277 6278
/*
 * Initialize sched groups cpu_power.
 *
 * cpu_power indicates the capacity of sched group, which is used while
 * distributing the load between different sched groups in a sched domain.
 * Typically cpu_power for all the groups in a sched domain will be same unless
 * there are asymmetries in the topology. If there are asymmetries, group
 * having more cpu_power will pickup more load compared to the group having
 * less cpu_power.
 *
 * cpu_power will be a multiple of SCHED_LOAD_SCALE. This multiple represents
 * the maximum number of tasks a group can handle in the presence of other idle
 * or lightly loaded groups in the same sched domain.
 */
static void init_sched_groups_power(int cpu, struct sched_domain *sd)
{
	struct sched_domain *child;
	struct sched_group *group;

	WARN_ON(!sd || !sd->groups);

	if (cpu != first_cpu(sd->groups->cpumask))
		return;

	child = sd->child;

6279 6280
	sd->groups->__cpu_power = 0;

6281 6282 6283 6284 6285 6286 6287 6288 6289 6290
	/*
	 * For perf policy, if the groups in child domain share resources
	 * (for example cores sharing some portions of the cache hierarchy
	 * or SMT), then set this domain groups cpu_power such that each group
	 * can handle only one task, when there are other idle groups in the
	 * same sched domain.
	 */
	if (!child || (!(sd->flags & SD_POWERSAVINGS_BALANCE) &&
		       (child->flags &
			(SD_SHARE_CPUPOWER | SD_SHARE_PKG_RESOURCES)))) {
6291
		sg_inc_cpu_power(sd->groups, SCHED_LOAD_SCALE);
6292 6293 6294 6295 6296 6297 6298 6299
		return;
	}

	/*
	 * add cpu_power of each child group to this groups cpu_power
	 */
	group = child->groups;
	do {
6300
		sg_inc_cpu_power(sd->groups, group->__cpu_power);
6301 6302 6303 6304
		group = group->next;
	} while (group != child->groups);
}

L
Linus Torvalds 已提交
6305
/*
6306 6307
 * Build sched domains for a given set of cpus and attach the sched domains
 * to the individual cpus
L
Linus Torvalds 已提交
6308
 */
6309
static int build_sched_domains(const cpumask_t *cpu_map)
L
Linus Torvalds 已提交
6310 6311
{
	int i;
G
Gregory Haskins 已提交
6312
	struct root_domain *rd;
6313 6314
#ifdef CONFIG_NUMA
	struct sched_group **sched_group_nodes = NULL;
6315
	int sd_allnodes = 0;
6316 6317 6318 6319

	/*
	 * Allocate the per-node list of sched groups
	 */
6320
	sched_group_nodes = kcalloc(MAX_NUMNODES, sizeof(struct sched_group *),
I
Ingo Molnar 已提交
6321
				    GFP_KERNEL);
6322 6323
	if (!sched_group_nodes) {
		printk(KERN_WARNING "Can not alloc sched group node list\n");
6324
		return -ENOMEM;
6325 6326 6327
	}
	sched_group_nodes_bycpu[first_cpu(*cpu_map)] = sched_group_nodes;
#endif
L
Linus Torvalds 已提交
6328

6329
	rd = alloc_rootdomain();
G
Gregory Haskins 已提交
6330 6331 6332 6333 6334
	if (!rd) {
		printk(KERN_WARNING "Cannot alloc root domain\n");
		return -ENOMEM;
	}

L
Linus Torvalds 已提交
6335
	/*
6336
	 * Set up domains for cpus specified by the cpu_map.
L
Linus Torvalds 已提交
6337
	 */
6338
	for_each_cpu_mask(i, *cpu_map) {
L
Linus Torvalds 已提交
6339 6340 6341
		struct sched_domain *sd = NULL, *p;
		cpumask_t nodemask = node_to_cpumask(cpu_to_node(i));

6342
		cpus_and(nodemask, nodemask, *cpu_map);
L
Linus Torvalds 已提交
6343 6344

#ifdef CONFIG_NUMA
I
Ingo Molnar 已提交
6345 6346
		if (cpus_weight(*cpu_map) >
				SD_NODES_PER_DOMAIN*cpus_weight(nodemask)) {
6347 6348 6349
			sd = &per_cpu(allnodes_domains, i);
			*sd = SD_ALLNODES_INIT;
			sd->span = *cpu_map;
6350
			cpu_to_allnodes_group(i, cpu_map, &sd->groups);
6351
			p = sd;
6352
			sd_allnodes = 1;
6353 6354 6355
		} else
			p = NULL;

L
Linus Torvalds 已提交
6356 6357
		sd = &per_cpu(node_domains, i);
		*sd = SD_NODE_INIT;
6358 6359
		sd->span = sched_domain_node_span(cpu_to_node(i));
		sd->parent = p;
6360 6361
		if (p)
			p->child = sd;
6362
		cpus_and(sd->span, sd->span, *cpu_map);
L
Linus Torvalds 已提交
6363 6364 6365 6366 6367 6368 6369
#endif

		p = sd;
		sd = &per_cpu(phys_domains, i);
		*sd = SD_CPU_INIT;
		sd->span = nodemask;
		sd->parent = p;
6370 6371
		if (p)
			p->child = sd;
6372
		cpu_to_phys_group(i, cpu_map, &sd->groups);
L
Linus Torvalds 已提交
6373

6374 6375 6376 6377 6378 6379 6380
#ifdef CONFIG_SCHED_MC
		p = sd;
		sd = &per_cpu(core_domains, i);
		*sd = SD_MC_INIT;
		sd->span = cpu_coregroup_map(i);
		cpus_and(sd->span, sd->span, *cpu_map);
		sd->parent = p;
6381
		p->child = sd;
6382
		cpu_to_core_group(i, cpu_map, &sd->groups);
6383 6384
#endif

L
Linus Torvalds 已提交
6385 6386 6387 6388
#ifdef CONFIG_SCHED_SMT
		p = sd;
		sd = &per_cpu(cpu_domains, i);
		*sd = SD_SIBLING_INIT;
6389
		sd->span = per_cpu(cpu_sibling_map, i);
6390
		cpus_and(sd->span, sd->span, *cpu_map);
L
Linus Torvalds 已提交
6391
		sd->parent = p;
6392
		p->child = sd;
6393
		cpu_to_cpu_group(i, cpu_map, &sd->groups);
L
Linus Torvalds 已提交
6394 6395 6396 6397 6398
#endif
	}

#ifdef CONFIG_SCHED_SMT
	/* Set up CPU (sibling) groups */
6399
	for_each_cpu_mask(i, *cpu_map) {
6400
		cpumask_t this_sibling_map = per_cpu(cpu_sibling_map, i);
6401
		cpus_and(this_sibling_map, this_sibling_map, *cpu_map);
L
Linus Torvalds 已提交
6402 6403 6404
		if (i != first_cpu(this_sibling_map))
			continue;

I
Ingo Molnar 已提交
6405 6406
		init_sched_build_groups(this_sibling_map, cpu_map,
					&cpu_to_cpu_group);
L
Linus Torvalds 已提交
6407 6408 6409
	}
#endif

6410 6411 6412 6413 6414 6415 6416
#ifdef CONFIG_SCHED_MC
	/* Set up multi-core groups */
	for_each_cpu_mask(i, *cpu_map) {
		cpumask_t this_core_map = cpu_coregroup_map(i);
		cpus_and(this_core_map, this_core_map, *cpu_map);
		if (i != first_cpu(this_core_map))
			continue;
I
Ingo Molnar 已提交
6417 6418
		init_sched_build_groups(this_core_map, cpu_map,
					&cpu_to_core_group);
6419 6420 6421
	}
#endif

L
Linus Torvalds 已提交
6422 6423 6424 6425
	/* Set up physical groups */
	for (i = 0; i < MAX_NUMNODES; i++) {
		cpumask_t nodemask = node_to_cpumask(i);

6426
		cpus_and(nodemask, nodemask, *cpu_map);
L
Linus Torvalds 已提交
6427 6428 6429
		if (cpus_empty(nodemask))
			continue;

6430
		init_sched_build_groups(nodemask, cpu_map, &cpu_to_phys_group);
L
Linus Torvalds 已提交
6431 6432 6433 6434
	}

#ifdef CONFIG_NUMA
	/* Set up node groups */
6435
	if (sd_allnodes)
I
Ingo Molnar 已提交
6436 6437
		init_sched_build_groups(*cpu_map, cpu_map,
					&cpu_to_allnodes_group);
6438 6439 6440 6441 6442 6443 6444 6445 6446 6447

	for (i = 0; i < MAX_NUMNODES; i++) {
		/* Set up node groups */
		struct sched_group *sg, *prev;
		cpumask_t nodemask = node_to_cpumask(i);
		cpumask_t domainspan;
		cpumask_t covered = CPU_MASK_NONE;
		int j;

		cpus_and(nodemask, nodemask, *cpu_map);
6448 6449
		if (cpus_empty(nodemask)) {
			sched_group_nodes[i] = NULL;
6450
			continue;
6451
		}
6452 6453 6454 6455

		domainspan = sched_domain_node_span(i);
		cpus_and(domainspan, domainspan, *cpu_map);

6456
		sg = kmalloc_node(sizeof(struct sched_group), GFP_KERNEL, i);
6457 6458 6459 6460 6461
		if (!sg) {
			printk(KERN_WARNING "Can not alloc domain group for "
				"node %d\n", i);
			goto error;
		}
6462 6463 6464
		sched_group_nodes[i] = sg;
		for_each_cpu_mask(j, nodemask) {
			struct sched_domain *sd;
I
Ingo Molnar 已提交
6465

6466 6467 6468
			sd = &per_cpu(node_domains, j);
			sd->groups = sg;
		}
6469
		sg->__cpu_power = 0;
6470
		sg->cpumask = nodemask;
6471
		sg->next = sg;
6472 6473 6474 6475 6476 6477 6478 6479 6480 6481 6482 6483 6484 6485 6486 6487 6488 6489
		cpus_or(covered, covered, nodemask);
		prev = sg;

		for (j = 0; j < MAX_NUMNODES; j++) {
			cpumask_t tmp, notcovered;
			int n = (i + j) % MAX_NUMNODES;

			cpus_complement(notcovered, covered);
			cpus_and(tmp, notcovered, *cpu_map);
			cpus_and(tmp, tmp, domainspan);
			if (cpus_empty(tmp))
				break;

			nodemask = node_to_cpumask(n);
			cpus_and(tmp, tmp, nodemask);
			if (cpus_empty(tmp))
				continue;

6490 6491
			sg = kmalloc_node(sizeof(struct sched_group),
					  GFP_KERNEL, i);
6492 6493 6494
			if (!sg) {
				printk(KERN_WARNING
				"Can not alloc domain group for node %d\n", j);
6495
				goto error;
6496
			}
6497
			sg->__cpu_power = 0;
6498
			sg->cpumask = tmp;
6499
			sg->next = prev->next;
6500 6501 6502 6503 6504
			cpus_or(covered, covered, tmp);
			prev->next = sg;
			prev = sg;
		}
	}
L
Linus Torvalds 已提交
6505 6506 6507
#endif

	/* Calculate CPU power for physical packages and nodes */
6508
#ifdef CONFIG_SCHED_SMT
6509
	for_each_cpu_mask(i, *cpu_map) {
I
Ingo Molnar 已提交
6510 6511
		struct sched_domain *sd = &per_cpu(cpu_domains, i);

6512
		init_sched_groups_power(i, sd);
6513
	}
L
Linus Torvalds 已提交
6514
#endif
6515
#ifdef CONFIG_SCHED_MC
6516
	for_each_cpu_mask(i, *cpu_map) {
I
Ingo Molnar 已提交
6517 6518
		struct sched_domain *sd = &per_cpu(core_domains, i);

6519
		init_sched_groups_power(i, sd);
6520 6521
	}
#endif
6522

6523
	for_each_cpu_mask(i, *cpu_map) {
I
Ingo Molnar 已提交
6524 6525
		struct sched_domain *sd = &per_cpu(phys_domains, i);

6526
		init_sched_groups_power(i, sd);
L
Linus Torvalds 已提交
6527 6528
	}

6529
#ifdef CONFIG_NUMA
6530 6531
	for (i = 0; i < MAX_NUMNODES; i++)
		init_numa_sched_groups_power(sched_group_nodes[i]);
6532

6533 6534
	if (sd_allnodes) {
		struct sched_group *sg;
6535

6536
		cpu_to_allnodes_group(first_cpu(*cpu_map), cpu_map, &sg);
6537 6538
		init_numa_sched_groups_power(sg);
	}
6539 6540
#endif

L
Linus Torvalds 已提交
6541
	/* Attach the domains */
6542
	for_each_cpu_mask(i, *cpu_map) {
L
Linus Torvalds 已提交
6543 6544 6545
		struct sched_domain *sd;
#ifdef CONFIG_SCHED_SMT
		sd = &per_cpu(cpu_domains, i);
6546 6547
#elif defined(CONFIG_SCHED_MC)
		sd = &per_cpu(core_domains, i);
L
Linus Torvalds 已提交
6548 6549 6550
#else
		sd = &per_cpu(phys_domains, i);
#endif
G
Gregory Haskins 已提交
6551
		cpu_attach_domain(sd, rd, i);
L
Linus Torvalds 已提交
6552
	}
6553 6554 6555

	return 0;

6556
#ifdef CONFIG_NUMA
6557 6558 6559
error:
	free_sched_groups(cpu_map);
	return -ENOMEM;
6560
#endif
L
Linus Torvalds 已提交
6561
}
P
Paul Jackson 已提交
6562 6563 6564 6565 6566 6567 6568 6569 6570 6571 6572

static cpumask_t *doms_cur;	/* current sched domains */
static int ndoms_cur;		/* number of sched domains in 'doms_cur' */

/*
 * Special case: If a kmalloc of a doms_cur partition (array of
 * cpumask_t) fails, then fallback to a single sched domain,
 * as determined by the single cpumask_t fallback_doms.
 */
static cpumask_t fallback_doms;

6573
/*
I
Ingo Molnar 已提交
6574
 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
P
Paul Jackson 已提交
6575 6576
 * For now this just excludes isolated cpus, but could be used to
 * exclude other special cases in the future.
6577
 */
6578
static int arch_init_sched_domains(const cpumask_t *cpu_map)
6579
{
6580 6581
	int err;

P
Paul Jackson 已提交
6582 6583 6584 6585 6586
	ndoms_cur = 1;
	doms_cur = kmalloc(sizeof(cpumask_t), GFP_KERNEL);
	if (!doms_cur)
		doms_cur = &fallback_doms;
	cpus_andnot(*doms_cur, *cpu_map, cpu_isolated_map);
6587
	err = build_sched_domains(doms_cur);
6588
	register_sched_domain_sysctl();
6589 6590

	return err;
6591 6592 6593
}

static void arch_destroy_sched_domains(const cpumask_t *cpu_map)
L
Linus Torvalds 已提交
6594
{
6595
	free_sched_groups(cpu_map);
6596
}
L
Linus Torvalds 已提交
6597

6598 6599 6600 6601
/*
 * Detach sched domains from a group of cpus specified in cpu_map
 * These cpus will now be attached to the NULL domain
 */
6602
static void detach_destroy_domains(const cpumask_t *cpu_map)
6603 6604 6605
{
	int i;

6606 6607
	unregister_sched_domain_sysctl();

6608
	for_each_cpu_mask(i, *cpu_map)
G
Gregory Haskins 已提交
6609
		cpu_attach_domain(NULL, &def_root_domain, i);
6610 6611 6612 6613
	synchronize_sched();
	arch_destroy_sched_domains(cpu_map);
}

P
Paul Jackson 已提交
6614 6615
/*
 * Partition sched domains as specified by the 'ndoms_new'
I
Ingo Molnar 已提交
6616
 * cpumasks in the array doms_new[] of cpumasks. This compares
P
Paul Jackson 已提交
6617 6618 6619 6620
 * doms_new[] to the current sched domain partitioning, doms_cur[].
 * It destroys each deleted domain and builds each new domain.
 *
 * 'doms_new' is an array of cpumask_t's of length 'ndoms_new'.
I
Ingo Molnar 已提交
6621 6622 6623
 * The masks don't intersect (don't overlap.) We should setup one
 * sched domain for each mask. CPUs not in any of the cpumasks will
 * not be load balanced. If the same cpumask appears both in the
P
Paul Jackson 已提交
6624 6625 6626
 * current 'doms_cur' domains and in the new 'doms_new', we can leave
 * it as it is.
 *
I
Ingo Molnar 已提交
6627 6628
 * The passed in 'doms_new' should be kmalloc'd. This routine takes
 * ownership of it and will kfree it when done with it. If the caller
P
Paul Jackson 已提交
6629 6630 6631 6632 6633 6634 6635 6636 6637 6638
 * failed the kmalloc call, then it can pass in doms_new == NULL,
 * and partition_sched_domains() will fallback to the single partition
 * 'fallback_doms'.
 *
 * Call with hotplug lock held
 */
void partition_sched_domains(int ndoms_new, cpumask_t *doms_new)
{
	int i, j;

6639 6640
	lock_doms_cur();

6641 6642 6643
	/* always unregister in case we don't destroy any domains */
	unregister_sched_domain_sysctl();

P
Paul Jackson 已提交
6644 6645 6646 6647 6648 6649 6650 6651 6652 6653 6654 6655 6656 6657 6658 6659 6660 6661 6662 6663 6664 6665 6666 6667 6668 6669 6670 6671 6672 6673 6674 6675 6676 6677 6678
	if (doms_new == NULL) {
		ndoms_new = 1;
		doms_new = &fallback_doms;
		cpus_andnot(doms_new[0], cpu_online_map, cpu_isolated_map);
	}

	/* Destroy deleted domains */
	for (i = 0; i < ndoms_cur; i++) {
		for (j = 0; j < ndoms_new; j++) {
			if (cpus_equal(doms_cur[i], doms_new[j]))
				goto match1;
		}
		/* no match - a current sched domain not in new doms_new[] */
		detach_destroy_domains(doms_cur + i);
match1:
		;
	}

	/* Build new domains */
	for (i = 0; i < ndoms_new; i++) {
		for (j = 0; j < ndoms_cur; j++) {
			if (cpus_equal(doms_new[i], doms_cur[j]))
				goto match2;
		}
		/* no match - add a new doms_new */
		build_sched_domains(doms_new + i);
match2:
		;
	}

	/* Remember the new sched domains */
	if (doms_cur != &fallback_doms)
		kfree(doms_cur);
	doms_cur = doms_new;
	ndoms_cur = ndoms_new;
6679 6680

	register_sched_domain_sysctl();
6681 6682

	unlock_doms_cur();
P
Paul Jackson 已提交
6683 6684
}

6685
#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
A
Adrian Bunk 已提交
6686
static int arch_reinit_sched_domains(void)
6687 6688 6689
{
	int err;

6690
	get_online_cpus();
6691 6692
	detach_destroy_domains(&cpu_online_map);
	err = arch_init_sched_domains(&cpu_online_map);
6693
	put_online_cpus();
6694 6695 6696 6697 6698 6699 6700 6701 6702 6703 6704 6705 6706 6707 6708 6709 6710 6711 6712 6713 6714 6715 6716 6717 6718 6719

	return err;
}

static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
{
	int ret;

	if (buf[0] != '0' && buf[0] != '1')
		return -EINVAL;

	if (smt)
		sched_smt_power_savings = (buf[0] == '1');
	else
		sched_mc_power_savings = (buf[0] == '1');

	ret = arch_reinit_sched_domains();

	return ret ? ret : count;
}

#ifdef CONFIG_SCHED_MC
static ssize_t sched_mc_power_savings_show(struct sys_device *dev, char *page)
{
	return sprintf(page, "%u\n", sched_mc_power_savings);
}
6720 6721
static ssize_t sched_mc_power_savings_store(struct sys_device *dev,
					    const char *buf, size_t count)
6722 6723 6724
{
	return sched_power_savings_store(buf, count, 0);
}
A
Adrian Bunk 已提交
6725 6726
static SYSDEV_ATTR(sched_mc_power_savings, 0644, sched_mc_power_savings_show,
		   sched_mc_power_savings_store);
6727 6728 6729 6730 6731 6732 6733
#endif

#ifdef CONFIG_SCHED_SMT
static ssize_t sched_smt_power_savings_show(struct sys_device *dev, char *page)
{
	return sprintf(page, "%u\n", sched_smt_power_savings);
}
6734 6735
static ssize_t sched_smt_power_savings_store(struct sys_device *dev,
					     const char *buf, size_t count)
6736 6737 6738
{
	return sched_power_savings_store(buf, count, 1);
}
A
Adrian Bunk 已提交
6739 6740 6741 6742 6743 6744 6745 6746 6747 6748 6749 6750 6751 6752 6753 6754 6755 6756 6757 6758
static SYSDEV_ATTR(sched_smt_power_savings, 0644, sched_smt_power_savings_show,
		   sched_smt_power_savings_store);
#endif

int sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
{
	int err = 0;

#ifdef CONFIG_SCHED_SMT
	if (smt_capable())
		err = sysfs_create_file(&cls->kset.kobj,
					&attr_sched_smt_power_savings.attr);
#endif
#ifdef CONFIG_SCHED_MC
	if (!err && mc_capable())
		err = sysfs_create_file(&cls->kset.kobj,
					&attr_sched_mc_power_savings.attr);
#endif
	return err;
}
6759 6760
#endif

L
Linus Torvalds 已提交
6761
/*
I
Ingo Molnar 已提交
6762
 * Force a reinitialization of the sched domains hierarchy. The domains
L
Linus Torvalds 已提交
6763
 * and groups cannot be updated in place without racing with the balancing
N
Nick Piggin 已提交
6764
 * code, so we temporarily attach all running cpus to the NULL domain
L
Linus Torvalds 已提交
6765 6766 6767 6768 6769 6770 6771
 * which will prevent rebalancing while the sched domains are recalculated.
 */
static int update_sched_domains(struct notifier_block *nfb,
				unsigned long action, void *hcpu)
{
	switch (action) {
	case CPU_UP_PREPARE:
6772
	case CPU_UP_PREPARE_FROZEN:
L
Linus Torvalds 已提交
6773
	case CPU_DOWN_PREPARE:
6774
	case CPU_DOWN_PREPARE_FROZEN:
6775
		detach_destroy_domains(&cpu_online_map);
L
Linus Torvalds 已提交
6776 6777 6778
		return NOTIFY_OK;

	case CPU_UP_CANCELED:
6779
	case CPU_UP_CANCELED_FROZEN:
L
Linus Torvalds 已提交
6780
	case CPU_DOWN_FAILED:
6781
	case CPU_DOWN_FAILED_FROZEN:
L
Linus Torvalds 已提交
6782
	case CPU_ONLINE:
6783
	case CPU_ONLINE_FROZEN:
L
Linus Torvalds 已提交
6784
	case CPU_DEAD:
6785
	case CPU_DEAD_FROZEN:
L
Linus Torvalds 已提交
6786 6787 6788 6789 6790 6791 6792 6793 6794
		/*
		 * Fall through and re-initialise the domains.
		 */
		break;
	default:
		return NOTIFY_DONE;
	}

	/* The hotplug lock is already held by cpu_up/cpu_down */
6795
	arch_init_sched_domains(&cpu_online_map);
L
Linus Torvalds 已提交
6796 6797 6798 6799 6800 6801

	return NOTIFY_OK;
}

void __init sched_init_smp(void)
{
6802 6803
	cpumask_t non_isolated_cpus;

6804
	get_online_cpus();
6805
	arch_init_sched_domains(&cpu_online_map);
6806
	cpus_andnot(non_isolated_cpus, cpu_possible_map, cpu_isolated_map);
6807 6808
	if (cpus_empty(non_isolated_cpus))
		cpu_set(smp_processor_id(), non_isolated_cpus);
6809
	put_online_cpus();
L
Linus Torvalds 已提交
6810 6811
	/* XXX: Theoretical race here - CPU may be hotplugged now */
	hotcpu_notifier(update_sched_domains, 0);
6812 6813 6814 6815

	/* Move init over to a non-isolated CPU */
	if (set_cpus_allowed(current, non_isolated_cpus) < 0)
		BUG();
I
Ingo Molnar 已提交
6816
	sched_init_granularity();
6817 6818 6819 6820 6821 6822 6823 6824 6825 6826 6827 6828 6829 6830 6831

#ifdef CONFIG_FAIR_GROUP_SCHED
	if (nr_cpu_ids == 1)
		return;

	lb_monitor_task = kthread_create(load_balance_monitor, NULL,
					 "group_balance");
	if (!IS_ERR(lb_monitor_task)) {
		lb_monitor_task->flags |= PF_NOFREEZE;
		wake_up_process(lb_monitor_task);
	} else {
		printk(KERN_ERR "Could not create load balance monitor thread"
			"(error = %ld) \n", PTR_ERR(lb_monitor_task));
	}
#endif
L
Linus Torvalds 已提交
6832 6833 6834 6835
}
#else
void __init sched_init_smp(void)
{
I
Ingo Molnar 已提交
6836
	sched_init_granularity();
L
Linus Torvalds 已提交
6837 6838 6839 6840 6841 6842 6843 6844 6845 6846
}
#endif /* CONFIG_SMP */

int in_sched_functions(unsigned long addr)
{
	return in_lock_functions(addr) ||
		(addr >= (unsigned long)__sched_text_start
		&& addr < (unsigned long)__sched_text_end);
}

A
Alexey Dobriyan 已提交
6847
static void init_cfs_rq(struct cfs_rq *cfs_rq, struct rq *rq)
I
Ingo Molnar 已提交
6848 6849 6850 6851 6852
{
	cfs_rq->tasks_timeline = RB_ROOT;
#ifdef CONFIG_FAIR_GROUP_SCHED
	cfs_rq->rq = rq;
#endif
P
Peter Zijlstra 已提交
6853
	cfs_rq->min_vruntime = (u64)(-(1LL << 20));
I
Ingo Molnar 已提交
6854 6855
}

L
Linus Torvalds 已提交
6856 6857
void __init sched_init(void)
{
6858
	int highest_cpu = 0;
I
Ingo Molnar 已提交
6859 6860
	int i, j;

G
Gregory Haskins 已提交
6861 6862 6863 6864
#ifdef CONFIG_SMP
	init_defrootdomain();
#endif

6865
	for_each_possible_cpu(i) {
I
Ingo Molnar 已提交
6866
		struct rt_prio_array *array;
6867
		struct rq *rq;
L
Linus Torvalds 已提交
6868 6869 6870

		rq = cpu_rq(i);
		spin_lock_init(&rq->lock);
6871
		lockdep_set_class(&rq->lock, &rq->rq_lock_key);
N
Nick Piggin 已提交
6872
		rq->nr_running = 0;
I
Ingo Molnar 已提交
6873 6874 6875 6876
		rq->clock = 1;
		init_cfs_rq(&rq->cfs, rq);
#ifdef CONFIG_FAIR_GROUP_SCHED
		INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
I
Ingo Molnar 已提交
6877 6878 6879 6880 6881 6882 6883
		{
			struct cfs_rq *cfs_rq = &per_cpu(init_cfs_rq, i);
			struct sched_entity *se =
					 &per_cpu(init_sched_entity, i);

			init_cfs_rq_p[i] = cfs_rq;
			init_cfs_rq(cfs_rq, rq);
6884
			cfs_rq->tg = &init_task_group;
I
Ingo Molnar 已提交
6885
			list_add(&cfs_rq->leaf_cfs_rq_list,
S
Srivatsa Vaddagiri 已提交
6886 6887
							 &rq->leaf_cfs_rq_list);

I
Ingo Molnar 已提交
6888 6889 6890
			init_sched_entity_p[i] = se;
			se->cfs_rq = &rq->cfs;
			se->my_q = cfs_rq;
6891
			se->load.weight = init_task_group_load;
6892
			se->load.inv_weight =
6893
				 div64_64(1ULL<<32, init_task_group_load);
I
Ingo Molnar 已提交
6894 6895
			se->parent = NULL;
		}
6896
		init_task_group.shares = init_task_group_load;
I
Ingo Molnar 已提交
6897
#endif
L
Linus Torvalds 已提交
6898

I
Ingo Molnar 已提交
6899 6900
		for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
			rq->cpu_load[j] = 0;
L
Linus Torvalds 已提交
6901
#ifdef CONFIG_SMP
N
Nick Piggin 已提交
6902
		rq->sd = NULL;
G
Gregory Haskins 已提交
6903
		rq->rd = NULL;
L
Linus Torvalds 已提交
6904
		rq->active_balance = 0;
I
Ingo Molnar 已提交
6905
		rq->next_balance = jiffies;
L
Linus Torvalds 已提交
6906
		rq->push_cpu = 0;
6907
		rq->cpu = i;
L
Linus Torvalds 已提交
6908 6909
		rq->migration_thread = NULL;
		INIT_LIST_HEAD(&rq->migration_queue);
6910
		rq->rt.highest_prio = MAX_RT_PRIO;
G
Gregory Haskins 已提交
6911
		rq->rt.overloaded = 0;
6912
		rq_attach_root(rq, &def_root_domain);
L
Linus Torvalds 已提交
6913 6914 6915
#endif
		atomic_set(&rq->nr_iowait, 0);

I
Ingo Molnar 已提交
6916 6917 6918 6919
		array = &rq->rt.active;
		for (j = 0; j < MAX_RT_PRIO; j++) {
			INIT_LIST_HEAD(array->queue + j);
			__clear_bit(j, array->bitmap);
L
Linus Torvalds 已提交
6920
		}
6921
		highest_cpu = i;
I
Ingo Molnar 已提交
6922 6923
		/* delimiter for bitsearch: */
		__set_bit(MAX_RT_PRIO, array->bitmap);
L
Linus Torvalds 已提交
6924 6925
	}

6926
	set_load_weight(&init_task);
6927

6928 6929 6930 6931
#ifdef CONFIG_PREEMPT_NOTIFIERS
	INIT_HLIST_HEAD(&init_task.preempt_notifiers);
#endif

6932
#ifdef CONFIG_SMP
6933
	nr_cpu_ids = highest_cpu + 1;
6934 6935 6936
	open_softirq(SCHED_SOFTIRQ, run_rebalance_domains, NULL);
#endif

6937 6938 6939 6940
#ifdef CONFIG_RT_MUTEXES
	plist_head_init(&init_task.pi_waiters, &init_task.pi_lock);
#endif

L
Linus Torvalds 已提交
6941 6942 6943 6944 6945 6946 6947 6948 6949 6950 6951 6952 6953
	/*
	 * The boot idle thread does lazy MMU switching as well:
	 */
	atomic_inc(&init_mm.mm_count);
	enter_lazy_tlb(&init_mm, current);

	/*
	 * Make us the idle thread. Technically, schedule() should not be
	 * called from this thread, however somewhere below it might be,
	 * but because we are the idle thread, we just pick up running again
	 * when this runqueue becomes "idle".
	 */
	init_idle(current, smp_processor_id());
I
Ingo Molnar 已提交
6954 6955 6956 6957
	/*
	 * During early bootup we pretend to be a normal task:
	 */
	current->sched_class = &fair_sched_class;
L
Linus Torvalds 已提交
6958 6959 6960 6961 6962
}

#ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
void __might_sleep(char *file, int line)
{
6963
#ifdef in_atomic
L
Linus Torvalds 已提交
6964 6965 6966 6967 6968 6969 6970
	static unsigned long prev_jiffy;	/* ratelimiting */

	if ((in_atomic() || irqs_disabled()) &&
	    system_state == SYSTEM_RUNNING && !oops_in_progress) {
		if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
			return;
		prev_jiffy = jiffies;
6971
		printk(KERN_ERR "BUG: sleeping function called from invalid"
L
Linus Torvalds 已提交
6972 6973 6974
				" context at %s:%d\n", file, line);
		printk("in_atomic():%d, irqs_disabled():%d\n",
			in_atomic(), irqs_disabled());
6975
		debug_show_held_locks(current);
6976 6977
		if (irqs_disabled())
			print_irqtrace_events(current);
L
Linus Torvalds 已提交
6978 6979 6980 6981 6982 6983 6984 6985
		dump_stack();
	}
#endif
}
EXPORT_SYMBOL(__might_sleep);
#endif

#ifdef CONFIG_MAGIC_SYSRQ
6986 6987 6988 6989 6990 6991 6992 6993 6994 6995 6996 6997 6998 6999
static void normalize_task(struct rq *rq, struct task_struct *p)
{
	int on_rq;
	update_rq_clock(rq);
	on_rq = p->se.on_rq;
	if (on_rq)
		deactivate_task(rq, p, 0);
	__setscheduler(rq, p, SCHED_NORMAL, 0);
	if (on_rq) {
		activate_task(rq, p, 0);
		resched_task(rq->curr);
	}
}

L
Linus Torvalds 已提交
7000 7001
void normalize_rt_tasks(void)
{
7002
	struct task_struct *g, *p;
L
Linus Torvalds 已提交
7003
	unsigned long flags;
7004
	struct rq *rq;
L
Linus Torvalds 已提交
7005 7006

	read_lock_irq(&tasklist_lock);
7007
	do_each_thread(g, p) {
7008 7009 7010 7011 7012 7013
		/*
		 * Only normalize user tasks:
		 */
		if (!p->mm)
			continue;

I
Ingo Molnar 已提交
7014 7015
		p->se.exec_start		= 0;
#ifdef CONFIG_SCHEDSTATS
I
Ingo Molnar 已提交
7016 7017 7018
		p->se.wait_start		= 0;
		p->se.sleep_start		= 0;
		p->se.block_start		= 0;
I
Ingo Molnar 已提交
7019
#endif
I
Ingo Molnar 已提交
7020 7021 7022 7023 7024 7025 7026 7027 7028
		task_rq(p)->clock		= 0;

		if (!rt_task(p)) {
			/*
			 * Renice negative nice level userspace
			 * tasks back to 0:
			 */
			if (TASK_NICE(p) < 0 && p->mm)
				set_user_nice(p, 0);
L
Linus Torvalds 已提交
7029
			continue;
I
Ingo Molnar 已提交
7030
		}
L
Linus Torvalds 已提交
7031

7032 7033
		spin_lock_irqsave(&p->pi_lock, flags);
		rq = __task_rq_lock(p);
L
Linus Torvalds 已提交
7034

7035
		normalize_task(rq, p);
7036

7037 7038
		__task_rq_unlock(rq);
		spin_unlock_irqrestore(&p->pi_lock, flags);
7039 7040
	} while_each_thread(g, p);

L
Linus Torvalds 已提交
7041 7042 7043 7044
	read_unlock_irq(&tasklist_lock);
}

#endif /* CONFIG_MAGIC_SYSRQ */
7045 7046 7047 7048 7049 7050 7051 7052 7053 7054 7055 7056 7057 7058 7059 7060 7061 7062

#ifdef CONFIG_IA64
/*
 * These functions are only useful for the IA64 MCA handling.
 *
 * They can only be called when the whole system has been
 * stopped - every CPU needs to be quiescent, and no scheduling
 * activity can take place. Using them for anything else would
 * be a serious bug, and as a result, they aren't even visible
 * under any other configuration.
 */

/**
 * curr_task - return the current task for a given cpu.
 * @cpu: the processor in question.
 *
 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
 */
7063
struct task_struct *curr_task(int cpu)
7064 7065 7066 7067 7068 7069 7070 7071 7072 7073
{
	return cpu_curr(cpu);
}

/**
 * set_curr_task - set the current task for a given cpu.
 * @cpu: the processor in question.
 * @p: the task pointer to set.
 *
 * Description: This function must only be used when non-maskable interrupts
I
Ingo Molnar 已提交
7074 7075
 * are serviced on a separate stack. It allows the architecture to switch the
 * notion of the current task on a cpu in a non-blocking manner. This function
7076 7077 7078 7079 7080 7081 7082
 * must be called with all CPU's synchronized, and interrupts disabled, the
 * and caller must save the original value of the current task (see
 * curr_task() above) and restore that value before reenabling interrupts and
 * re-starting the system.
 *
 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
 */
7083
void set_curr_task(int cpu, struct task_struct *p)
7084 7085 7086 7087 7088
{
	cpu_curr(cpu) = p;
}

#endif
S
Srivatsa Vaddagiri 已提交
7089 7090 7091

#ifdef CONFIG_FAIR_GROUP_SCHED

7092 7093 7094 7095 7096 7097 7098 7099 7100 7101 7102 7103 7104 7105 7106 7107 7108 7109 7110 7111 7112 7113
#ifdef CONFIG_SMP
/*
 * distribute shares of all task groups among their schedulable entities,
 * to reflect load distrbution across cpus.
 */
static int rebalance_shares(struct sched_domain *sd, int this_cpu)
{
	struct cfs_rq *cfs_rq;
	struct rq *rq = cpu_rq(this_cpu);
	cpumask_t sdspan = sd->span;
	int balanced = 1;

	/* Walk thr' all the task groups that we have */
	for_each_leaf_cfs_rq(rq, cfs_rq) {
		int i;
		unsigned long total_load = 0, total_shares;
		struct task_group *tg = cfs_rq->tg;

		/* Gather total task load of this group across cpus */
		for_each_cpu_mask(i, sdspan)
			total_load += tg->cfs_rq[i]->load.weight;

I
Ingo Molnar 已提交
7114
		/* Nothing to do if this group has no load */
7115 7116 7117 7118 7119 7120 7121 7122 7123 7124 7125 7126 7127 7128 7129 7130 7131 7132 7133 7134 7135 7136 7137 7138 7139 7140 7141 7142 7143 7144 7145 7146 7147 7148 7149 7150 7151 7152 7153 7154 7155 7156 7157 7158 7159 7160 7161 7162 7163 7164 7165 7166 7167 7168 7169 7170 7171 7172 7173 7174 7175 7176 7177 7178 7179 7180 7181 7182 7183 7184 7185 7186 7187 7188 7189 7190 7191 7192 7193 7194
		if (!total_load)
			continue;

		/*
		 * tg->shares represents the number of cpu shares the task group
		 * is eligible to hold on a single cpu. On N cpus, it is
		 * eligible to hold (N * tg->shares) number of cpu shares.
		 */
		total_shares = tg->shares * cpus_weight(sdspan);

		/*
		 * redistribute total_shares across cpus as per the task load
		 * distribution.
		 */
		for_each_cpu_mask(i, sdspan) {
			unsigned long local_load, local_shares;

			local_load = tg->cfs_rq[i]->load.weight;
			local_shares = (local_load * total_shares) / total_load;
			if (!local_shares)
				local_shares = MIN_GROUP_SHARES;
			if (local_shares == tg->se[i]->load.weight)
				continue;

			spin_lock_irq(&cpu_rq(i)->lock);
			set_se_shares(tg->se[i], local_shares);
			spin_unlock_irq(&cpu_rq(i)->lock);
			balanced = 0;
		}
	}

	return balanced;
}

/*
 * How frequently should we rebalance_shares() across cpus?
 *
 * The more frequently we rebalance shares, the more accurate is the fairness
 * of cpu bandwidth distribution between task groups. However higher frequency
 * also implies increased scheduling overhead.
 *
 * sysctl_sched_min_bal_int_shares represents the minimum interval between
 * consecutive calls to rebalance_shares() in the same sched domain.
 *
 * sysctl_sched_max_bal_int_shares represents the maximum interval between
 * consecutive calls to rebalance_shares() in the same sched domain.
 *
 * These settings allows for the appropriate tradeoff between accuracy of
 * fairness and the associated overhead.
 *
 */

/* default: 8ms, units: milliseconds */
const_debug unsigned int sysctl_sched_min_bal_int_shares = 8;

/* default: 128ms, units: milliseconds */
const_debug unsigned int sysctl_sched_max_bal_int_shares = 128;

/* kernel thread that runs rebalance_shares() periodically */
static int load_balance_monitor(void *unused)
{
	unsigned int timeout = sysctl_sched_min_bal_int_shares;
	struct sched_param schedparm;
	int ret;

	/*
	 * We don't want this thread's execution to be limited by the shares
	 * assigned to default group (init_task_group). Hence make it run
	 * as a SCHED_RR RT task at the lowest priority.
	 */
	schedparm.sched_priority = 1;
	ret = sched_setscheduler(current, SCHED_RR, &schedparm);
	if (ret)
		printk(KERN_ERR "Couldn't set SCHED_RR policy for load balance"
				" monitor thread (error = %d) \n", ret);

	while (!kthread_should_stop()) {
		int i, cpu, balanced = 1;

		/* Prevent cpus going down or coming up */
7195
		get_online_cpus();
7196 7197 7198 7199 7200 7201 7202 7203 7204 7205 7206 7207 7208 7209 7210 7211 7212 7213 7214 7215 7216 7217 7218 7219 7220 7221 7222 7223 7224 7225 7226 7227 7228
		/* lockout changes to doms_cur[] array */
		lock_doms_cur();
		/*
		 * Enter a rcu read-side critical section to safely walk rq->sd
		 * chain on various cpus and to walk task group list
		 * (rq->leaf_cfs_rq_list) in rebalance_shares().
		 */
		rcu_read_lock();

		for (i = 0; i < ndoms_cur; i++) {
			cpumask_t cpumap = doms_cur[i];
			struct sched_domain *sd = NULL, *sd_prev = NULL;

			cpu = first_cpu(cpumap);

			/* Find the highest domain at which to balance shares */
			for_each_domain(cpu, sd) {
				if (!(sd->flags & SD_LOAD_BALANCE))
					continue;
				sd_prev = sd;
			}

			sd = sd_prev;
			/* sd == NULL? No load balance reqd in this domain */
			if (!sd)
				continue;

			balanced &= rebalance_shares(sd, cpu);
		}

		rcu_read_unlock();

		unlock_doms_cur();
7229
		put_online_cpus();
7230 7231 7232 7233 7234 7235 7236 7237 7238 7239 7240 7241 7242

		if (!balanced)
			timeout = sysctl_sched_min_bal_int_shares;
		else if (timeout < sysctl_sched_max_bal_int_shares)
			timeout *= 2;

		msleep_interruptible(timeout);
	}

	return 0;
}
#endif	/* CONFIG_SMP */

S
Srivatsa Vaddagiri 已提交
7243
/* allocate runqueue etc for a new task group */
7244
struct task_group *sched_create_group(void)
S
Srivatsa Vaddagiri 已提交
7245
{
7246
	struct task_group *tg;
S
Srivatsa Vaddagiri 已提交
7247 7248
	struct cfs_rq *cfs_rq;
	struct sched_entity *se;
7249
	struct rq *rq;
S
Srivatsa Vaddagiri 已提交
7250 7251 7252 7253 7254 7255
	int i;

	tg = kzalloc(sizeof(*tg), GFP_KERNEL);
	if (!tg)
		return ERR_PTR(-ENOMEM);

7256
	tg->cfs_rq = kzalloc(sizeof(cfs_rq) * NR_CPUS, GFP_KERNEL);
S
Srivatsa Vaddagiri 已提交
7257 7258
	if (!tg->cfs_rq)
		goto err;
7259
	tg->se = kzalloc(sizeof(se) * NR_CPUS, GFP_KERNEL);
S
Srivatsa Vaddagiri 已提交
7260 7261 7262 7263
	if (!tg->se)
		goto err;

	for_each_possible_cpu(i) {
7264
		rq = cpu_rq(i);
S
Srivatsa Vaddagiri 已提交
7265 7266 7267 7268 7269 7270 7271 7272 7273 7274 7275 7276 7277 7278 7279 7280 7281 7282 7283 7284 7285 7286 7287 7288 7289 7290

		cfs_rq = kmalloc_node(sizeof(struct cfs_rq), GFP_KERNEL,
							 cpu_to_node(i));
		if (!cfs_rq)
			goto err;

		se = kmalloc_node(sizeof(struct sched_entity), GFP_KERNEL,
							cpu_to_node(i));
		if (!se)
			goto err;

		memset(cfs_rq, 0, sizeof(struct cfs_rq));
		memset(se, 0, sizeof(struct sched_entity));

		tg->cfs_rq[i] = cfs_rq;
		init_cfs_rq(cfs_rq, rq);
		cfs_rq->tg = tg;

		tg->se[i] = se;
		se->cfs_rq = &rq->cfs;
		se->my_q = cfs_rq;
		se->load.weight = NICE_0_LOAD;
		se->load.inv_weight = div64_64(1ULL<<32, NICE_0_LOAD);
		se->parent = NULL;
	}

7291 7292 7293
	tg->shares = NICE_0_LOAD;

	lock_task_group_list();
7294 7295 7296 7297 7298
	for_each_possible_cpu(i) {
		rq = cpu_rq(i);
		cfs_rq = tg->cfs_rq[i];
		list_add_rcu(&cfs_rq->leaf_cfs_rq_list, &rq->leaf_cfs_rq_list);
	}
7299
	unlock_task_group_list();
S
Srivatsa Vaddagiri 已提交
7300

7301
	return tg;
S
Srivatsa Vaddagiri 已提交
7302 7303 7304

err:
	for_each_possible_cpu(i) {
I
Ingo Molnar 已提交
7305
		if (tg->cfs_rq)
S
Srivatsa Vaddagiri 已提交
7306
			kfree(tg->cfs_rq[i]);
I
Ingo Molnar 已提交
7307
		if (tg->se)
S
Srivatsa Vaddagiri 已提交
7308 7309
			kfree(tg->se[i]);
	}
I
Ingo Molnar 已提交
7310 7311 7312
	kfree(tg->cfs_rq);
	kfree(tg->se);
	kfree(tg);
S
Srivatsa Vaddagiri 已提交
7313 7314 7315 7316

	return ERR_PTR(-ENOMEM);
}

7317 7318
/* rcu callback to free various structures associated with a task group */
static void free_sched_group(struct rcu_head *rhp)
S
Srivatsa Vaddagiri 已提交
7319
{
7320 7321
	struct task_group *tg = container_of(rhp, struct task_group, rcu);
	struct cfs_rq *cfs_rq;
S
Srivatsa Vaddagiri 已提交
7322 7323 7324 7325 7326 7327 7328 7329 7330 7331 7332 7333 7334 7335 7336 7337 7338
	struct sched_entity *se;
	int i;

	/* now it should be safe to free those cfs_rqs */
	for_each_possible_cpu(i) {
		cfs_rq = tg->cfs_rq[i];
		kfree(cfs_rq);

		se = tg->se[i];
		kfree(se);
	}

	kfree(tg->cfs_rq);
	kfree(tg->se);
	kfree(tg);
}

7339
/* Destroy runqueue etc associated with a task group */
7340
void sched_destroy_group(struct task_group *tg)
S
Srivatsa Vaddagiri 已提交
7341
{
7342
	struct cfs_rq *cfs_rq = NULL;
7343
	int i;
S
Srivatsa Vaddagiri 已提交
7344

7345
	lock_task_group_list();
7346 7347 7348 7349
	for_each_possible_cpu(i) {
		cfs_rq = tg->cfs_rq[i];
		list_del_rcu(&cfs_rq->leaf_cfs_rq_list);
	}
7350
	unlock_task_group_list();
7351

7352
	BUG_ON(!cfs_rq);
7353 7354

	/* wait for possible concurrent references to cfs_rqs complete */
7355
	call_rcu(&tg->rcu, free_sched_group);
S
Srivatsa Vaddagiri 已提交
7356 7357
}

7358
/* change task's runqueue when it moves between groups.
I
Ingo Molnar 已提交
7359 7360 7361
 *	The caller of this function should have put the task in its new group
 *	by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
 *	reflect its new group.
7362 7363
 */
void sched_move_task(struct task_struct *tsk)
S
Srivatsa Vaddagiri 已提交
7364 7365 7366 7367 7368 7369 7370
{
	int on_rq, running;
	unsigned long flags;
	struct rq *rq;

	rq = task_rq_lock(tsk, &flags);

7371
	if (tsk->sched_class != &fair_sched_class) {
7372
		set_task_cfs_rq(tsk, task_cpu(tsk));
S
Srivatsa Vaddagiri 已提交
7373
		goto done;
7374
	}
S
Srivatsa Vaddagiri 已提交
7375 7376 7377

	update_rq_clock(rq);

7378
	running = task_current(rq, tsk);
S
Srivatsa Vaddagiri 已提交
7379 7380
	on_rq = tsk->se.on_rq;

7381
	if (on_rq) {
S
Srivatsa Vaddagiri 已提交
7382
		dequeue_task(rq, tsk, 0);
7383 7384 7385
		if (unlikely(running))
			tsk->sched_class->put_prev_task(rq, tsk);
	}
S
Srivatsa Vaddagiri 已提交
7386

7387
	set_task_cfs_rq(tsk, task_cpu(tsk));
S
Srivatsa Vaddagiri 已提交
7388

7389 7390 7391
	if (on_rq) {
		if (unlikely(running))
			tsk->sched_class->set_curr_task(rq);
7392
		enqueue_task(rq, tsk, 0);
7393
	}
S
Srivatsa Vaddagiri 已提交
7394 7395 7396 7397 7398

done:
	task_rq_unlock(rq, &flags);
}

7399
/* rq->lock to be locked by caller */
S
Srivatsa Vaddagiri 已提交
7400 7401 7402 7403 7404 7405
static void set_se_shares(struct sched_entity *se, unsigned long shares)
{
	struct cfs_rq *cfs_rq = se->cfs_rq;
	struct rq *rq = cfs_rq->rq;
	int on_rq;

7406 7407
	if (!shares)
		shares = MIN_GROUP_SHARES;
S
Srivatsa Vaddagiri 已提交
7408 7409

	on_rq = se->on_rq;
7410
	if (on_rq) {
S
Srivatsa Vaddagiri 已提交
7411
		dequeue_entity(cfs_rq, se, 0);
7412 7413
		dec_cpu_load(rq, se->load.weight);
	}
S
Srivatsa Vaddagiri 已提交
7414 7415 7416 7417

	se->load.weight = shares;
	se->load.inv_weight = div64_64((1ULL<<32), shares);

7418
	if (on_rq) {
S
Srivatsa Vaddagiri 已提交
7419
		enqueue_entity(cfs_rq, se, 0);
7420 7421
		inc_cpu_load(rq, se->load.weight);
	}
S
Srivatsa Vaddagiri 已提交
7422 7423
}

7424
int sched_group_set_shares(struct task_group *tg, unsigned long shares)
S
Srivatsa Vaddagiri 已提交
7425 7426
{
	int i;
7427 7428
	struct cfs_rq *cfs_rq;
	struct rq *rq;
7429

7430
	lock_task_group_list();
7431
	if (tg->shares == shares)
7432
		goto done;
S
Srivatsa Vaddagiri 已提交
7433

7434 7435 7436 7437 7438 7439 7440 7441 7442 7443 7444 7445 7446 7447 7448 7449 7450 7451 7452 7453
	if (shares < MIN_GROUP_SHARES)
		shares = MIN_GROUP_SHARES;

	/*
	 * Prevent any load balance activity (rebalance_shares,
	 * load_balance_fair) from referring to this group first,
	 * by taking it off the rq->leaf_cfs_rq_list on each cpu.
	 */
	for_each_possible_cpu(i) {
		cfs_rq = tg->cfs_rq[i];
		list_del_rcu(&cfs_rq->leaf_cfs_rq_list);
	}

	/* wait for any ongoing reference to this group to finish */
	synchronize_sched();

	/*
	 * Now we are free to modify the group's share on each cpu
	 * w/o tripping rebalance_share or load_balance_fair.
	 */
7454
	tg->shares = shares;
7455 7456
	for_each_possible_cpu(i) {
		spin_lock_irq(&cpu_rq(i)->lock);
7457
		set_se_shares(tg->se[i], shares);
7458 7459
		spin_unlock_irq(&cpu_rq(i)->lock);
	}
S
Srivatsa Vaddagiri 已提交
7460

7461 7462 7463 7464 7465 7466 7467 7468 7469
	/*
	 * Enable load balance activity on this group, by inserting it back on
	 * each cpu's rq->leaf_cfs_rq_list.
	 */
	for_each_possible_cpu(i) {
		rq = cpu_rq(i);
		cfs_rq = tg->cfs_rq[i];
		list_add_rcu(&cfs_rq->leaf_cfs_rq_list, &rq->leaf_cfs_rq_list);
	}
7470
done:
7471
	unlock_task_group_list();
7472
	return 0;
S
Srivatsa Vaddagiri 已提交
7473 7474
}

7475 7476 7477 7478 7479
unsigned long sched_group_shares(struct task_group *tg)
{
	return tg->shares;
}

I
Ingo Molnar 已提交
7480
#endif	/* CONFIG_FAIR_GROUP_SCHED */
7481 7482 7483 7484

#ifdef CONFIG_FAIR_CGROUP_SCHED

/* return corresponding task_group object of a cgroup */
7485
static inline struct task_group *cgroup_tg(struct cgroup *cgrp)
7486
{
7487 7488
	return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id),
			    struct task_group, css);
7489 7490 7491
}

static struct cgroup_subsys_state *
7492
cpu_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cgrp)
7493 7494 7495
{
	struct task_group *tg;

7496
	if (!cgrp->parent) {
7497
		/* This is early initialization for the top cgroup */
7498
		init_task_group.css.cgroup = cgrp;
7499 7500 7501 7502
		return &init_task_group.css;
	}

	/* we support only 1-level deep hierarchical scheduler atm */
7503
	if (cgrp->parent->parent)
7504 7505 7506 7507 7508 7509 7510
		return ERR_PTR(-EINVAL);

	tg = sched_create_group();
	if (IS_ERR(tg))
		return ERR_PTR(-ENOMEM);

	/* Bind the cgroup to task_group object we just created */
7511
	tg->css.cgroup = cgrp;
7512 7513 7514 7515

	return &tg->css;
}

I
Ingo Molnar 已提交
7516 7517
static void
cpu_cgroup_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
7518
{
7519
	struct task_group *tg = cgroup_tg(cgrp);
7520 7521 7522 7523

	sched_destroy_group(tg);
}

I
Ingo Molnar 已提交
7524 7525 7526
static int
cpu_cgroup_can_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
		      struct task_struct *tsk)
7527 7528 7529 7530 7531 7532 7533 7534 7535
{
	/* We don't support RT-tasks being in separate groups */
	if (tsk->sched_class != &fair_sched_class)
		return -EINVAL;

	return 0;
}

static void
7536
cpu_cgroup_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
7537 7538 7539 7540 7541
			struct cgroup *old_cont, struct task_struct *tsk)
{
	sched_move_task(tsk);
}

7542 7543
static int cpu_shares_write_uint(struct cgroup *cgrp, struct cftype *cftype,
				u64 shareval)
7544
{
7545
	return sched_group_set_shares(cgroup_tg(cgrp), shareval);
7546 7547
}

7548
static u64 cpu_shares_read_uint(struct cgroup *cgrp, struct cftype *cft)
7549
{
7550
	struct task_group *tg = cgroup_tg(cgrp);
7551 7552 7553 7554

	return (u64) tg->shares;
}

7555 7556 7557 7558 7559 7560
static struct cftype cpu_files[] = {
	{
		.name = "shares",
		.read_uint = cpu_shares_read_uint,
		.write_uint = cpu_shares_write_uint,
	},
7561 7562 7563 7564
};

static int cpu_cgroup_populate(struct cgroup_subsys *ss, struct cgroup *cont)
{
7565
	return cgroup_add_files(cont, ss, cpu_files, ARRAY_SIZE(cpu_files));
7566 7567 7568
}

struct cgroup_subsys cpu_cgroup_subsys = {
I
Ingo Molnar 已提交
7569 7570 7571 7572 7573 7574 7575
	.name		= "cpu",
	.create		= cpu_cgroup_create,
	.destroy	= cpu_cgroup_destroy,
	.can_attach	= cpu_cgroup_can_attach,
	.attach		= cpu_cgroup_attach,
	.populate	= cpu_cgroup_populate,
	.subsys_id	= cpu_cgroup_subsys_id,
7576 7577 7578 7579
	.early_init	= 1,
};

#endif	/* CONFIG_FAIR_CGROUP_SCHED */
7580 7581 7582 7583 7584 7585 7586 7587 7588 7589 7590 7591 7592 7593 7594 7595 7596 7597 7598 7599 7600 7601 7602 7603 7604 7605 7606 7607 7608 7609 7610 7611 7612 7613 7614 7615 7616 7617 7618 7619 7620 7621 7622 7623 7624 7625 7626 7627 7628 7629 7630 7631

#ifdef CONFIG_CGROUP_CPUACCT

/*
 * CPU accounting code for task groups.
 *
 * Based on the work by Paul Menage (menage@google.com) and Balbir Singh
 * (balbir@in.ibm.com).
 */

/* track cpu usage of a group of tasks */
struct cpuacct {
	struct cgroup_subsys_state css;
	/* cpuusage holds pointer to a u64-type object on every cpu */
	u64 *cpuusage;
};

struct cgroup_subsys cpuacct_subsys;

/* return cpu accounting group corresponding to this container */
static inline struct cpuacct *cgroup_ca(struct cgroup *cont)
{
	return container_of(cgroup_subsys_state(cont, cpuacct_subsys_id),
			    struct cpuacct, css);
}

/* return cpu accounting group to which this task belongs */
static inline struct cpuacct *task_ca(struct task_struct *tsk)
{
	return container_of(task_subsys_state(tsk, cpuacct_subsys_id),
			    struct cpuacct, css);
}

/* create a new cpu accounting group */
static struct cgroup_subsys_state *cpuacct_create(
	struct cgroup_subsys *ss, struct cgroup *cont)
{
	struct cpuacct *ca = kzalloc(sizeof(*ca), GFP_KERNEL);

	if (!ca)
		return ERR_PTR(-ENOMEM);

	ca->cpuusage = alloc_percpu(u64);
	if (!ca->cpuusage) {
		kfree(ca);
		return ERR_PTR(-ENOMEM);
	}

	return &ca->css;
}

/* destroy an existing cpu accounting group */
I
Ingo Molnar 已提交
7632 7633
static void
cpuacct_destroy(struct cgroup_subsys *ss, struct cgroup *cont)
7634 7635 7636 7637 7638 7639 7640 7641 7642 7643 7644 7645 7646 7647 7648 7649 7650 7651 7652 7653 7654 7655 7656 7657 7658 7659 7660 7661 7662 7663 7664 7665 7666 7667 7668 7669 7670 7671 7672 7673 7674 7675 7676 7677 7678 7679 7680 7681 7682 7683 7684 7685 7686 7687 7688 7689 7690 7691 7692 7693 7694 7695 7696 7697 7698 7699 7700 7701 7702
{
	struct cpuacct *ca = cgroup_ca(cont);

	free_percpu(ca->cpuusage);
	kfree(ca);
}

/* return total cpu usage (in nanoseconds) of a group */
static u64 cpuusage_read(struct cgroup *cont, struct cftype *cft)
{
	struct cpuacct *ca = cgroup_ca(cont);
	u64 totalcpuusage = 0;
	int i;

	for_each_possible_cpu(i) {
		u64 *cpuusage = percpu_ptr(ca->cpuusage, i);

		/*
		 * Take rq->lock to make 64-bit addition safe on 32-bit
		 * platforms.
		 */
		spin_lock_irq(&cpu_rq(i)->lock);
		totalcpuusage += *cpuusage;
		spin_unlock_irq(&cpu_rq(i)->lock);
	}

	return totalcpuusage;
}

static struct cftype files[] = {
	{
		.name = "usage",
		.read_uint = cpuusage_read,
	},
};

static int cpuacct_populate(struct cgroup_subsys *ss, struct cgroup *cont)
{
	return cgroup_add_files(cont, ss, files, ARRAY_SIZE(files));
}

/*
 * charge this task's execution time to its accounting group.
 *
 * called with rq->lock held.
 */
static void cpuacct_charge(struct task_struct *tsk, u64 cputime)
{
	struct cpuacct *ca;

	if (!cpuacct_subsys.active)
		return;

	ca = task_ca(tsk);
	if (ca) {
		u64 *cpuusage = percpu_ptr(ca->cpuusage, task_cpu(tsk));

		*cpuusage += cputime;
	}
}

struct cgroup_subsys cpuacct_subsys = {
	.name = "cpuacct",
	.create = cpuacct_create,
	.destroy = cpuacct_destroy,
	.populate = cpuacct_populate,
	.subsys_id = cpuacct_subsys_id,
};
#endif	/* CONFIG_CGROUP_CPUACCT */