chip.c 27.0 KB
Newer Older
1
/*
2
 * Copyright (c) 2014 Broadcom Corporation
3 4 5 6 7 8 9 10 11 12 13 14 15
 *
 * Permission to use, copy, modify, and/or distribute this software for any
 * purpose with or without fee is hereby granted, provided that the above
 * copyright notice and this permission notice appear in all copies.
 *
 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY
 * SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION
 * OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN
 * CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
 */
16 17 18
#include <linux/kernel.h>
#include <linux/delay.h>
#include <linux/list.h>
19
#include <linux/ssb/ssb_regs.h>
20
#include <linux/bcma/bcma.h>
21
#include <linux/bcma/bcma_regs.h>
22

23 24
#include <defs.h>
#include <soc.h>
25 26
#include <brcm_hw_ids.h>
#include <brcmu_utils.h>
27
#include <chipcommon.h>
28
#include "dhd_dbg.h"
29
#include "chip.h"
30

31 32 33 34
/* SOC Interconnect types (aka chip types) */
#define SOCI_SB		0
#define SOCI_AI		1

35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83
/* PL-368 DMP definitions */
#define DMP_DESC_TYPE_MSK	0x0000000F
#define  DMP_DESC_EMPTY		0x00000000
#define  DMP_DESC_VALID		0x00000001
#define  DMP_DESC_COMPONENT	0x00000001
#define  DMP_DESC_MASTER_PORT	0x00000003
#define  DMP_DESC_ADDRESS	0x00000005
#define  DMP_DESC_ADDRSIZE_GT32	0x00000008
#define  DMP_DESC_EOT		0x0000000F

#define DMP_COMP_DESIGNER	0xFFF00000
#define DMP_COMP_DESIGNER_S	20
#define DMP_COMP_PARTNUM	0x000FFF00
#define DMP_COMP_PARTNUM_S	8
#define DMP_COMP_CLASS		0x000000F0
#define DMP_COMP_CLASS_S	4
#define DMP_COMP_REVISION	0xFF000000
#define DMP_COMP_REVISION_S	24
#define DMP_COMP_NUM_SWRAP	0x00F80000
#define DMP_COMP_NUM_SWRAP_S	19
#define DMP_COMP_NUM_MWRAP	0x0007C000
#define DMP_COMP_NUM_MWRAP_S	14
#define DMP_COMP_NUM_SPORT	0x00003E00
#define DMP_COMP_NUM_SPORT_S	9
#define DMP_COMP_NUM_MPORT	0x000001F0
#define DMP_COMP_NUM_MPORT_S	4

#define DMP_MASTER_PORT_UID	0x0000FF00
#define DMP_MASTER_PORT_UID_S	8
#define DMP_MASTER_PORT_NUM	0x000000F0
#define DMP_MASTER_PORT_NUM_S	4

#define DMP_SLAVE_ADDR_BASE	0xFFFFF000
#define DMP_SLAVE_ADDR_BASE_S	12
#define DMP_SLAVE_PORT_NUM	0x00000F00
#define DMP_SLAVE_PORT_NUM_S	8
#define DMP_SLAVE_TYPE		0x000000C0
#define DMP_SLAVE_TYPE_S	6
#define  DMP_SLAVE_TYPE_SLAVE	0
#define  DMP_SLAVE_TYPE_BRIDGE	1
#define  DMP_SLAVE_TYPE_SWRAP	2
#define  DMP_SLAVE_TYPE_MWRAP	3
#define DMP_SLAVE_SIZE_TYPE	0x00000030
#define DMP_SLAVE_SIZE_TYPE_S	4
#define  DMP_SLAVE_SIZE_4K	0
#define  DMP_SLAVE_SIZE_8K	1
#define  DMP_SLAVE_SIZE_16K	2
#define  DMP_SLAVE_SIZE_DESC	3

84 85 86 87 88 89 90 91 92 93 94
/* EROM CompIdentB */
#define CIB_REV_MASK		0xff000000
#define CIB_REV_SHIFT		24

/* ARM CR4 core specific control flag bits */
#define ARMCR4_BCMA_IOCTL_CPUHALT	0x0020

/* D11 core specific control flag bits */
#define D11_BCMA_IOCTL_PHYCLOCKEN	0x0004
#define D11_BCMA_IOCTL_PHYRESET		0x0008

95 96 97 98 99 100 101 102 103 104
/* chip core base & ramsize */
/* bcm4329 */
/* SDIO device core, ID 0x829 */
#define BCM4329_CORE_BUS_BASE		0x18011000
/* internal memory core, ID 0x80e */
#define BCM4329_CORE_SOCRAM_BASE	0x18003000
/* ARM Cortex M3 core, ID 0x82a */
#define BCM4329_CORE_ARM_BASE		0x18002000
#define BCM4329_RAMSIZE			0x48000

105 106 107 108 109 110 111 112 113
/* bcm43143 */
/* SDIO device core */
#define BCM43143_CORE_BUS_BASE		0x18002000
/* internal memory core */
#define BCM43143_CORE_SOCRAM_BASE	0x18004000
/* ARM Cortex M3 core, ID 0x82a */
#define BCM43143_CORE_ARM_BASE		0x18003000
#define BCM43143_RAMSIZE		0x70000

114 115
#define CORE_SB(base, field) \
		(base + SBCONFIGOFF + offsetof(struct sbconfig, field))
116
#define	SBCOREREV(sbidh) \
117 118
	((((sbidh) & SSB_IDHIGH_RCHI) >> SSB_IDHIGH_RCHI_SHIFT) | \
	  ((sbidh) & SSB_IDHIGH_RCLO))
119

120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165
struct sbconfig {
	u32 PAD[2];
	u32 sbipsflag;	/* initiator port ocp slave flag */
	u32 PAD[3];
	u32 sbtpsflag;	/* target port ocp slave flag */
	u32 PAD[11];
	u32 sbtmerrloga;	/* (sonics >= 2.3) */
	u32 PAD;
	u32 sbtmerrlog;	/* (sonics >= 2.3) */
	u32 PAD[3];
	u32 sbadmatch3;	/* address match3 */
	u32 PAD;
	u32 sbadmatch2;	/* address match2 */
	u32 PAD;
	u32 sbadmatch1;	/* address match1 */
	u32 PAD[7];
	u32 sbimstate;	/* initiator agent state */
	u32 sbintvec;	/* interrupt mask */
	u32 sbtmstatelow;	/* target state */
	u32 sbtmstatehigh;	/* target state */
	u32 sbbwa0;		/* bandwidth allocation table0 */
	u32 PAD;
	u32 sbimconfiglow;	/* initiator configuration */
	u32 sbimconfighigh;	/* initiator configuration */
	u32 sbadmatch0;	/* address match0 */
	u32 PAD;
	u32 sbtmconfiglow;	/* target configuration */
	u32 sbtmconfighigh;	/* target configuration */
	u32 sbbconfig;	/* broadcast configuration */
	u32 PAD;
	u32 sbbstate;	/* broadcast state */
	u32 PAD[3];
	u32 sbactcnfg;	/* activate configuration */
	u32 PAD[3];
	u32 sbflagst;	/* current sbflags */
	u32 PAD[3];
	u32 sbidlow;		/* identification */
	u32 sbidhigh;	/* identification */
};

struct brcmf_core_priv {
	struct brcmf_core pub;
	u32 wrapbase;
	struct list_head list;
	struct brcmf_chip_priv *chip;
};
166

167 168 169
/* ARM CR4 core specific control flag bits */
#define ARMCR4_BCMA_IOCTL_CPUHALT	0x0020

170 171 172 173
/* D11 core specific control flag bits */
#define D11_BCMA_IOCTL_PHYCLOCKEN	0x0004
#define D11_BCMA_IOCTL_PHYRESET		0x0008

174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190
struct brcmf_chip_priv {
	struct brcmf_chip pub;
	const struct brcmf_buscore_ops *ops;
	void *ctx;
	/* assured first core is chipcommon, second core is buscore */
	struct list_head cores;
	u16 num_cores;

	bool (*iscoreup)(struct brcmf_core_priv *core);
	void (*coredisable)(struct brcmf_core_priv *core, u32 prereset,
			    u32 reset);
	void (*resetcore)(struct brcmf_core_priv *core, u32 prereset, u32 reset,
			  u32 postreset);
};

static void brcmf_chip_sb_corerev(struct brcmf_chip_priv *ci,
				  struct brcmf_core *core)
191 192
{
	u32 regdata;
193

194 195
	regdata = ci->ops->read32(ci->ctx, CORE_SB(core->base, sbidhigh));
	core->rev = SBCOREREV(regdata);
196 197
}

198
static bool brcmf_chip_sb_iscoreup(struct brcmf_core_priv *core)
199
{
200
	struct brcmf_chip_priv *ci;
201
	u32 regdata;
202
	u32 address;
203

204 205 206
	ci = core->chip;
	address = CORE_SB(core->pub.base, sbtmstatelow);
	regdata = ci->ops->read32(ci->ctx, address);
207 208
	regdata &= (SSB_TMSLOW_RESET | SSB_TMSLOW_REJECT |
		    SSB_IMSTATE_REJECT | SSB_TMSLOW_CLOCK);
209
	return SSB_TMSLOW_CLOCK == regdata;
210 211
}

212
static bool brcmf_chip_ai_iscoreup(struct brcmf_core_priv *core)
213
{
214
	struct brcmf_chip_priv *ci;
215 216 217
	u32 regdata;
	bool ret;

218 219
	ci = core->chip;
	regdata = ci->ops->read32(ci->ctx, core->wrapbase + BCMA_IOCTL);
220 221
	ret = (regdata & (BCMA_IOCTL_FGC | BCMA_IOCTL_CLK)) == BCMA_IOCTL_CLK;

222
	regdata = ci->ops->read32(ci->ctx, core->wrapbase + BCMA_RESET_CTL);
223 224 225 226 227
	ret = ret && ((regdata & BCMA_RESET_CTL_RESET) == 0);

	return ret;
}

228 229
static void brcmf_chip_sb_coredisable(struct brcmf_core_priv *core,
				      u32 prereset, u32 reset)
230
{
231 232
	struct brcmf_chip_priv *ci;
	u32 val, base;
233

234 235 236 237
	ci = core->chip;
	base = core->pub.base;
	val = ci->ops->read32(ci->ctx, CORE_SB(base, sbtmstatelow));
	if (val & SSB_TMSLOW_RESET)
238 239
		return;

240 241
	val = ci->ops->read32(ci->ctx, CORE_SB(base, sbtmstatelow));
	if ((val & SSB_TMSLOW_CLOCK) != 0) {
242 243 244 245
		/*
		 * set target reject and spin until busy is clear
		 * (preserve core-specific bits)
		 */
246 247 248
		val = ci->ops->read32(ci->ctx, CORE_SB(base, sbtmstatelow));
		ci->ops->write32(ci->ctx, CORE_SB(base, sbtmstatelow),
					 val | SSB_TMSLOW_REJECT);
249

250
		val = ci->ops->read32(ci->ctx, CORE_SB(base, sbtmstatelow));
251
		udelay(1);
252 253 254 255 256
		SPINWAIT((ci->ops->read32(ci->ctx, CORE_SB(base, sbtmstatehigh))
			  & SSB_TMSHIGH_BUSY), 100000);

		val = ci->ops->read32(ci->ctx, CORE_SB(base, sbtmstatehigh));
		if (val & SSB_TMSHIGH_BUSY)
257
			brcmf_err("core state still busy\n");
258

259 260 261 262 263 264 265 266 267
		val = ci->ops->read32(ci->ctx, CORE_SB(base, sbidlow));
		if (val & SSB_IDLOW_INITIATOR) {
			val = ci->ops->read32(ci->ctx,
					      CORE_SB(base, sbimstate));
			val |= SSB_IMSTATE_REJECT;
			ci->ops->write32(ci->ctx,
					 CORE_SB(base, sbimstate), val);
			val = ci->ops->read32(ci->ctx,
					      CORE_SB(base, sbimstate));
268
			udelay(1);
269 270
			SPINWAIT((ci->ops->read32(ci->ctx,
						  CORE_SB(base, sbimstate)) &
271
				  SSB_IMSTATE_BUSY), 100000);
272 273 274
		}

		/* set reset and reject while enabling the clocks */
275 276 277 278
		val = SSB_TMSLOW_FGC | SSB_TMSLOW_CLOCK |
		      SSB_TMSLOW_REJECT | SSB_TMSLOW_RESET;
		ci->ops->write32(ci->ctx, CORE_SB(base, sbtmstatelow), val);
		val = ci->ops->read32(ci->ctx, CORE_SB(base, sbtmstatelow));
279 280 281
		udelay(10);

		/* clear the initiator reject bit */
282 283 284 285 286 287 288
		val = ci->ops->read32(ci->ctx, CORE_SB(base, sbidlow));
		if (val & SSB_IDLOW_INITIATOR) {
			val = ci->ops->read32(ci->ctx,
					      CORE_SB(base, sbimstate));
			val &= ~SSB_IMSTATE_REJECT;
			ci->ops->write32(ci->ctx,
					 CORE_SB(base, sbimstate), val);
289 290 291 292
		}
	}

	/* leave reset and reject asserted */
293 294
	ci->ops->write32(ci->ctx, CORE_SB(base, sbtmstatelow),
			 (SSB_TMSLOW_REJECT | SSB_TMSLOW_RESET));
295 296 297
	udelay(1);
}

298 299
static void brcmf_chip_ai_coredisable(struct brcmf_core_priv *core,
				      u32 prereset, u32 reset)
300
{
301
	struct brcmf_chip_priv *ci;
302 303
	u32 regdata;

304
	ci = core->chip;
305

306
	/* if core is already in reset, just return */
307
	regdata = ci->ops->read32(ci->ctx, core->wrapbase + BCMA_RESET_CTL);
308 309 310
	if ((regdata & BCMA_RESET_CTL_RESET) != 0)
		return;

311
	/* configure reset */
312 313 314
	ci->ops->write32(ci->ctx, core->wrapbase + BCMA_IOCTL,
			 prereset | BCMA_IOCTL_FGC | BCMA_IOCTL_CLK);
	ci->ops->read32(ci->ctx, core->wrapbase + BCMA_IOCTL);
315

316
	/* put in reset */
317 318
	ci->ops->write32(ci->ctx, core->wrapbase + BCMA_RESET_CTL,
			 BCMA_RESET_CTL_RESET);
319 320
	usleep_range(10, 20);

321
	/* wait till reset is 1 */
322
	SPINWAIT(ci->ops->read32(ci->ctx, core->wrapbase + BCMA_RESET_CTL) !=
323 324
		 BCMA_RESET_CTL_RESET, 300);

325 326 327 328
	/* in-reset configure */
	ci->ops->write32(ci->ctx, core->wrapbase + BCMA_IOCTL,
			 reset | BCMA_IOCTL_FGC | BCMA_IOCTL_CLK);
	ci->ops->read32(ci->ctx, core->wrapbase + BCMA_IOCTL);
329 330
}

331 332
static void brcmf_chip_sb_resetcore(struct brcmf_core_priv *core, u32 prereset,
				    u32 reset, u32 postreset)
333
{
334
	struct brcmf_chip_priv *ci;
335
	u32 regdata;
336
	u32 base;
337

338 339
	ci = core->chip;
	base = core->pub.base;
340 341 342 343
	/*
	 * Must do the disable sequence first to work for
	 * arbitrary current core state.
	 */
344
	brcmf_chip_sb_coredisable(core, 0, 0);
345 346 347 348 349 350

	/*
	 * Now do the initialization sequence.
	 * set reset while enabling the clock and
	 * forcing them on throughout the core
	 */
351 352 353 354
	ci->ops->write32(ci->ctx, CORE_SB(base, sbtmstatelow),
			 SSB_TMSLOW_FGC | SSB_TMSLOW_CLOCK |
			 SSB_TMSLOW_RESET);
	regdata = ci->ops->read32(ci->ctx, CORE_SB(base, sbtmstatelow));
355 356
	udelay(1);

357
	/* clear any serror */
358
	regdata = ci->ops->read32(ci->ctx, CORE_SB(base, sbtmstatehigh));
359
	if (regdata & SSB_TMSHIGH_SERR)
360 361 362 363 364 365 366
		ci->ops->write32(ci->ctx, CORE_SB(base, sbtmstatehigh), 0);

	regdata = ci->ops->read32(ci->ctx, CORE_SB(base, sbimstate));
	if (regdata & (SSB_IMSTATE_IBE | SSB_IMSTATE_TO)) {
		regdata &= ~(SSB_IMSTATE_IBE | SSB_IMSTATE_TO);
		ci->ops->write32(ci->ctx, CORE_SB(base, sbimstate), regdata);
	}
367 368

	/* clear reset and allow it to propagate throughout the core */
369 370 371
	ci->ops->write32(ci->ctx, CORE_SB(base, sbtmstatelow),
			 SSB_TMSLOW_FGC | SSB_TMSLOW_CLOCK);
	regdata = ci->ops->read32(ci->ctx, CORE_SB(base, sbtmstatelow));
372 373 374
	udelay(1);

	/* leave clock enabled */
375 376 377
	ci->ops->write32(ci->ctx, CORE_SB(base, sbtmstatelow),
			 SSB_TMSLOW_CLOCK);
	regdata = ci->ops->read32(ci->ctx, CORE_SB(base, sbtmstatelow));
378 379 380
	udelay(1);
}

381 382
static void brcmf_chip_ai_resetcore(struct brcmf_core_priv *core, u32 prereset,
				    u32 reset, u32 postreset)
383
{
384 385
	struct brcmf_chip_priv *ci;
	int count;
386

387
	ci = core->chip;
388

389
	/* must disable first to work for arbitrary current core state */
390
	brcmf_chip_ai_coredisable(core, prereset, reset);
391

392 393
	count = 0;
	while (ci->ops->read32(ci->ctx, core->wrapbase + BCMA_RESET_CTL) &
394
	       BCMA_RESET_CTL_RESET) {
395 396 397 398
		ci->ops->write32(ci->ctx, core->wrapbase + BCMA_RESET_CTL, 0);
		count++;
		if (count > 50)
			break;
399 400
		usleep_range(40, 60);
	}
401

402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432
	ci->ops->write32(ci->ctx, core->wrapbase + BCMA_IOCTL,
			 postreset | BCMA_IOCTL_CLK);
	ci->ops->read32(ci->ctx, core->wrapbase + BCMA_IOCTL);
}

static char *brcmf_chip_name(uint chipid, char *buf, uint len)
{
	const char *fmt;

	fmt = ((chipid > 0xa000) || (chipid < 0x4000)) ? "%d" : "%x";
	snprintf(buf, len, fmt, chipid);
	return buf;
}

static struct brcmf_core *brcmf_chip_add_core(struct brcmf_chip_priv *ci,
					      u16 coreid, u32 base,
					      u32 wrapbase)
{
	struct brcmf_core_priv *core;

	core = kzalloc(sizeof(*core), GFP_KERNEL);
	if (!core)
		return ERR_PTR(-ENOMEM);

	core->pub.id = coreid;
	core->pub.base = base;
	core->chip = ci;
	core->wrapbase = wrapbase;

	list_add_tail(&core->list, &ci->cores);
	return &core->pub;
433 434
}

435 436
#ifdef DEBUG
/* safety check for chipinfo */
437
static int brcmf_chip_cores_check(struct brcmf_chip_priv *ci)
438
{
439 440 441 442 443 444
	struct brcmf_core_priv *core;
	bool need_socram = false;
	bool has_socram = false;
	int idx = 1;

	list_for_each_entry(core, &ci->cores, list) {
445 446 447
		brcmf_dbg(INFO, " [%-2d] core 0x%x:%-2d base 0x%08x wrap 0x%08x\n",
			  idx++, core->pub.id, core->pub.rev, core->pub.base,
			  core->wrapbase);
448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463

		switch (core->pub.id) {
		case BCMA_CORE_ARM_CM3:
			need_socram = true;
			break;
		case BCMA_CORE_INTERNAL_MEM:
			has_socram = true;
			break;
		case BCMA_CORE_ARM_CR4:
			if (ci->pub.rambase == 0) {
				brcmf_err("RAM base not provided with ARM CR4 core\n");
				return -ENOMEM;
			}
			break;
		default:
			break;
464 465 466
		}
	}

467 468 469 470
	/* check RAM core presence for ARM CM3 core */
	if (need_socram && !has_socram) {
		brcmf_err("RAM core not provided with ARM CM3 core\n");
		return -ENODEV;
471 472 473 474
	}
	return 0;
}
#else	/* DEBUG */
475
static inline int brcmf_chip_cores_check(struct brcmf_chip_priv *ci)
476 477 478 479 480
{
	return 0;
}
#endif

481
static void brcmf_chip_get_raminfo(struct brcmf_chip_priv *ci)
482
{
483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515
	switch (ci->pub.chip) {
	case BCM4329_CHIP_ID:
		ci->pub.ramsize = BCM4329_RAMSIZE;
		break;
	case BCM43143_CHIP_ID:
		ci->pub.ramsize = BCM43143_RAMSIZE;
		break;
	case BCM43241_CHIP_ID:
		ci->pub.ramsize = 0x90000;
		break;
	case BCM4330_CHIP_ID:
		ci->pub.ramsize = 0x48000;
		break;
	case BCM4334_CHIP_ID:
		ci->pub.ramsize = 0x80000;
		break;
	case BCM4335_CHIP_ID:
		ci->pub.ramsize = 0xc0000;
		ci->pub.rambase = 0x180000;
		break;
	case BCM43362_CHIP_ID:
		ci->pub.ramsize = 0x3c000;
		break;
	case BCM4339_CHIP_ID:
		ci->pub.ramsize = 0xc0000;
		ci->pub.rambase = 0x180000;
		break;
	default:
		brcmf_err("unknown chip: %s\n", ci->pub.name);
		break;
	}
}

516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660
static u32 brcmf_chip_dmp_get_desc(struct brcmf_chip_priv *ci, u32 *eromaddr,
				   u8 *type)
{
	u32 val;

	/* read next descriptor */
	val = ci->ops->read32(ci->ctx, *eromaddr);
	*eromaddr += 4;

	if (!type)
		return val;

	/* determine descriptor type */
	*type = (val & DMP_DESC_TYPE_MSK);
	if ((*type & ~DMP_DESC_ADDRSIZE_GT32) == DMP_DESC_ADDRESS)
		*type = DMP_DESC_ADDRESS;

	return val;
}

static int brcmf_chip_dmp_get_regaddr(struct brcmf_chip_priv *ci, u32 *eromaddr,
				      u32 *regbase, u32 *wrapbase)
{
	u8 desc;
	u32 val;
	u8 mpnum = 0;
	u8 stype, sztype, wraptype;

	*regbase = 0;
	*wrapbase = 0;

	val = brcmf_chip_dmp_get_desc(ci, eromaddr, &desc);
	if (desc == DMP_DESC_MASTER_PORT) {
		mpnum = (val & DMP_MASTER_PORT_NUM) >> DMP_MASTER_PORT_NUM_S;
		wraptype = DMP_SLAVE_TYPE_MWRAP;
	} else if (desc == DMP_DESC_ADDRESS) {
		/* revert erom address */
		*eromaddr -= 4;
		wraptype = DMP_SLAVE_TYPE_SWRAP;
	} else {
		*eromaddr -= 4;
		return -EILSEQ;
	}

	do {
		/* locate address descriptor */
		do {
			val = brcmf_chip_dmp_get_desc(ci, eromaddr, &desc);
			/* unexpected table end */
			if (desc == DMP_DESC_EOT) {
				*eromaddr -= 4;
				return -EFAULT;
			}
		} while (desc != DMP_DESC_ADDRESS);

		/* skip upper 32-bit address descriptor */
		if (val & DMP_DESC_ADDRSIZE_GT32)
			brcmf_chip_dmp_get_desc(ci, eromaddr, NULL);

		sztype = (val & DMP_SLAVE_SIZE_TYPE) >> DMP_SLAVE_SIZE_TYPE_S;

		/* next size descriptor can be skipped */
		if (sztype == DMP_SLAVE_SIZE_DESC) {
			val = brcmf_chip_dmp_get_desc(ci, eromaddr, NULL);
			/* skip upper size descriptor if present */
			if (val & DMP_DESC_ADDRSIZE_GT32)
				brcmf_chip_dmp_get_desc(ci, eromaddr, NULL);
		}

		/* only look for 4K register regions */
		if (sztype != DMP_SLAVE_SIZE_4K)
			continue;

		stype = (val & DMP_SLAVE_TYPE) >> DMP_SLAVE_TYPE_S;

		/* only regular slave and wrapper */
		if (*regbase == 0 && stype == DMP_SLAVE_TYPE_SLAVE)
			*regbase = val & DMP_SLAVE_ADDR_BASE;
		if (*wrapbase == 0 && stype == wraptype)
			*wrapbase = val & DMP_SLAVE_ADDR_BASE;
	} while (*regbase == 0 || *wrapbase == 0);

	return 0;
}

static
int brcmf_chip_dmp_erom_scan(struct brcmf_chip_priv *ci)
{
	struct brcmf_core *core;
	u32 eromaddr;
	u8 desc_type = 0;
	u32 val;
	u16 id;
	u8 nmp, nsp, nmw, nsw, rev;
	u32 base, wrap;
	int err;

	eromaddr = ci->ops->read32(ci->ctx, CORE_CC_REG(SI_ENUM_BASE, eromptr));

	while (desc_type != DMP_DESC_EOT) {
		val = brcmf_chip_dmp_get_desc(ci, &eromaddr, &desc_type);
		if (!(val & DMP_DESC_VALID))
			continue;

		if (desc_type == DMP_DESC_EMPTY)
			continue;

		/* need a component descriptor */
		if (desc_type != DMP_DESC_COMPONENT)
			continue;

		id = (val & DMP_COMP_PARTNUM) >> DMP_COMP_PARTNUM_S;

		/* next descriptor must be component as well */
		val = brcmf_chip_dmp_get_desc(ci, &eromaddr, &desc_type);
		if (WARN_ON((val & DMP_DESC_TYPE_MSK) != DMP_DESC_COMPONENT))
			return -EFAULT;

		/* only look at cores with master port(s) */
		nmp = (val & DMP_COMP_NUM_MPORT) >> DMP_COMP_NUM_MPORT_S;
		nsp = (val & DMP_COMP_NUM_SPORT) >> DMP_COMP_NUM_SPORT_S;
		nmw = (val & DMP_COMP_NUM_MWRAP) >> DMP_COMP_NUM_MWRAP_S;
		nsw = (val & DMP_COMP_NUM_SWRAP) >> DMP_COMP_NUM_SWRAP_S;
		rev = (val & DMP_COMP_REVISION) >> DMP_COMP_REVISION_S;

		/* need core with ports */
		if (nmw + nsw == 0)
			continue;

		/* try to obtain register address info */
		err = brcmf_chip_dmp_get_regaddr(ci, &eromaddr, &base, &wrap);
		if (err)
			continue;

		/* finally a core to be added */
		core = brcmf_chip_add_core(ci, id, base, wrap);
		if (IS_ERR(core))
			return PTR_ERR(core);

		core->rev = rev;
	}

	return 0;
}

661 662 663
static int brcmf_chip_recognition(struct brcmf_chip_priv *ci)
{
	struct brcmf_core *core;
664
	u32 regdata;
665
	u32 socitype;
666

667
	/* Get CC core rev
668
	 * Chipid is assume to be at offset 0 from SI_ENUM_BASE
669 670 671
	 * For different chiptypes or old sdio hosts w/o chipcommon,
	 * other ways of recognition should be added here.
	 */
672 673 674
	regdata = ci->ops->read32(ci->ctx, CORE_CC_REG(SI_ENUM_BASE, chipid));
	ci->pub.chip = regdata & CID_ID_MASK;
	ci->pub.chiprev = (regdata & CID_REV_MASK) >> CID_REV_SHIFT;
675
	socitype = (regdata & CID_TYPE_MASK) >> CID_TYPE_SHIFT;
676

677 678 679 680
	brcmf_chip_name(ci->pub.chip, ci->pub.name, sizeof(ci->pub.name));
	brcmf_dbg(INFO, "found %s chip: BCM%s, rev=%d\n",
		  socitype == SOCI_SB ? "SB" : "AXI", ci->pub.name,
		  ci->pub.chiprev);
681

682
	if (socitype == SOCI_SB) {
683
		if (ci->pub.chip != BCM4329_CHIP_ID) {
684 685 686
			brcmf_err("SB chip is not supported\n");
			return -ENODEV;
		}
687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702
		ci->iscoreup = brcmf_chip_sb_iscoreup;
		ci->coredisable = brcmf_chip_sb_coredisable;
		ci->resetcore = brcmf_chip_sb_resetcore;

		core = brcmf_chip_add_core(ci, BCMA_CORE_CHIPCOMMON,
					   SI_ENUM_BASE, 0);
		brcmf_chip_sb_corerev(ci, core);
		core = brcmf_chip_add_core(ci, BCMA_CORE_SDIO_DEV,
					   BCM4329_CORE_BUS_BASE, 0);
		brcmf_chip_sb_corerev(ci, core);
		core = brcmf_chip_add_core(ci, BCMA_CORE_INTERNAL_MEM,
					   BCM4329_CORE_SOCRAM_BASE, 0);
		brcmf_chip_sb_corerev(ci, core);
		core = brcmf_chip_add_core(ci, BCMA_CORE_ARM_CM3,
					   BCM4329_CORE_ARM_BASE, 0);
		brcmf_chip_sb_corerev(ci, core);
703 704 705

		core = brcmf_chip_add_core(ci, BCMA_CORE_80211, 0x18001000, 0);
		brcmf_chip_sb_corerev(ci, core);
706
	} else if (socitype == SOCI_AI) {
707 708 709
		ci->iscoreup = brcmf_chip_ai_iscoreup;
		ci->coredisable = brcmf_chip_ai_coredisable;
		ci->resetcore = brcmf_chip_ai_resetcore;
710

711
		brcmf_chip_dmp_erom_scan(ci);
712 713 714
	} else {
		brcmf_err("chip backplane type %u is not supported\n",
			  socitype);
715 716 717
		return -ENODEV;
	}

718 719 720
	brcmf_chip_get_raminfo(ci);

	return brcmf_chip_cores_check(ci);
721 722
}

723
static void brcmf_chip_disable_arm(struct brcmf_chip_priv *chip, u16 id)
724
{
725 726 727
	struct brcmf_core *core;
	struct brcmf_core_priv *cr4;
	u32 val;
728

729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763

	core = brcmf_chip_get_core(&chip->pub, id);
	if (!core)
		return;

	switch (id) {
	case BCMA_CORE_ARM_CM3:
		brcmf_chip_coredisable(core, 0, 0);
		break;
	case BCMA_CORE_ARM_CR4:
		cr4 = container_of(core, struct brcmf_core_priv, pub);

		/* clear all IOCTL bits except HALT bit */
		val = chip->ops->read32(chip->ctx, cr4->wrapbase + BCMA_IOCTL);
		val &= ARMCR4_BCMA_IOCTL_CPUHALT;
		brcmf_chip_resetcore(core, val, ARMCR4_BCMA_IOCTL_CPUHALT,
				     ARMCR4_BCMA_IOCTL_CPUHALT);
		break;
	default:
		brcmf_err("unknown id: %u\n", id);
		break;
	}
}

static int brcmf_chip_setup(struct brcmf_chip_priv *chip)
{
	struct brcmf_chip *pub;
	struct brcmf_core_priv *cc;
	u32 base;
	u32 val;
	int ret = 0;

	pub = &chip->pub;
	cc = list_first_entry(&chip->cores, struct brcmf_core_priv, list);
	base = cc->pub.base;
764 765

	/* get chipcommon capabilites */
766 767
	pub->cc_caps = chip->ops->read32(chip->ctx,
					 CORE_CC_REG(base, capabilities));
768 769

	/* get pmu caps & rev */
770 771 772 773 774
	if (pub->cc_caps & CC_CAP_PMU) {
		val = chip->ops->read32(chip->ctx,
					CORE_CC_REG(base, pmucapabilities));
		pub->pmurev = val & PCAP_REV_MASK;
		pub->pmucaps = val;
775 776
	}

777 778
	brcmf_dbg(INFO, "ccrev=%d, pmurev=%d, pmucaps=0x%x\n",
		  cc->pub.rev, pub->pmurev, pub->pmucaps);
779 780 781 782

	/* execute bus core specific setup */
	if (chip->ops->setup)
		ret = chip->ops->setup(chip->ctx, pub);
783 784 785 786 787

	/*
	 * Make sure any on-chip ARM is off (in case strapping is wrong),
	 * or downloaded code was already running.
	 */
788 789 790
	brcmf_chip_disable_arm(chip, BCMA_CORE_ARM_CM3);
	brcmf_chip_disable_arm(chip, BCMA_CORE_ARM_CR4);
	return ret;
791 792
}

793 794
struct brcmf_chip *brcmf_chip_attach(void *ctx,
				     const struct brcmf_buscore_ops *ops)
795
{
796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836
	struct brcmf_chip_priv *chip;
	int err = 0;

	if (WARN_ON(!ops->read32))
		err = -EINVAL;
	if (WARN_ON(!ops->write32))
		err = -EINVAL;
	if (WARN_ON(!ops->prepare))
		err = -EINVAL;
	if (WARN_ON(!ops->exit_dl))
		err = -EINVAL;
	if (err < 0)
		return ERR_PTR(-EINVAL);

	chip = kzalloc(sizeof(*chip), GFP_KERNEL);
	if (!chip)
		return ERR_PTR(-ENOMEM);

	INIT_LIST_HEAD(&chip->cores);
	chip->num_cores = 0;
	chip->ops = ops;
	chip->ctx = ctx;

	err = ops->prepare(ctx);
	if (err < 0)
		goto fail;

	err = brcmf_chip_recognition(chip);
	if (err < 0)
		goto fail;

	err = brcmf_chip_setup(chip);
	if (err < 0)
		goto fail;

	return &chip->pub;

fail:
	brcmf_chip_detach(&chip->pub);
	return ERR_PTR(err);
}
837

838 839 840 841 842 843 844 845 846 847 848 849 850
void brcmf_chip_detach(struct brcmf_chip *pub)
{
	struct brcmf_chip_priv *chip;
	struct brcmf_core_priv *core;
	struct brcmf_core_priv *tmp;

	chip = container_of(pub, struct brcmf_chip_priv, pub);
	list_for_each_entry_safe(core, tmp, &chip->cores, list) {
		list_del(&core->list);
		kfree(core);
	}
	kfree(chip);
}
851

852 853 854 855
struct brcmf_core *brcmf_chip_get_core(struct brcmf_chip *pub, u16 coreid)
{
	struct brcmf_chip_priv *chip;
	struct brcmf_core_priv *core;
856

857 858 859 860
	chip = container_of(pub, struct brcmf_chip_priv, pub);
	list_for_each_entry(core, &chip->cores, list)
		if (core->pub.id == coreid)
			return &core->pub;
861

862 863
	return NULL;
}
864

865 866 867 868 869 870 871 872 873 874 875
struct brcmf_core *brcmf_chip_get_chipcommon(struct brcmf_chip *pub)
{
	struct brcmf_chip_priv *chip;
	struct brcmf_core_priv *cc;

	chip = container_of(pub, struct brcmf_chip_priv, pub);
	cc = list_first_entry(&chip->cores, struct brcmf_core_priv, list);
	if (WARN_ON(!cc || cc->pub.id != BCMA_CORE_CHIPCOMMON))
		return brcmf_chip_get_core(pub, BCMA_CORE_CHIPCOMMON);
	return &cc->pub;
}
876

877 878 879
bool brcmf_chip_iscoreup(struct brcmf_core *pub)
{
	struct brcmf_core_priv *core;
880

881 882 883
	core = container_of(pub, struct brcmf_core_priv, pub);
	return core->chip->iscoreup(core);
}
884

885 886 887 888 889 890
void brcmf_chip_coredisable(struct brcmf_core *pub, u32 prereset, u32 reset)
{
	struct brcmf_core_priv *core;

	core = container_of(pub, struct brcmf_core_priv, pub);
	core->chip->coredisable(core, prereset, reset);
891
}
892

893 894
void brcmf_chip_resetcore(struct brcmf_core *pub, u32 prereset, u32 reset,
			  u32 postreset)
895
{
896
	struct brcmf_core_priv *core;
897

898 899
	core = container_of(pub, struct brcmf_core_priv, pub);
	core->chip->resetcore(core, prereset, reset, postreset);
900
}
901

902
static void
903
brcmf_chip_cm3_enterdl(struct brcmf_chip_priv *chip)
904
{
905 906 907 908 909 910 911 912 913 914
	struct brcmf_core *core;

	brcmf_chip_disable_arm(chip, BCMA_CORE_ARM_CM3);
	core = brcmf_chip_get_core(&chip->pub, BCMA_CORE_80211);
	brcmf_chip_resetcore(core, D11_BCMA_IOCTL_PHYRESET |
				   D11_BCMA_IOCTL_PHYCLOCKEN,
			     D11_BCMA_IOCTL_PHYCLOCKEN,
			     D11_BCMA_IOCTL_PHYCLOCKEN);
	core = brcmf_chip_get_core(&chip->pub, BCMA_CORE_INTERNAL_MEM);
	brcmf_chip_resetcore(core, 0, 0, 0);
915 916
}

917
static bool brcmf_chip_cm3_exitdl(struct brcmf_chip_priv *chip)
918
{
919
	struct brcmf_core *core;
920

921 922
	core = brcmf_chip_get_core(&chip->pub, BCMA_CORE_INTERNAL_MEM);
	if (!brcmf_chip_iscoreup(core)) {
923 924 925 926
		brcmf_err("SOCRAM core is down after reset?\n");
		return false;
	}

927
	chip->ops->exit_dl(chip->ctx, &chip->pub, 0);
928

929 930
	core = brcmf_chip_get_core(&chip->pub, BCMA_CORE_ARM_CM3);
	brcmf_chip_resetcore(core, 0, 0, 0);
931 932 933 934 935

	return true;
}

static inline void
936
brcmf_chip_cr4_enterdl(struct brcmf_chip_priv *chip)
937
{
938
	struct brcmf_core *core;
939

940
	brcmf_chip_disable_arm(chip, BCMA_CORE_ARM_CR4);
941

942 943 944 945 946
	core = brcmf_chip_get_core(&chip->pub, BCMA_CORE_80211);
	brcmf_chip_resetcore(core, D11_BCMA_IOCTL_PHYRESET |
				   D11_BCMA_IOCTL_PHYCLOCKEN,
			     D11_BCMA_IOCTL_PHYCLOCKEN,
			     D11_BCMA_IOCTL_PHYCLOCKEN);
947 948
}

949
static bool brcmf_chip_cr4_exitdl(struct brcmf_chip_priv *chip, u32 rstvec)
950
{
951
	struct brcmf_core *core;
952

953
	chip->ops->exit_dl(chip->ctx, &chip->pub, rstvec);
954 955

	/* restore ARM */
956 957
	core = brcmf_chip_get_core(&chip->pub, BCMA_CORE_ARM_CR4);
	brcmf_chip_resetcore(core, ARMCR4_BCMA_IOCTL_CPUHALT, 0, 0);
958 959 960 961

	return true;
}

962
void brcmf_chip_enter_download(struct brcmf_chip *pub)
963
{
964 965 966 967
	struct brcmf_chip_priv *chip;
	struct brcmf_core *arm;

	brcmf_dbg(TRACE, "Enter\n");
968

969 970 971 972
	chip = container_of(pub, struct brcmf_chip_priv, pub);
	arm = brcmf_chip_get_core(pub, BCMA_CORE_ARM_CM3);
	if (arm) {
		brcmf_chip_cm3_enterdl(chip);
973 974 975
		return;
	}

976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991
	brcmf_chip_cr4_enterdl(chip);
}

bool brcmf_chip_exit_download(struct brcmf_chip *pub, u32 rstvec)
{
	struct brcmf_chip_priv *chip;
	struct brcmf_core *arm;

	brcmf_dbg(TRACE, "Enter\n");

	chip = container_of(pub, struct brcmf_chip_priv, pub);
	arm = brcmf_chip_get_core(pub, BCMA_CORE_ARM_CM3);
	if (arm)
		return brcmf_chip_cm3_exitdl(chip);

	return brcmf_chip_cr4_exitdl(chip, rstvec);
992 993
}

994
bool brcmf_chip_sr_capable(struct brcmf_chip *pub)
995
{
996 997
	u32 base, addr, reg, pmu_cc3_mask = ~0;
	struct brcmf_chip_priv *chip;
998

999 1000 1001 1002 1003
	brcmf_dbg(TRACE, "Enter\n");

	/* old chips with PMU version less than 17 don't support save restore */
	if (pub->pmurev < 17)
		return false;
1004

1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028
	base = brcmf_chip_get_chipcommon(pub)->base;
	chip = container_of(pub, struct brcmf_chip_priv, pub);

	switch (pub->chip) {
	case BCM43241_CHIP_ID:
	case BCM4335_CHIP_ID:
	case BCM4339_CHIP_ID:
		/* read PMU chipcontrol register 3 */
		addr = CORE_CC_REG(base, chipcontrol_addr);
		chip->ops->write32(chip->ctx, addr, 3);
		addr = CORE_CC_REG(base, chipcontrol_data);
		reg = chip->ops->read32(chip->ctx, addr);
		return (reg & pmu_cc3_mask) != 0;
	default:
		addr = CORE_CC_REG(base, pmucapabilities_ext);
		reg = chip->ops->read32(chip->ctx, addr);
		if ((reg & PCAPEXT_SR_SUPPORTED_MASK) == 0)
			return false;

		addr = CORE_CC_REG(base, retention_ctl);
		reg = chip->ops->read32(chip->ctx, addr);
		return (reg & (PMU_RCTL_MACPHY_DISABLE_MASK |
			       PMU_RCTL_LOGIC_DISABLE_MASK)) == 0;
	}
1029
}