smsc75xx.c 34.3 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
 /***************************************************************************
 *
 * Copyright (C) 2007-2010 SMSC
 *
 * This program is free software; you can redistribute it and/or
 * modify it under the terms of the GNU General Public License
 * as published by the Free Software Foundation; either version 2
 * of the License, or (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA  02111-1307, USA.
 *
 *****************************************************************************/

#include <linux/module.h>
#include <linux/kmod.h>
#include <linux/init.h>
#include <linux/netdevice.h>
#include <linux/etherdevice.h>
#include <linux/ethtool.h>
#include <linux/mii.h>
#include <linux/usb.h>
#include <linux/crc32.h>
#include <linux/usb/usbnet.h>
31
#include <linux/slab.h>
32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53
#include "smsc75xx.h"

#define SMSC_CHIPNAME			"smsc75xx"
#define SMSC_DRIVER_VERSION		"1.0.0"
#define HS_USB_PKT_SIZE			(512)
#define FS_USB_PKT_SIZE			(64)
#define DEFAULT_HS_BURST_CAP_SIZE	(16 * 1024 + 5 * HS_USB_PKT_SIZE)
#define DEFAULT_FS_BURST_CAP_SIZE	(6 * 1024 + 33 * FS_USB_PKT_SIZE)
#define DEFAULT_BULK_IN_DELAY		(0x00002000)
#define MAX_SINGLE_PACKET_SIZE		(9000)
#define LAN75XX_EEPROM_MAGIC		(0x7500)
#define EEPROM_MAC_OFFSET		(0x01)
#define DEFAULT_TX_CSUM_ENABLE		(true)
#define DEFAULT_RX_CSUM_ENABLE		(true)
#define DEFAULT_TSO_ENABLE		(true)
#define SMSC75XX_INTERNAL_PHY_ID	(1)
#define SMSC75XX_TX_OVERHEAD		(8)
#define MAX_RX_FIFO_SIZE		(20 * 1024)
#define MAX_TX_FIFO_SIZE		(12 * 1024)
#define USB_VENDOR_ID_SMSC		(0x0424)
#define USB_PRODUCT_ID_LAN7500		(0x7500)
#define USB_PRODUCT_ID_LAN7505		(0x7505)
N
Nico Erfurth 已提交
54
#define RXW_PADDING			2
55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78

#define check_warn(ret, fmt, args...) \
	({ if (ret < 0) netdev_warn(dev->net, fmt, ##args); })

#define check_warn_return(ret, fmt, args...) \
	({ if (ret < 0) { netdev_warn(dev->net, fmt, ##args); return ret; } })

#define check_warn_goto_done(ret, fmt, args...) \
	({ if (ret < 0) { netdev_warn(dev->net, fmt, ##args); goto done; } })

struct smsc75xx_priv {
	struct usbnet *dev;
	u32 rfe_ctl;
	u32 multicast_hash_table[DP_SEL_VHF_HASH_LEN];
	struct mutex dataport_mutex;
	spinlock_t rfe_ctl_lock;
	struct work_struct set_multicast;
};

struct usb_context {
	struct usb_ctrlrequest req;
	struct usbnet *dev;
};

79
static bool turbo_mode = true;
80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100
module_param(turbo_mode, bool, 0644);
MODULE_PARM_DESC(turbo_mode, "Enable multiple frames per Rx transaction");

static int __must_check smsc75xx_read_reg(struct usbnet *dev, u32 index,
					  u32 *data)
{
	u32 *buf = kmalloc(4, GFP_KERNEL);
	int ret;

	BUG_ON(!dev);

	if (!buf)
		return -ENOMEM;

	ret = usb_control_msg(dev->udev, usb_rcvctrlpipe(dev->udev, 0),
		USB_VENDOR_REQUEST_READ_REGISTER,
		USB_DIR_IN | USB_TYPE_VENDOR | USB_RECIP_DEVICE,
		00, index, buf, 4, USB_CTRL_GET_TIMEOUT);

	if (unlikely(ret < 0))
		netdev_warn(dev->net,
101
			"Failed to read reg index 0x%08x: %d", index, ret);
102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130

	le32_to_cpus(buf);
	*data = *buf;
	kfree(buf);

	return ret;
}

static int __must_check smsc75xx_write_reg(struct usbnet *dev, u32 index,
					   u32 data)
{
	u32 *buf = kmalloc(4, GFP_KERNEL);
	int ret;

	BUG_ON(!dev);

	if (!buf)
		return -ENOMEM;

	*buf = data;
	cpu_to_le32s(buf);

	ret = usb_control_msg(dev->udev, usb_sndctrlpipe(dev->udev, 0),
		USB_VENDOR_REQUEST_WRITE_REGISTER,
		USB_DIR_OUT | USB_TYPE_VENDOR | USB_RECIP_DEVICE,
		00, index, buf, 4, USB_CTRL_SET_TIMEOUT);

	if (unlikely(ret < 0))
		netdev_warn(dev->net,
131
			"Failed to write reg index 0x%08x: %d", index, ret);
132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173

	kfree(buf);

	return ret;
}

/* Loop until the read is completed with timeout
 * called with phy_mutex held */
static int smsc75xx_phy_wait_not_busy(struct usbnet *dev)
{
	unsigned long start_time = jiffies;
	u32 val;
	int ret;

	do {
		ret = smsc75xx_read_reg(dev, MII_ACCESS, &val);
		check_warn_return(ret, "Error reading MII_ACCESS");

		if (!(val & MII_ACCESS_BUSY))
			return 0;
	} while (!time_after(jiffies, start_time + HZ));

	return -EIO;
}

static int smsc75xx_mdio_read(struct net_device *netdev, int phy_id, int idx)
{
	struct usbnet *dev = netdev_priv(netdev);
	u32 val, addr;
	int ret;

	mutex_lock(&dev->phy_mutex);

	/* confirm MII not busy */
	ret = smsc75xx_phy_wait_not_busy(dev);
	check_warn_goto_done(ret, "MII is busy in smsc75xx_mdio_read");

	/* set the address, index & direction (read from PHY) */
	phy_id &= dev->mii.phy_id_mask;
	idx &= dev->mii.reg_num_mask;
	addr = ((phy_id << MII_ACCESS_PHY_ADDR_SHIFT) & MII_ACCESS_PHY_ADDR)
		| ((idx << MII_ACCESS_REG_ADDR_SHIFT) & MII_ACCESS_REG_ADDR)
174
		| MII_ACCESS_READ | MII_ACCESS_BUSY;
175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212
	ret = smsc75xx_write_reg(dev, MII_ACCESS, addr);
	check_warn_goto_done(ret, "Error writing MII_ACCESS");

	ret = smsc75xx_phy_wait_not_busy(dev);
	check_warn_goto_done(ret, "Timed out reading MII reg %02X", idx);

	ret = smsc75xx_read_reg(dev, MII_DATA, &val);
	check_warn_goto_done(ret, "Error reading MII_DATA");

	ret = (u16)(val & 0xFFFF);

done:
	mutex_unlock(&dev->phy_mutex);
	return ret;
}

static void smsc75xx_mdio_write(struct net_device *netdev, int phy_id, int idx,
				int regval)
{
	struct usbnet *dev = netdev_priv(netdev);
	u32 val, addr;
	int ret;

	mutex_lock(&dev->phy_mutex);

	/* confirm MII not busy */
	ret = smsc75xx_phy_wait_not_busy(dev);
	check_warn_goto_done(ret, "MII is busy in smsc75xx_mdio_write");

	val = regval;
	ret = smsc75xx_write_reg(dev, MII_DATA, val);
	check_warn_goto_done(ret, "Error writing MII_DATA");

	/* set the address, index & direction (write to PHY) */
	phy_id &= dev->mii.phy_id_mask;
	idx &= dev->mii.reg_num_mask;
	addr = ((phy_id << MII_ACCESS_PHY_ADDR_SHIFT) & MII_ACCESS_PHY_ADDR)
		| ((idx << MII_ACCESS_REG_ADDR_SHIFT) & MII_ACCESS_REG_ADDR)
213
		| MII_ACCESS_WRITE | MII_ACCESS_BUSY;
214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447
	ret = smsc75xx_write_reg(dev, MII_ACCESS, addr);
	check_warn_goto_done(ret, "Error writing MII_ACCESS");

	ret = smsc75xx_phy_wait_not_busy(dev);
	check_warn_goto_done(ret, "Timed out writing MII reg %02X", idx);

done:
	mutex_unlock(&dev->phy_mutex);
}

static int smsc75xx_wait_eeprom(struct usbnet *dev)
{
	unsigned long start_time = jiffies;
	u32 val;
	int ret;

	do {
		ret = smsc75xx_read_reg(dev, E2P_CMD, &val);
		check_warn_return(ret, "Error reading E2P_CMD");

		if (!(val & E2P_CMD_BUSY) || (val & E2P_CMD_TIMEOUT))
			break;
		udelay(40);
	} while (!time_after(jiffies, start_time + HZ));

	if (val & (E2P_CMD_TIMEOUT | E2P_CMD_BUSY)) {
		netdev_warn(dev->net, "EEPROM read operation timeout");
		return -EIO;
	}

	return 0;
}

static int smsc75xx_eeprom_confirm_not_busy(struct usbnet *dev)
{
	unsigned long start_time = jiffies;
	u32 val;
	int ret;

	do {
		ret = smsc75xx_read_reg(dev, E2P_CMD, &val);
		check_warn_return(ret, "Error reading E2P_CMD");

		if (!(val & E2P_CMD_BUSY))
			return 0;

		udelay(40);
	} while (!time_after(jiffies, start_time + HZ));

	netdev_warn(dev->net, "EEPROM is busy");
	return -EIO;
}

static int smsc75xx_read_eeprom(struct usbnet *dev, u32 offset, u32 length,
				u8 *data)
{
	u32 val;
	int i, ret;

	BUG_ON(!dev);
	BUG_ON(!data);

	ret = smsc75xx_eeprom_confirm_not_busy(dev);
	if (ret)
		return ret;

	for (i = 0; i < length; i++) {
		val = E2P_CMD_BUSY | E2P_CMD_READ | (offset & E2P_CMD_ADDR);
		ret = smsc75xx_write_reg(dev, E2P_CMD, val);
		check_warn_return(ret, "Error writing E2P_CMD");

		ret = smsc75xx_wait_eeprom(dev);
		if (ret < 0)
			return ret;

		ret = smsc75xx_read_reg(dev, E2P_DATA, &val);
		check_warn_return(ret, "Error reading E2P_DATA");

		data[i] = val & 0xFF;
		offset++;
	}

	return 0;
}

static int smsc75xx_write_eeprom(struct usbnet *dev, u32 offset, u32 length,
				 u8 *data)
{
	u32 val;
	int i, ret;

	BUG_ON(!dev);
	BUG_ON(!data);

	ret = smsc75xx_eeprom_confirm_not_busy(dev);
	if (ret)
		return ret;

	/* Issue write/erase enable command */
	val = E2P_CMD_BUSY | E2P_CMD_EWEN;
	ret = smsc75xx_write_reg(dev, E2P_CMD, val);
	check_warn_return(ret, "Error writing E2P_CMD");

	ret = smsc75xx_wait_eeprom(dev);
	if (ret < 0)
		return ret;

	for (i = 0; i < length; i++) {

		/* Fill data register */
		val = data[i];
		ret = smsc75xx_write_reg(dev, E2P_DATA, val);
		check_warn_return(ret, "Error writing E2P_DATA");

		/* Send "write" command */
		val = E2P_CMD_BUSY | E2P_CMD_WRITE | (offset & E2P_CMD_ADDR);
		ret = smsc75xx_write_reg(dev, E2P_CMD, val);
		check_warn_return(ret, "Error writing E2P_CMD");

		ret = smsc75xx_wait_eeprom(dev);
		if (ret < 0)
			return ret;

		offset++;
	}

	return 0;
}

static int smsc75xx_dataport_wait_not_busy(struct usbnet *dev)
{
	int i, ret;

	for (i = 0; i < 100; i++) {
		u32 dp_sel;
		ret = smsc75xx_read_reg(dev, DP_SEL, &dp_sel);
		check_warn_return(ret, "Error reading DP_SEL");

		if (dp_sel & DP_SEL_DPRDY)
			return 0;

		udelay(40);
	}

	netdev_warn(dev->net, "smsc75xx_dataport_wait_not_busy timed out");

	return -EIO;
}

static int smsc75xx_dataport_write(struct usbnet *dev, u32 ram_select, u32 addr,
				   u32 length, u32 *buf)
{
	struct smsc75xx_priv *pdata = (struct smsc75xx_priv *)(dev->data[0]);
	u32 dp_sel;
	int i, ret;

	mutex_lock(&pdata->dataport_mutex);

	ret = smsc75xx_dataport_wait_not_busy(dev);
	check_warn_goto_done(ret, "smsc75xx_dataport_write busy on entry");

	ret = smsc75xx_read_reg(dev, DP_SEL, &dp_sel);
	check_warn_goto_done(ret, "Error reading DP_SEL");

	dp_sel &= ~DP_SEL_RSEL;
	dp_sel |= ram_select;
	ret = smsc75xx_write_reg(dev, DP_SEL, dp_sel);
	check_warn_goto_done(ret, "Error writing DP_SEL");

	for (i = 0; i < length; i++) {
		ret = smsc75xx_write_reg(dev, DP_ADDR, addr + i);
		check_warn_goto_done(ret, "Error writing DP_ADDR");

		ret = smsc75xx_write_reg(dev, DP_DATA, buf[i]);
		check_warn_goto_done(ret, "Error writing DP_DATA");

		ret = smsc75xx_write_reg(dev, DP_CMD, DP_CMD_WRITE);
		check_warn_goto_done(ret, "Error writing DP_CMD");

		ret = smsc75xx_dataport_wait_not_busy(dev);
		check_warn_goto_done(ret, "smsc75xx_dataport_write timeout");
	}

done:
	mutex_unlock(&pdata->dataport_mutex);
	return ret;
}

/* returns hash bit number for given MAC address */
static u32 smsc75xx_hash(char addr[ETH_ALEN])
{
	return (ether_crc(ETH_ALEN, addr) >> 23) & 0x1ff;
}

static void smsc75xx_deferred_multicast_write(struct work_struct *param)
{
	struct smsc75xx_priv *pdata =
		container_of(param, struct smsc75xx_priv, set_multicast);
	struct usbnet *dev = pdata->dev;
	int ret;

	netif_dbg(dev, drv, dev->net, "deferred multicast write 0x%08x",
		pdata->rfe_ctl);

	smsc75xx_dataport_write(dev, DP_SEL_VHF, DP_SEL_VHF_VLAN_LEN,
		DP_SEL_VHF_HASH_LEN, pdata->multicast_hash_table);

	ret = smsc75xx_write_reg(dev, RFE_CTL, pdata->rfe_ctl);
	check_warn(ret, "Error writing RFE_CRL");
}

static void smsc75xx_set_multicast(struct net_device *netdev)
{
	struct usbnet *dev = netdev_priv(netdev);
	struct smsc75xx_priv *pdata = (struct smsc75xx_priv *)(dev->data[0]);
	unsigned long flags;
	int i;

	spin_lock_irqsave(&pdata->rfe_ctl_lock, flags);

	pdata->rfe_ctl &=
		~(RFE_CTL_AU | RFE_CTL_AM | RFE_CTL_DPF | RFE_CTL_MHF);
	pdata->rfe_ctl |= RFE_CTL_AB;

	for (i = 0; i < DP_SEL_VHF_HASH_LEN; i++)
		pdata->multicast_hash_table[i] = 0;

	if (dev->net->flags & IFF_PROMISC) {
		netif_dbg(dev, drv, dev->net, "promiscuous mode enabled");
		pdata->rfe_ctl |= RFE_CTL_AM | RFE_CTL_AU;
	} else if (dev->net->flags & IFF_ALLMULTI) {
		netif_dbg(dev, drv, dev->net, "receive all multicast enabled");
		pdata->rfe_ctl |= RFE_CTL_AM | RFE_CTL_DPF;
	} else if (!netdev_mc_empty(dev->net)) {
448
		struct netdev_hw_addr *ha;
449 450 451 452 453

		netif_dbg(dev, drv, dev->net, "receive multicast hash filter");

		pdata->rfe_ctl |= RFE_CTL_MHF | RFE_CTL_DPF;

454 455
		netdev_for_each_mc_addr(ha, netdev) {
			u32 bitnum = smsc75xx_hash(ha->addr);
456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506
			pdata->multicast_hash_table[bitnum / 32] |=
				(1 << (bitnum % 32));
		}
	} else {
		netif_dbg(dev, drv, dev->net, "receive own packets only");
		pdata->rfe_ctl |= RFE_CTL_DPF;
	}

	spin_unlock_irqrestore(&pdata->rfe_ctl_lock, flags);

	/* defer register writes to a sleepable context */
	schedule_work(&pdata->set_multicast);
}

static int smsc75xx_update_flowcontrol(struct usbnet *dev, u8 duplex,
					    u16 lcladv, u16 rmtadv)
{
	u32 flow = 0, fct_flow = 0;
	int ret;

	if (duplex == DUPLEX_FULL) {
		u8 cap = mii_resolve_flowctrl_fdx(lcladv, rmtadv);

		if (cap & FLOW_CTRL_TX) {
			flow = (FLOW_TX_FCEN | 0xFFFF);
			/* set fct_flow thresholds to 20% and 80% */
			fct_flow = (8 << 8) | 32;
		}

		if (cap & FLOW_CTRL_RX)
			flow |= FLOW_RX_FCEN;

		netif_dbg(dev, link, dev->net, "rx pause %s, tx pause %s",
			(cap & FLOW_CTRL_RX ? "enabled" : "disabled"),
			(cap & FLOW_CTRL_TX ? "enabled" : "disabled"));
	} else {
		netif_dbg(dev, link, dev->net, "half duplex");
	}

	ret = smsc75xx_write_reg(dev, FLOW, flow);
	check_warn_return(ret, "Error writing FLOW");

	ret = smsc75xx_write_reg(dev, FCT_FLOW, fct_flow);
	check_warn_return(ret, "Error writing FCT_FLOW");

	return 0;
}

static int smsc75xx_link_reset(struct usbnet *dev)
{
	struct mii_if_info *mii = &dev->mii;
507
	struct ethtool_cmd ecmd = { .cmd = ETHTOOL_GSET };
508 509 510
	u16 lcladv, rmtadv;
	int ret;

511
	/* read and write to clear phy interrupt status */
512 513
	ret = smsc75xx_mdio_read(dev->net, mii->phy_id, PHY_INT_SRC);
	check_warn_return(ret, "Error reading PHY_INT_SRC");
514 515
	smsc75xx_mdio_write(dev->net, mii->phy_id, PHY_INT_SRC,
		PHY_INT_SRC_CLEAR_ALL);
516 517 518 519 520 521 522 523 524

	ret = smsc75xx_write_reg(dev, INT_STS, INT_STS_CLEAR_ALL);
	check_warn_return(ret, "Error writing INT_STS");

	mii_check_media(mii, 1, 1);
	mii_ethtool_gset(&dev->mii, &ecmd);
	lcladv = smsc75xx_mdio_read(dev->net, mii->phy_id, MII_ADVERTISE);
	rmtadv = smsc75xx_mdio_read(dev->net, mii->phy_id, MII_LPA);

525 526 527
	netif_dbg(dev, link, dev->net, "speed: %u duplex: %d lcladv: %04x"
		  " rmtadv: %04x", ethtool_cmd_speed(&ecmd),
		  ecmd.duplex, lcladv, rmtadv);
528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619

	return smsc75xx_update_flowcontrol(dev, ecmd.duplex, lcladv, rmtadv);
}

static void smsc75xx_status(struct usbnet *dev, struct urb *urb)
{
	u32 intdata;

	if (urb->actual_length != 4) {
		netdev_warn(dev->net,
			"unexpected urb length %d", urb->actual_length);
		return;
	}

	memcpy(&intdata, urb->transfer_buffer, 4);
	le32_to_cpus(&intdata);

	netif_dbg(dev, link, dev->net, "intdata: 0x%08X", intdata);

	if (intdata & INT_ENP_PHY_INT)
		usbnet_defer_kevent(dev, EVENT_LINK_RESET);
	else
		netdev_warn(dev->net,
			"unexpected interrupt, intdata=0x%08X", intdata);
}

static int smsc75xx_ethtool_get_eeprom_len(struct net_device *net)
{
	return MAX_EEPROM_SIZE;
}

static int smsc75xx_ethtool_get_eeprom(struct net_device *netdev,
				       struct ethtool_eeprom *ee, u8 *data)
{
	struct usbnet *dev = netdev_priv(netdev);

	ee->magic = LAN75XX_EEPROM_MAGIC;

	return smsc75xx_read_eeprom(dev, ee->offset, ee->len, data);
}

static int smsc75xx_ethtool_set_eeprom(struct net_device *netdev,
				       struct ethtool_eeprom *ee, u8 *data)
{
	struct usbnet *dev = netdev_priv(netdev);

	if (ee->magic != LAN75XX_EEPROM_MAGIC) {
		netdev_warn(dev->net,
			"EEPROM: magic value mismatch: 0x%x", ee->magic);
		return -EINVAL;
	}

	return smsc75xx_write_eeprom(dev, ee->offset, ee->len, data);
}

static const struct ethtool_ops smsc75xx_ethtool_ops = {
	.get_link	= usbnet_get_link,
	.nway_reset	= usbnet_nway_reset,
	.get_drvinfo	= usbnet_get_drvinfo,
	.get_msglevel	= usbnet_get_msglevel,
	.set_msglevel	= usbnet_set_msglevel,
	.get_settings	= usbnet_get_settings,
	.set_settings	= usbnet_set_settings,
	.get_eeprom_len	= smsc75xx_ethtool_get_eeprom_len,
	.get_eeprom	= smsc75xx_ethtool_get_eeprom,
	.set_eeprom	= smsc75xx_ethtool_set_eeprom,
};

static int smsc75xx_ioctl(struct net_device *netdev, struct ifreq *rq, int cmd)
{
	struct usbnet *dev = netdev_priv(netdev);

	if (!netif_running(netdev))
		return -EINVAL;

	return generic_mii_ioctl(&dev->mii, if_mii(rq), cmd, NULL);
}

static void smsc75xx_init_mac_address(struct usbnet *dev)
{
	/* try reading mac address from EEPROM */
	if (smsc75xx_read_eeprom(dev, EEPROM_MAC_OFFSET, ETH_ALEN,
			dev->net->dev_addr) == 0) {
		if (is_valid_ether_addr(dev->net->dev_addr)) {
			/* eeprom values are valid so use them */
			netif_dbg(dev, ifup, dev->net,
				"MAC address read from EEPROM");
			return;
		}
	}

	/* no eeprom, or eeprom values are invalid. generate random MAC */
620
	eth_hw_addr_random(dev->net);
621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647
	netif_dbg(dev, ifup, dev->net, "MAC address set to random_ether_addr");
}

static int smsc75xx_set_mac_address(struct usbnet *dev)
{
	u32 addr_lo = dev->net->dev_addr[0] | dev->net->dev_addr[1] << 8 |
		dev->net->dev_addr[2] << 16 | dev->net->dev_addr[3] << 24;
	u32 addr_hi = dev->net->dev_addr[4] | dev->net->dev_addr[5] << 8;

	int ret = smsc75xx_write_reg(dev, RX_ADDRH, addr_hi);
	check_warn_return(ret, "Failed to write RX_ADDRH: %d", ret);

	ret = smsc75xx_write_reg(dev, RX_ADDRL, addr_lo);
	check_warn_return(ret, "Failed to write RX_ADDRL: %d", ret);

	addr_hi |= ADDR_FILTX_FB_VALID;
	ret = smsc75xx_write_reg(dev, ADDR_FILTX, addr_hi);
	check_warn_return(ret, "Failed to write ADDR_FILTX: %d", ret);

	ret = smsc75xx_write_reg(dev, ADDR_FILTX + 4, addr_lo);
	check_warn_return(ret, "Failed to write ADDR_FILTX+4: %d", ret);

	return 0;
}

static int smsc75xx_phy_initialize(struct usbnet *dev)
{
648
	int bmcr, ret, timeout = 0;
649 650 651 652 653 654 655

	/* Initialize MII structure */
	dev->mii.dev = dev->net;
	dev->mii.mdio_read = smsc75xx_mdio_read;
	dev->mii.mdio_write = smsc75xx_mdio_write;
	dev->mii.phy_id_mask = 0x1f;
	dev->mii.reg_num_mask = 0x1f;
656
	dev->mii.supports_gmii = 1;
657 658 659 660 661 662 663 664 665 666
	dev->mii.phy_id = SMSC75XX_INTERNAL_PHY_ID;

	/* reset phy and wait for reset to complete */
	smsc75xx_mdio_write(dev->net, dev->mii.phy_id, MII_BMCR, BMCR_RESET);

	do {
		msleep(10);
		bmcr = smsc75xx_mdio_read(dev->net, dev->mii.phy_id, MII_BMCR);
		check_warn_return(bmcr, "Error reading MII_BMCR");
		timeout++;
667
	} while ((bmcr & BMCR_RESET) && (timeout < 100));
668 669 670 671 672 673 674 675 676

	if (timeout >= 100) {
		netdev_warn(dev->net, "timeout on PHY Reset");
		return -EIO;
	}

	smsc75xx_mdio_write(dev->net, dev->mii.phy_id, MII_ADVERTISE,
		ADVERTISE_ALL | ADVERTISE_CSMA | ADVERTISE_PAUSE_CAP |
		ADVERTISE_PAUSE_ASYM);
677 678
	smsc75xx_mdio_write(dev->net, dev->mii.phy_id, MII_CTRL1000,
		ADVERTISE_1000FULL);
679

680 681 682 683
	/* read and write to clear phy interrupt status */
	ret = smsc75xx_mdio_read(dev->net, dev->mii.phy_id, PHY_INT_SRC);
	check_warn_return(ret, "Error reading PHY_INT_SRC");
	smsc75xx_mdio_write(dev->net, dev->mii.phy_id, PHY_INT_SRC, 0xffff);
684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735

	smsc75xx_mdio_write(dev->net, dev->mii.phy_id, PHY_INT_MASK,
		PHY_INT_MASK_DEFAULT);
	mii_nway_restart(&dev->mii);

	netif_dbg(dev, ifup, dev->net, "phy initialised successfully");
	return 0;
}

static int smsc75xx_set_rx_max_frame_length(struct usbnet *dev, int size)
{
	int ret = 0;
	u32 buf;
	bool rxenabled;

	ret = smsc75xx_read_reg(dev, MAC_RX, &buf);
	check_warn_return(ret, "Failed to read MAC_RX: %d", ret);

	rxenabled = ((buf & MAC_RX_RXEN) != 0);

	if (rxenabled) {
		buf &= ~MAC_RX_RXEN;
		ret = smsc75xx_write_reg(dev, MAC_RX, buf);
		check_warn_return(ret, "Failed to write MAC_RX: %d", ret);
	}

	/* add 4 to size for FCS */
	buf &= ~MAC_RX_MAX_SIZE;
	buf |= (((size + 4) << MAC_RX_MAX_SIZE_SHIFT) & MAC_RX_MAX_SIZE);

	ret = smsc75xx_write_reg(dev, MAC_RX, buf);
	check_warn_return(ret, "Failed to write MAC_RX: %d", ret);

	if (rxenabled) {
		buf |= MAC_RX_RXEN;
		ret = smsc75xx_write_reg(dev, MAC_RX, buf);
		check_warn_return(ret, "Failed to write MAC_RX: %d", ret);
	}

	return 0;
}

static int smsc75xx_change_mtu(struct net_device *netdev, int new_mtu)
{
	struct usbnet *dev = netdev_priv(netdev);

	int ret = smsc75xx_set_rx_max_frame_length(dev, new_mtu);
	check_warn_return(ret, "Failed to set mac rx frame length");

	return usbnet_change_mtu(netdev, new_mtu);
}

736
/* Enable or disable Rx checksum offload engine */
737 738
static int smsc75xx_set_features(struct net_device *netdev,
	netdev_features_t features)
739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760
{
	struct usbnet *dev = netdev_priv(netdev);
	struct smsc75xx_priv *pdata = (struct smsc75xx_priv *)(dev->data[0]);
	unsigned long flags;
	int ret;

	spin_lock_irqsave(&pdata->rfe_ctl_lock, flags);

	if (features & NETIF_F_RXCSUM)
		pdata->rfe_ctl |= RFE_CTL_TCPUDP_CKM | RFE_CTL_IP_CKM;
	else
		pdata->rfe_ctl &= ~(RFE_CTL_TCPUDP_CKM | RFE_CTL_IP_CKM);

	spin_unlock_irqrestore(&pdata->rfe_ctl_lock, flags);
	/* it's racing here! */

	ret = smsc75xx_write_reg(dev, RFE_CTL, pdata->rfe_ctl);
	check_warn_return(ret, "Error writing RFE_CTL");

	return 0;
}

761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938
static int smsc75xx_reset(struct usbnet *dev)
{
	struct smsc75xx_priv *pdata = (struct smsc75xx_priv *)(dev->data[0]);
	u32 buf;
	int ret = 0, timeout;

	netif_dbg(dev, ifup, dev->net, "entering smsc75xx_reset");

	ret = smsc75xx_read_reg(dev, HW_CFG, &buf);
	check_warn_return(ret, "Failed to read HW_CFG: %d", ret);

	buf |= HW_CFG_LRST;

	ret = smsc75xx_write_reg(dev, HW_CFG, buf);
	check_warn_return(ret, "Failed to write HW_CFG: %d", ret);

	timeout = 0;
	do {
		msleep(10);
		ret = smsc75xx_read_reg(dev, HW_CFG, &buf);
		check_warn_return(ret, "Failed to read HW_CFG: %d", ret);
		timeout++;
	} while ((buf & HW_CFG_LRST) && (timeout < 100));

	if (timeout >= 100) {
		netdev_warn(dev->net, "timeout on completion of Lite Reset");
		return -EIO;
	}

	netif_dbg(dev, ifup, dev->net, "Lite reset complete, resetting PHY");

	ret = smsc75xx_read_reg(dev, PMT_CTL, &buf);
	check_warn_return(ret, "Failed to read PMT_CTL: %d", ret);

	buf |= PMT_CTL_PHY_RST;

	ret = smsc75xx_write_reg(dev, PMT_CTL, buf);
	check_warn_return(ret, "Failed to write PMT_CTL: %d", ret);

	timeout = 0;
	do {
		msleep(10);
		ret = smsc75xx_read_reg(dev, PMT_CTL, &buf);
		check_warn_return(ret, "Failed to read PMT_CTL: %d", ret);
		timeout++;
	} while ((buf & PMT_CTL_PHY_RST) && (timeout < 100));

	if (timeout >= 100) {
		netdev_warn(dev->net, "timeout waiting for PHY Reset");
		return -EIO;
	}

	netif_dbg(dev, ifup, dev->net, "PHY reset complete");

	smsc75xx_init_mac_address(dev);

	ret = smsc75xx_set_mac_address(dev);
	check_warn_return(ret, "Failed to set mac address");

	netif_dbg(dev, ifup, dev->net, "MAC Address: %pM", dev->net->dev_addr);

	ret = smsc75xx_read_reg(dev, HW_CFG, &buf);
	check_warn_return(ret, "Failed to read HW_CFG: %d", ret);

	netif_dbg(dev, ifup, dev->net, "Read Value from HW_CFG : 0x%08x", buf);

	buf |= HW_CFG_BIR;

	ret = smsc75xx_write_reg(dev, HW_CFG, buf);
	check_warn_return(ret, "Failed to write HW_CFG: %d", ret);

	ret = smsc75xx_read_reg(dev, HW_CFG, &buf);
	check_warn_return(ret, "Failed to read HW_CFG: %d", ret);

	netif_dbg(dev, ifup, dev->net, "Read Value from HW_CFG after "
			"writing HW_CFG_BIR: 0x%08x", buf);

	if (!turbo_mode) {
		buf = 0;
		dev->rx_urb_size = MAX_SINGLE_PACKET_SIZE;
	} else if (dev->udev->speed == USB_SPEED_HIGH) {
		buf = DEFAULT_HS_BURST_CAP_SIZE / HS_USB_PKT_SIZE;
		dev->rx_urb_size = DEFAULT_HS_BURST_CAP_SIZE;
	} else {
		buf = DEFAULT_FS_BURST_CAP_SIZE / FS_USB_PKT_SIZE;
		dev->rx_urb_size = DEFAULT_FS_BURST_CAP_SIZE;
	}

	netif_dbg(dev, ifup, dev->net, "rx_urb_size=%ld",
		(ulong)dev->rx_urb_size);

	ret = smsc75xx_write_reg(dev, BURST_CAP, buf);
	check_warn_return(ret, "Failed to write BURST_CAP: %d", ret);

	ret = smsc75xx_read_reg(dev, BURST_CAP, &buf);
	check_warn_return(ret, "Failed to read BURST_CAP: %d", ret);

	netif_dbg(dev, ifup, dev->net,
		"Read Value from BURST_CAP after writing: 0x%08x", buf);

	ret = smsc75xx_write_reg(dev, BULK_IN_DLY, DEFAULT_BULK_IN_DELAY);
	check_warn_return(ret, "Failed to write BULK_IN_DLY: %d", ret);

	ret = smsc75xx_read_reg(dev, BULK_IN_DLY, &buf);
	check_warn_return(ret, "Failed to read BULK_IN_DLY: %d", ret);

	netif_dbg(dev, ifup, dev->net,
		"Read Value from BULK_IN_DLY after writing: 0x%08x", buf);

	if (turbo_mode) {
		ret = smsc75xx_read_reg(dev, HW_CFG, &buf);
		check_warn_return(ret, "Failed to read HW_CFG: %d", ret);

		netif_dbg(dev, ifup, dev->net, "HW_CFG: 0x%08x", buf);

		buf |= (HW_CFG_MEF | HW_CFG_BCE);

		ret = smsc75xx_write_reg(dev, HW_CFG, buf);
		check_warn_return(ret, "Failed to write HW_CFG: %d", ret);

		ret = smsc75xx_read_reg(dev, HW_CFG, &buf);
		check_warn_return(ret, "Failed to read HW_CFG: %d", ret);

		netif_dbg(dev, ifup, dev->net, "HW_CFG: 0x%08x", buf);
	}

	/* set FIFO sizes */
	buf = (MAX_RX_FIFO_SIZE - 512) / 512;
	ret = smsc75xx_write_reg(dev, FCT_RX_FIFO_END, buf);
	check_warn_return(ret, "Failed to write FCT_RX_FIFO_END: %d", ret);

	netif_dbg(dev, ifup, dev->net, "FCT_RX_FIFO_END set to 0x%08x", buf);

	buf = (MAX_TX_FIFO_SIZE - 512) / 512;
	ret = smsc75xx_write_reg(dev, FCT_TX_FIFO_END, buf);
	check_warn_return(ret, "Failed to write FCT_TX_FIFO_END: %d", ret);

	netif_dbg(dev, ifup, dev->net, "FCT_TX_FIFO_END set to 0x%08x", buf);

	ret = smsc75xx_write_reg(dev, INT_STS, INT_STS_CLEAR_ALL);
	check_warn_return(ret, "Failed to write INT_STS: %d", ret);

	ret = smsc75xx_read_reg(dev, ID_REV, &buf);
	check_warn_return(ret, "Failed to read ID_REV: %d", ret);

	netif_dbg(dev, ifup, dev->net, "ID_REV = 0x%08x", buf);

	/* Configure GPIO pins as LED outputs */
	ret = smsc75xx_read_reg(dev, LED_GPIO_CFG, &buf);
	check_warn_return(ret, "Failed to read LED_GPIO_CFG: %d", ret);

	buf &= ~(LED_GPIO_CFG_LED2_FUN_SEL | LED_GPIO_CFG_LED10_FUN_SEL);
	buf |= LED_GPIO_CFG_LEDGPIO_EN | LED_GPIO_CFG_LED2_FUN_SEL;

	ret = smsc75xx_write_reg(dev, LED_GPIO_CFG, buf);
	check_warn_return(ret, "Failed to write LED_GPIO_CFG: %d", ret);

	ret = smsc75xx_write_reg(dev, FLOW, 0);
	check_warn_return(ret, "Failed to write FLOW: %d", ret);

	ret = smsc75xx_write_reg(dev, FCT_FLOW, 0);
	check_warn_return(ret, "Failed to write FCT_FLOW: %d", ret);

	/* Don't need rfe_ctl_lock during initialisation */
	ret = smsc75xx_read_reg(dev, RFE_CTL, &pdata->rfe_ctl);
	check_warn_return(ret, "Failed to read RFE_CTL: %d", ret);

	pdata->rfe_ctl |= RFE_CTL_AB | RFE_CTL_DPF;

	ret = smsc75xx_write_reg(dev, RFE_CTL, pdata->rfe_ctl);
	check_warn_return(ret, "Failed to write RFE_CTL: %d", ret);

	ret = smsc75xx_read_reg(dev, RFE_CTL, &pdata->rfe_ctl);
	check_warn_return(ret, "Failed to read RFE_CTL: %d", ret);

	netif_dbg(dev, ifup, dev->net, "RFE_CTL set to 0x%08x", pdata->rfe_ctl);

	/* Enable or disable checksum offload engines */
939
	smsc75xx_set_features(dev->net, dev->net->features);
940 941 942 943 944 945 946 947 948 949 950 951 952 953 954

	smsc75xx_set_multicast(dev->net);

	ret = smsc75xx_phy_initialize(dev);
	check_warn_return(ret, "Failed to initialize PHY: %d", ret);

	ret = smsc75xx_read_reg(dev, INT_EP_CTL, &buf);
	check_warn_return(ret, "Failed to read INT_EP_CTL: %d", ret);

	/* enable PHY interrupts */
	buf |= INT_ENP_PHY_INT;

	ret = smsc75xx_write_reg(dev, INT_EP_CTL, buf);
	check_warn_return(ret, "Failed to write INT_EP_CTL: %d", ret);

955 956 957 958 959 960 961 962
	/* allow mac to detect speed and duplex from phy */
	ret = smsc75xx_read_reg(dev, MAC_CR, &buf);
	check_warn_return(ret, "Failed to read MAC_CR: %d", ret);

	buf |= (MAC_CR_ADD | MAC_CR_ASD);
	ret = smsc75xx_write_reg(dev, MAC_CR, buf);
	check_warn_return(ret, "Failed to write MAC_CR: %d", ret);

963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018
	ret = smsc75xx_read_reg(dev, MAC_TX, &buf);
	check_warn_return(ret, "Failed to read MAC_TX: %d", ret);

	buf |= MAC_TX_TXEN;

	ret = smsc75xx_write_reg(dev, MAC_TX, buf);
	check_warn_return(ret, "Failed to write MAC_TX: %d", ret);

	netif_dbg(dev, ifup, dev->net, "MAC_TX set to 0x%08x", buf);

	ret = smsc75xx_read_reg(dev, FCT_TX_CTL, &buf);
	check_warn_return(ret, "Failed to read FCT_TX_CTL: %d", ret);

	buf |= FCT_TX_CTL_EN;

	ret = smsc75xx_write_reg(dev, FCT_TX_CTL, buf);
	check_warn_return(ret, "Failed to write FCT_TX_CTL: %d", ret);

	netif_dbg(dev, ifup, dev->net, "FCT_TX_CTL set to 0x%08x", buf);

	ret = smsc75xx_set_rx_max_frame_length(dev, 1514);
	check_warn_return(ret, "Failed to set max rx frame length");

	ret = smsc75xx_read_reg(dev, MAC_RX, &buf);
	check_warn_return(ret, "Failed to read MAC_RX: %d", ret);

	buf |= MAC_RX_RXEN;

	ret = smsc75xx_write_reg(dev, MAC_RX, buf);
	check_warn_return(ret, "Failed to write MAC_RX: %d", ret);

	netif_dbg(dev, ifup, dev->net, "MAC_RX set to 0x%08x", buf);

	ret = smsc75xx_read_reg(dev, FCT_RX_CTL, &buf);
	check_warn_return(ret, "Failed to read FCT_RX_CTL: %d", ret);

	buf |= FCT_RX_CTL_EN;

	ret = smsc75xx_write_reg(dev, FCT_RX_CTL, buf);
	check_warn_return(ret, "Failed to write FCT_RX_CTL: %d", ret);

	netif_dbg(dev, ifup, dev->net, "FCT_RX_CTL set to 0x%08x", buf);

	netif_dbg(dev, ifup, dev->net, "smsc75xx_reset, return 0");
	return 0;
}

static const struct net_device_ops smsc75xx_netdev_ops = {
	.ndo_open		= usbnet_open,
	.ndo_stop		= usbnet_stop,
	.ndo_start_xmit		= usbnet_start_xmit,
	.ndo_tx_timeout		= usbnet_tx_timeout,
	.ndo_change_mtu		= smsc75xx_change_mtu,
	.ndo_set_mac_address 	= eth_mac_addr,
	.ndo_validate_addr	= eth_validate_addr,
	.ndo_do_ioctl 		= smsc75xx_ioctl,
1019
	.ndo_set_rx_mode	= smsc75xx_set_multicast,
1020
	.ndo_set_features	= smsc75xx_set_features,
1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048
};

static int smsc75xx_bind(struct usbnet *dev, struct usb_interface *intf)
{
	struct smsc75xx_priv *pdata = NULL;
	int ret;

	printk(KERN_INFO SMSC_CHIPNAME " v" SMSC_DRIVER_VERSION "\n");

	ret = usbnet_get_endpoints(dev, intf);
	check_warn_return(ret, "usbnet_get_endpoints failed: %d", ret);

	dev->data[0] = (unsigned long)kzalloc(sizeof(struct smsc75xx_priv),
		GFP_KERNEL);

	pdata = (struct smsc75xx_priv *)(dev->data[0]);
	if (!pdata) {
		netdev_warn(dev->net, "Unable to allocate smsc75xx_priv");
		return -ENOMEM;
	}

	pdata->dev = dev;

	spin_lock_init(&pdata->rfe_ctl_lock);
	mutex_init(&pdata->dataport_mutex);

	INIT_WORK(&pdata->set_multicast, smsc75xx_deferred_multicast_write);

1049 1050 1051 1052 1053 1054 1055 1056
	if (DEFAULT_TX_CSUM_ENABLE) {
		dev->net->features |= NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM;
		if (DEFAULT_TSO_ENABLE)
			dev->net->features |= NETIF_F_SG |
				NETIF_F_TSO | NETIF_F_TSO6;
	}
	if (DEFAULT_RX_CSUM_ENABLE)
		dev->net->features |= NETIF_F_RXCSUM;
1057

1058 1059
	dev->net->hw_features = NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
		NETIF_F_SG | NETIF_F_TSO | NETIF_F_TSO6 | NETIF_F_RXCSUM;
1060 1061 1062 1063 1064 1065 1066 1067

	/* Init all registers */
	ret = smsc75xx_reset(dev);

	dev->net->netdev_ops = &smsc75xx_netdev_ops;
	dev->net->ethtool_ops = &smsc75xx_ethtool_ops;
	dev->net->flags |= IFF_MULTICAST;
	dev->net->hard_header_len += SMSC75XX_TX_OVERHEAD;
S
Stephane Fillod 已提交
1068
	dev->hard_mtu = dev->net->mtu + dev->net->hard_header_len;
1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082
	return 0;
}

static void smsc75xx_unbind(struct usbnet *dev, struct usb_interface *intf)
{
	struct smsc75xx_priv *pdata = (struct smsc75xx_priv *)(dev->data[0]);
	if (pdata) {
		netif_dbg(dev, ifdown, dev->net, "free pdata");
		kfree(pdata);
		pdata = NULL;
		dev->data[0] = 0;
	}
}

1083 1084
static void smsc75xx_rx_csum_offload(struct usbnet *dev, struct sk_buff *skb,
				     u32 rx_cmd_a, u32 rx_cmd_b)
1085
{
1086 1087
	if (!(dev->net->features & NETIF_F_RXCSUM) ||
	    unlikely(rx_cmd_a & RX_CMD_A_LCSM)) {
1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107
		skb->ip_summed = CHECKSUM_NONE;
	} else {
		skb->csum = ntohs((u16)(rx_cmd_b >> RX_CMD_B_CSUM_SHIFT));
		skb->ip_summed = CHECKSUM_COMPLETE;
	}
}

static int smsc75xx_rx_fixup(struct usbnet *dev, struct sk_buff *skb)
{
	while (skb->len > 0) {
		u32 rx_cmd_a, rx_cmd_b, align_count, size;
		struct sk_buff *ax_skb;
		unsigned char *packet;

		memcpy(&rx_cmd_a, skb->data, sizeof(rx_cmd_a));
		le32_to_cpus(&rx_cmd_a);
		skb_pull(skb, 4);

		memcpy(&rx_cmd_b, skb->data, sizeof(rx_cmd_b));
		le32_to_cpus(&rx_cmd_b);
N
Nico Erfurth 已提交
1108
		skb_pull(skb, 4 + RXW_PADDING);
1109 1110 1111 1112

		packet = skb->data;

		/* get the packet length */
N
Nico Erfurth 已提交
1113 1114
		size = (rx_cmd_a & RX_CMD_A_LEN) - RXW_PADDING;
		align_count = (4 - ((size + RXW_PADDING) % 4)) % 4;
1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135

		if (unlikely(rx_cmd_a & RX_CMD_A_RED)) {
			netif_dbg(dev, rx_err, dev->net,
				"Error rx_cmd_a=0x%08x", rx_cmd_a);
			dev->net->stats.rx_errors++;
			dev->net->stats.rx_dropped++;

			if (rx_cmd_a & RX_CMD_A_FCS)
				dev->net->stats.rx_crc_errors++;
			else if (rx_cmd_a & (RX_CMD_A_LONG | RX_CMD_A_RUNT))
				dev->net->stats.rx_frame_errors++;
		} else {
			/* ETH_FRAME_LEN + 4(CRC) + 2(COE) + 4(Vlan) */
			if (unlikely(size > (ETH_FRAME_LEN + 12))) {
				netif_dbg(dev, rx_err, dev->net,
					"size err rx_cmd_a=0x%08x", rx_cmd_a);
				return 0;
			}

			/* last frame in this batch */
			if (skb->len == size) {
1136 1137
				smsc75xx_rx_csum_offload(dev, skb, rx_cmd_a,
					rx_cmd_b);
1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154

				skb_trim(skb, skb->len - 4); /* remove fcs */
				skb->truesize = size + sizeof(struct sk_buff);

				return 1;
			}

			ax_skb = skb_clone(skb, GFP_ATOMIC);
			if (unlikely(!ax_skb)) {
				netdev_warn(dev->net, "Error allocating skb");
				return 0;
			}

			ax_skb->len = size;
			ax_skb->data = packet;
			skb_set_tail_pointer(ax_skb, size);

1155 1156
			smsc75xx_rx_csum_offload(dev, ax_skb, rx_cmd_a,
				rx_cmd_b);
1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228

			skb_trim(ax_skb, ax_skb->len - 4); /* remove fcs */
			ax_skb->truesize = size + sizeof(struct sk_buff);

			usbnet_skb_return(dev, ax_skb);
		}

		skb_pull(skb, size);

		/* padding bytes before the next frame starts */
		if (skb->len)
			skb_pull(skb, align_count);
	}

	if (unlikely(skb->len < 0)) {
		netdev_warn(dev->net, "invalid rx length<0 %d", skb->len);
		return 0;
	}

	return 1;
}

static struct sk_buff *smsc75xx_tx_fixup(struct usbnet *dev,
					 struct sk_buff *skb, gfp_t flags)
{
	u32 tx_cmd_a, tx_cmd_b;

	skb_linearize(skb);

	if (skb_headroom(skb) < SMSC75XX_TX_OVERHEAD) {
		struct sk_buff *skb2 =
			skb_copy_expand(skb, SMSC75XX_TX_OVERHEAD, 0, flags);
		dev_kfree_skb_any(skb);
		skb = skb2;
		if (!skb)
			return NULL;
	}

	tx_cmd_a = (u32)(skb->len & TX_CMD_A_LEN) | TX_CMD_A_FCS;

	if (skb->ip_summed == CHECKSUM_PARTIAL)
		tx_cmd_a |= TX_CMD_A_IPE | TX_CMD_A_TPE;

	if (skb_is_gso(skb)) {
		u16 mss = max(skb_shinfo(skb)->gso_size, TX_MSS_MIN);
		tx_cmd_b = (mss << TX_CMD_B_MSS_SHIFT) & TX_CMD_B_MSS;

		tx_cmd_a |= TX_CMD_A_LSO;
	} else {
		tx_cmd_b = 0;
	}

	skb_push(skb, 4);
	cpu_to_le32s(&tx_cmd_b);
	memcpy(skb->data, &tx_cmd_b, 4);

	skb_push(skb, 4);
	cpu_to_le32s(&tx_cmd_a);
	memcpy(skb->data, &tx_cmd_a, 4);

	return skb;
}

static const struct driver_info smsc75xx_info = {
	.description	= "smsc75xx USB 2.0 Gigabit Ethernet",
	.bind		= smsc75xx_bind,
	.unbind		= smsc75xx_unbind,
	.link_reset	= smsc75xx_link_reset,
	.reset		= smsc75xx_reset,
	.rx_fixup	= smsc75xx_rx_fixup,
	.tx_fixup	= smsc75xx_tx_fixup,
	.status		= smsc75xx_status,
1229
	.flags		= FLAG_ETHER | FLAG_SEND_ZLP | FLAG_LINK_INTR,
1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255
};

static const struct usb_device_id products[] = {
	{
		/* SMSC7500 USB Gigabit Ethernet Device */
		USB_DEVICE(USB_VENDOR_ID_SMSC, USB_PRODUCT_ID_LAN7500),
		.driver_info = (unsigned long) &smsc75xx_info,
	},
	{
		/* SMSC7500 USB Gigabit Ethernet Device */
		USB_DEVICE(USB_VENDOR_ID_SMSC, USB_PRODUCT_ID_LAN7505),
		.driver_info = (unsigned long) &smsc75xx_info,
	},
	{ },		/* END */
};
MODULE_DEVICE_TABLE(usb, products);

static struct usb_driver smsc75xx_driver = {
	.name		= SMSC_CHIPNAME,
	.id_table	= products,
	.probe		= usbnet_probe,
	.suspend	= usbnet_suspend,
	.resume		= usbnet_resume,
	.disconnect	= usbnet_disconnect,
};

1256
module_usb_driver(smsc75xx_driver);
1257 1258 1259 1260 1261

MODULE_AUTHOR("Nancy Lin");
MODULE_AUTHOR("Steve Glendinning <steve.glendinning@smsc.com>");
MODULE_DESCRIPTION("SMSC75XX USB 2.0 Gigabit Ethernet Devices");
MODULE_LICENSE("GPL");