sched.c 7.9 KB
Newer Older
1 2 3 4 5
/* sched.c - SPU scheduler.
 *
 * Copyright (C) IBM 2005
 * Author: Mark Nutter <mnutter@us.ibm.com>
 *
6
 * 2006-03-31	NUMA domains added.
7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2, or (at your option)
 * any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
 */

23 24
#undef DEBUG

25 26 27 28 29 30 31 32 33 34 35
#include <linux/module.h>
#include <linux/errno.h>
#include <linux/sched.h>
#include <linux/kernel.h>
#include <linux/mm.h>
#include <linux/completion.h>
#include <linux/vmalloc.h>
#include <linux/smp.h>
#include <linux/smp_lock.h>
#include <linux/stddef.h>
#include <linux/unistd.h>
36 37
#include <linux/numa.h>
#include <linux/mutex.h>
38 39 40 41 42

#include <asm/io.h>
#include <asm/mmu_context.h>
#include <asm/spu.h>
#include <asm/spu_csa.h>
43
#include <asm/spu_priv1.h>
44 45
#include "spufs.h"

46
#define SPU_MIN_TIMESLICE 	(100 * HZ / 1000)
47

48 49 50 51
#define SPU_BITMAP_SIZE (((MAX_PRIO+BITS_PER_LONG)/BITS_PER_LONG)+1)
struct spu_prio_array {
	unsigned long bitmap[SPU_BITMAP_SIZE];
	wait_queue_head_t waitq[MAX_PRIO];
52 53
	struct list_head active_list[MAX_NUMNODES];
	struct mutex active_mutex[MAX_NUMNODES];
54 55
};

56
static struct spu_prio_array *spu_prio;
57

58
static inline int node_allowed(int node)
59
{
60
	cpumask_t mask;
61

62 63 64 65 66 67
	if (!nr_cpus_node(node))
		return 0;
	mask = node_to_cpumask(node);
	if (!cpus_intersects(mask, current->cpus_allowed))
		return 0;
	return 1;
68 69 70 71
}

static inline void mm_needs_global_tlbie(struct mm_struct *mm)
{
72 73
	int nr = (NR_CPUS > 1) ? NR_CPUS : NR_CPUS + 1;

74
	/* Global TLBIE broadcast required with SPEs. */
75
	__cpus_setall(&mm->cpu_vm_mask, nr);
76 77 78 79
}

static inline void bind_context(struct spu *spu, struct spu_context *ctx)
{
80 81
	pr_debug("%s: pid=%d SPU=%d NODE=%d\n", __FUNCTION__, current->pid,
		 spu->number, spu->node);
82 83 84 85 86 87 88 89 90 91
	spu->ctx = ctx;
	spu->flags = 0;
	ctx->spu = spu;
	ctx->ops = &spu_hw_ops;
	spu->pid = current->pid;
	spu->prio = current->prio;
	spu->mm = ctx->owner;
	mm_needs_global_tlbie(spu->mm);
	spu->ibox_callback = spufs_ibox_callback;
	spu->wbox_callback = spufs_wbox_callback;
92
	spu->stop_callback = spufs_stop_callback;
93
	spu->mfc_callback = spufs_mfc_callback;
94
	spu->dma_callback = spufs_dma_callback;
95
	mb();
96
	spu_unmap_mappings(ctx);
97
	spu_restore(&ctx->csa, spu);
98
	spu->timestamp = jiffies;
99
	spu_cpu_affinity_set(spu, raw_smp_processor_id());
100 101 102 103
}

static inline void unbind_context(struct spu *spu, struct spu_context *ctx)
{
104 105
	pr_debug("%s: unbind pid=%d SPU=%d NODE=%d\n", __FUNCTION__,
		 spu->pid, spu->number, spu->node);
106
	spu_unmap_mappings(ctx);
107
	spu_save(&ctx->csa, spu);
108
	spu->timestamp = jiffies;
109 110 111
	ctx->state = SPU_STATE_SAVED;
	spu->ibox_callback = NULL;
	spu->wbox_callback = NULL;
112
	spu->stop_callback = NULL;
113
	spu->mfc_callback = NULL;
114
	spu->dma_callback = NULL;
115 116 117 118 119
	spu->mm = NULL;
	spu->pid = 0;
	spu->prio = MAX_PRIO;
	ctx->ops = &spu_backing_ops;
	ctx->spu = NULL;
120
	spu->flags = 0;
121 122 123
	spu->ctx = NULL;
}

124 125
static inline void spu_add_wq(wait_queue_head_t * wq, wait_queue_t * wait,
			      int prio)
126
{
127 128
	prepare_to_wait_exclusive(wq, wait, TASK_INTERRUPTIBLE);
	set_bit(prio, spu_prio->bitmap);
129
}
130

131 132
static inline void spu_del_wq(wait_queue_head_t * wq, wait_queue_t * wait,
			      int prio)
133
{
134
	u64 flags;
135

136 137 138 139 140 141 142 143 144
	__set_current_state(TASK_RUNNING);

	spin_lock_irqsave(&wq->lock, flags);

	remove_wait_queue_locked(wq, wait);
	if (list_empty(&wq->task_list))
		clear_bit(prio, spu_prio->bitmap);

	spin_unlock_irqrestore(&wq->lock, flags);
145 146
}

147
static void spu_prio_wait(struct spu_context *ctx, u64 flags)
148
{
149 150 151
	int prio = current->prio;
	wait_queue_head_t *wq = &spu_prio->waitq[prio];
	DEFINE_WAIT(wait);
152

153 154 155 156 157 158 159 160 161 162 163
	if (ctx->spu)
		return;

	spu_add_wq(wq, &wait, prio);

	if (!signal_pending(current)) {
		up_write(&ctx->state_sema);
		pr_debug("%s: pid=%d prio=%d\n", __FUNCTION__,
			 current->pid, current->prio);
		schedule();
		down_write(&ctx->state_sema);
164
	}
165 166

	spu_del_wq(wq, &wait, prio);
167 168
}

169
static void spu_prio_wakeup(void)
170
{
171 172 173 174 175
	int best = sched_find_first_bit(spu_prio->bitmap);
	if (best < MAX_PRIO) {
		wait_queue_head_t *wq = &spu_prio->waitq[best];
		wake_up_interruptible_nr(wq, 1);
	}
176 177 178 179
}

static int get_active_spu(struct spu *spu)
{
180
	int node = spu->node;
181 182 183
	struct spu *tmp;
	int rc = 0;

184 185
	mutex_lock(&spu_prio->active_mutex[node]);
	list_for_each_entry(tmp, &spu_prio->active_list[node], list) {
186
		if (tmp == spu) {
187
			list_del_init(&spu->list);
188 189 190 191
			rc = 1;
			break;
		}
	}
192
	mutex_unlock(&spu_prio->active_mutex[node]);
193 194 195 196 197
	return rc;
}

static void put_active_spu(struct spu *spu)
{
198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220
	int node = spu->node;

	mutex_lock(&spu_prio->active_mutex[node]);
	list_add_tail(&spu->list, &spu_prio->active_list[node]);
	mutex_unlock(&spu_prio->active_mutex[node]);
}

static struct spu *spu_get_idle(struct spu_context *ctx, u64 flags)
{
	struct spu *spu = NULL;
	int node = cpu_to_node(raw_smp_processor_id());
	int n;

	for (n = 0; n < MAX_NUMNODES; n++, node++) {
		node = (node < MAX_NUMNODES) ? node : 0;
		if (!node_allowed(node))
			continue;
		spu = spu_alloc_node(node);
		if (spu)
			break;
	}
	return spu;
}
221

222 223 224 225 226 227 228
static inline struct spu *spu_get(struct spu_context *ctx, u64 flags)
{
	/* Future: spu_get_idle() if possible,
	 * otherwise try to preempt an active
	 * context.
	 */
	return spu_get_idle(ctx, flags);
229 230
}

231 232
/* The three externally callable interfaces
 * for the scheduler begin here.
233
 *
234 235 236
 *	spu_activate	- bind a context to SPU, waiting as needed.
 *	spu_deactivate	- unbind a context from its SPU.
 *	spu_yield	- yield an SPU if others are waiting.
237 238 239 240 241
 */

int spu_activate(struct spu_context *ctx, u64 flags)
{
	struct spu *spu;
242
	int ret = 0;
243

244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265
	for (;;) {
		if (ctx->spu)
			return 0;
		spu = spu_get(ctx, flags);
		if (spu != NULL) {
			if (ctx->spu != NULL) {
				spu_free(spu);
				spu_prio_wakeup();
				break;
			}
			bind_context(spu, ctx);
			put_active_spu(spu);
			break;
		}
		spu_prio_wait(ctx, flags);
		if (signal_pending(current)) {
			ret = -ERESTARTSYS;
			spu_prio_wakeup();
			break;
		}
	}
	return ret;
266 267 268 269 270 271 272 273 274 275 276 277
}

void spu_deactivate(struct spu_context *ctx)
{
	struct spu *spu;
	int needs_idle;

	spu = ctx->spu;
	if (!spu)
		return;
	needs_idle = get_active_spu(spu);
	unbind_context(spu, ctx);
278 279 280 281
	if (needs_idle) {
		spu_free(spu);
		spu_prio_wakeup();
	}
282 283 284 285 286
}

void spu_yield(struct spu_context *ctx)
{
	struct spu *spu;
287
	int need_yield = 0;
288

289 290 291 292 293 294 295 296 297 298 299 300 301 302
	if (down_write_trylock(&ctx->state_sema)) {
		if ((spu = ctx->spu) != NULL) {
			int best = sched_find_first_bit(spu_prio->bitmap);
			if (best < MAX_PRIO) {
				pr_debug("%s: yielding SPU %d NODE %d\n",
					 __FUNCTION__, spu->number, spu->node);
				spu_deactivate(ctx);
				ctx->state = SPU_STATE_SAVED;
				need_yield = 1;
			} else {
				spu->prio = MAX_PRIO;
			}
		}
		up_write(&ctx->state_sema);
303
	}
304 305
	if (unlikely(need_yield))
		yield();
306 307 308 309 310 311
}

int __init spu_sched_init(void)
{
	int i;

312 313 314
	spu_prio = kzalloc(sizeof(struct spu_prio_array), GFP_KERNEL);
	if (!spu_prio) {
		printk(KERN_WARNING "%s: Unable to allocate priority queue.\n",
315 316 317 318
		       __FUNCTION__);
		return 1;
	}
	for (i = 0; i < MAX_PRIO; i++) {
319 320
		init_waitqueue_head(&spu_prio->waitq[i]);
		__clear_bit(i, spu_prio->bitmap);
321
	}
322 323 324 325
	__set_bit(MAX_PRIO, spu_prio->bitmap);
	for (i = 0; i < MAX_NUMNODES; i++) {
		mutex_init(&spu_prio->active_mutex[i]);
		INIT_LIST_HEAD(&spu_prio->active_list[i]);
326 327 328 329 330 331
	}
	return 0;
}

void __exit spu_sched_exit(void)
{
332 333 334 335 336 337 338 339 340 341 342
	struct spu *spu, *tmp;
	int node;

	for (node = 0; node < MAX_NUMNODES; node++) {
		mutex_lock(&spu_prio->active_mutex[node]);
		list_for_each_entry_safe(spu, tmp, &spu_prio->active_list[node],
					 list) {
			list_del_init(&spu->list);
			spu_free(spu);
		}
		mutex_unlock(&spu_prio->active_mutex[node]);
343
	}
344
	kfree(spu_prio);
345
}