mmu_context_nohash.c 9.1 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
/*
 * This file contains the routines for handling the MMU on those
 * PowerPC implementations where the MMU is not using the hash
 * table, such as 8xx, 4xx, BookE's etc...
 *
 * Copyright 2008 Ben Herrenschmidt <benh@kernel.crashing.org>
 *                IBM Corp.
 *
 *  Derived from previous arch/powerpc/mm/mmu_context.c
 *  and arch/powerpc/include/asm/mmu_context.h
 *
 *  This program is free software; you can redistribute it and/or
 *  modify it under the terms of the GNU General Public License
 *  as published by the Free Software Foundation; either version
 *  2 of the License, or (at your option) any later version.
 *
17 18 19 20 21 22 23 24 25
 * TODO:
 *
 *   - The global context lock will not scale very well
 *   - The maps should be dynamically allocated to allow for processors
 *     that support more PID bits at runtime
 *   - Implement flush_tlb_mm() by making the context stale and picking
 *     a new one
 *   - More aggressively clear stale map bits and maybe find some way to
 *     also clear mm->cpu_vm_mask bits when processes are migrated
26 27
 */

28 29 30 31 32
#undef DEBUG
#define DEBUG_STEAL_ONLY
#undef DEBUG_MAP_CONSISTENCY

#include <linux/kernel.h>
33 34 35 36 37
#include <linux/mm.h>
#include <linux/init.h>

#include <asm/mmu_context.h>
#include <asm/tlbflush.h>
38
#include <linux/spinlock.h>
39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72

/*
 *   The MPC8xx has only 16 contexts.  We rotate through them on each
 * task switch.  A better way would be to keep track of tasks that
 * own contexts, and implement an LRU usage.  That way very active
 * tasks don't always have to pay the TLB reload overhead.  The
 * kernel pages are mapped shared, so the kernel can run on behalf
 * of any task that makes a kernel entry.  Shared does not mean they
 * are not protected, just that the ASID comparison is not performed.
 *      -- Dan
 *
 * The IBM4xx has 256 contexts, so we can just rotate through these
 * as a way of "switching" contexts.  If the TID of the TLB is zero,
 * the PID/TID comparison is disabled, so we can use a TID of zero
 * to represent all kernel pages as shared among all contexts.
 * 	-- Dan
 */

#ifdef CONFIG_8xx
#define LAST_CONTEXT    	15
#define FIRST_CONTEXT    	0

#elif defined(CONFIG_4xx)
#define LAST_CONTEXT    	255
#define FIRST_CONTEXT    	1

#elif defined(CONFIG_E200) || defined(CONFIG_E500)
#define LAST_CONTEXT    	255
#define FIRST_CONTEXT    	1

#else
#error Unsupported processor type
#endif

73
static unsigned int next_context, nr_free_contexts;
74
static unsigned long context_map[LAST_CONTEXT / BITS_PER_LONG + 1];
75
static unsigned long stale_map[NR_CPUS][LAST_CONTEXT / BITS_PER_LONG + 1];
76
static struct mm_struct *context_mm[LAST_CONTEXT+1];
77
static spinlock_t context_lock = SPIN_LOCK_UNLOCKED;
78 79

/* Steal a context from a task that has one at the moment.
80 81 82 83
 *
 * This is used when we are running out of available PID numbers
 * on the processors.
 *
84 85 86 87
 * This isn't an LRU system, it just frees up each context in
 * turn (sort-of pseudo-random replacement :).  This would be the
 * place to implement an LRU scheme if anyone was motivated to do it.
 *  -- paulus
88 89 90 91 92
 *
 * For context stealing, we use a slightly different approach for
 * SMP and UP. Basically, the UP one is simpler and doesn't use
 * the stale map as we can just flush the local CPU
 *  -- benh
93
 */
94 95
#ifdef CONFIG_SMP
static unsigned int steal_context_smp(unsigned int id)
96 97
{
	struct mm_struct *mm;
98
	unsigned int cpu, max;
99

100 101
 again:
	max = LAST_CONTEXT - FIRST_CONTEXT;
102

103 104 105 106
	/* Attempt to free next_context first and then loop until we manage */
	while (max--) {
		/* Pick up the victim mm */
		mm = context_mm[id];
107

108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142
		/* We have a candidate victim, check if it's active, on SMP
		 * we cannot steal active contexts
		 */
		if (mm->context.active) {
			id++;
			if (id > LAST_CONTEXT)
				id = FIRST_CONTEXT;
			continue;
		}
		pr_debug("[%d] steal context %d from mm @%p\n",
			 smp_processor_id(), id, mm);

		/* Mark this mm has having no context anymore */
		mm->context.id = MMU_NO_CONTEXT;

		/* Mark it stale on all CPUs that used this mm */
		for_each_cpu_mask_nr(cpu, mm->cpu_vm_mask)
			__set_bit(id, stale_map[cpu]);
		return id;
	}

	/* This will happen if you have more CPUs than available contexts,
	 * all we can do here is wait a bit and try again
	 */
	spin_unlock(&context_lock);
	cpu_relax();
	spin_lock(&context_lock);
	goto again;
}
#endif  /* CONFIG_SMP */

/* Note that this will also be called on SMP if all other CPUs are
 * offlined, which means that it may be called for cpu != 0. For
 * this to work, we somewhat assume that CPUs that are onlined
 * come up with a fully clean TLB (or are cleaned when offlined)
143
 */
144
static unsigned int steal_context_up(unsigned int id)
145
{
146 147
	struct mm_struct *mm;
	int cpu = smp_processor_id();
148

149 150 151 152
	/* Pick up the victim mm */
	mm = context_mm[id];

	pr_debug("[%d] steal context %d from mm @%p\n", cpu, id, mm);
153

154 155
	/* Mark this mm has having no context anymore */
	mm->context.id = MMU_NO_CONTEXT;
156

157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180
	/* Flush the TLB for that context */
	local_flush_tlb_mm(mm);

	/* XXX This clear should ultimately be part of local_flush_tlb_mm */
	__clear_bit(id, stale_map[cpu]);

	return id;
}

#ifdef DEBUG_MAP_CONSISTENCY
static void context_check_map(void)
{
	unsigned int id, nrf, nact;

	nrf = nact = 0;
	for (id = FIRST_CONTEXT; id <= LAST_CONTEXT; id++) {
		int used = test_bit(id, context_map);
		if (!used)
			nrf++;
		if (used != (context_mm[id] != NULL))
			pr_err("MMU: Context %d is %s and MM is %p !\n",
			       id, used ? "used" : "free", context_mm[id]);
		if (context_mm[id] != NULL)
			nact += context_mm[id]->context.active;
181
	}
182 183 184 185 186 187 188 189
	if (nrf != nr_free_contexts) {
		pr_err("MMU: Free context count out of sync ! (%d vs %d)\n",
		       nr_free_contexts, nrf);
		nr_free_contexts = nrf;
	}
	if (nact > num_online_cpus())
		pr_err("MMU: More active contexts than CPUs ! (%d vs %d)\n",
		       nact, num_online_cpus());
190
}
191 192 193
#else
static void context_check_map(void) { }
#endif
194 195 196

void switch_mmu_context(struct mm_struct *prev, struct mm_struct *next)
{
197 198
	unsigned int id, cpu = smp_processor_id();
	unsigned long *map;
199

200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274
	/* No lockless fast path .. yet */
	spin_lock(&context_lock);

#ifndef DEBUG_STEAL_ONLY
	pr_debug("[%d] activating context for mm @%p, active=%d, id=%d\n",
		 cpu, next, next->context.active, next->context.id);
#endif

#ifdef CONFIG_SMP
	/* Mark us active and the previous one not anymore */
	next->context.active++;
	if (prev) {
		WARN_ON(prev->context.active < 1);
		prev->context.active--;
	}
#endif /* CONFIG_SMP */

	/* If we already have a valid assigned context, skip all that */
	id = next->context.id;
	if (likely(id != MMU_NO_CONTEXT))
		goto ctxt_ok;

	/* We really don't have a context, let's try to acquire one */
	id = next_context;
	if (id > LAST_CONTEXT)
		id = FIRST_CONTEXT;
	map = context_map;

	/* No more free contexts, let's try to steal one */
	if (nr_free_contexts == 0) {
#ifdef CONFIG_SMP
		if (num_online_cpus() > 1) {
			id = steal_context_smp(id);
			goto stolen;
		}
#endif /* CONFIG_SMP */
		id = steal_context_up(id);
		goto stolen;
	}
	nr_free_contexts--;

	/* We know there's at least one free context, try to find it */
	while (__test_and_set_bit(id, map)) {
		id = find_next_zero_bit(map, LAST_CONTEXT+1, id);
		if (id > LAST_CONTEXT)
			id = FIRST_CONTEXT;
	}
 stolen:
	next_context = id + 1;
	context_mm[id] = next;
	next->context.id = id;

#ifndef DEBUG_STEAL_ONLY
	pr_debug("[%d] picked up new id %d, nrf is now %d\n",
		 cpu, id, nr_free_contexts);
#endif

	context_check_map();
 ctxt_ok:

	/* If that context got marked stale on this CPU, then flush the
	 * local TLB for it and unmark it before we use it
	 */
	if (test_bit(id, stale_map[cpu])) {
		pr_debug("[%d] flushing stale context %d for mm @%p !\n",
			 cpu, id, next);
		local_flush_tlb_mm(next);

		/* XXX This clear should ultimately be part of local_flush_tlb_mm */
		__clear_bit(id, stale_map[cpu]);
	}

	/* Flick the MMU and release lock */
	set_context(id, next->pgd);
	spin_unlock(&context_lock);
275 276 277 278 279 280 281
}

/*
 * Set up the context for a new address space.
 */
int init_new_context(struct task_struct *t, struct mm_struct *mm)
{
282 283 284
	mm->context.id = MMU_NO_CONTEXT;
	mm->context.active = 0;

285 286 287 288 289 290 291 292
	return 0;
}

/*
 * We're finished using the context for an address space.
 */
void destroy_context(struct mm_struct *mm)
{
293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309
	unsigned int id;

	if (mm->context.id == MMU_NO_CONTEXT)
		return;

	WARN_ON(mm->context.active != 0);

	spin_lock(&context_lock);
	id = mm->context.id;
	if (id != MMU_NO_CONTEXT) {
		__clear_bit(id, context_map);
		mm->context.id = MMU_NO_CONTEXT;
#ifdef DEBUG_MAP_CONSISTENCY
		mm->context.active = 0;
		context_mm[id] = NULL;
#endif
		nr_free_contexts++;
310
	}
311
	spin_unlock(&context_lock);
312 313 314 315 316 317 318 319
}


/*
 * Initialize the context management stuff.
 */
void __init mmu_context_init(void)
{
320 321 322 323 324 325
	/* Mark init_mm as being active on all possible CPUs since
	 * we'll get called with prev == init_mm the first time
	 * we schedule on a given CPU
	 */
	init_mm.context.active = NR_CPUS;

326 327 328 329 330 331 332
	/*
	 * Some processors have too few contexts to reserve one for
	 * init_mm, and require using context 0 for a normal task.
	 * Other processors reserve the use of context zero for the kernel.
	 * This code assumes FIRST_CONTEXT < 32.
	 */
	context_map[0] = (1 << FIRST_CONTEXT) - 1;
333 334
	next_context = FIRST_CONTEXT;
	nr_free_contexts = LAST_CONTEXT - FIRST_CONTEXT + 1;
335 336
}