init.c 24.7 KB
Newer Older
1
#include <linux/gfp.h>
2
#include <linux/initrd.h>
3
#include <linux/ioport.h>
4
#include <linux/swap.h>
5
#include <linux/memblock.h>
P
Pekka Enberg 已提交
6
#include <linux/bootmem.h>	/* for max_low_pfn */
7

L
Laura Abbott 已提交
8
#include <asm/set_memory.h>
9
#include <asm/e820/api.h>
10
#include <asm/init.h>
11
#include <asm/page.h>
12
#include <asm/page_types.h>
13
#include <asm/sections.h>
14
#include <asm/setup.h>
15
#include <asm/tlbflush.h>
16
#include <asm/tlb.h>
17
#include <asm/proto.h>
P
Pekka Enberg 已提交
18
#include <asm/dma.h>		/* for MAX_DMA_PFN */
19
#include <asm/microcode.h>
20
#include <asm/kaslr.h>
21
#include <asm/hypervisor.h>
22
#include <asm/cpufeature.h>
23

24 25 26 27 28 29 30
/*
 * We need to define the tracepoints somewhere, and tlb.c
 * is only compied when SMP=y.
 */
#define CREATE_TRACE_POINTS
#include <trace/events/tlb.h>

31 32
#include "mm_internal.h"

33 34
/*
 * Tables translating between page_cache_type_t and pte encoding.
35
 *
36 37 38 39 40
 * The default values are defined statically as minimal supported mode;
 * WC and WT fall back to UC-.  pat_init() updates these values to support
 * more cache modes, WC and WT, when it is safe to do so.  See pat_init()
 * for the details.  Note, __early_ioremap() used during early boot-time
 * takes pgprot_t (pte encoding) and does not use these tables.
41 42 43 44 45
 *
 *   Index into __cachemode2pte_tbl[] is the cachemode.
 *
 *   Index into __pte2cachemode_tbl[] are the caching attribute bits of the pte
 *   (_PAGE_PWT, _PAGE_PCD, _PAGE_PAT) at index bit positions 0, 1, 2.
46 47
 */
uint16_t __cachemode2pte_tbl[_PAGE_CACHE_MODE_NUM] = {
48
	[_PAGE_CACHE_MODE_WB      ]	= 0         | 0        ,
49
	[_PAGE_CACHE_MODE_WC      ]	= 0         | _PAGE_PCD,
50 51 52 53
	[_PAGE_CACHE_MODE_UC_MINUS]	= 0         | _PAGE_PCD,
	[_PAGE_CACHE_MODE_UC      ]	= _PAGE_PWT | _PAGE_PCD,
	[_PAGE_CACHE_MODE_WT      ]	= 0         | _PAGE_PCD,
	[_PAGE_CACHE_MODE_WP      ]	= 0         | _PAGE_PCD,
54
};
55
EXPORT_SYMBOL(__cachemode2pte_tbl);
56

57
uint8_t __pte2cachemode_tbl[8] = {
58
	[__pte2cm_idx( 0        | 0         | 0        )] = _PAGE_CACHE_MODE_WB,
59
	[__pte2cm_idx(_PAGE_PWT | 0         | 0        )] = _PAGE_CACHE_MODE_UC_MINUS,
60 61 62
	[__pte2cm_idx( 0        | _PAGE_PCD | 0        )] = _PAGE_CACHE_MODE_UC_MINUS,
	[__pte2cm_idx(_PAGE_PWT | _PAGE_PCD | 0        )] = _PAGE_CACHE_MODE_UC,
	[__pte2cm_idx( 0        | 0         | _PAGE_PAT)] = _PAGE_CACHE_MODE_WB,
63
	[__pte2cm_idx(_PAGE_PWT | 0         | _PAGE_PAT)] = _PAGE_CACHE_MODE_UC_MINUS,
64
	[__pte2cm_idx(0         | _PAGE_PCD | _PAGE_PAT)] = _PAGE_CACHE_MODE_UC_MINUS,
65 66
	[__pte2cm_idx(_PAGE_PWT | _PAGE_PCD | _PAGE_PAT)] = _PAGE_CACHE_MODE_UC,
};
67
EXPORT_SYMBOL(__pte2cachemode_tbl);
68

69 70 71
static unsigned long __initdata pgt_buf_start;
static unsigned long __initdata pgt_buf_end;
static unsigned long __initdata pgt_buf_top;
72

73 74
static unsigned long min_pfn_mapped;

75 76
static bool __initdata can_use_brk_pgt = true;

77 78 79 80 81 82 83 84 85
/*
 * Pages returned are already directly mapped.
 *
 * Changing that is likely to break Xen, see commit:
 *
 *    279b706 x86,xen: introduce x86_init.mapping.pagetable_reserve
 *
 * for detailed information.
 */
Y
Yinghai Lu 已提交
86
__ref void *alloc_low_pages(unsigned int num)
87 88
{
	unsigned long pfn;
Y
Yinghai Lu 已提交
89
	int i;
90 91

	if (after_bootmem) {
Y
Yinghai Lu 已提交
92
		unsigned int order;
93

Y
Yinghai Lu 已提交
94
		order = get_order((unsigned long)num << PAGE_SHIFT);
95
		return (void *)__get_free_pages(GFP_ATOMIC | __GFP_ZERO, order);
96 97
	}

98
	if ((pgt_buf_end + num) > pgt_buf_top || !can_use_brk_pgt) {
99 100
		unsigned long ret;
		if (min_pfn_mapped >= max_pfn_mapped)
101
			panic("alloc_low_pages: ran out of memory");
102 103
		ret = memblock_find_in_range(min_pfn_mapped << PAGE_SHIFT,
					max_pfn_mapped << PAGE_SHIFT,
Y
Yinghai Lu 已提交
104
					PAGE_SIZE * num , PAGE_SIZE);
105
		if (!ret)
106
			panic("alloc_low_pages: can not alloc memory");
Y
Yinghai Lu 已提交
107
		memblock_reserve(ret, PAGE_SIZE * num);
108
		pfn = ret >> PAGE_SHIFT;
Y
Yinghai Lu 已提交
109 110 111
	} else {
		pfn = pgt_buf_end;
		pgt_buf_end += num;
112 113
		printk(KERN_DEBUG "BRK [%#010lx, %#010lx] PGTABLE\n",
			pfn << PAGE_SHIFT, (pgt_buf_end << PAGE_SHIFT) - 1);
Y
Yinghai Lu 已提交
114 115 116 117 118 119 120 121
	}

	for (i = 0; i < num; i++) {
		void *adr;

		adr = __va((pfn + i) << PAGE_SHIFT);
		clear_page(adr);
	}
122

Y
Yinghai Lu 已提交
123
	return __va(pfn << PAGE_SHIFT);
124 125
}

126 127 128 129 130 131 132 133 134 135 136 137
/*
 * By default need 3 4k for initial PMD_SIZE,  3 4k for 0-ISA_END_ADDRESS.
 * With KASLR memory randomization, depending on the machine e820 memory
 * and the PUD alignment. We may need twice more pages when KASLR memory
 * randomization is enabled.
 */
#ifndef CONFIG_RANDOMIZE_MEMORY
#define INIT_PGD_PAGE_COUNT      6
#else
#define INIT_PGD_PAGE_COUNT      12
#endif
#define INIT_PGT_BUF_SIZE	(INIT_PGD_PAGE_COUNT * PAGE_SIZE)
Y
Yinghai Lu 已提交
138 139 140 141 142 143 144 145 146 147 148 149 150
RESERVE_BRK(early_pgt_alloc, INIT_PGT_BUF_SIZE);
void  __init early_alloc_pgt_buf(void)
{
	unsigned long tables = INIT_PGT_BUF_SIZE;
	phys_addr_t base;

	base = __pa(extend_brk(tables, PAGE_SIZE));

	pgt_buf_start = base >> PAGE_SHIFT;
	pgt_buf_end = pgt_buf_start;
	pgt_buf_top = pgt_buf_start + (tables >> PAGE_SHIFT);
}

151 152
int after_bootmem;

153
early_param_on_off("gbpages", "nogbpages", direct_gbpages, CONFIG_X86_DIRECT_GBPAGES);
154

155 156 157 158 159 160
struct map_range {
	unsigned long start;
	unsigned long end;
	unsigned page_size_mask;
};

161
static int page_size_mask;
162

163
static void __init probe_page_size_mask(void)
164 165
{
	/*
166 167
	 * For CONFIG_KMEMCHECK or pagealloc debugging, identity mapping will
	 * use small pages.
168 169 170
	 * This will simplify cpa(), which otherwise needs to support splitting
	 * large pages into small in interrupt context, etc.
	 */
171
	if (boot_cpu_has(X86_FEATURE_PSE) && !debug_pagealloc_enabled() && !IS_ENABLED(CONFIG_KMEMCHECK))
172
		page_size_mask |= 1 << PG_LEVEL_2M;
173 174
	else
		direct_gbpages = 0;
175 176

	/* Enable PSE if available */
177
	if (boot_cpu_has(X86_FEATURE_PSE))
A
Andy Lutomirski 已提交
178
		cr4_set_bits_and_update_boot(X86_CR4_PSE);
179 180

	/* Enable PGE if available */
181
	if (boot_cpu_has(X86_FEATURE_PGE)) {
A
Andy Lutomirski 已提交
182
		cr4_set_bits_and_update_boot(X86_CR4_PGE);
183
		__supported_pte_mask |= _PAGE_GLOBAL;
184 185
	} else
		__supported_pte_mask &= ~_PAGE_GLOBAL;
186 187

	/* Enable 1 GB linear kernel mappings if available: */
188
	if (direct_gbpages && boot_cpu_has(X86_FEATURE_GBPAGES)) {
189 190 191 192 193
		printk(KERN_INFO "Using GB pages for direct mapping\n");
		page_size_mask |= 1 << PG_LEVEL_1G;
	} else {
		direct_gbpages = 0;
	}
194
}
195

196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227
static void setup_pcid(void)
{
#ifdef CONFIG_X86_64
	if (boot_cpu_has(X86_FEATURE_PCID)) {
		if (boot_cpu_has(X86_FEATURE_PGE)) {
			/*
			 * This can't be cr4_set_bits_and_update_boot() --
			 * the trampoline code can't handle CR4.PCIDE and
			 * it wouldn't do any good anyway.  Despite the name,
			 * cr4_set_bits_and_update_boot() doesn't actually
			 * cause the bits in question to remain set all the
			 * way through the secondary boot asm.
			 *
			 * Instead, we brute-force it and set CR4.PCIDE
			 * manually in start_secondary().
			 */
			cr4_set_bits(X86_CR4_PCIDE);
		} else {
			/*
			 * flush_tlb_all(), as currently implemented, won't
			 * work if PCID is on but PGE is not.  Since that
			 * combination doesn't exist on real hardware, there's
			 * no reason to try to fully support it, but it's
			 * polite to avoid corrupting data if we're on
			 * an improperly configured VM.
			 */
			setup_clear_cpu_cap(X86_FEATURE_PCID);
		}
	}
#endif
}

228 229 230 231 232 233
#ifdef CONFIG_X86_32
#define NR_RANGE_MR 3
#else /* CONFIG_X86_64 */
#define NR_RANGE_MR 5
#endif

234 235 236
static int __meminit save_mr(struct map_range *mr, int nr_range,
			     unsigned long start_pfn, unsigned long end_pfn,
			     unsigned long page_size_mask)
237 238 239 240 241 242 243 244 245 246 247 248 249
{
	if (start_pfn < end_pfn) {
		if (nr_range >= NR_RANGE_MR)
			panic("run out of range for init_memory_mapping\n");
		mr[nr_range].start = start_pfn<<PAGE_SHIFT;
		mr[nr_range].end   = end_pfn<<PAGE_SHIFT;
		mr[nr_range].page_size_mask = page_size_mask;
		nr_range++;
	}

	return nr_range;
}

250 251 252 253
/*
 * adjust the page_size_mask for small range to go with
 *	big page size instead small one if nearby are ram too.
 */
254
static void __ref adjust_range_page_size_mask(struct map_range *mr,
255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283
							 int nr_range)
{
	int i;

	for (i = 0; i < nr_range; i++) {
		if ((page_size_mask & (1<<PG_LEVEL_2M)) &&
		    !(mr[i].page_size_mask & (1<<PG_LEVEL_2M))) {
			unsigned long start = round_down(mr[i].start, PMD_SIZE);
			unsigned long end = round_up(mr[i].end, PMD_SIZE);

#ifdef CONFIG_X86_32
			if ((end >> PAGE_SHIFT) > max_low_pfn)
				continue;
#endif

			if (memblock_is_region_memory(start, end - start))
				mr[i].page_size_mask |= 1<<PG_LEVEL_2M;
		}
		if ((page_size_mask & (1<<PG_LEVEL_1G)) &&
		    !(mr[i].page_size_mask & (1<<PG_LEVEL_1G))) {
			unsigned long start = round_down(mr[i].start, PUD_SIZE);
			unsigned long end = round_up(mr[i].end, PUD_SIZE);

			if (memblock_is_region_memory(start, end - start))
				mr[i].page_size_mask |= 1<<PG_LEVEL_1G;
		}
	}
}

284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308
static const char *page_size_string(struct map_range *mr)
{
	static const char str_1g[] = "1G";
	static const char str_2m[] = "2M";
	static const char str_4m[] = "4M";
	static const char str_4k[] = "4k";

	if (mr->page_size_mask & (1<<PG_LEVEL_1G))
		return str_1g;
	/*
	 * 32-bit without PAE has a 4M large page size.
	 * PG_LEVEL_2M is misnamed, but we can at least
	 * print out the right size in the string.
	 */
	if (IS_ENABLED(CONFIG_X86_32) &&
	    !IS_ENABLED(CONFIG_X86_PAE) &&
	    mr->page_size_mask & (1<<PG_LEVEL_2M))
		return str_4m;

	if (mr->page_size_mask & (1<<PG_LEVEL_2M))
		return str_2m;

	return str_4k;
}

309 310 311
static int __meminit split_mem_range(struct map_range *mr, int nr_range,
				     unsigned long start,
				     unsigned long end)
312
{
Y
Yinghai Lu 已提交
313
	unsigned long start_pfn, end_pfn, limit_pfn;
314
	unsigned long pfn;
315
	int i;
316

Y
Yinghai Lu 已提交
317 318
	limit_pfn = PFN_DOWN(end);

319
	/* head if not big page alignment ? */
320
	pfn = start_pfn = PFN_DOWN(start);
321 322 323 324 325 326 327
#ifdef CONFIG_X86_32
	/*
	 * Don't use a large page for the first 2/4MB of memory
	 * because there are often fixed size MTRRs in there
	 * and overlapping MTRRs into large pages can cause
	 * slowdowns.
	 */
328
	if (pfn == 0)
329
		end_pfn = PFN_DOWN(PMD_SIZE);
330
	else
331
		end_pfn = round_up(pfn, PFN_DOWN(PMD_SIZE));
332
#else /* CONFIG_X86_64 */
333
	end_pfn = round_up(pfn, PFN_DOWN(PMD_SIZE));
334
#endif
Y
Yinghai Lu 已提交
335 336
	if (end_pfn > limit_pfn)
		end_pfn = limit_pfn;
337 338
	if (start_pfn < end_pfn) {
		nr_range = save_mr(mr, nr_range, start_pfn, end_pfn, 0);
339
		pfn = end_pfn;
340 341 342
	}

	/* big page (2M) range */
343
	start_pfn = round_up(pfn, PFN_DOWN(PMD_SIZE));
344
#ifdef CONFIG_X86_32
Y
Yinghai Lu 已提交
345
	end_pfn = round_down(limit_pfn, PFN_DOWN(PMD_SIZE));
346
#else /* CONFIG_X86_64 */
347
	end_pfn = round_up(pfn, PFN_DOWN(PUD_SIZE));
Y
Yinghai Lu 已提交
348 349
	if (end_pfn > round_down(limit_pfn, PFN_DOWN(PMD_SIZE)))
		end_pfn = round_down(limit_pfn, PFN_DOWN(PMD_SIZE));
350 351 352 353 354
#endif

	if (start_pfn < end_pfn) {
		nr_range = save_mr(mr, nr_range, start_pfn, end_pfn,
				page_size_mask & (1<<PG_LEVEL_2M));
355
		pfn = end_pfn;
356 357 358 359
	}

#ifdef CONFIG_X86_64
	/* big page (1G) range */
360
	start_pfn = round_up(pfn, PFN_DOWN(PUD_SIZE));
Y
Yinghai Lu 已提交
361
	end_pfn = round_down(limit_pfn, PFN_DOWN(PUD_SIZE));
362 363 364 365
	if (start_pfn < end_pfn) {
		nr_range = save_mr(mr, nr_range, start_pfn, end_pfn,
				page_size_mask &
				 ((1<<PG_LEVEL_2M)|(1<<PG_LEVEL_1G)));
366
		pfn = end_pfn;
367 368 369
	}

	/* tail is not big page (1G) alignment */
370
	start_pfn = round_up(pfn, PFN_DOWN(PMD_SIZE));
Y
Yinghai Lu 已提交
371
	end_pfn = round_down(limit_pfn, PFN_DOWN(PMD_SIZE));
372 373 374
	if (start_pfn < end_pfn) {
		nr_range = save_mr(mr, nr_range, start_pfn, end_pfn,
				page_size_mask & (1<<PG_LEVEL_2M));
375
		pfn = end_pfn;
376 377 378 379
	}
#endif

	/* tail is not big page (2M) alignment */
380
	start_pfn = pfn;
Y
Yinghai Lu 已提交
381
	end_pfn = limit_pfn;
382 383
	nr_range = save_mr(mr, nr_range, start_pfn, end_pfn, 0);

384 385 386
	if (!after_bootmem)
		adjust_range_page_size_mask(mr, nr_range);

387 388 389 390 391 392 393 394 395 396 397 398 399 400 401
	/* try to merge same page size and continuous */
	for (i = 0; nr_range > 1 && i < nr_range - 1; i++) {
		unsigned long old_start;
		if (mr[i].end != mr[i+1].start ||
		    mr[i].page_size_mask != mr[i+1].page_size_mask)
			continue;
		/* move it */
		old_start = mr[i].start;
		memmove(&mr[i], &mr[i+1],
			(nr_range - 1 - i) * sizeof(struct map_range));
		mr[i--].start = old_start;
		nr_range--;
	}

	for (i = 0; i < nr_range; i++)
D
Dan Williams 已提交
402
		pr_debug(" [mem %#010lx-%#010lx] page %s\n",
403
				mr[i].start, mr[i].end - 1,
404
				page_size_string(&mr[i]));
405

406 407 408
	return nr_range;
}

409
struct range pfn_mapped[E820_MAX_ENTRIES];
410
int nr_pfn_mapped;
411 412 413

static void add_pfn_range_mapped(unsigned long start_pfn, unsigned long end_pfn)
{
414
	nr_pfn_mapped = add_range_with_merge(pfn_mapped, E820_MAX_ENTRIES,
415
					     nr_pfn_mapped, start_pfn, end_pfn);
416
	nr_pfn_mapped = clean_sort_range(pfn_mapped, E820_MAX_ENTRIES);
417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436

	max_pfn_mapped = max(max_pfn_mapped, end_pfn);

	if (start_pfn < (1UL<<(32-PAGE_SHIFT)))
		max_low_pfn_mapped = max(max_low_pfn_mapped,
					 min(end_pfn, 1UL<<(32-PAGE_SHIFT)));
}

bool pfn_range_is_mapped(unsigned long start_pfn, unsigned long end_pfn)
{
	int i;

	for (i = 0; i < nr_pfn_mapped; i++)
		if ((start_pfn >= pfn_mapped[i].start) &&
		    (end_pfn <= pfn_mapped[i].end))
			return true;

	return false;
}

437 438 439 440 441
/*
 * Setup the direct mapping of the physical memory at PAGE_OFFSET.
 * This runs before bootmem is initialized and gets pages directly from
 * the physical memory. To access them they are temporarily mapped.
 */
442
unsigned long __ref init_memory_mapping(unsigned long start,
443 444 445 446 447 448
					       unsigned long end)
{
	struct map_range mr[NR_RANGE_MR];
	unsigned long ret = 0;
	int nr_range, i;

D
Dan Williams 已提交
449
	pr_debug("init_memory_mapping: [mem %#010lx-%#010lx]\n",
450 451 452 453 454
	       start, end - 1);

	memset(mr, 0, sizeof(mr));
	nr_range = split_mem_range(mr, 0, start, end);

455 456 457 458
	for (i = 0; i < nr_range; i++)
		ret = kernel_physical_mapping_init(mr[i].start, mr[i].end,
						   mr[i].page_size_mask);

459 460
	add_pfn_range_mapped(start >> PAGE_SHIFT, ret >> PAGE_SHIFT);

461 462 463
	return ret >> PAGE_SHIFT;
}

464
/*
465
 * We need to iterate through the E820 memory map and create direct mappings
466
 * for only E820_TYPE_RAM and E820_KERN_RESERVED regions. We cannot simply
467 468 469 470 471 472 473 474 475
 * create direct mappings for all pfns from [0 to max_low_pfn) and
 * [4GB to max_pfn) because of possible memory holes in high addresses
 * that cannot be marked as UC by fixed/variable range MTRRs.
 * Depending on the alignment of E820 ranges, this may possibly result
 * in using smaller size (i.e. 4K instead of 2M or 1G) page tables.
 *
 * init_mem_mapping() calls init_range_memory_mapping() with big range.
 * That range would have hole in the middle or ends, and only ram parts
 * will be mapped in init_range_memory_mapping().
476
 */
Y
Yinghai Lu 已提交
477
static unsigned long __init init_range_memory_mapping(
478 479
					   unsigned long r_start,
					   unsigned long r_end)
480 481
{
	unsigned long start_pfn, end_pfn;
Y
Yinghai Lu 已提交
482
	unsigned long mapped_ram_size = 0;
483 484 485
	int i;

	for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, NULL) {
486 487 488
		u64 start = clamp_val(PFN_PHYS(start_pfn), r_start, r_end);
		u64 end = clamp_val(PFN_PHYS(end_pfn), r_start, r_end);
		if (start >= end)
489 490
			continue;

491 492 493 494 495 496
		/*
		 * if it is overlapping with brk pgt, we need to
		 * alloc pgt buf from memblock instead.
		 */
		can_use_brk_pgt = max(start, (u64)pgt_buf_end<<PAGE_SHIFT) >=
				    min(end, (u64)pgt_buf_top<<PAGE_SHIFT);
497
		init_memory_mapping(start, end);
Y
Yinghai Lu 已提交
498
		mapped_ram_size += end - start;
499
		can_use_brk_pgt = true;
500
	}
Y
Yinghai Lu 已提交
501 502

	return mapped_ram_size;
503 504
}

505 506 507
static unsigned long __init get_new_step_size(unsigned long step_size)
{
	/*
508
	 * Initial mapped size is PMD_SIZE (2M).
509 510 511
	 * We can not set step_size to be PUD_SIZE (1G) yet.
	 * In worse case, when we cross the 1G boundary, and
	 * PG_LEVEL_2M is not set, we will need 1+1+512 pages (2M + 8k)
512 513
	 * to map 1G range with PTE. Hence we use one less than the
	 * difference of page table level shifts.
514
	 *
515 516 517 518 519
	 * Don't need to worry about overflow in the top-down case, on 32bit,
	 * when step_size is 0, round_down() returns 0 for start, and that
	 * turns it into 0x100000000ULL.
	 * In the bottom-up case, round_up(x, 0) returns 0 though too, which
	 * needs to be taken into consideration by the code below.
520
	 */
521
	return step_size << (PMD_SHIFT - PAGE_SHIFT - 1);
522 523
}

524 525 526 527 528 529 530 531 532 533 534 535
/**
 * memory_map_top_down - Map [map_start, map_end) top down
 * @map_start: start address of the target memory range
 * @map_end: end address of the target memory range
 *
 * This function will setup direct mapping for memory range
 * [map_start, map_end) in top-down. That said, the page tables
 * will be allocated at the end of the memory, and we map the
 * memory in top-down.
 */
static void __init memory_map_top_down(unsigned long map_start,
				       unsigned long map_end)
536
{
537
	unsigned long real_end, start, last_start;
Y
Yinghai Lu 已提交
538 539 540
	unsigned long step_size;
	unsigned long addr;
	unsigned long mapped_ram_size = 0;
541

542
	/* xen has big range in reserved near end of ram, skip it at first.*/
543
	addr = memblock_find_in_range(map_start, map_end, PMD_SIZE, PMD_SIZE);
Y
Yinghai Lu 已提交
544 545 546 547 548 549 550
	real_end = addr + PMD_SIZE;

	/* step_size need to be small so pgt_buf from BRK could cover it */
	step_size = PMD_SIZE;
	max_pfn_mapped = 0; /* will get exact value next */
	min_pfn_mapped = real_end >> PAGE_SHIFT;
	last_start = start = real_end;
551 552 553 554 555 556 557

	/*
	 * We start from the top (end of memory) and go to the bottom.
	 * The memblock_find_in_range() gets us a block of RAM from the
	 * end of RAM in [min_pfn_mapped, max_pfn_mapped) used as new pages
	 * for page table.
	 */
558
	while (last_start > map_start) {
Y
Yinghai Lu 已提交
559 560
		if (last_start > step_size) {
			start = round_down(last_start - 1, step_size);
561 562
			if (start < map_start)
				start = map_start;
Y
Yinghai Lu 已提交
563
		} else
564
			start = map_start;
565
		mapped_ram_size += init_range_memory_mapping(start,
Y
Yinghai Lu 已提交
566 567 568
							last_start);
		last_start = start;
		min_pfn_mapped = last_start >> PAGE_SHIFT;
569
		if (mapped_ram_size >= step_size)
570
			step_size = get_new_step_size(step_size);
Y
Yinghai Lu 已提交
571 572
	}

573 574 575 576
	if (real_end < map_end)
		init_range_memory_mapping(real_end, map_end);
}

577 578 579 580 581 582 583 584 585 586 587 588 589 590
/**
 * memory_map_bottom_up - Map [map_start, map_end) bottom up
 * @map_start: start address of the target memory range
 * @map_end: end address of the target memory range
 *
 * This function will setup direct mapping for memory range
 * [map_start, map_end) in bottom-up. Since we have limited the
 * bottom-up allocation above the kernel, the page tables will
 * be allocated just above the kernel and we map the memory
 * in [map_start, map_end) in bottom-up.
 */
static void __init memory_map_bottom_up(unsigned long map_start,
					unsigned long map_end)
{
591
	unsigned long next, start;
592 593 594 595 596 597 598 599 600 601 602 603 604 605
	unsigned long mapped_ram_size = 0;
	/* step_size need to be small so pgt_buf from BRK could cover it */
	unsigned long step_size = PMD_SIZE;

	start = map_start;
	min_pfn_mapped = start >> PAGE_SHIFT;

	/*
	 * We start from the bottom (@map_start) and go to the top (@map_end).
	 * The memblock_find_in_range() gets us a block of RAM from the
	 * end of RAM in [min_pfn_mapped, max_pfn_mapped) used as new pages
	 * for page table.
	 */
	while (start < map_end) {
606
		if (step_size && map_end - start > step_size) {
607 608 609
			next = round_up(start + 1, step_size);
			if (next > map_end)
				next = map_end;
610
		} else {
611
			next = map_end;
612
		}
613

614
		mapped_ram_size += init_range_memory_mapping(start, next);
615 616
		start = next;

617
		if (mapped_ram_size >= step_size)
618 619 620 621
			step_size = get_new_step_size(step_size);
	}
}

622 623 624 625 626
void __init init_mem_mapping(void)
{
	unsigned long end;

	probe_page_size_mask();
627
	setup_pcid();
628 629 630 631 632 633 634 635 636 637

#ifdef CONFIG_X86_64
	end = max_pfn << PAGE_SHIFT;
#else
	end = max_low_pfn << PAGE_SHIFT;
#endif

	/* the ISA range is always mapped regardless of memory holes */
	init_memory_mapping(0, ISA_END_ADDRESS);

638 639 640
	/* Init the trampoline, possibly with KASLR memory offset */
	init_trampoline();

641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659
	/*
	 * If the allocation is in bottom-up direction, we setup direct mapping
	 * in bottom-up, otherwise we setup direct mapping in top-down.
	 */
	if (memblock_bottom_up()) {
		unsigned long kernel_end = __pa_symbol(_end);

		/*
		 * we need two separate calls here. This is because we want to
		 * allocate page tables above the kernel. So we first map
		 * [kernel_end, end) to make memory above the kernel be mapped
		 * as soon as possible. And then use page tables allocated above
		 * the kernel to map [ISA_END_ADDRESS, kernel_end).
		 */
		memory_map_bottom_up(kernel_end, end);
		memory_map_bottom_up(ISA_END_ADDRESS, kernel_end);
	} else {
		memory_map_top_down(ISA_END_ADDRESS, end);
	}
Y
Yinghai Lu 已提交
660

661 662 663 664 665
#ifdef CONFIG_X86_64
	if (max_pfn > max_low_pfn) {
		/* can we preseve max_low_pfn ?*/
		max_low_pfn = max_pfn;
	}
666 667
#else
	early_ioremap_page_table_range_init();
668 669
#endif

670 671 672
	load_cr3(swapper_pg_dir);
	__flush_tlb_all();

673
	x86_init.hyper.init_mem_mapping();
674

675
	early_memtest(0, max_pfn_mapped << PAGE_SHIFT);
676
}
677

678 679 680 681
/*
 * devmem_is_allowed() checks to see if /dev/mem access to a certain address
 * is valid. The argument is a physical page number.
 *
682 683 684 685 686 687 688
 * On x86, access has to be given to the first megabyte of RAM because that
 * area traditionally contains BIOS code and data regions used by X, dosemu,
 * and similar apps. Since they map the entire memory range, the whole range
 * must be allowed (for mapping), but any areas that would otherwise be
 * disallowed are flagged as being "zero filled" instead of rejected.
 * Access has to be given to non-kernel-ram areas as well, these contain the
 * PCI mmio resources as well as potential bios/acpi data regions.
689 690 691
 */
int devmem_is_allowed(unsigned long pagenr)
{
692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711
	if (page_is_ram(pagenr)) {
		/*
		 * For disallowed memory regions in the low 1MB range,
		 * request that the page be shown as all zeros.
		 */
		if (pagenr < 256)
			return 2;

		return 0;
	}

	/*
	 * This must follow RAM test, since System RAM is considered a
	 * restricted resource under CONFIG_STRICT_IOMEM.
	 */
	if (iomem_is_exclusive(pagenr << PAGE_SHIFT)) {
		/* Low 1MB bypasses iomem restrictions. */
		if (pagenr < 256)
			return 1;

712
		return 0;
713 714 715
	}

	return 1;
716 717
}

718 719
void free_init_pages(char *what, unsigned long begin, unsigned long end)
{
720
	unsigned long begin_aligned, end_aligned;
721

722 723 724 725 726 727 728 729 730 731
	/* Make sure boundaries are page aligned */
	begin_aligned = PAGE_ALIGN(begin);
	end_aligned   = end & PAGE_MASK;

	if (WARN_ON(begin_aligned != begin || end_aligned != end)) {
		begin = begin_aligned;
		end   = end_aligned;
	}

	if (begin >= end)
732 733 734 735 736 737 738
		return;

	/*
	 * If debugging page accesses then do not free this memory but
	 * mark them not present - any buggy init-section access will
	 * create a kernel page fault:
	 */
739 740 741 742 743 744 745 746 747 748 749 750
	if (debug_pagealloc_enabled()) {
		pr_info("debug: unmapping init [mem %#010lx-%#010lx]\n",
			begin, end - 1);
		set_memory_np(begin, (end - begin) >> PAGE_SHIFT);
	} else {
		/*
		 * We just marked the kernel text read only above, now that
		 * we are going to free part of that, we need to make that
		 * writeable and non-executable first.
		 */
		set_memory_nx(begin, (end - begin) >> PAGE_SHIFT);
		set_memory_rw(begin, (end - begin) >> PAGE_SHIFT);
751

752 753 754
		free_reserved_area((void *)begin, (void *)end,
				   POISON_FREE_INITMEM, what);
	}
755 756
}

757
void __ref free_initmem(void)
758
{
759
	e820__reallocate_tables();
760

761
	free_init_pages("unused kernel",
762 763 764
			(unsigned long)(&__init_begin),
			(unsigned long)(&__init_end));
}
765 766

#ifdef CONFIG_BLK_DEV_INITRD
767
void __init free_initrd_mem(unsigned long start, unsigned long end)
768
{
769 770 771 772 773 774 775 776 777
	/*
	 * end could be not aligned, and We can not align that,
	 * decompresser could be confused by aligned initrd_end
	 * We already reserve the end partial page before in
	 *   - i386_start_kernel()
	 *   - x86_64_start_kernel()
	 *   - relocate_initrd()
	 * So here We can do PAGE_ALIGN() safely to get partial page to be freed
	 */
778
	free_init_pages("initrd", start, PAGE_ALIGN(end));
779 780
}
#endif
P
Pekka Enberg 已提交
781

782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828
/*
 * Calculate the precise size of the DMA zone (first 16 MB of RAM),
 * and pass it to the MM layer - to help it set zone watermarks more
 * accurately.
 *
 * Done on 64-bit systems only for the time being, although 32-bit systems
 * might benefit from this as well.
 */
void __init memblock_find_dma_reserve(void)
{
#ifdef CONFIG_X86_64
	u64 nr_pages = 0, nr_free_pages = 0;
	unsigned long start_pfn, end_pfn;
	phys_addr_t start_addr, end_addr;
	int i;
	u64 u;

	/*
	 * Iterate over all memory ranges (free and reserved ones alike),
	 * to calculate the total number of pages in the first 16 MB of RAM:
	 */
	nr_pages = 0;
	for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, NULL) {
		start_pfn = min(start_pfn, MAX_DMA_PFN);
		end_pfn   = min(end_pfn,   MAX_DMA_PFN);

		nr_pages += end_pfn - start_pfn;
	}

	/*
	 * Iterate over free memory ranges to calculate the number of free
	 * pages in the DMA zone, while not counting potential partial
	 * pages at the beginning or the end of the range:
	 */
	nr_free_pages = 0;
	for_each_free_mem_range(u, NUMA_NO_NODE, MEMBLOCK_NONE, &start_addr, &end_addr, NULL) {
		start_pfn = min_t(unsigned long, PFN_UP(start_addr), MAX_DMA_PFN);
		end_pfn   = min_t(unsigned long, PFN_DOWN(end_addr), MAX_DMA_PFN);

		if (start_pfn < end_pfn)
			nr_free_pages += end_pfn - start_pfn;
	}

	set_dma_reserve(nr_pages - nr_free_pages);
#endif
}

P
Pekka Enberg 已提交
829 830 831 832 833 834 835
void __init zone_sizes_init(void)
{
	unsigned long max_zone_pfns[MAX_NR_ZONES];

	memset(max_zone_pfns, 0, sizeof(max_zone_pfns));

#ifdef CONFIG_ZONE_DMA
X
Xishi Qiu 已提交
836
	max_zone_pfns[ZONE_DMA]		= min(MAX_DMA_PFN, max_low_pfn);
P
Pekka Enberg 已提交
837 838
#endif
#ifdef CONFIG_ZONE_DMA32
X
Xishi Qiu 已提交
839
	max_zone_pfns[ZONE_DMA32]	= min(MAX_DMA32_PFN, max_low_pfn);
P
Pekka Enberg 已提交
840 841 842 843 844 845 846 847 848
#endif
	max_zone_pfns[ZONE_NORMAL]	= max_low_pfn;
#ifdef CONFIG_HIGHMEM
	max_zone_pfns[ZONE_HIGHMEM]	= max_pfn;
#endif

	free_area_init_nodes(max_zone_pfns);
}

849
DEFINE_PER_CPU_SHARED_ALIGNED(struct tlb_state, cpu_tlbstate) = {
850
	.loaded_mm = &init_mm,
851
	.next_asid = 1,
852 853 854 855
	.cr4 = ~0UL,	/* fail hard if we screw up cr4 shadow initialization */
};
EXPORT_SYMBOL_GPL(cpu_tlbstate);

856 857 858 859 860 861 862 863
void update_cache_mode_entry(unsigned entry, enum page_cache_mode cache)
{
	/* entry 0 MUST be WB (hardwired to speed up translations) */
	BUG_ON(!entry && cache != _PAGE_CACHE_MODE_WB);

	__cachemode2pte_tbl[cache] = __cm_idx2pte(entry);
	__pte2cachemode_tbl[entry] = cache;
}