sdma_v4_0.c 53.3 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29
/*
 * Copyright 2016 Advanced Micro Devices, Inc.
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice shall be included in
 * all copies or substantial portions of the Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
 * OTHER DEALINGS IN THE SOFTWARE.
 *
 */

#include <linux/firmware.h>
#include <drm/drmP.h>
#include "amdgpu.h"
#include "amdgpu_ucode.h"
#include "amdgpu_trace.h"

30 31 32 33
#include "sdma0/sdma0_4_0_offset.h"
#include "sdma0/sdma0_4_0_sh_mask.h"
#include "sdma1/sdma1_4_0_offset.h"
#include "sdma1/sdma1_4_0_sh_mask.h"
34 35
#include "mmhub/mmhub_1_0_offset.h"
#include "mmhub/mmhub_1_0_sh_mask.h"
36
#include "hdp/hdp_4_0_offset.h"
37
#include "sdma0/sdma0_4_1_default.h"
38 39 40 41 42 43 44

#include "soc15_common.h"
#include "soc15.h"
#include "vega10_sdma_pkt_open.h"

MODULE_FIRMWARE("amdgpu/vega10_sdma.bin");
MODULE_FIRMWARE("amdgpu/vega10_sdma1.bin");
45
MODULE_FIRMWARE("amdgpu/raven_sdma.bin");
46

47 48 49
#define SDMA0_POWER_CNTL__ON_OFF_CONDITION_HOLD_TIME_MASK  0x000000F8L
#define SDMA0_POWER_CNTL__ON_OFF_STATUS_DURATION_TIME_MASK 0xFC000000L

50 51 52 53 54
static void sdma_v4_0_set_ring_funcs(struct amdgpu_device *adev);
static void sdma_v4_0_set_buffer_funcs(struct amdgpu_device *adev);
static void sdma_v4_0_set_vm_pte_funcs(struct amdgpu_device *adev);
static void sdma_v4_0_set_irq_funcs(struct amdgpu_device *adev);

55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79
static const struct soc15_reg_golden golden_settings_sdma_4[] = {
	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_CHICKEN_BITS, 0xfe931f07, 0x02831d07),
	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_CLK_CTRL, 0xff000ff0, 0x3f000100),
	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GFX_IB_CNTL, 0x800f0100, 0x00000100),
	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GFX_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_PAGE_IB_CNTL, 0x800f0100, 0x00000100),
	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_PAGE_RB_WPTR_POLL_CNTL, 0x0000fff0, 0x00403000),
	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_POWER_CNTL, 0x003ff006, 0x0003c000),
	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC0_IB_CNTL, 0x800f0100, 0x00000100),
	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC0_RB_WPTR_POLL_CNTL, 0x0000fff0, 0x00403000),
	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC1_IB_CNTL, 0x800f0100, 0x00000100),
	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC1_RB_WPTR_POLL_CNTL, 0x0000fff0, 0x00403000),
	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_UTCL1_PAGE, 0x000003ff, 0x000003c0),
	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_CHICKEN_BITS, 0xfe931f07, 0x02831f07),
	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_CLK_CTRL, 0xffffffff, 0x3f000100),
	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_GFX_IB_CNTL, 0x800f0100, 0x00000100),
	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_GFX_RB_WPTR_POLL_CNTL, 0x0000fff0, 0x00403000),
	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_PAGE_IB_CNTL, 0x800f0100, 0x00000100),
	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_PAGE_RB_WPTR_POLL_CNTL, 0x0000fff0, 0x00403000),
	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_POWER_CNTL, 0x003ff000, 0x0003c000),
	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC0_IB_CNTL, 0x800f0100, 0x00000100),
	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC0_RB_WPTR_POLL_CNTL, 0x0000fff0, 0x00403000),
	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC1_IB_CNTL, 0x800f0100, 0x00000100),
	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC1_RB_WPTR_POLL_CNTL, 0x0000fff0, 0x00403000),
	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_UTCL1_PAGE, 0x000003ff, 0x000003c0)
80 81
};

82 83 84 85 86
static const struct soc15_reg_golden golden_settings_sdma_vg10[] = {
	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GB_ADDR_CONFIG, 0x0018773f, 0x00104002),
	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GB_ADDR_CONFIG_READ, 0x0018773f, 0x00104002),
	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_GB_ADDR_CONFIG, 0x0018773f, 0x00104002),
	SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_GB_ADDR_CONFIG_READ, 0x0018773f, 0x00104002)
87 88
};

89
static const struct soc15_reg_golden golden_settings_sdma_4_1[] =
90
{
91 92 93 94 95 96 97 98 99 100
	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_CHICKEN_BITS, 0xfe931f07, 0x02831d07),
	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_CLK_CTRL, 0xffffffff, 0x3f000100),
	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GFX_IB_CNTL, 0x800f0111, 0x00000100),
	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GFX_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_POWER_CNTL, 0xfc3fffff, 0x40000051),
	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC0_IB_CNTL, 0x800f0111, 0x00000100),
	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC0_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC1_IB_CNTL, 0x800f0111, 0x00000100),
	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC1_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_UTCL1_PAGE, 0x000003ff, 0x000003c0)
101 102
};

103
static const struct soc15_reg_golden golden_settings_sdma_rv1[] =
104
{
105 106
	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GB_ADDR_CONFIG, 0x0018773f, 0x00000002),
	SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GB_ADDR_CONFIG_READ, 0x0018773f, 0x00000002)
107 108
};

109 110
static u32 sdma_v4_0_get_reg_offset(struct amdgpu_device *adev,
		u32 instance, u32 offset)
111
{
112 113
	return ( 0 == instance ? (adev->reg_offset[SDMA0_HWIP][0][0] + offset) :
			(adev->reg_offset[SDMA1_HWIP][0][0] + offset));
114 115 116 117 118 119
}

static void sdma_v4_0_init_golden_registers(struct amdgpu_device *adev)
{
	switch (adev->asic_type) {
	case CHIP_VEGA10:
120
		soc15_program_register_sequence(adev,
121
						 golden_settings_sdma_4,
122
						 ARRAY_SIZE(golden_settings_sdma_4));
123
		soc15_program_register_sequence(adev,
124
						 golden_settings_sdma_vg10,
125
						 ARRAY_SIZE(golden_settings_sdma_vg10));
126
		break;
127
	case CHIP_RAVEN:
128
		soc15_program_register_sequence(adev,
129
						 golden_settings_sdma_4_1,
130
						 ARRAY_SIZE(golden_settings_sdma_4_1));
131
		soc15_program_register_sequence(adev,
132
						 golden_settings_sdma_rv1,
133
						 ARRAY_SIZE(golden_settings_sdma_rv1));
134
		break;
135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166
	default:
		break;
	}
}

/**
 * sdma_v4_0_init_microcode - load ucode images from disk
 *
 * @adev: amdgpu_device pointer
 *
 * Use the firmware interface to load the ucode images into
 * the driver (not loaded into hw).
 * Returns 0 on success, error on failure.
 */

// emulation only, won't work on real chip
// vega10 real chip need to use PSP to load firmware
static int sdma_v4_0_init_microcode(struct amdgpu_device *adev)
{
	const char *chip_name;
	char fw_name[30];
	int err = 0, i;
	struct amdgpu_firmware_info *info = NULL;
	const struct common_firmware_header *header = NULL;
	const struct sdma_firmware_header_v1_0 *hdr;

	DRM_DEBUG("\n");

	switch (adev->asic_type) {
	case CHIP_VEGA10:
		chip_name = "vega10";
		break;
167 168 169
	case CHIP_RAVEN:
		chip_name = "raven";
		break;
170 171
	default:
		BUG();
172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190
	}

	for (i = 0; i < adev->sdma.num_instances; i++) {
		if (i == 0)
			snprintf(fw_name, sizeof(fw_name), "amdgpu/%s_sdma.bin", chip_name);
		else
			snprintf(fw_name, sizeof(fw_name), "amdgpu/%s_sdma1.bin", chip_name);
		err = request_firmware(&adev->sdma.instance[i].fw, fw_name, adev->dev);
		if (err)
			goto out;
		err = amdgpu_ucode_validate(adev->sdma.instance[i].fw);
		if (err)
			goto out;
		hdr = (const struct sdma_firmware_header_v1_0 *)adev->sdma.instance[i].fw->data;
		adev->sdma.instance[i].fw_version = le32_to_cpu(hdr->header.ucode_version);
		adev->sdma.instance[i].feature_version = le32_to_cpu(hdr->ucode_feature_version);
		if (adev->sdma.instance[i].feature_version >= 20)
			adev->sdma.instance[i].burst_nop = true;
		DRM_DEBUG("psp_load == '%s'\n",
191
				adev->firmware.load_type == AMDGPU_FW_LOAD_PSP ? "true" : "false");
192 193 194 195 196 197 198 199 200 201 202 203

		if (adev->firmware.load_type == AMDGPU_FW_LOAD_PSP) {
			info = &adev->firmware.ucode[AMDGPU_UCODE_ID_SDMA0 + i];
			info->ucode_id = AMDGPU_UCODE_ID_SDMA0 + i;
			info->fw = adev->sdma.instance[i].fw;
			header = (const struct common_firmware_header *)info->fw->data;
			adev->firmware.fw_size +=
				ALIGN(le32_to_cpu(header->ucode_size_bytes), PAGE_SIZE);
		}
	}
out:
	if (err) {
204
		DRM_ERROR("sdma_v4_0: Failed to load firmware \"%s\"\n", fw_name);
205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221
		for (i = 0; i < adev->sdma.num_instances; i++) {
			release_firmware(adev->sdma.instance[i].fw);
			adev->sdma.instance[i].fw = NULL;
		}
	}
	return err;
}

/**
 * sdma_v4_0_ring_get_rptr - get the current read pointer
 *
 * @ring: amdgpu ring pointer
 *
 * Get the current rptr from the hardware (VEGA10+).
 */
static uint64_t sdma_v4_0_ring_get_rptr(struct amdgpu_ring *ring)
{
222
	u64 *rptr;
223 224

	/* XXX check if swapping is necessary on BE */
225
	rptr = ((u64 *)&ring->adev->wb.wb[ring->rptr_offs]);
226 227 228 229 230 231 232 233 234 235 236 237 238 239 240

	DRM_DEBUG("rptr before shift == 0x%016llx\n", *rptr);
	return ((*rptr) >> 2);
}

/**
 * sdma_v4_0_ring_get_wptr - get the current write pointer
 *
 * @ring: amdgpu ring pointer
 *
 * Get the current wptr from the hardware (VEGA10+).
 */
static uint64_t sdma_v4_0_ring_get_wptr(struct amdgpu_ring *ring)
{
	struct amdgpu_device *adev = ring->adev;
241 242
	u64 *wptr = NULL;
	uint64_t local_wptr = 0;
243 244 245

	if (ring->use_doorbell) {
		/* XXX check if swapping is necessary on BE */
246
		wptr = ((u64 *)&adev->wb.wb[ring->wptr_offs]);
247 248 249 250 251 252
		DRM_DEBUG("wptr/doorbell before shift == 0x%016llx\n", *wptr);
		*wptr = (*wptr) >> 2;
		DRM_DEBUG("wptr/doorbell after shift == 0x%016llx\n", *wptr);
	} else {
		u32 lowbit, highbit;
		int me = (ring == &adev->sdma.instance[0].ring) ? 0 : 1;
253 254

		wptr = &local_wptr;
255 256
		lowbit = RREG32(sdma_v4_0_get_reg_offset(adev, me, mmSDMA0_GFX_RB_WPTR)) >> 2;
		highbit = RREG32(sdma_v4_0_get_reg_offset(adev, me, mmSDMA0_GFX_RB_WPTR_HI)) >> 2;
257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280

		DRM_DEBUG("wptr [%i]high== 0x%08x low==0x%08x\n",
				me, highbit, lowbit);
		*wptr = highbit;
		*wptr = (*wptr) << 32;
		*wptr |= lowbit;
	}

	return *wptr;
}

/**
 * sdma_v4_0_ring_set_wptr - commit the write pointer
 *
 * @ring: amdgpu ring pointer
 *
 * Write the wptr back to the hardware (VEGA10+).
 */
static void sdma_v4_0_ring_set_wptr(struct amdgpu_ring *ring)
{
	struct amdgpu_device *adev = ring->adev;

	DRM_DEBUG("Setting write pointer\n");
	if (ring->use_doorbell) {
281 282
		u64 *wb = (u64 *)&adev->wb.wb[ring->wptr_offs];

283 284 285 286 287 288 289 290
		DRM_DEBUG("Using doorbell -- "
				"wptr_offs == 0x%08x "
				"lower_32_bits(ring->wptr) << 2 == 0x%08x "
				"upper_32_bits(ring->wptr) << 2 == 0x%08x\n",
				ring->wptr_offs,
				lower_32_bits(ring->wptr << 2),
				upper_32_bits(ring->wptr << 2));
		/* XXX check if swapping is necessary on BE */
291
		WRITE_ONCE(*wb, (ring->wptr << 2));
292 293 294 295 296
		DRM_DEBUG("calling WDOORBELL64(0x%08x, 0x%016llx)\n",
				ring->doorbell_index, ring->wptr << 2);
		WDOORBELL64(ring->doorbell_index, ring->wptr << 2);
	} else {
		int me = (ring == &ring->adev->sdma.instance[0].ring) ? 0 : 1;
297

298 299
		DRM_DEBUG("Not using doorbell -- "
				"mmSDMA%i_GFX_RB_WPTR == 0x%08x "
300
				"mmSDMA%i_GFX_RB_WPTR_HI == 0x%08x\n",
301 302
				me,
				lower_32_bits(ring->wptr << 2),
303
				me,
304
				upper_32_bits(ring->wptr << 2));
305 306
		WREG32(sdma_v4_0_get_reg_offset(adev, me, mmSDMA0_GFX_RB_WPTR), lower_32_bits(ring->wptr << 2));
		WREG32(sdma_v4_0_get_reg_offset(adev, me, mmSDMA0_GFX_RB_WPTR_HI), upper_32_bits(ring->wptr << 2));
307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331
	}
}

static void sdma_v4_0_ring_insert_nop(struct amdgpu_ring *ring, uint32_t count)
{
	struct amdgpu_sdma_instance *sdma = amdgpu_get_sdma_instance(ring);
	int i;

	for (i = 0; i < count; i++)
		if (sdma && sdma->burst_nop && (i == 0))
			amdgpu_ring_write(ring, ring->funcs->nop |
				SDMA_PKT_NOP_HEADER_COUNT(count - 1));
		else
			amdgpu_ring_write(ring, ring->funcs->nop);
}

/**
 * sdma_v4_0_ring_emit_ib - Schedule an IB on the DMA engine
 *
 * @ring: amdgpu ring pointer
 * @ib: IB object to schedule
 *
 * Schedule an IB in the DMA ring (VEGA10).
 */
static void sdma_v4_0_ring_emit_ib(struct amdgpu_ring *ring,
332 333
					struct amdgpu_ib *ib,
					unsigned vm_id, bool ctx_switch)
334
{
335
	u32 vmid = vm_id & 0xf;
336

337 338
	/* IB packet must end on a 8 DW boundary */
	sdma_v4_0_ring_insert_nop(ring, (10 - (lower_32_bits(ring->wptr) & 7)) % 8);
339

340 341 342 343 344 345 346 347
	amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_INDIRECT) |
			  SDMA_PKT_INDIRECT_HEADER_VMID(vmid));
	/* base must be 32 byte aligned */
	amdgpu_ring_write(ring, lower_32_bits(ib->gpu_addr) & 0xffffffe0);
	amdgpu_ring_write(ring, upper_32_bits(ib->gpu_addr));
	amdgpu_ring_write(ring, ib->length_dw);
	amdgpu_ring_write(ring, 0);
	amdgpu_ring_write(ring, 0);
348 349 350 351 352 353 354 355 356 357 358 359

}

/**
 * sdma_v4_0_ring_emit_hdp_flush - emit an hdp flush on the DMA ring
 *
 * @ring: amdgpu ring pointer
 *
 * Emit an hdp flush packet on the requested DMA ring.
 */
static void sdma_v4_0_ring_emit_hdp_flush(struct amdgpu_ring *ring)
{
360
	struct amdgpu_device *adev = ring->adev;
361
	u32 ref_and_mask = 0;
362
	const struct nbio_hdp_flush_reg *nbio_hf_reg = adev->nbio_funcs->hdp_flush_reg;
363 364 365 366 367 368 369 370 371

	if (ring == &ring->adev->sdma.instance[0].ring)
		ref_and_mask = nbio_hf_reg->ref_and_mask_sdma0;
	else
		ref_and_mask = nbio_hf_reg->ref_and_mask_sdma1;

	amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_POLL_REGMEM) |
			  SDMA_PKT_POLL_REGMEM_HEADER_HDP_FLUSH(1) |
			  SDMA_PKT_POLL_REGMEM_HEADER_FUNC(3)); /* == */
372 373
	amdgpu_ring_write(ring, (adev->nbio_funcs->get_hdp_flush_done_offset(adev)) << 2);
	amdgpu_ring_write(ring, (adev->nbio_funcs->get_hdp_flush_req_offset(adev)) << 2);
374 375 376 377 378 379 380 381
	amdgpu_ring_write(ring, ref_and_mask); /* reference */
	amdgpu_ring_write(ring, ref_and_mask); /* mask */
	amdgpu_ring_write(ring, SDMA_PKT_POLL_REGMEM_DW5_RETRY_COUNT(0xfff) |
			  SDMA_PKT_POLL_REGMEM_DW5_INTERVAL(10)); /* retry count, poll interval */
}

static void sdma_v4_0_ring_emit_hdp_invalidate(struct amdgpu_ring *ring)
{
382 383
	struct amdgpu_device *adev = ring->adev;

384 385
	amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_SRBM_WRITE) |
			  SDMA_PKT_SRBM_WRITE_HEADER_BYTE_EN(0xf));
386
	amdgpu_ring_write(ring, SOC15_REG_OFFSET(HDP, 0, mmHDP_READ_CACHE_INVALIDATE));
387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447
	amdgpu_ring_write(ring, 1);
}

/**
 * sdma_v4_0_ring_emit_fence - emit a fence on the DMA ring
 *
 * @ring: amdgpu ring pointer
 * @fence: amdgpu fence object
 *
 * Add a DMA fence packet to the ring to write
 * the fence seq number and DMA trap packet to generate
 * an interrupt if needed (VEGA10).
 */
static void sdma_v4_0_ring_emit_fence(struct amdgpu_ring *ring, u64 addr, u64 seq,
				      unsigned flags)
{
	bool write64bit = flags & AMDGPU_FENCE_FLAG_64BIT;
	/* write the fence */
	amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_FENCE));
	/* zero in first two bits */
	BUG_ON(addr & 0x3);
	amdgpu_ring_write(ring, lower_32_bits(addr));
	amdgpu_ring_write(ring, upper_32_bits(addr));
	amdgpu_ring_write(ring, lower_32_bits(seq));

	/* optionally write high bits as well */
	if (write64bit) {
		addr += 4;
		amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_FENCE));
		/* zero in first two bits */
		BUG_ON(addr & 0x3);
		amdgpu_ring_write(ring, lower_32_bits(addr));
		amdgpu_ring_write(ring, upper_32_bits(addr));
		amdgpu_ring_write(ring, upper_32_bits(seq));
	}

	/* generate an interrupt */
	amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_TRAP));
	amdgpu_ring_write(ring, SDMA_PKT_TRAP_INT_CONTEXT_INT_CONTEXT(0));
}


/**
 * sdma_v4_0_gfx_stop - stop the gfx async dma engines
 *
 * @adev: amdgpu_device pointer
 *
 * Stop the gfx async dma ring buffers (VEGA10).
 */
static void sdma_v4_0_gfx_stop(struct amdgpu_device *adev)
{
	struct amdgpu_ring *sdma0 = &adev->sdma.instance[0].ring;
	struct amdgpu_ring *sdma1 = &adev->sdma.instance[1].ring;
	u32 rb_cntl, ib_cntl;
	int i;

	if ((adev->mman.buffer_funcs_ring == sdma0) ||
	    (adev->mman.buffer_funcs_ring == sdma1))
		amdgpu_ttm_set_active_vram_size(adev, adev->mc.visible_vram_size);

	for (i = 0; i < adev->sdma.num_instances; i++) {
448
		rb_cntl = RREG32(sdma_v4_0_get_reg_offset(adev, i, mmSDMA0_GFX_RB_CNTL));
449
		rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL, RB_ENABLE, 0);
450 451
		WREG32(sdma_v4_0_get_reg_offset(adev, i, mmSDMA0_GFX_RB_CNTL), rb_cntl);
		ib_cntl = RREG32(sdma_v4_0_get_reg_offset(adev, i, mmSDMA0_GFX_IB_CNTL));
452
		ib_cntl = REG_SET_FIELD(ib_cntl, SDMA0_GFX_IB_CNTL, IB_ENABLE, 0);
453
		WREG32(sdma_v4_0_get_reg_offset(adev, i, mmSDMA0_GFX_IB_CNTL), ib_cntl);
454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481
	}

	sdma0->ready = false;
	sdma1->ready = false;
}

/**
 * sdma_v4_0_rlc_stop - stop the compute async dma engines
 *
 * @adev: amdgpu_device pointer
 *
 * Stop the compute async dma queues (VEGA10).
 */
static void sdma_v4_0_rlc_stop(struct amdgpu_device *adev)
{
	/* XXX todo */
}

/**
 * sdma_v_0_ctx_switch_enable - stop the async dma engines context switch
 *
 * @adev: amdgpu_device pointer
 * @enable: enable/disable the DMA MEs context switch.
 *
 * Halt or unhalt the async dma engines context switch (VEGA10).
 */
static void sdma_v4_0_ctx_switch_enable(struct amdgpu_device *adev, bool enable)
{
482
	u32 f32_cntl, phase_quantum = 0;
483 484
	int i;

485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508
	if (amdgpu_sdma_phase_quantum) {
		unsigned value = amdgpu_sdma_phase_quantum;
		unsigned unit = 0;

		while (value > (SDMA0_PHASE0_QUANTUM__VALUE_MASK >>
				SDMA0_PHASE0_QUANTUM__VALUE__SHIFT)) {
			value = (value + 1) >> 1;
			unit++;
		}
		if (unit > (SDMA0_PHASE0_QUANTUM__UNIT_MASK >>
			    SDMA0_PHASE0_QUANTUM__UNIT__SHIFT)) {
			value = (SDMA0_PHASE0_QUANTUM__VALUE_MASK >>
				 SDMA0_PHASE0_QUANTUM__VALUE__SHIFT);
			unit = (SDMA0_PHASE0_QUANTUM__UNIT_MASK >>
				SDMA0_PHASE0_QUANTUM__UNIT__SHIFT);
			WARN_ONCE(1,
			"clamping sdma_phase_quantum to %uK clock cycles\n",
				  value << unit);
		}
		phase_quantum =
			value << SDMA0_PHASE0_QUANTUM__VALUE__SHIFT |
			unit  << SDMA0_PHASE0_QUANTUM__UNIT__SHIFT;
	}

509
	for (i = 0; i < adev->sdma.num_instances; i++) {
510
		f32_cntl = RREG32(sdma_v4_0_get_reg_offset(adev, i, mmSDMA0_CNTL));
511 512
		f32_cntl = REG_SET_FIELD(f32_cntl, SDMA0_CNTL,
				AUTO_CTXSW_ENABLE, enable ? 1 : 0);
513
		if (enable && amdgpu_sdma_phase_quantum) {
514
			WREG32(sdma_v4_0_get_reg_offset(adev, i, mmSDMA0_PHASE0_QUANTUM),
515
			       phase_quantum);
516
			WREG32(sdma_v4_0_get_reg_offset(adev, i, mmSDMA0_PHASE1_QUANTUM),
517
			       phase_quantum);
518
			WREG32(sdma_v4_0_get_reg_offset(adev, i, mmSDMA0_PHASE2_QUANTUM),
519 520
			       phase_quantum);
		}
521
		WREG32(sdma_v4_0_get_reg_offset(adev, i, mmSDMA0_CNTL), f32_cntl);
522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544
	}

}

/**
 * sdma_v4_0_enable - stop the async dma engines
 *
 * @adev: amdgpu_device pointer
 * @enable: enable/disable the DMA MEs.
 *
 * Halt or unhalt the async dma engines (VEGA10).
 */
static void sdma_v4_0_enable(struct amdgpu_device *adev, bool enable)
{
	u32 f32_cntl;
	int i;

	if (enable == false) {
		sdma_v4_0_gfx_stop(adev);
		sdma_v4_0_rlc_stop(adev);
	}

	for (i = 0; i < adev->sdma.num_instances; i++) {
545
		f32_cntl = RREG32(sdma_v4_0_get_reg_offset(adev, i, mmSDMA0_F32_CNTL));
546
		f32_cntl = REG_SET_FIELD(f32_cntl, SDMA0_F32_CNTL, HALT, enable ? 0 : 1);
547
		WREG32(sdma_v4_0_get_reg_offset(adev, i, mmSDMA0_F32_CNTL), f32_cntl);
548 549 550 551 552 553 554 555 556 557 558 559 560 561
	}
}

/**
 * sdma_v4_0_gfx_resume - setup and start the async dma engines
 *
 * @adev: amdgpu_device pointer
 *
 * Set up the gfx DMA ring buffers and enable them (VEGA10).
 * Returns 0 for success, error for failure.
 */
static int sdma_v4_0_gfx_resume(struct amdgpu_device *adev)
{
	struct amdgpu_ring *ring;
562
	u32 rb_cntl, ib_cntl, wptr_poll_cntl;
563
	u32 rb_bufsz;
564
	u32 wb_offset;
565 566
	u32 doorbell;
	u32 doorbell_offset;
567
	u32 temp;
568
	u64 wptr_gpu_addr;
569
	int i, r;
570 571 572 573 574

	for (i = 0; i < adev->sdma.num_instances; i++) {
		ring = &adev->sdma.instance[i].ring;
		wb_offset = (ring->rptr_offs * 4);

575
		WREG32(sdma_v4_0_get_reg_offset(adev, i, mmSDMA0_SEM_WAIT_FAIL_TIMER_CNTL), 0);
576 577 578

		/* Set ring buffer size in dwords */
		rb_bufsz = order_base_2(ring->ring_size / 4);
579
		rb_cntl = RREG32(sdma_v4_0_get_reg_offset(adev, i, mmSDMA0_GFX_RB_CNTL));
580 581 582 583 584 585
		rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL, RB_SIZE, rb_bufsz);
#ifdef __BIG_ENDIAN
		rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL, RB_SWAP_ENABLE, 1);
		rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL,
					RPTR_WRITEBACK_SWAP_ENABLE, 1);
#endif
586
		WREG32(sdma_v4_0_get_reg_offset(adev, i, mmSDMA0_GFX_RB_CNTL), rb_cntl);
587 588

		/* Initialize the ring buffer's read and write pointers */
589 590 591 592
		WREG32(sdma_v4_0_get_reg_offset(adev, i, mmSDMA0_GFX_RB_RPTR), 0);
		WREG32(sdma_v4_0_get_reg_offset(adev, i, mmSDMA0_GFX_RB_RPTR_HI), 0);
		WREG32(sdma_v4_0_get_reg_offset(adev, i, mmSDMA0_GFX_RB_WPTR), 0);
		WREG32(sdma_v4_0_get_reg_offset(adev, i, mmSDMA0_GFX_RB_WPTR_HI), 0);
593 594

		/* set the wb address whether it's enabled or not */
595
		WREG32(sdma_v4_0_get_reg_offset(adev, i, mmSDMA0_GFX_RB_RPTR_ADDR_HI),
596
		       upper_32_bits(adev->wb.gpu_addr + wb_offset) & 0xFFFFFFFF);
597
		WREG32(sdma_v4_0_get_reg_offset(adev, i, mmSDMA0_GFX_RB_RPTR_ADDR_LO),
598 599 600 601
		       lower_32_bits(adev->wb.gpu_addr + wb_offset) & 0xFFFFFFFC);

		rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL, RPTR_WRITEBACK_ENABLE, 1);

602 603
		WREG32(sdma_v4_0_get_reg_offset(adev, i, mmSDMA0_GFX_RB_BASE), ring->gpu_addr >> 8);
		WREG32(sdma_v4_0_get_reg_offset(adev, i, mmSDMA0_GFX_RB_BASE_HI), ring->gpu_addr >> 40);
604 605

		ring->wptr = 0;
606 607

		/* before programing wptr to a less value, need set minor_ptr_update first */
608
		WREG32(sdma_v4_0_get_reg_offset(adev, i, mmSDMA0_GFX_MINOR_PTR_UPDATE), 1);
609 610

		if (!amdgpu_sriov_vf(adev)) { /* only bare-metal use register write for wptr */
611 612
			WREG32(sdma_v4_0_get_reg_offset(adev, i, mmSDMA0_GFX_RB_WPTR), lower_32_bits(ring->wptr) << 2);
			WREG32(sdma_v4_0_get_reg_offset(adev, i, mmSDMA0_GFX_RB_WPTR_HI), upper_32_bits(ring->wptr) << 2);
613
		}
614

615 616
		doorbell = RREG32(sdma_v4_0_get_reg_offset(adev, i, mmSDMA0_GFX_DOORBELL));
		doorbell_offset = RREG32(sdma_v4_0_get_reg_offset(adev, i, mmSDMA0_GFX_DOORBELL_OFFSET));
617

618
		if (ring->use_doorbell) {
619 620 621 622 623 624
			doorbell = REG_SET_FIELD(doorbell, SDMA0_GFX_DOORBELL, ENABLE, 1);
			doorbell_offset = REG_SET_FIELD(doorbell_offset, SDMA0_GFX_DOORBELL_OFFSET,
					OFFSET, ring->doorbell_index);
		} else {
			doorbell = REG_SET_FIELD(doorbell, SDMA0_GFX_DOORBELL, ENABLE, 0);
		}
625 626
		WREG32(sdma_v4_0_get_reg_offset(adev, i, mmSDMA0_GFX_DOORBELL), doorbell);
		WREG32(sdma_v4_0_get_reg_offset(adev, i, mmSDMA0_GFX_DOORBELL_OFFSET), doorbell_offset);
627 628
		adev->nbio_funcs->sdma_doorbell_range(adev, i, ring->use_doorbell,
						      ring->doorbell_index);
629

630 631 632 633
		if (amdgpu_sriov_vf(adev))
			sdma_v4_0_ring_set_wptr(ring);

		/* set minor_ptr_update to 0 after wptr programed */
634
		WREG32(sdma_v4_0_get_reg_offset(adev, i, mmSDMA0_GFX_MINOR_PTR_UPDATE), 0);
635

636
		/* set utc l1 enable flag always to 1 */
637
		temp = RREG32(sdma_v4_0_get_reg_offset(adev, i, mmSDMA0_CNTL));
638
		temp = REG_SET_FIELD(temp, SDMA0_CNTL, UTC_L1_ENABLE, 1);
639
		WREG32(sdma_v4_0_get_reg_offset(adev, i, mmSDMA0_CNTL), temp);
640

641 642
		if (!amdgpu_sriov_vf(adev)) {
			/* unhalt engine */
643
			temp = RREG32(sdma_v4_0_get_reg_offset(adev, i, mmSDMA0_F32_CNTL));
644
			temp = REG_SET_FIELD(temp, SDMA0_F32_CNTL, HALT, 0);
645
			WREG32(sdma_v4_0_get_reg_offset(adev, i, mmSDMA0_F32_CNTL), temp);
646
		}
647

648 649
		/* setup the wptr shadow polling */
		wptr_gpu_addr = adev->wb.gpu_addr + (ring->wptr_offs * 4);
650
		WREG32(sdma_v4_0_get_reg_offset(adev, i, mmSDMA0_GFX_RB_WPTR_POLL_ADDR_LO),
651
		       lower_32_bits(wptr_gpu_addr));
652
		WREG32(sdma_v4_0_get_reg_offset(adev, i, mmSDMA0_GFX_RB_WPTR_POLL_ADDR_HI),
653
		       upper_32_bits(wptr_gpu_addr));
654
		wptr_poll_cntl = RREG32(sdma_v4_0_get_reg_offset(adev, i, mmSDMA0_GFX_RB_WPTR_POLL_CNTL));
655 656 657 658
		if (amdgpu_sriov_vf(adev))
			wptr_poll_cntl = REG_SET_FIELD(wptr_poll_cntl, SDMA0_GFX_RB_WPTR_POLL_CNTL, F32_POLL_ENABLE, 1);
		else
			wptr_poll_cntl = REG_SET_FIELD(wptr_poll_cntl, SDMA0_GFX_RB_WPTR_POLL_CNTL, F32_POLL_ENABLE, 0);
659
		WREG32(sdma_v4_0_get_reg_offset(adev, i, mmSDMA0_GFX_RB_WPTR_POLL_CNTL), wptr_poll_cntl);
660

661 662
		/* enable DMA RB */
		rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL, RB_ENABLE, 1);
663
		WREG32(sdma_v4_0_get_reg_offset(adev, i, mmSDMA0_GFX_RB_CNTL), rb_cntl);
664

665
		ib_cntl = RREG32(sdma_v4_0_get_reg_offset(adev, i, mmSDMA0_GFX_IB_CNTL));
666 667 668 669 670
		ib_cntl = REG_SET_FIELD(ib_cntl, SDMA0_GFX_IB_CNTL, IB_ENABLE, 1);
#ifdef __BIG_ENDIAN
		ib_cntl = REG_SET_FIELD(ib_cntl, SDMA0_GFX_IB_CNTL, IB_SWAP_ENABLE, 1);
#endif
		/* enable DMA IBs */
671
		WREG32(sdma_v4_0_get_reg_offset(adev, i, mmSDMA0_GFX_IB_CNTL), ib_cntl);
672 673 674

		ring->ready = true;

675 676 677 678 679
		if (amdgpu_sriov_vf(adev)) { /* bare-metal sequence doesn't need below to lines */
			sdma_v4_0_ctx_switch_enable(adev, true);
			sdma_v4_0_enable(adev, true);
		}

680 681 682 683 684 685 686 687
		r = amdgpu_ring_test_ring(ring);
		if (r) {
			ring->ready = false;
			return r;
		}

		if (adev->mman.buffer_funcs_ring == ring)
			amdgpu_ttm_set_active_vram_size(adev, adev->mc.real_vram_size);
688

689 690 691 692 693
	}

	return 0;
}

694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714
static void
sdma_v4_1_update_power_gating(struct amdgpu_device *adev, bool enable)
{
	uint32_t def, data;

	if (enable && (adev->pg_flags & AMD_PG_SUPPORT_SDMA)) {
		/* disable idle interrupt */
		def = data = RREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_CNTL));
		data |= SDMA0_CNTL__CTXEMPTY_INT_ENABLE_MASK;

		if (data != def)
			WREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_CNTL), data);
	} else {
		/* disable idle interrupt */
		def = data = RREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_CNTL));
		data &= ~SDMA0_CNTL__CTXEMPTY_INT_ENABLE_MASK;
		if (data != def)
			WREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_CNTL), data);
	}
}

715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749
static void sdma_v4_1_init_power_gating(struct amdgpu_device *adev)
{
	uint32_t def, data;

	/* Enable HW based PG. */
	def = data = RREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_POWER_CNTL));
	data |= SDMA0_POWER_CNTL__PG_CNTL_ENABLE_MASK;
	if (data != def)
		WREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_POWER_CNTL), data);

	/* enable interrupt */
	def = data = RREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_CNTL));
	data |= SDMA0_CNTL__CTXEMPTY_INT_ENABLE_MASK;
	if (data != def)
		WREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_CNTL), data);

	/* Configure hold time to filter in-valid power on/off request. Use default right now */
	def = data = RREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_POWER_CNTL));
	data &= ~SDMA0_POWER_CNTL__ON_OFF_CONDITION_HOLD_TIME_MASK;
	data |= (mmSDMA0_POWER_CNTL_DEFAULT & SDMA0_POWER_CNTL__ON_OFF_CONDITION_HOLD_TIME_MASK);
	/* Configure switch time for hysteresis purpose. Use default right now */
	data &= ~SDMA0_POWER_CNTL__ON_OFF_STATUS_DURATION_TIME_MASK;
	data |= (mmSDMA0_POWER_CNTL_DEFAULT & SDMA0_POWER_CNTL__ON_OFF_STATUS_DURATION_TIME_MASK);
	if(data != def)
		WREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_POWER_CNTL), data);
}

static void sdma_v4_0_init_pg(struct amdgpu_device *adev)
{
	if (!(adev->pg_flags & AMD_PG_SUPPORT_SDMA))
		return;

	switch (adev->asic_type) {
	case CHIP_RAVEN:
		sdma_v4_1_init_power_gating(adev);
750
		sdma_v4_1_update_power_gating(adev, true);
751 752 753 754 755 756
		break;
	default:
		break;
	}
}

757 758 759 760 761 762 763 764 765 766
/**
 * sdma_v4_0_rlc_resume - setup and start the async dma engines
 *
 * @adev: amdgpu_device pointer
 *
 * Set up the compute DMA queues and enable them (VEGA10).
 * Returns 0 for success, error for failure.
 */
static int sdma_v4_0_rlc_resume(struct amdgpu_device *adev)
{
767 768
	sdma_v4_0_init_pg(adev);

769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801
	return 0;
}

/**
 * sdma_v4_0_load_microcode - load the sDMA ME ucode
 *
 * @adev: amdgpu_device pointer
 *
 * Loads the sDMA0/1 ucode.
 * Returns 0 for success, -EINVAL if the ucode is not available.
 */
static int sdma_v4_0_load_microcode(struct amdgpu_device *adev)
{
	const struct sdma_firmware_header_v1_0 *hdr;
	const __le32 *fw_data;
	u32 fw_size;
	int i, j;

	/* halt the MEs */
	sdma_v4_0_enable(adev, false);

	for (i = 0; i < adev->sdma.num_instances; i++) {
		if (!adev->sdma.instance[i].fw)
			return -EINVAL;

		hdr = (const struct sdma_firmware_header_v1_0 *)adev->sdma.instance[i].fw->data;
		amdgpu_ucode_print_sdma_hdr(&hdr->header);
		fw_size = le32_to_cpu(hdr->header.ucode_size_bytes) / 4;

		fw_data = (const __le32 *)
			(adev->sdma.instance[i].fw->data +
				le32_to_cpu(hdr->header.ucode_array_offset_bytes));

802
		WREG32(sdma_v4_0_get_reg_offset(adev, i, mmSDMA0_UCODE_ADDR), 0);
803 804

		for (j = 0; j < fw_size; j++)
805
			WREG32(sdma_v4_0_get_reg_offset(adev, i, mmSDMA0_UCODE_DATA), le32_to_cpup(fw_data++));
806

807
		WREG32(sdma_v4_0_get_reg_offset(adev, i, mmSDMA0_UCODE_ADDR), adev->sdma.instance[i].fw_version);
808 809 810 811 812 813 814 815 816 817 818 819 820 821 822
	}

	return 0;
}

/**
 * sdma_v4_0_start - setup and start the async dma engines
 *
 * @adev: amdgpu_device pointer
 *
 * Set up the DMA engines and enable them (VEGA10).
 * Returns 0 for success, error for failure.
 */
static int sdma_v4_0_start(struct amdgpu_device *adev)
{
823
	int r = 0;
824

825
	if (amdgpu_sriov_vf(adev)) {
826
		sdma_v4_0_ctx_switch_enable(adev, false);
827 828 829 830 831 832 833
		sdma_v4_0_enable(adev, false);

		/* set RB registers */
		r = sdma_v4_0_gfx_resume(adev);
		return r;
	}

834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850
	if (adev->firmware.load_type != AMDGPU_FW_LOAD_PSP) {
		r = sdma_v4_0_load_microcode(adev);
		if (r)
			return r;
	}

	/* unhalt the MEs */
	sdma_v4_0_enable(adev, true);
	/* enable sdma ring preemption */
	sdma_v4_0_ctx_switch_enable(adev, true);

	/* start the gfx rings and rlc compute queues */
	r = sdma_v4_0_gfx_resume(adev);
	if (r)
		return r;
	r = sdma_v4_0_rlc_resume(adev);

851
	return r;
852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898
}

/**
 * sdma_v4_0_ring_test_ring - simple async dma engine test
 *
 * @ring: amdgpu_ring structure holding ring information
 *
 * Test the DMA engine by writing using it to write an
 * value to memory. (VEGA10).
 * Returns 0 for success, error for failure.
 */
static int sdma_v4_0_ring_test_ring(struct amdgpu_ring *ring)
{
	struct amdgpu_device *adev = ring->adev;
	unsigned i;
	unsigned index;
	int r;
	u32 tmp;
	u64 gpu_addr;

	r = amdgpu_wb_get(adev, &index);
	if (r) {
		dev_err(adev->dev, "(%d) failed to allocate wb slot\n", r);
		return r;
	}

	gpu_addr = adev->wb.gpu_addr + (index * 4);
	tmp = 0xCAFEDEAD;
	adev->wb.wb[index] = cpu_to_le32(tmp);

	r = amdgpu_ring_alloc(ring, 5);
	if (r) {
		DRM_ERROR("amdgpu: dma failed to lock ring %d (%d).\n", ring->idx, r);
		amdgpu_wb_free(adev, index);
		return r;
	}

	amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_WRITE) |
			  SDMA_PKT_HEADER_SUB_OP(SDMA_SUBOP_WRITE_LINEAR));
	amdgpu_ring_write(ring, lower_32_bits(gpu_addr));
	amdgpu_ring_write(ring, upper_32_bits(gpu_addr));
	amdgpu_ring_write(ring, SDMA_PKT_WRITE_UNTILED_DW_3_COUNT(0));
	amdgpu_ring_write(ring, 0xDEADBEEF);
	amdgpu_ring_commit(ring);

	for (i = 0; i < adev->usec_timeout; i++) {
		tmp = le32_to_cpu(adev->wb.wb[index]);
899
		if (tmp == 0xDEADBEEF)
900 901 902 903 904
			break;
		DRM_UDELAY(1);
	}

	if (i < adev->usec_timeout) {
905
		DRM_DEBUG("ring test on %d succeeded in %d usecs\n", ring->idx, i);
906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964
	} else {
		DRM_ERROR("amdgpu: ring %d test failed (0x%08X)\n",
			  ring->idx, tmp);
		r = -EINVAL;
	}
	amdgpu_wb_free(adev, index);

	return r;
}

/**
 * sdma_v4_0_ring_test_ib - test an IB on the DMA engine
 *
 * @ring: amdgpu_ring structure holding ring information
 *
 * Test a simple IB in the DMA ring (VEGA10).
 * Returns 0 on success, error on failure.
 */
static int sdma_v4_0_ring_test_ib(struct amdgpu_ring *ring, long timeout)
{
	struct amdgpu_device *adev = ring->adev;
	struct amdgpu_ib ib;
	struct dma_fence *f = NULL;
	unsigned index;
	long r;
	u32 tmp = 0;
	u64 gpu_addr;

	r = amdgpu_wb_get(adev, &index);
	if (r) {
		dev_err(adev->dev, "(%ld) failed to allocate wb slot\n", r);
		return r;
	}

	gpu_addr = adev->wb.gpu_addr + (index * 4);
	tmp = 0xCAFEDEAD;
	adev->wb.wb[index] = cpu_to_le32(tmp);
	memset(&ib, 0, sizeof(ib));
	r = amdgpu_ib_get(adev, NULL, 256, &ib);
	if (r) {
		DRM_ERROR("amdgpu: failed to get ib (%ld).\n", r);
		goto err0;
	}

	ib.ptr[0] = SDMA_PKT_HEADER_OP(SDMA_OP_WRITE) |
		SDMA_PKT_HEADER_SUB_OP(SDMA_SUBOP_WRITE_LINEAR);
	ib.ptr[1] = lower_32_bits(gpu_addr);
	ib.ptr[2] = upper_32_bits(gpu_addr);
	ib.ptr[3] = SDMA_PKT_WRITE_UNTILED_DW_3_COUNT(0);
	ib.ptr[4] = 0xDEADBEEF;
	ib.ptr[5] = SDMA_PKT_NOP_HEADER_OP(SDMA_OP_NOP);
	ib.ptr[6] = SDMA_PKT_NOP_HEADER_OP(SDMA_OP_NOP);
	ib.ptr[7] = SDMA_PKT_NOP_HEADER_OP(SDMA_OP_NOP);
	ib.length_dw = 8;

	r = amdgpu_ib_schedule(ring, 1, &ib, NULL, &f);
	if (r)
		goto err1;

965 966 967 968 969 970 971 972 973 974 975
	r = dma_fence_wait_timeout(f, false, timeout);
	if (r == 0) {
		DRM_ERROR("amdgpu: IB test timed out\n");
		r = -ETIMEDOUT;
		goto err1;
	} else if (r < 0) {
		DRM_ERROR("amdgpu: fence wait failed (%ld).\n", r);
		goto err1;
	}
	tmp = le32_to_cpu(adev->wb.wb[index]);
	if (tmp == 0xDEADBEEF) {
976
		DRM_DEBUG("ib test on ring %d succeeded\n", ring->idx);
977 978 979 980 981
		r = 0;
	} else {
		DRM_ERROR("amdgpu: ib test failed (0x%08X)\n", tmp);
		r = -EINVAL;
	}
982
err1:
983 984
	amdgpu_ib_free(adev, &ib, NULL);
	dma_fence_put(f);
985
err0:
986 987
	amdgpu_wb_free(adev, index);
	return r;
988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068
}


/**
 * sdma_v4_0_vm_copy_pte - update PTEs by copying them from the GART
 *
 * @ib: indirect buffer to fill with commands
 * @pe: addr of the page entry
 * @src: src addr to copy from
 * @count: number of page entries to update
 *
 * Update PTEs by copying them from the GART using sDMA (VEGA10).
 */
static void sdma_v4_0_vm_copy_pte(struct amdgpu_ib *ib,
				  uint64_t pe, uint64_t src,
				  unsigned count)
{
	unsigned bytes = count * 8;

	ib->ptr[ib->length_dw++] = SDMA_PKT_HEADER_OP(SDMA_OP_COPY) |
		SDMA_PKT_HEADER_SUB_OP(SDMA_SUBOP_COPY_LINEAR);
	ib->ptr[ib->length_dw++] = bytes - 1;
	ib->ptr[ib->length_dw++] = 0; /* src/dst endian swap */
	ib->ptr[ib->length_dw++] = lower_32_bits(src);
	ib->ptr[ib->length_dw++] = upper_32_bits(src);
	ib->ptr[ib->length_dw++] = lower_32_bits(pe);
	ib->ptr[ib->length_dw++] = upper_32_bits(pe);

}

/**
 * sdma_v4_0_vm_write_pte - update PTEs by writing them manually
 *
 * @ib: indirect buffer to fill with commands
 * @pe: addr of the page entry
 * @addr: dst addr to write into pe
 * @count: number of page entries to update
 * @incr: increase next addr by incr bytes
 * @flags: access flags
 *
 * Update PTEs by writing them manually using sDMA (VEGA10).
 */
static void sdma_v4_0_vm_write_pte(struct amdgpu_ib *ib, uint64_t pe,
				   uint64_t value, unsigned count,
				   uint32_t incr)
{
	unsigned ndw = count * 2;

	ib->ptr[ib->length_dw++] = SDMA_PKT_HEADER_OP(SDMA_OP_WRITE) |
		SDMA_PKT_HEADER_SUB_OP(SDMA_SUBOP_WRITE_LINEAR);
	ib->ptr[ib->length_dw++] = lower_32_bits(pe);
	ib->ptr[ib->length_dw++] = upper_32_bits(pe);
	ib->ptr[ib->length_dw++] = ndw - 1;
	for (; ndw > 0; ndw -= 2) {
		ib->ptr[ib->length_dw++] = lower_32_bits(value);
		ib->ptr[ib->length_dw++] = upper_32_bits(value);
		value += incr;
	}
}

/**
 * sdma_v4_0_vm_set_pte_pde - update the page tables using sDMA
 *
 * @ib: indirect buffer to fill with commands
 * @pe: addr of the page entry
 * @addr: dst addr to write into pe
 * @count: number of page entries to update
 * @incr: increase next addr by incr bytes
 * @flags: access flags
 *
 * Update the page tables using sDMA (VEGA10).
 */
static void sdma_v4_0_vm_set_pte_pde(struct amdgpu_ib *ib,
				     uint64_t pe,
				     uint64_t addr, unsigned count,
				     uint32_t incr, uint64_t flags)
{
	/* for physically contiguous pages (vram) */
	ib->ptr[ib->length_dw++] = SDMA_PKT_HEADER_OP(SDMA_OP_PTEPDE);
	ib->ptr[ib->length_dw++] = lower_32_bits(pe); /* dst addr */
	ib->ptr[ib->length_dw++] = upper_32_bits(pe);
1069 1070
	ib->ptr[ib->length_dw++] = lower_32_bits(flags); /* mask */
	ib->ptr[ib->length_dw++] = upper_32_bits(flags);
1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139
	ib->ptr[ib->length_dw++] = lower_32_bits(addr); /* value */
	ib->ptr[ib->length_dw++] = upper_32_bits(addr);
	ib->ptr[ib->length_dw++] = incr; /* increment size */
	ib->ptr[ib->length_dw++] = 0;
	ib->ptr[ib->length_dw++] = count - 1; /* number of entries */
}

/**
 * sdma_v4_0_ring_pad_ib - pad the IB to the required number of dw
 *
 * @ib: indirect buffer to fill with padding
 *
 */
static void sdma_v4_0_ring_pad_ib(struct amdgpu_ring *ring, struct amdgpu_ib *ib)
{
	struct amdgpu_sdma_instance *sdma = amdgpu_get_sdma_instance(ring);
	u32 pad_count;
	int i;

	pad_count = (8 - (ib->length_dw & 0x7)) % 8;
	for (i = 0; i < pad_count; i++)
		if (sdma && sdma->burst_nop && (i == 0))
			ib->ptr[ib->length_dw++] =
				SDMA_PKT_HEADER_OP(SDMA_OP_NOP) |
				SDMA_PKT_NOP_HEADER_COUNT(pad_count - 1);
		else
			ib->ptr[ib->length_dw++] =
				SDMA_PKT_HEADER_OP(SDMA_OP_NOP);
}


/**
 * sdma_v4_0_ring_emit_pipeline_sync - sync the pipeline
 *
 * @ring: amdgpu_ring pointer
 *
 * Make sure all previous operations are completed (CIK).
 */
static void sdma_v4_0_ring_emit_pipeline_sync(struct amdgpu_ring *ring)
{
	uint32_t seq = ring->fence_drv.sync_seq;
	uint64_t addr = ring->fence_drv.gpu_addr;

	/* wait for idle */
	amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_POLL_REGMEM) |
			  SDMA_PKT_POLL_REGMEM_HEADER_HDP_FLUSH(0) |
			  SDMA_PKT_POLL_REGMEM_HEADER_FUNC(3) | /* equal */
			  SDMA_PKT_POLL_REGMEM_HEADER_MEM_POLL(1));
	amdgpu_ring_write(ring, addr & 0xfffffffc);
	amdgpu_ring_write(ring, upper_32_bits(addr) & 0xffffffff);
	amdgpu_ring_write(ring, seq); /* reference */
	amdgpu_ring_write(ring, 0xfffffff); /* mask */
	amdgpu_ring_write(ring, SDMA_PKT_POLL_REGMEM_DW5_RETRY_COUNT(0xfff) |
			  SDMA_PKT_POLL_REGMEM_DW5_INTERVAL(4)); /* retry count, poll interval */
}


/**
 * sdma_v4_0_ring_emit_vm_flush - vm flush using sDMA
 *
 * @ring: amdgpu_ring pointer
 * @vm: amdgpu_vm pointer
 *
 * Update the page table base and flush the VM TLB
 * using sDMA (VEGA10).
 */
static void sdma_v4_0_ring_emit_vm_flush(struct amdgpu_ring *ring,
					 unsigned vm_id, uint64_t pd_addr)
{
1140
	struct amdgpu_vmhub *hub = &ring->adev->vmhub[ring->funcs->vmhub];
1141
	uint32_t req = ring->adev->gart.gart_funcs->get_invalidate_req(vm_id);
1142
	uint64_t flags = AMDGPU_PTE_VALID;
1143
	unsigned eng = ring->vm_inv_eng;
1144

1145 1146
	amdgpu_gart_get_vm_pde(ring->adev, -1, &pd_addr, &flags);
	pd_addr |= flags;
1147

1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173
	amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_SRBM_WRITE) |
			  SDMA_PKT_SRBM_WRITE_HEADER_BYTE_EN(0xf));
	amdgpu_ring_write(ring, hub->ctx0_ptb_addr_lo32 + vm_id * 2);
	amdgpu_ring_write(ring, lower_32_bits(pd_addr));

	amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_SRBM_WRITE) |
			  SDMA_PKT_SRBM_WRITE_HEADER_BYTE_EN(0xf));
	amdgpu_ring_write(ring, hub->ctx0_ptb_addr_hi32 + vm_id * 2);
	amdgpu_ring_write(ring, upper_32_bits(pd_addr));

	/* flush TLB */
	amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_SRBM_WRITE) |
			  SDMA_PKT_SRBM_WRITE_HEADER_BYTE_EN(0xf));
	amdgpu_ring_write(ring, hub->vm_inv_eng0_req + eng);
	amdgpu_ring_write(ring, req);

	/* wait for flush */
	amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_POLL_REGMEM) |
			  SDMA_PKT_POLL_REGMEM_HEADER_HDP_FLUSH(0) |
			  SDMA_PKT_POLL_REGMEM_HEADER_FUNC(3)); /* equal */
	amdgpu_ring_write(ring, (hub->vm_inv_eng0_ack + eng) << 2);
	amdgpu_ring_write(ring, 0);
	amdgpu_ring_write(ring, 1 << vm_id); /* reference */
	amdgpu_ring_write(ring, 1 << vm_id); /* mask */
	amdgpu_ring_write(ring, SDMA_PKT_POLL_REGMEM_DW5_RETRY_COUNT(0xfff) |
			  SDMA_PKT_POLL_REGMEM_DW5_INTERVAL(10));
1174 1175 1176 1177 1178 1179
}

static int sdma_v4_0_early_init(void *handle)
{
	struct amdgpu_device *adev = (struct amdgpu_device *)handle;

1180 1181 1182 1183
	if (adev->asic_type == CHIP_RAVEN)
		adev->sdma.num_instances = 1;
	else
		adev->sdma.num_instances = 2;
1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247

	sdma_v4_0_set_ring_funcs(adev);
	sdma_v4_0_set_buffer_funcs(adev);
	sdma_v4_0_set_vm_pte_funcs(adev);
	sdma_v4_0_set_irq_funcs(adev);

	return 0;
}


static int sdma_v4_0_sw_init(void *handle)
{
	struct amdgpu_ring *ring;
	int r, i;
	struct amdgpu_device *adev = (struct amdgpu_device *)handle;

	/* SDMA trap event */
	r = amdgpu_irq_add_id(adev, AMDGPU_IH_CLIENTID_SDMA0, 224,
			      &adev->sdma.trap_irq);
	if (r)
		return r;

	/* SDMA trap event */
	r = amdgpu_irq_add_id(adev, AMDGPU_IH_CLIENTID_SDMA1, 224,
			      &adev->sdma.trap_irq);
	if (r)
		return r;

	r = sdma_v4_0_init_microcode(adev);
	if (r) {
		DRM_ERROR("Failed to load sdma firmware!\n");
		return r;
	}

	for (i = 0; i < adev->sdma.num_instances; i++) {
		ring = &adev->sdma.instance[i].ring;
		ring->ring_obj = NULL;
		ring->use_doorbell = true;

		DRM_INFO("use_doorbell being set to: [%s]\n",
				ring->use_doorbell?"true":"false");

		ring->doorbell_index = (i == 0) ?
			(AMDGPU_DOORBELL64_sDMA_ENGINE0 << 1) //get DWORD offset
			: (AMDGPU_DOORBELL64_sDMA_ENGINE1 << 1); // get DWORD offset

		sprintf(ring->name, "sdma%d", i);
		r = amdgpu_ring_init(adev, ring, 1024,
				     &adev->sdma.trap_irq,
				     (i == 0) ?
				     AMDGPU_SDMA_IRQ_TRAP0 :
				     AMDGPU_SDMA_IRQ_TRAP1);
		if (r)
			return r;
	}

	return r;
}

static int sdma_v4_0_sw_fini(void *handle)
{
	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
	int i;

1248
	for (i = 0; i < adev->sdma.num_instances; i++)
1249 1250
		amdgpu_ring_fini(&adev->sdma.instance[i].ring);

1251 1252 1253 1254 1255
	for (i = 0; i < adev->sdma.num_instances; i++) {
		release_firmware(adev->sdma.instance[i].fw);
		adev->sdma.instance[i].fw = NULL;
	}

1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274
	return 0;
}

static int sdma_v4_0_hw_init(void *handle)
{
	int r;
	struct amdgpu_device *adev = (struct amdgpu_device *)handle;

	sdma_v4_0_init_golden_registers(adev);

	r = sdma_v4_0_start(adev);

	return r;
}

static int sdma_v4_0_hw_fini(void *handle)
{
	struct amdgpu_device *adev = (struct amdgpu_device *)handle;

1275 1276 1277
	if (amdgpu_sriov_vf(adev))
		return 0;

1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301
	sdma_v4_0_ctx_switch_enable(adev, false);
	sdma_v4_0_enable(adev, false);

	return 0;
}

static int sdma_v4_0_suspend(void *handle)
{
	struct amdgpu_device *adev = (struct amdgpu_device *)handle;

	return sdma_v4_0_hw_fini(adev);
}

static int sdma_v4_0_resume(void *handle)
{
	struct amdgpu_device *adev = (struct amdgpu_device *)handle;

	return sdma_v4_0_hw_init(adev);
}

static bool sdma_v4_0_is_idle(void *handle)
{
	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
	u32 i;
1302

1303
	for (i = 0; i < adev->sdma.num_instances; i++) {
1304
		u32 tmp = RREG32(sdma_v4_0_get_reg_offset(adev, i, mmSDMA0_STATUS_REG));
1305

1306
		if (!(tmp & SDMA0_STATUS_REG__IDLE_MASK))
1307
			return false;
1308 1309 1310 1311 1312 1313 1314 1315
	}

	return true;
}

static int sdma_v4_0_wait_for_idle(void *handle)
{
	unsigned i;
1316
	u32 sdma0, sdma1;
1317
	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1318

1319
	for (i = 0; i < adev->usec_timeout; i++) {
1320 1321
		sdma0 = RREG32(sdma_v4_0_get_reg_offset(adev, 0, mmSDMA0_STATUS_REG));
		sdma1 = RREG32(sdma_v4_0_get_reg_offset(adev, 1, mmSDMA0_STATUS_REG));
1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344

		if (sdma0 & sdma1 & SDMA0_STATUS_REG__IDLE_MASK)
			return 0;
		udelay(1);
	}
	return -ETIMEDOUT;
}

static int sdma_v4_0_soft_reset(void *handle)
{
	/* todo */

	return 0;
}

static int sdma_v4_0_set_trap_irq_state(struct amdgpu_device *adev,
					struct amdgpu_irq_src *source,
					unsigned type,
					enum amdgpu_interrupt_state state)
{
	u32 sdma_cntl;

	u32 reg_offset = (type == AMDGPU_SDMA_IRQ_TRAP0) ?
1345 1346
		sdma_v4_0_get_reg_offset(adev, 0, mmSDMA0_CNTL) :
		sdma_v4_0_get_reg_offset(adev, 1, mmSDMA0_CNTL);
1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437

	sdma_cntl = RREG32(reg_offset);
	sdma_cntl = REG_SET_FIELD(sdma_cntl, SDMA0_CNTL, TRAP_ENABLE,
		       state == AMDGPU_IRQ_STATE_ENABLE ? 1 : 0);
	WREG32(reg_offset, sdma_cntl);

	return 0;
}

static int sdma_v4_0_process_trap_irq(struct amdgpu_device *adev,
				      struct amdgpu_irq_src *source,
				      struct amdgpu_iv_entry *entry)
{
	DRM_DEBUG("IH: SDMA trap\n");
	switch (entry->client_id) {
	case AMDGPU_IH_CLIENTID_SDMA0:
		switch (entry->ring_id) {
		case 0:
			amdgpu_fence_process(&adev->sdma.instance[0].ring);
			break;
		case 1:
			/* XXX compute */
			break;
		case 2:
			/* XXX compute */
			break;
		case 3:
			/* XXX page queue*/
			break;
		}
		break;
	case AMDGPU_IH_CLIENTID_SDMA1:
		switch (entry->ring_id) {
		case 0:
			amdgpu_fence_process(&adev->sdma.instance[1].ring);
			break;
		case 1:
			/* XXX compute */
			break;
		case 2:
			/* XXX compute */
			break;
		case 3:
			/* XXX page queue*/
			break;
		}
		break;
	}
	return 0;
}

static int sdma_v4_0_process_illegal_inst_irq(struct amdgpu_device *adev,
					      struct amdgpu_irq_src *source,
					      struct amdgpu_iv_entry *entry)
{
	DRM_ERROR("Illegal instruction in SDMA command stream\n");
	schedule_work(&adev->reset_work);
	return 0;
}


static void sdma_v4_0_update_medium_grain_clock_gating(
		struct amdgpu_device *adev,
		bool enable)
{
	uint32_t data, def;

	if (enable && (adev->cg_flags & AMD_CG_SUPPORT_SDMA_MGCG)) {
		/* enable sdma0 clock gating */
		def = data = RREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_CLK_CTRL));
		data &= ~(SDMA0_CLK_CTRL__SOFT_OVERRIDE7_MASK |
			  SDMA0_CLK_CTRL__SOFT_OVERRIDE6_MASK |
			  SDMA0_CLK_CTRL__SOFT_OVERRIDE5_MASK |
			  SDMA0_CLK_CTRL__SOFT_OVERRIDE4_MASK |
			  SDMA0_CLK_CTRL__SOFT_OVERRIDE3_MASK |
			  SDMA0_CLK_CTRL__SOFT_OVERRIDE2_MASK |
			  SDMA0_CLK_CTRL__SOFT_OVERRIDE1_MASK |
			  SDMA0_CLK_CTRL__SOFT_OVERRIDE0_MASK);
		if (def != data)
			WREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_CLK_CTRL), data);

		if (adev->asic_type == CHIP_VEGA10) {
			def = data = RREG32(SOC15_REG_OFFSET(SDMA1, 0, mmSDMA1_CLK_CTRL));
			data &= ~(SDMA1_CLK_CTRL__SOFT_OVERRIDE7_MASK |
				  SDMA1_CLK_CTRL__SOFT_OVERRIDE6_MASK |
				  SDMA1_CLK_CTRL__SOFT_OVERRIDE5_MASK |
				  SDMA1_CLK_CTRL__SOFT_OVERRIDE4_MASK |
				  SDMA1_CLK_CTRL__SOFT_OVERRIDE3_MASK |
				  SDMA1_CLK_CTRL__SOFT_OVERRIDE2_MASK |
				  SDMA1_CLK_CTRL__SOFT_OVERRIDE1_MASK |
				  SDMA1_CLK_CTRL__SOFT_OVERRIDE0_MASK);
1438
			if (def != data)
1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487
				WREG32(SOC15_REG_OFFSET(SDMA1, 0, mmSDMA1_CLK_CTRL), data);
		}
	} else {
		/* disable sdma0 clock gating */
		def = data = RREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_CLK_CTRL));
		data |= (SDMA0_CLK_CTRL__SOFT_OVERRIDE7_MASK |
			 SDMA0_CLK_CTRL__SOFT_OVERRIDE6_MASK |
			 SDMA0_CLK_CTRL__SOFT_OVERRIDE5_MASK |
			 SDMA0_CLK_CTRL__SOFT_OVERRIDE4_MASK |
			 SDMA0_CLK_CTRL__SOFT_OVERRIDE3_MASK |
			 SDMA0_CLK_CTRL__SOFT_OVERRIDE2_MASK |
			 SDMA0_CLK_CTRL__SOFT_OVERRIDE1_MASK |
			 SDMA0_CLK_CTRL__SOFT_OVERRIDE0_MASK);

		if (def != data)
			WREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_CLK_CTRL), data);

		if (adev->asic_type == CHIP_VEGA10) {
			def = data = RREG32(SOC15_REG_OFFSET(SDMA1, 0, mmSDMA1_CLK_CTRL));
			data |= (SDMA1_CLK_CTRL__SOFT_OVERRIDE7_MASK |
				 SDMA1_CLK_CTRL__SOFT_OVERRIDE6_MASK |
				 SDMA1_CLK_CTRL__SOFT_OVERRIDE5_MASK |
				 SDMA1_CLK_CTRL__SOFT_OVERRIDE4_MASK |
				 SDMA1_CLK_CTRL__SOFT_OVERRIDE3_MASK |
				 SDMA1_CLK_CTRL__SOFT_OVERRIDE2_MASK |
				 SDMA1_CLK_CTRL__SOFT_OVERRIDE1_MASK |
				 SDMA1_CLK_CTRL__SOFT_OVERRIDE0_MASK);
			if (def != data)
				WREG32(SOC15_REG_OFFSET(SDMA1, 0, mmSDMA1_CLK_CTRL), data);
		}
	}
}


static void sdma_v4_0_update_medium_grain_light_sleep(
		struct amdgpu_device *adev,
		bool enable)
{
	uint32_t data, def;

	if (enable && (adev->cg_flags & AMD_CG_SUPPORT_SDMA_LS)) {
		/* 1-not override: enable sdma0 mem light sleep */
		def = data = RREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_POWER_CNTL));
		data |= SDMA0_POWER_CNTL__MEM_POWER_OVERRIDE_MASK;
		if (def != data)
			WREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_POWER_CNTL), data);

		/* 1-not override: enable sdma1 mem light sleep */
		if (adev->asic_type == CHIP_VEGA10) {
1488 1489 1490 1491
			def = data = RREG32(SOC15_REG_OFFSET(SDMA1, 0, mmSDMA1_POWER_CNTL));
			data |= SDMA1_POWER_CNTL__MEM_POWER_OVERRIDE_MASK;
			if (def != data)
				WREG32(SOC15_REG_OFFSET(SDMA1, 0, mmSDMA1_POWER_CNTL), data);
1492 1493 1494 1495 1496 1497
		}
	} else {
		/* 0-override:disable sdma0 mem light sleep */
		def = data = RREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_POWER_CNTL));
		data &= ~SDMA0_POWER_CNTL__MEM_POWER_OVERRIDE_MASK;
		if (def != data)
1498
			WREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_POWER_CNTL), data);
1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514

		/* 0-override:disable sdma1 mem light sleep */
		if (adev->asic_type == CHIP_VEGA10) {
			def = data = RREG32(SOC15_REG_OFFSET(SDMA1, 0, mmSDMA1_POWER_CNTL));
			data &= ~SDMA1_POWER_CNTL__MEM_POWER_OVERRIDE_MASK;
			if (def != data)
				WREG32(SOC15_REG_OFFSET(SDMA1, 0, mmSDMA1_POWER_CNTL), data);
		}
	}
}

static int sdma_v4_0_set_clockgating_state(void *handle,
					  enum amd_clockgating_state state)
{
	struct amdgpu_device *adev = (struct amdgpu_device *)handle;

1515 1516 1517
	if (amdgpu_sriov_vf(adev))
		return 0;

1518 1519
	switch (adev->asic_type) {
	case CHIP_VEGA10:
1520
	case CHIP_RAVEN:
1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534
		sdma_v4_0_update_medium_grain_clock_gating(adev,
				state == AMD_CG_STATE_GATE ? true : false);
		sdma_v4_0_update_medium_grain_light_sleep(adev,
				state == AMD_CG_STATE_GATE ? true : false);
		break;
	default:
		break;
	}
	return 0;
}

static int sdma_v4_0_set_powergating_state(void *handle,
					  enum amd_powergating_state state)
{
1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545
	struct amdgpu_device *adev = (struct amdgpu_device *)handle;

	switch (adev->asic_type) {
	case CHIP_RAVEN:
		sdma_v4_1_update_power_gating(adev,
				state == AMD_PG_STATE_GATE ? true : false);
		break;
	default:
		break;
	}

1546 1547 1548
	return 0;
}

1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567
static void sdma_v4_0_get_clockgating_state(void *handle, u32 *flags)
{
	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
	int data;

	if (amdgpu_sriov_vf(adev))
		*flags = 0;

	/* AMD_CG_SUPPORT_SDMA_MGCG */
	data = RREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_CLK_CTRL));
	if (!(data & SDMA0_CLK_CTRL__SOFT_OVERRIDE7_MASK))
		*flags |= AMD_CG_SUPPORT_SDMA_MGCG;

	/* AMD_CG_SUPPORT_SDMA_LS */
	data = RREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_POWER_CNTL));
	if (data & SDMA0_POWER_CNTL__MEM_POWER_OVERRIDE_MASK)
		*flags |= AMD_CG_SUPPORT_SDMA_LS;
}

1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582
const struct amd_ip_funcs sdma_v4_0_ip_funcs = {
	.name = "sdma_v4_0",
	.early_init = sdma_v4_0_early_init,
	.late_init = NULL,
	.sw_init = sdma_v4_0_sw_init,
	.sw_fini = sdma_v4_0_sw_fini,
	.hw_init = sdma_v4_0_hw_init,
	.hw_fini = sdma_v4_0_hw_fini,
	.suspend = sdma_v4_0_suspend,
	.resume = sdma_v4_0_resume,
	.is_idle = sdma_v4_0_is_idle,
	.wait_for_idle = sdma_v4_0_wait_for_idle,
	.soft_reset = sdma_v4_0_soft_reset,
	.set_clockgating_state = sdma_v4_0_set_clockgating_state,
	.set_powergating_state = sdma_v4_0_set_powergating_state,
1583
	.get_clockgating_state = sdma_v4_0_get_clockgating_state,
1584 1585 1586 1587 1588 1589 1590
};

static const struct amdgpu_ring_funcs sdma_v4_0_ring_funcs = {
	.type = AMDGPU_RING_TYPE_SDMA,
	.align_mask = 0xf,
	.nop = SDMA_PKT_NOP_HEADER_OP(SDMA_OP_NOP),
	.support_64bit_ptrs = true,
1591
	.vmhub = AMDGPU_MMHUB,
1592 1593 1594 1595 1596 1597 1598
	.get_rptr = sdma_v4_0_ring_get_rptr,
	.get_wptr = sdma_v4_0_ring_get_wptr,
	.set_wptr = sdma_v4_0_ring_set_wptr,
	.emit_frame_size =
		6 + /* sdma_v4_0_ring_emit_hdp_flush */
		3 + /* sdma_v4_0_ring_emit_hdp_invalidate */
		6 + /* sdma_v4_0_ring_emit_pipeline_sync */
1599
		18 + /* sdma_v4_0_ring_emit_vm_flush */
1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705
		10 + 10 + 10, /* sdma_v4_0_ring_emit_fence x3 for user fence, vm fence */
	.emit_ib_size = 7 + 6, /* sdma_v4_0_ring_emit_ib */
	.emit_ib = sdma_v4_0_ring_emit_ib,
	.emit_fence = sdma_v4_0_ring_emit_fence,
	.emit_pipeline_sync = sdma_v4_0_ring_emit_pipeline_sync,
	.emit_vm_flush = sdma_v4_0_ring_emit_vm_flush,
	.emit_hdp_flush = sdma_v4_0_ring_emit_hdp_flush,
	.emit_hdp_invalidate = sdma_v4_0_ring_emit_hdp_invalidate,
	.test_ring = sdma_v4_0_ring_test_ring,
	.test_ib = sdma_v4_0_ring_test_ib,
	.insert_nop = sdma_v4_0_ring_insert_nop,
	.pad_ib = sdma_v4_0_ring_pad_ib,
};

static void sdma_v4_0_set_ring_funcs(struct amdgpu_device *adev)
{
	int i;

	for (i = 0; i < adev->sdma.num_instances; i++)
		adev->sdma.instance[i].ring.funcs = &sdma_v4_0_ring_funcs;
}

static const struct amdgpu_irq_src_funcs sdma_v4_0_trap_irq_funcs = {
	.set = sdma_v4_0_set_trap_irq_state,
	.process = sdma_v4_0_process_trap_irq,
};

static const struct amdgpu_irq_src_funcs sdma_v4_0_illegal_inst_irq_funcs = {
	.process = sdma_v4_0_process_illegal_inst_irq,
};

static void sdma_v4_0_set_irq_funcs(struct amdgpu_device *adev)
{
	adev->sdma.trap_irq.num_types = AMDGPU_SDMA_IRQ_LAST;
	adev->sdma.trap_irq.funcs = &sdma_v4_0_trap_irq_funcs;
	adev->sdma.illegal_inst_irq.funcs = &sdma_v4_0_illegal_inst_irq_funcs;
}

/**
 * sdma_v4_0_emit_copy_buffer - copy buffer using the sDMA engine
 *
 * @ring: amdgpu_ring structure holding ring information
 * @src_offset: src GPU address
 * @dst_offset: dst GPU address
 * @byte_count: number of bytes to xfer
 *
 * Copy GPU buffers using the DMA engine (VEGA10).
 * Used by the amdgpu ttm implementation to move pages if
 * registered as the asic copy callback.
 */
static void sdma_v4_0_emit_copy_buffer(struct amdgpu_ib *ib,
				       uint64_t src_offset,
				       uint64_t dst_offset,
				       uint32_t byte_count)
{
	ib->ptr[ib->length_dw++] = SDMA_PKT_HEADER_OP(SDMA_OP_COPY) |
		SDMA_PKT_HEADER_SUB_OP(SDMA_SUBOP_COPY_LINEAR);
	ib->ptr[ib->length_dw++] = byte_count - 1;
	ib->ptr[ib->length_dw++] = 0; /* src/dst endian swap */
	ib->ptr[ib->length_dw++] = lower_32_bits(src_offset);
	ib->ptr[ib->length_dw++] = upper_32_bits(src_offset);
	ib->ptr[ib->length_dw++] = lower_32_bits(dst_offset);
	ib->ptr[ib->length_dw++] = upper_32_bits(dst_offset);
}

/**
 * sdma_v4_0_emit_fill_buffer - fill buffer using the sDMA engine
 *
 * @ring: amdgpu_ring structure holding ring information
 * @src_data: value to write to buffer
 * @dst_offset: dst GPU address
 * @byte_count: number of bytes to xfer
 *
 * Fill GPU buffers using the DMA engine (VEGA10).
 */
static void sdma_v4_0_emit_fill_buffer(struct amdgpu_ib *ib,
				       uint32_t src_data,
				       uint64_t dst_offset,
				       uint32_t byte_count)
{
	ib->ptr[ib->length_dw++] = SDMA_PKT_HEADER_OP(SDMA_OP_CONST_FILL);
	ib->ptr[ib->length_dw++] = lower_32_bits(dst_offset);
	ib->ptr[ib->length_dw++] = upper_32_bits(dst_offset);
	ib->ptr[ib->length_dw++] = src_data;
	ib->ptr[ib->length_dw++] = byte_count - 1;
}

static const struct amdgpu_buffer_funcs sdma_v4_0_buffer_funcs = {
	.copy_max_bytes = 0x400000,
	.copy_num_dw = 7,
	.emit_copy_buffer = sdma_v4_0_emit_copy_buffer,

	.fill_max_bytes = 0x400000,
	.fill_num_dw = 5,
	.emit_fill_buffer = sdma_v4_0_emit_fill_buffer,
};

static void sdma_v4_0_set_buffer_funcs(struct amdgpu_device *adev)
{
	if (adev->mman.buffer_funcs == NULL) {
		adev->mman.buffer_funcs = &sdma_v4_0_buffer_funcs;
		adev->mman.buffer_funcs_ring = &adev->sdma.instance[0].ring;
	}
}

static const struct amdgpu_vm_pte_funcs sdma_v4_0_vm_pte_funcs = {
1706
	.copy_pte_num_dw = 7,
1707
	.copy_pte = sdma_v4_0_vm_copy_pte,
1708

1709
	.write_pte = sdma_v4_0_vm_write_pte,
1710 1711 1712

	.set_max_nums_pte_pde = 0x400000 >> 3,
	.set_pte_pde_num_dw = 10,
1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729
	.set_pte_pde = sdma_v4_0_vm_set_pte_pde,
};

static void sdma_v4_0_set_vm_pte_funcs(struct amdgpu_device *adev)
{
	unsigned i;

	if (adev->vm_manager.vm_pte_funcs == NULL) {
		adev->vm_manager.vm_pte_funcs = &sdma_v4_0_vm_pte_funcs;
		for (i = 0; i < adev->sdma.num_instances; i++)
			adev->vm_manager.vm_pte_rings[i] =
				&adev->sdma.instance[i].ring;

		adev->vm_manager.vm_pte_num_rings = adev->sdma.num_instances;
	}
}

1730
const struct amdgpu_ip_block_version sdma_v4_0_ip_block = {
1731 1732 1733 1734 1735 1736
	.type = AMD_IP_BLOCK_TYPE_SDMA,
	.major = 4,
	.minor = 0,
	.rev = 0,
	.funcs = &sdma_v4_0_ip_funcs,
};