lmb.c 8.4 KB
Newer Older
1 2 3 4 5
/*
 * Procedures for maintaining information about logical memory blocks.
 *
 * Peter Bergner, IBM Corp.	June 2001.
 * Copyright (C) 2001 Peter Bergner.
6
 *
7 8 9 10 11 12 13 14 15
 *      This program is free software; you can redistribute it and/or
 *      modify it under the terms of the GNU General Public License
 *      as published by the Free Software Foundation; either version
 *      2 of the License, or (at your option) any later version.
 */

#include <linux/kernel.h>
#include <linux/init.h>
#include <linux/bitops.h>
16
#include <linux/lmb.h>
17 18 19

#undef DEBUG

20
#ifdef DEBUG
21
#define DBG(fmt...) LMB_DBG(fmt)
22 23 24 25
#else
#define DBG(fmt...)
#endif

26 27
#define LMB_ALLOC_ANYWHERE	0

28 29
struct lmb lmb;

30 31 32 33 34
void lmb_dump_all(void)
{
#ifdef DEBUG
	unsigned long i;

35 36
	DBG("lmb_dump_all:\n");
	DBG("    memory.cnt		  = 0x%lx\n", lmb.memory.cnt);
37 38
	DBG("    memory.size		  = 0x%llx\n",
	    (unsigned long long)lmb.memory.size);
39
	for (i=0; i < lmb.memory.cnt ;i++) {
40 41 42 43
		DBG("    memory.region[0x%x].base       = 0x%llx\n",
		    i, (unsigned long long)lmb.memory.region[i].base);
		DBG("		      .size     = 0x%llx\n",
		    (unsigned long long)lmb.memory.region[i].size);
44 45
	}

46 47
	DBG("\n    reserved.cnt	  = 0x%lx\n", lmb.reserved.cnt);
	DBG("    reserved.size	  = 0x%lx\n", lmb.reserved.size);
48
	for (i=0; i < lmb.reserved.cnt ;i++) {
49 50 51 52
		DBG("    reserved.region[0x%x].base       = 0x%llx\n",
		    i, (unsigned long long)lmb.reserved.region[i].base);
		DBG("		      .size     = 0x%llx\n",
		    (unsigned long long)lmb.reserved.region[i].size);
53 54 55 56
	}
#endif /* DEBUG */
}

57 58
static unsigned long __init lmb_addrs_overlap(u64 base1,
		u64 size1, u64 base2, u64 size2)
59 60 61 62
{
	return ((base1 < (base2+size2)) && (base2 < (base1+size1)));
}

63 64
static long __init lmb_addrs_adjacent(u64 base1, u64 size1,
		u64 base2, u64 size2)
65 66 67 68 69 70 71 72 73 74 75 76
{
	if (base2 == base1 + size1)
		return 1;
	else if (base1 == base2 + size2)
		return -1;

	return 0;
}

static long __init lmb_regions_adjacent(struct lmb_region *rgn,
		unsigned long r1, unsigned long r2)
{
77 78 79 80
	u64 base1 = rgn->region[r1].base;
	u64 size1 = rgn->region[r1].size;
	u64 base2 = rgn->region[r2].base;
	u64 size2 = rgn->region[r2].size;
81 82 83 84

	return lmb_addrs_adjacent(base1, size1, base2, size2);
}

85
static void __init lmb_remove_region(struct lmb_region *rgn, unsigned long r)
86 87 88
{
	unsigned long i;

89 90 91
	for (i = r; i < rgn->cnt - 1; i++) {
		rgn->region[i].base = rgn->region[i + 1].base;
		rgn->region[i].size = rgn->region[i + 1].size;
92 93 94 95
	}
	rgn->cnt--;
}

96 97 98 99 100 101 102 103
/* Assumption: base addr of region 1 < base addr of region 2 */
static void __init lmb_coalesce_regions(struct lmb_region *rgn,
		unsigned long r1, unsigned long r2)
{
	rgn->region[r1].size += rgn->region[r2].size;
	lmb_remove_region(rgn, r2);
}

104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131
/* This routine called with relocation disabled. */
void __init lmb_init(void)
{
	/* Create a dummy zero size LMB which will get coalesced away later.
	 * This simplifies the lmb_add() code below...
	 */
	lmb.memory.region[0].base = 0;
	lmb.memory.region[0].size = 0;
	lmb.memory.cnt = 1;

	/* Ditto. */
	lmb.reserved.region[0].base = 0;
	lmb.reserved.region[0].size = 0;
	lmb.reserved.cnt = 1;
}

/* This routine may be called with relocation disabled. */
void __init lmb_analyze(void)
{
	int i;

	lmb.memory.size = 0;

	for (i = 0; i < lmb.memory.cnt; i++)
		lmb.memory.size += lmb.memory.region[i].size;
}

/* This routine called with relocation disabled. */
132
static long __init lmb_add_region(struct lmb_region *rgn, u64 base, u64 size)
133
{
134 135
	unsigned long coalesced = 0;
	long adjacent, i;
136

137 138 139 140 141 142
	if ((rgn->cnt == 1) && (rgn->region[0].size == 0)) {
		rgn->region[0].base = base;
		rgn->region[0].size = size;
		return 0;
	}

143 144
	/* First try and coalesce this LMB with another. */
	for (i=0; i < rgn->cnt; i++) {
145 146
		u64 rgnbase = rgn->region[i].base;
		u64 rgnsize = rgn->region[i].size;
147

148 149 150 151
		if ((rgnbase == base) && (rgnsize == size))
			/* Already have this region, so we're done */
			return 0;

152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186
		adjacent = lmb_addrs_adjacent(base,size,rgnbase,rgnsize);
		if ( adjacent > 0 ) {
			rgn->region[i].base -= size;
			rgn->region[i].size += size;
			coalesced++;
			break;
		}
		else if ( adjacent < 0 ) {
			rgn->region[i].size += size;
			coalesced++;
			break;
		}
	}

	if ((i < rgn->cnt-1) && lmb_regions_adjacent(rgn, i, i+1) ) {
		lmb_coalesce_regions(rgn, i, i+1);
		coalesced++;
	}

	if (coalesced)
		return coalesced;
	if (rgn->cnt >= MAX_LMB_REGIONS)
		return -1;

	/* Couldn't coalesce the LMB, so add it to the sorted table. */
	for (i = rgn->cnt-1; i >= 0; i--) {
		if (base < rgn->region[i].base) {
			rgn->region[i+1].base = rgn->region[i].base;
			rgn->region[i+1].size = rgn->region[i].size;
		} else {
			rgn->region[i+1].base = base;
			rgn->region[i+1].size = size;
			break;
		}
	}
187 188 189 190 191

	if (base < rgn->region[0].base) {
		rgn->region[0].base = base;
		rgn->region[0].size = size;
	}
192 193 194 195 196 197
	rgn->cnt++;

	return 0;
}

/* This routine may be called with relocation disabled. */
198
long __init lmb_add(u64 base, u64 size)
199 200 201 202 203 204 205 206 207 208 209
{
	struct lmb_region *_rgn = &(lmb.memory);

	/* On pSeries LPAR systems, the first LMB is our RMO region. */
	if (base == 0)
		lmb.rmo_size = size;

	return lmb_add_region(_rgn, base, size);

}

210
long __init lmb_reserve(u64 base, u64 size)
211 212 213
{
	struct lmb_region *_rgn = &(lmb.reserved);

214 215
	BUG_ON(0 == size);

216 217 218
	return lmb_add_region(_rgn, base, size);
}

219 220
long __init lmb_overlaps_region(struct lmb_region *rgn, u64 base,
				u64 size)
221 222 223 224
{
	unsigned long i;

	for (i=0; i < rgn->cnt; i++) {
225 226
		u64 rgnbase = rgn->region[i].base;
		u64 rgnsize = rgn->region[i].size;
227 228 229 230 231 232 233 234
		if ( lmb_addrs_overlap(base,size,rgnbase,rgnsize) ) {
			break;
		}
	}

	return (i < rgn->cnt) ? i : -1;
}

235
u64 __init lmb_alloc(u64 size, u64 align)
236 237 238 239
{
	return lmb_alloc_base(size, align, LMB_ALLOC_ANYWHERE);
}

240
u64 __init lmb_alloc_base(u64 size, u64 align, u64 max_addr)
241
{
242
	u64 alloc;
243 244 245

	alloc = __lmb_alloc_base(size, align, max_addr);

246
	if (alloc == 0)
247 248
		panic("ERROR: Failed to allocate 0x%llx bytes below 0x%llx.\n",
		      (unsigned long long) size, (unsigned long long) max_addr);
249 250 251 252

	return alloc;
}

253
static u64 lmb_align_down(u64 addr, u64 size)
254 255 256 257
{
	return addr & ~(size - 1);
}

258
static u64 lmb_align_up(u64 addr, u64 size)
259 260 261 262
{
	return (addr + (size - 1)) & ~(size - 1);
}

263
u64 __init __lmb_alloc_base(u64 size, u64 align, u64 max_addr)
264 265
{
	long i, j;
266
	u64 base = 0;
267

268 269
	BUG_ON(0 == size);

270
	/* On some platforms, make sure we allocate lowmem */
271
	if (max_addr == LMB_ALLOC_ANYWHERE)
272 273
		max_addr = LMB_REAL_LIMIT;

274
	for (i = lmb.memory.cnt-1; i >= 0; i--) {
275 276
		u64 lmbbase = lmb.memory.region[i].base;
		u64 lmbsize = lmb.memory.region[i].size;
277 278

		if (max_addr == LMB_ALLOC_ANYWHERE)
279
			base = lmb_align_down(lmbbase + lmbsize - size, align);
280 281
		else if (lmbbase < max_addr) {
			base = min(lmbbase + lmbsize, max_addr);
282
			base = lmb_align_down(base - size, align);
283 284 285 286 287
		} else
			continue;

		while ((lmbbase <= base) &&
		       ((j = lmb_overlaps_region(&lmb.reserved, base, size)) >= 0) )
288 289
			base = lmb_align_down(lmb.reserved.region[j].base - size,
					      align);
290 291 292 293 294 295 296 297

		if ((base != 0) && (lmbbase <= base))
			break;
	}

	if (i < 0)
		return 0;

298 299
	if (lmb_add_region(&lmb.reserved, base, lmb_align_up(size, align)) < 0)
		return 0;
300 301 302 303 304

	return base;
}

/* You must call lmb_analyze() before this. */
305
u64 __init lmb_phys_mem_size(void)
306 307 308 309
{
	return lmb.memory.size;
}

310
u64 __init lmb_end_of_DRAM(void)
311 312 313 314 315 316
{
	int idx = lmb.memory.cnt - 1;

	return (lmb.memory.region[idx].base + lmb.memory.region[idx].size);
}

317
/* You must call lmb_analyze() after this. */
318
void __init lmb_enforce_memory_limit(u64 memory_limit)
319
{
320 321
	unsigned long i;
	u64 limit;
322
	struct lmb_property *p;
323 324 325 326

	if (! memory_limit)
		return;

327
	/* Truncate the lmb regions to satisfy the memory limit. */
328 329 330 331 332 333 334 335 336 337 338
	limit = memory_limit;
	for (i = 0; i < lmb.memory.cnt; i++) {
		if (limit > lmb.memory.region[i].size) {
			limit -= lmb.memory.region[i].size;
			continue;
		}

		lmb.memory.region[i].size = limit;
		lmb.memory.cnt = i + 1;
		break;
	}
339

340 341
	if (lmb.memory.region[0].size < lmb.rmo_size)
		lmb.rmo_size = lmb.memory.region[0].size;
342 343 344 345 346 347 348 349 350 351 352 353 354 355 356

	/* And truncate any reserves above the limit also. */
	for (i = 0; i < lmb.reserved.cnt; i++) {
		p = &lmb.reserved.region[i];

		if (p->base > memory_limit)
			p->size = 0;
		else if ((p->base + p->size) > memory_limit)
			p->size = memory_limit - p->base;

		if (p->size == 0) {
			lmb_remove_region(&lmb.reserved, i);
			i--;
		}
	}
357
}
358

359
int __init lmb_is_reserved(u64 addr)
360 361 362 363
{
	int i;

	for (i = 0; i < lmb.reserved.cnt; i++) {
364 365
		u64 upper = lmb.reserved.region[i].base +
			lmb.reserved.region[i].size - 1;
366 367 368 369 370
		if ((addr >= lmb.reserved.region[i].base) && (addr <= upper))
			return 1;
	}
	return 0;
}