segment.h 19.0 KB
Newer Older
J
Jaegeuk Kim 已提交
1
/*
2 3 4 5 6 7 8 9 10
 * fs/f2fs/segment.h
 *
 * Copyright (c) 2012 Samsung Electronics Co., Ltd.
 *             http://www.samsung.com/
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License version 2 as
 * published by the Free Software Foundation.
 */
11 12
#include <linux/blkdev.h>

13 14
/* constant macro */
#define NULL_SEGNO			((unsigned int)(~0))
15
#define NULL_SECNO			((unsigned int)(~0))
16

N
Namjae Jeon 已提交
17
/* L: Logical segment # in volume, R: Relative segment # in main area */
18 19 20 21 22 23 24 25 26 27 28
#define GET_L2R_SEGNO(free_i, segno)	(segno - free_i->start_segno)
#define GET_R2L_SEGNO(free_i, segno)	(segno + free_i->start_segno)

#define IS_DATASEG(t)							\
	((t == CURSEG_HOT_DATA) || (t == CURSEG_COLD_DATA) ||		\
	(t == CURSEG_WARM_DATA))

#define IS_NODESEG(t)							\
	((t == CURSEG_HOT_NODE) || (t == CURSEG_COLD_NODE) ||		\
	(t == CURSEG_WARM_NODE))

29 30 31 32 33 34 35
#define IS_CURSEG(sbi, seg)						\
	((seg == CURSEG_I(sbi, CURSEG_HOT_DATA)->segno) ||	\
	 (seg == CURSEG_I(sbi, CURSEG_WARM_DATA)->segno) ||	\
	 (seg == CURSEG_I(sbi, CURSEG_COLD_DATA)->segno) ||	\
	 (seg == CURSEG_I(sbi, CURSEG_HOT_NODE)->segno) ||	\
	 (seg == CURSEG_I(sbi, CURSEG_WARM_NODE)->segno) ||	\
	 (seg == CURSEG_I(sbi, CURSEG_COLD_NODE)->segno))
36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86

#define IS_CURSEC(sbi, secno)						\
	((secno == CURSEG_I(sbi, CURSEG_HOT_DATA)->segno /		\
	  sbi->segs_per_sec) ||	\
	 (secno == CURSEG_I(sbi, CURSEG_WARM_DATA)->segno /		\
	  sbi->segs_per_sec) ||	\
	 (secno == CURSEG_I(sbi, CURSEG_COLD_DATA)->segno /		\
	  sbi->segs_per_sec) ||	\
	 (secno == CURSEG_I(sbi, CURSEG_HOT_NODE)->segno /		\
	  sbi->segs_per_sec) ||	\
	 (secno == CURSEG_I(sbi, CURSEG_WARM_NODE)->segno /		\
	  sbi->segs_per_sec) ||	\
	 (secno == CURSEG_I(sbi, CURSEG_COLD_NODE)->segno /		\
	  sbi->segs_per_sec))	\

#define START_BLOCK(sbi, segno)						\
	(SM_I(sbi)->seg0_blkaddr +					\
	 (GET_R2L_SEGNO(FREE_I(sbi), segno) << sbi->log_blocks_per_seg))
#define NEXT_FREE_BLKADDR(sbi, curseg)					\
	(START_BLOCK(sbi, curseg->segno) + curseg->next_blkoff)

#define MAIN_BASE_BLOCK(sbi)	(SM_I(sbi)->main_blkaddr)

#define GET_SEGOFF_FROM_SEG0(sbi, blk_addr)				\
	((blk_addr) - SM_I(sbi)->seg0_blkaddr)
#define GET_SEGNO_FROM_SEG0(sbi, blk_addr)				\
	(GET_SEGOFF_FROM_SEG0(sbi, blk_addr) >> sbi->log_blocks_per_seg)
#define GET_SEGNO(sbi, blk_addr)					\
	(((blk_addr == NULL_ADDR) || (blk_addr == NEW_ADDR)) ?		\
	NULL_SEGNO : GET_L2R_SEGNO(FREE_I(sbi),			\
		GET_SEGNO_FROM_SEG0(sbi, blk_addr)))
#define GET_SECNO(sbi, segno)					\
	((segno) / sbi->segs_per_sec)
#define GET_ZONENO_FROM_SEGNO(sbi, segno)				\
	((segno / sbi->segs_per_sec) / sbi->secs_per_zone)

#define GET_SUM_BLOCK(sbi, segno)				\
	((sbi->sm_info->ssa_blkaddr) + segno)

#define GET_SUM_TYPE(footer) ((footer)->entry_type)
#define SET_SUM_TYPE(footer, type) ((footer)->entry_type = type)

#define SIT_ENTRY_OFFSET(sit_i, segno)					\
	(segno % sit_i->sents_per_block)
#define SIT_BLOCK_OFFSET(sit_i, segno)					\
	(segno / SIT_ENTRY_PER_BLOCK)
#define	START_SEGNO(sit_i, segno)		\
	(SIT_BLOCK_OFFSET(sit_i, segno) * SIT_ENTRY_PER_BLOCK)
#define f2fs_bitmap_size(nr)			\
	(BITS_TO_LONGS(nr) * sizeof(unsigned long))
#define TOTAL_SEGS(sbi)	(SM_I(sbi)->main_segments)
J
Jaegeuk Kim 已提交
87
#define TOTAL_SECS(sbi)	(sbi->total_sections)
88

89 90
#define SECTOR_FROM_BLOCK(sbi, blk_addr)				\
	(blk_addr << ((sbi)->log_blocksize - F2FS_LOG_SECTOR_SIZE))
91 92
#define SECTOR_TO_BLOCK(sbi, sectors)					\
	(sectors >> ((sbi)->log_blocksize - F2FS_LOG_SECTOR_SIZE))
93

94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221
/* during checkpoint, bio_private is used to synchronize the last bio */
struct bio_private {
	struct f2fs_sb_info *sbi;
	bool is_sync;
	void *wait;
};

/*
 * indicate a block allocation direction: RIGHT and LEFT.
 * RIGHT means allocating new sections towards the end of volume.
 * LEFT means the opposite direction.
 */
enum {
	ALLOC_RIGHT = 0,
	ALLOC_LEFT
};

/*
 * In the victim_sel_policy->alloc_mode, there are two block allocation modes.
 * LFS writes data sequentially with cleaning operations.
 * SSR (Slack Space Recycle) reuses obsolete space without cleaning operations.
 */
enum {
	LFS = 0,
	SSR
};

/*
 * In the victim_sel_policy->gc_mode, there are two gc, aka cleaning, modes.
 * GC_CB is based on cost-benefit algorithm.
 * GC_GREEDY is based on greedy algorithm.
 */
enum {
	GC_CB = 0,
	GC_GREEDY
};

/*
 * BG_GC means the background cleaning job.
 * FG_GC means the on-demand cleaning job.
 */
enum {
	BG_GC = 0,
	FG_GC
};

/* for a function parameter to select a victim segment */
struct victim_sel_policy {
	int alloc_mode;			/* LFS or SSR */
	int gc_mode;			/* GC_CB or GC_GREEDY */
	unsigned long *dirty_segmap;	/* dirty segment bitmap */
	unsigned int offset;		/* last scanned bitmap offset */
	unsigned int ofs_unit;		/* bitmap search unit */
	unsigned int min_cost;		/* minimum cost */
	unsigned int min_segno;		/* segment # having min. cost */
};

struct seg_entry {
	unsigned short valid_blocks;	/* # of valid blocks */
	unsigned char *cur_valid_map;	/* validity bitmap of blocks */
	/*
	 * # of valid blocks and the validity bitmap stored in the the last
	 * checkpoint pack. This information is used by the SSR mode.
	 */
	unsigned short ckpt_valid_blocks;
	unsigned char *ckpt_valid_map;
	unsigned char type;		/* segment type like CURSEG_XXX_TYPE */
	unsigned long long mtime;	/* modification time of the segment */
};

struct sec_entry {
	unsigned int valid_blocks;	/* # of valid blocks in a section */
};

struct segment_allocation {
	void (*allocate_segment)(struct f2fs_sb_info *, int, bool);
};

struct sit_info {
	const struct segment_allocation *s_ops;

	block_t sit_base_addr;		/* start block address of SIT area */
	block_t sit_blocks;		/* # of blocks used by SIT area */
	block_t written_valid_blocks;	/* # of valid blocks in main area */
	char *sit_bitmap;		/* SIT bitmap pointer */
	unsigned int bitmap_size;	/* SIT bitmap size */

	unsigned long *dirty_sentries_bitmap;	/* bitmap for dirty sentries */
	unsigned int dirty_sentries;		/* # of dirty sentries */
	unsigned int sents_per_block;		/* # of SIT entries per block */
	struct mutex sentry_lock;		/* to protect SIT cache */
	struct seg_entry *sentries;		/* SIT segment-level cache */
	struct sec_entry *sec_entries;		/* SIT section-level cache */

	/* for cost-benefit algorithm in cleaning procedure */
	unsigned long long elapsed_time;	/* elapsed time after mount */
	unsigned long long mounted_time;	/* mount time */
	unsigned long long min_mtime;		/* min. modification time */
	unsigned long long max_mtime;		/* max. modification time */
};

struct free_segmap_info {
	unsigned int start_segno;	/* start segment number logically */
	unsigned int free_segments;	/* # of free segments */
	unsigned int free_sections;	/* # of free sections */
	rwlock_t segmap_lock;		/* free segmap lock */
	unsigned long *free_segmap;	/* free segment bitmap */
	unsigned long *free_secmap;	/* free section bitmap */
};

/* Notice: The order of dirty type is same with CURSEG_XXX in f2fs.h */
enum dirty_type {
	DIRTY_HOT_DATA,		/* dirty segments assigned as hot data logs */
	DIRTY_WARM_DATA,	/* dirty segments assigned as warm data logs */
	DIRTY_COLD_DATA,	/* dirty segments assigned as cold data logs */
	DIRTY_HOT_NODE,		/* dirty segments assigned as hot node logs */
	DIRTY_WARM_NODE,	/* dirty segments assigned as warm node logs */
	DIRTY_COLD_NODE,	/* dirty segments assigned as cold node logs */
	DIRTY,			/* to count # of dirty segments */
	PRE,			/* to count # of entirely obsolete segments */
	NR_DIRTY_TYPE
};

struct dirty_seglist_info {
	const struct victim_selection *v_ops;	/* victim selction operation */
	unsigned long *dirty_segmap[NR_DIRTY_TYPE];
	struct mutex seglist_lock;		/* lock for segment bitmaps */
	int nr_dirty[NR_DIRTY_TYPE];		/* # of dirty segments */
222
	unsigned long *victim_secmap;		/* background GC victims */
223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458
};

/* victim selection function for cleaning and SSR */
struct victim_selection {
	int (*get_victim)(struct f2fs_sb_info *, unsigned int *,
							int, int, char);
};

/* for active log information */
struct curseg_info {
	struct mutex curseg_mutex;		/* lock for consistency */
	struct f2fs_summary_block *sum_blk;	/* cached summary block */
	unsigned char alloc_type;		/* current allocation type */
	unsigned int segno;			/* current segment number */
	unsigned short next_blkoff;		/* next block offset to write */
	unsigned int zone;			/* current zone number */
	unsigned int next_segno;		/* preallocated segment */
};

/*
 * inline functions
 */
static inline struct curseg_info *CURSEG_I(struct f2fs_sb_info *sbi, int type)
{
	return (struct curseg_info *)(SM_I(sbi)->curseg_array + type);
}

static inline struct seg_entry *get_seg_entry(struct f2fs_sb_info *sbi,
						unsigned int segno)
{
	struct sit_info *sit_i = SIT_I(sbi);
	return &sit_i->sentries[segno];
}

static inline struct sec_entry *get_sec_entry(struct f2fs_sb_info *sbi,
						unsigned int segno)
{
	struct sit_info *sit_i = SIT_I(sbi);
	return &sit_i->sec_entries[GET_SECNO(sbi, segno)];
}

static inline unsigned int get_valid_blocks(struct f2fs_sb_info *sbi,
				unsigned int segno, int section)
{
	/*
	 * In order to get # of valid blocks in a section instantly from many
	 * segments, f2fs manages two counting structures separately.
	 */
	if (section > 1)
		return get_sec_entry(sbi, segno)->valid_blocks;
	else
		return get_seg_entry(sbi, segno)->valid_blocks;
}

static inline void seg_info_from_raw_sit(struct seg_entry *se,
					struct f2fs_sit_entry *rs)
{
	se->valid_blocks = GET_SIT_VBLOCKS(rs);
	se->ckpt_valid_blocks = GET_SIT_VBLOCKS(rs);
	memcpy(se->cur_valid_map, rs->valid_map, SIT_VBLOCK_MAP_SIZE);
	memcpy(se->ckpt_valid_map, rs->valid_map, SIT_VBLOCK_MAP_SIZE);
	se->type = GET_SIT_TYPE(rs);
	se->mtime = le64_to_cpu(rs->mtime);
}

static inline void seg_info_to_raw_sit(struct seg_entry *se,
					struct f2fs_sit_entry *rs)
{
	unsigned short raw_vblocks = (se->type << SIT_VBLOCKS_SHIFT) |
					se->valid_blocks;
	rs->vblocks = cpu_to_le16(raw_vblocks);
	memcpy(rs->valid_map, se->cur_valid_map, SIT_VBLOCK_MAP_SIZE);
	memcpy(se->ckpt_valid_map, rs->valid_map, SIT_VBLOCK_MAP_SIZE);
	se->ckpt_valid_blocks = se->valid_blocks;
	rs->mtime = cpu_to_le64(se->mtime);
}

static inline unsigned int find_next_inuse(struct free_segmap_info *free_i,
		unsigned int max, unsigned int segno)
{
	unsigned int ret;
	read_lock(&free_i->segmap_lock);
	ret = find_next_bit(free_i->free_segmap, max, segno);
	read_unlock(&free_i->segmap_lock);
	return ret;
}

static inline void __set_free(struct f2fs_sb_info *sbi, unsigned int segno)
{
	struct free_segmap_info *free_i = FREE_I(sbi);
	unsigned int secno = segno / sbi->segs_per_sec;
	unsigned int start_segno = secno * sbi->segs_per_sec;
	unsigned int next;

	write_lock(&free_i->segmap_lock);
	clear_bit(segno, free_i->free_segmap);
	free_i->free_segments++;

	next = find_next_bit(free_i->free_segmap, TOTAL_SEGS(sbi), start_segno);
	if (next >= start_segno + sbi->segs_per_sec) {
		clear_bit(secno, free_i->free_secmap);
		free_i->free_sections++;
	}
	write_unlock(&free_i->segmap_lock);
}

static inline void __set_inuse(struct f2fs_sb_info *sbi,
		unsigned int segno)
{
	struct free_segmap_info *free_i = FREE_I(sbi);
	unsigned int secno = segno / sbi->segs_per_sec;
	set_bit(segno, free_i->free_segmap);
	free_i->free_segments--;
	if (!test_and_set_bit(secno, free_i->free_secmap))
		free_i->free_sections--;
}

static inline void __set_test_and_free(struct f2fs_sb_info *sbi,
		unsigned int segno)
{
	struct free_segmap_info *free_i = FREE_I(sbi);
	unsigned int secno = segno / sbi->segs_per_sec;
	unsigned int start_segno = secno * sbi->segs_per_sec;
	unsigned int next;

	write_lock(&free_i->segmap_lock);
	if (test_and_clear_bit(segno, free_i->free_segmap)) {
		free_i->free_segments++;

		next = find_next_bit(free_i->free_segmap, TOTAL_SEGS(sbi),
								start_segno);
		if (next >= start_segno + sbi->segs_per_sec) {
			if (test_and_clear_bit(secno, free_i->free_secmap))
				free_i->free_sections++;
		}
	}
	write_unlock(&free_i->segmap_lock);
}

static inline void __set_test_and_inuse(struct f2fs_sb_info *sbi,
		unsigned int segno)
{
	struct free_segmap_info *free_i = FREE_I(sbi);
	unsigned int secno = segno / sbi->segs_per_sec;
	write_lock(&free_i->segmap_lock);
	if (!test_and_set_bit(segno, free_i->free_segmap)) {
		free_i->free_segments--;
		if (!test_and_set_bit(secno, free_i->free_secmap))
			free_i->free_sections--;
	}
	write_unlock(&free_i->segmap_lock);
}

static inline void get_sit_bitmap(struct f2fs_sb_info *sbi,
		void *dst_addr)
{
	struct sit_info *sit_i = SIT_I(sbi);
	memcpy(dst_addr, sit_i->sit_bitmap, sit_i->bitmap_size);
}

static inline block_t written_block_count(struct f2fs_sb_info *sbi)
{
	struct sit_info *sit_i = SIT_I(sbi);
	block_t vblocks;

	mutex_lock(&sit_i->sentry_lock);
	vblocks = sit_i->written_valid_blocks;
	mutex_unlock(&sit_i->sentry_lock);

	return vblocks;
}

static inline unsigned int free_segments(struct f2fs_sb_info *sbi)
{
	struct free_segmap_info *free_i = FREE_I(sbi);
	unsigned int free_segs;

	read_lock(&free_i->segmap_lock);
	free_segs = free_i->free_segments;
	read_unlock(&free_i->segmap_lock);

	return free_segs;
}

static inline int reserved_segments(struct f2fs_sb_info *sbi)
{
	return SM_I(sbi)->reserved_segments;
}

static inline unsigned int free_sections(struct f2fs_sb_info *sbi)
{
	struct free_segmap_info *free_i = FREE_I(sbi);
	unsigned int free_secs;

	read_lock(&free_i->segmap_lock);
	free_secs = free_i->free_sections;
	read_unlock(&free_i->segmap_lock);

	return free_secs;
}

static inline unsigned int prefree_segments(struct f2fs_sb_info *sbi)
{
	return DIRTY_I(sbi)->nr_dirty[PRE];
}

static inline unsigned int dirty_segments(struct f2fs_sb_info *sbi)
{
	return DIRTY_I(sbi)->nr_dirty[DIRTY_HOT_DATA] +
		DIRTY_I(sbi)->nr_dirty[DIRTY_WARM_DATA] +
		DIRTY_I(sbi)->nr_dirty[DIRTY_COLD_DATA] +
		DIRTY_I(sbi)->nr_dirty[DIRTY_HOT_NODE] +
		DIRTY_I(sbi)->nr_dirty[DIRTY_WARM_NODE] +
		DIRTY_I(sbi)->nr_dirty[DIRTY_COLD_NODE];
}

static inline int overprovision_segments(struct f2fs_sb_info *sbi)
{
	return SM_I(sbi)->ovp_segments;
}

static inline int overprovision_sections(struct f2fs_sb_info *sbi)
{
	return ((unsigned int) overprovision_segments(sbi)) / sbi->segs_per_sec;
}

static inline int reserved_sections(struct f2fs_sb_info *sbi)
{
	return ((unsigned int) reserved_segments(sbi)) / sbi->segs_per_sec;
}

static inline bool need_SSR(struct f2fs_sb_info *sbi)
{
	return (free_sections(sbi) < overprovision_sections(sbi));
}

459
static inline bool has_not_enough_free_secs(struct f2fs_sb_info *sbi, int freed)
460
{
461 462
	int node_secs = get_blocktype_secs(sbi, F2FS_DIRTY_NODES);
	int dent_secs = get_blocktype_secs(sbi, F2FS_DIRTY_DENTS);
463

464 465 466
	if (sbi->por_doing)
		return false;

467
	return ((free_sections(sbi) + freed) <= (node_secs + 2 * dent_secs +
468
						reserved_sections(sbi)));
469 470 471 472
}

static inline int utilization(struct f2fs_sb_info *sbi)
{
473
	return div_u64(valid_user_blocks(sbi) * 100, sbi->user_block_count);
474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623
}

/*
 * Sometimes f2fs may be better to drop out-of-place update policy.
 * So, if fs utilization is over MIN_IPU_UTIL, then f2fs tries to write
 * data in the original place likewise other traditional file systems.
 * But, currently set 100 in percentage, which means it is disabled.
 * See below need_inplace_update().
 */
#define MIN_IPU_UTIL		100
static inline bool need_inplace_update(struct inode *inode)
{
	struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
	if (S_ISDIR(inode->i_mode))
		return false;
	if (need_SSR(sbi) && utilization(sbi) > MIN_IPU_UTIL)
		return true;
	return false;
}

static inline unsigned int curseg_segno(struct f2fs_sb_info *sbi,
		int type)
{
	struct curseg_info *curseg = CURSEG_I(sbi, type);
	return curseg->segno;
}

static inline unsigned char curseg_alloc_type(struct f2fs_sb_info *sbi,
		int type)
{
	struct curseg_info *curseg = CURSEG_I(sbi, type);
	return curseg->alloc_type;
}

static inline unsigned short curseg_blkoff(struct f2fs_sb_info *sbi, int type)
{
	struct curseg_info *curseg = CURSEG_I(sbi, type);
	return curseg->next_blkoff;
}

static inline void check_seg_range(struct f2fs_sb_info *sbi, unsigned int segno)
{
	unsigned int end_segno = SM_I(sbi)->segment_count - 1;
	BUG_ON(segno > end_segno);
}

/*
 * This function is used for only debugging.
 * NOTE: In future, we have to remove this function.
 */
static inline void verify_block_addr(struct f2fs_sb_info *sbi, block_t blk_addr)
{
	struct f2fs_sm_info *sm_info = SM_I(sbi);
	block_t total_blks = sm_info->segment_count << sbi->log_blocks_per_seg;
	block_t start_addr = sm_info->seg0_blkaddr;
	block_t end_addr = start_addr + total_blks - 1;
	BUG_ON(blk_addr < start_addr);
	BUG_ON(blk_addr > end_addr);
}

/*
 * Summary block is always treated as invalid block
 */
static inline void check_block_count(struct f2fs_sb_info *sbi,
		int segno, struct f2fs_sit_entry *raw_sit)
{
	struct f2fs_sm_info *sm_info = SM_I(sbi);
	unsigned int end_segno = sm_info->segment_count - 1;
	int valid_blocks = 0;
	int i;

	/* check segment usage */
	BUG_ON(GET_SIT_VBLOCKS(raw_sit) > sbi->blocks_per_seg);

	/* check boundary of a given segment number */
	BUG_ON(segno > end_segno);

	/* check bitmap with valid block count */
	for (i = 0; i < sbi->blocks_per_seg; i++)
		if (f2fs_test_bit(i, raw_sit->valid_map))
			valid_blocks++;
	BUG_ON(GET_SIT_VBLOCKS(raw_sit) != valid_blocks);
}

static inline pgoff_t current_sit_addr(struct f2fs_sb_info *sbi,
						unsigned int start)
{
	struct sit_info *sit_i = SIT_I(sbi);
	unsigned int offset = SIT_BLOCK_OFFSET(sit_i, start);
	block_t blk_addr = sit_i->sit_base_addr + offset;

	check_seg_range(sbi, start);

	/* calculate sit block address */
	if (f2fs_test_bit(offset, sit_i->sit_bitmap))
		blk_addr += sit_i->sit_blocks;

	return blk_addr;
}

static inline pgoff_t next_sit_addr(struct f2fs_sb_info *sbi,
						pgoff_t block_addr)
{
	struct sit_info *sit_i = SIT_I(sbi);
	block_addr -= sit_i->sit_base_addr;
	if (block_addr < sit_i->sit_blocks)
		block_addr += sit_i->sit_blocks;
	else
		block_addr -= sit_i->sit_blocks;

	return block_addr + sit_i->sit_base_addr;
}

static inline void set_to_next_sit(struct sit_info *sit_i, unsigned int start)
{
	unsigned int block_off = SIT_BLOCK_OFFSET(sit_i, start);

	if (f2fs_test_bit(block_off, sit_i->sit_bitmap))
		f2fs_clear_bit(block_off, sit_i->sit_bitmap);
	else
		f2fs_set_bit(block_off, sit_i->sit_bitmap);
}

static inline unsigned long long get_mtime(struct f2fs_sb_info *sbi)
{
	struct sit_info *sit_i = SIT_I(sbi);
	return sit_i->elapsed_time + CURRENT_TIME_SEC.tv_sec -
						sit_i->mounted_time;
}

static inline void set_summary(struct f2fs_summary *sum, nid_t nid,
			unsigned int ofs_in_node, unsigned char version)
{
	sum->nid = cpu_to_le32(nid);
	sum->ofs_in_node = cpu_to_le16(ofs_in_node);
	sum->version = version;
}

static inline block_t start_sum_block(struct f2fs_sb_info *sbi)
{
	return __start_cp_addr(sbi) +
		le32_to_cpu(F2FS_CKPT(sbi)->cp_pack_start_sum);
}

static inline block_t sum_blk_addr(struct f2fs_sb_info *sbi, int base, int type)
{
	return __start_cp_addr(sbi) +
		le32_to_cpu(F2FS_CKPT(sbi)->cp_pack_total_block_count)
				- (base + 1) + type;
}
624 625 626 627 628 629 630

static inline bool sec_usage_check(struct f2fs_sb_info *sbi, unsigned int secno)
{
	if (IS_CURSEC(sbi, secno) || (sbi->cur_victim_sec == secno))
		return true;
	return false;
}
631 632 633 634 635 636 637

static inline unsigned int max_hw_blocks(struct f2fs_sb_info *sbi)
{
	struct block_device *bdev = sbi->sb->s_bdev;
	struct request_queue *q = bdev_get_queue(bdev);
	return SECTOR_TO_BLOCK(sbi, queue_max_sectors(q));
}