memcontrol.h 16.7 KB
Newer Older
B
Balbir Singh 已提交
1 2 3 4 5
/* memcontrol.h - Memory Controller
 *
 * Copyright IBM Corporation, 2007
 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
 *
6 7 8
 * Copyright 2007 OpenVZ SWsoft Inc
 * Author: Pavel Emelianov <xemul@openvz.org>
 *
B
Balbir Singh 已提交
9 10 11 12 13 14 15 16 17 18 19 20 21
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 */

#ifndef _LINUX_MEMCONTROL_H
#define _LINUX_MEMCONTROL_H
22
#include <linux/cgroup.h>
23
#include <linux/vm_event_item.h>
24
#include <linux/hardirq.h>
25
#include <linux/jump_label.h>
26

27 28
struct mem_cgroup;
struct page_cgroup;
29 30
struct page;
struct mm_struct;
31
struct kmem_cache;
32

33 34 35 36 37
/* Stats that can be updated by kernel. */
enum mem_cgroup_page_stat_item {
	MEMCG_NR_FILE_MAPPED, /* # of pages charged as file rss */
};

38 39 40 41 42 43
struct mem_cgroup_reclaim_cookie {
	struct zone *zone;
	int priority;
	unsigned int generation;
};

A
Andrew Morton 已提交
44
#ifdef CONFIG_MEMCG
K
KAMEZAWA Hiroyuki 已提交
45 46 47 48 49 50 51 52 53 54
/*
 * All "charge" functions with gfp_mask should use GFP_KERNEL or
 * (gfp_mask & GFP_RECLAIM_MASK). In current implementatin, memcg doesn't
 * alloc memory but reclaims memory from all available zones. So, "where I want
 * memory from" bits of gfp_mask has no meaning. So any bits of that field is
 * available but adding a rule is better. charge functions' gfp_mask should
 * be set to GFP_KERNEL or gfp_mask & GFP_RECLAIM_MASK for avoiding ambiguous
 * codes.
 * (Of course, if memcg does memory allocation in future, GFP_KERNEL is sane.)
 */
55

56
extern int mem_cgroup_newpage_charge(struct page *page, struct mm_struct *mm,
57
				gfp_t gfp_mask);
58
/* for swap handling */
59
extern int mem_cgroup_try_charge_swapin(struct mm_struct *mm,
60
		struct page *page, gfp_t mask, struct mem_cgroup **memcgp);
61
extern void mem_cgroup_commit_charge_swapin(struct page *page,
62 63
					struct mem_cgroup *memcg);
extern void mem_cgroup_cancel_charge_swapin(struct mem_cgroup *memcg);
64

H
Hugh Dickins 已提交
65 66
extern int mem_cgroup_cache_charge(struct page *page, struct mm_struct *mm,
					gfp_t gfp_mask);
67 68

struct lruvec *mem_cgroup_zone_lruvec(struct zone *, struct mem_cgroup *);
69
struct lruvec *mem_cgroup_page_lruvec(struct page *, struct zone *);
70 71 72 73 74

/* For coalescing uncharge for reducing memcg' overhead*/
extern void mem_cgroup_uncharge_start(void);
extern void mem_cgroup_uncharge_end(void);

75
extern void mem_cgroup_uncharge_page(struct page *page);
76
extern void mem_cgroup_uncharge_cache_page(struct page *page);
77

78 79
bool __mem_cgroup_same_or_subtree(const struct mem_cgroup *root_memcg,
				  struct mem_cgroup *memcg);
80
int task_in_mem_cgroup(struct task_struct *task, const struct mem_cgroup *memcg);
81

82
extern struct mem_cgroup *try_get_mem_cgroup_from_page(struct page *page);
83
extern struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p);
84
extern struct mem_cgroup *try_get_mem_cgroup_from_mm(struct mm_struct *mm);
85

G
Glauber Costa 已提交
86
extern struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *memcg);
G
Glauber Costa 已提交
87
extern struct mem_cgroup *mem_cgroup_from_cont(struct cgroup *cont);
G
Glauber Costa 已提交
88

89
static inline
90
bool mm_match_cgroup(const struct mm_struct *mm, const struct mem_cgroup *memcg)
91
{
92 93
	struct mem_cgroup *task_memcg;
	bool match;
94

95
	rcu_read_lock();
96 97
	task_memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
	match = __mem_cgroup_same_or_subtree(memcg, task_memcg);
98
	rcu_read_unlock();
99
	return match;
100
}
101

102
extern struct cgroup_subsys_state *mem_cgroup_css(struct mem_cgroup *memcg);
103

104 105 106
extern void
mem_cgroup_prepare_migration(struct page *page, struct page *newpage,
			     struct mem_cgroup **memcgp);
107
extern void mem_cgroup_end_migration(struct mem_cgroup *memcg,
108
	struct page *oldpage, struct page *newpage, bool migration_ok);
109

110 111 112 113 114
struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *,
				   struct mem_cgroup *,
				   struct mem_cgroup_reclaim_cookie *);
void mem_cgroup_iter_break(struct mem_cgroup *, struct mem_cgroup *);

115 116 117
/*
 * For memory reclaim.
 */
118 119
int mem_cgroup_inactive_anon_is_low(struct lruvec *lruvec);
int mem_cgroup_inactive_file_is_low(struct lruvec *lruvec);
120
int mem_cgroup_select_victim_node(struct mem_cgroup *memcg);
121
unsigned long mem_cgroup_get_lru_size(struct lruvec *lruvec, enum lru_list);
122
void mem_cgroup_update_lru_size(struct lruvec *, enum lru_list, int);
123 124
extern void mem_cgroup_print_oom_info(struct mem_cgroup *memcg,
					struct task_struct *p);
125 126
extern void mem_cgroup_replace_page_cache(struct page *oldpage,
					struct page *newpage);
127

A
Andrew Morton 已提交
128
#ifdef CONFIG_MEMCG_SWAP
129 130
extern int do_swap_account;
#endif
131 132 133 134 135 136 137 138

static inline bool mem_cgroup_disabled(void)
{
	if (mem_cgroup_subsys.disabled)
		return true;
	return false;
}

139 140 141
void __mem_cgroup_begin_update_page_stat(struct page *page, bool *locked,
					 unsigned long *flags);

142 143
extern atomic_t memcg_moving;

144 145 146 147 148 149 150
static inline void mem_cgroup_begin_update_page_stat(struct page *page,
					bool *locked, unsigned long *flags)
{
	if (mem_cgroup_disabled())
		return;
	rcu_read_lock();
	*locked = false;
151 152
	if (atomic_read(&memcg_moving))
		__mem_cgroup_begin_update_page_stat(page, locked, flags);
153 154 155 156 157 158 159 160 161 162 163 164 165 166
}

void __mem_cgroup_end_update_page_stat(struct page *page,
				unsigned long *flags);
static inline void mem_cgroup_end_update_page_stat(struct page *page,
					bool *locked, unsigned long *flags)
{
	if (mem_cgroup_disabled())
		return;
	if (*locked)
		__mem_cgroup_end_update_page_stat(page, flags);
	rcu_read_unlock();
}

167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182
void mem_cgroup_update_page_stat(struct page *page,
				 enum mem_cgroup_page_stat_item idx,
				 int val);

static inline void mem_cgroup_inc_page_stat(struct page *page,
					    enum mem_cgroup_page_stat_item idx)
{
	mem_cgroup_update_page_stat(page, idx, 1);
}

static inline void mem_cgroup_dec_page_stat(struct page *page,
					    enum mem_cgroup_page_stat_item idx)
{
	mem_cgroup_update_page_stat(page, idx, -1);
}

183
unsigned long mem_cgroup_soft_limit_reclaim(struct zone *zone, int order,
184 185
						gfp_t gfp_mask,
						unsigned long *total_scanned);
D
David Rientjes 已提交
186

187 188 189 190 191 192 193 194
void __mem_cgroup_count_vm_event(struct mm_struct *mm, enum vm_event_item idx);
static inline void mem_cgroup_count_vm_event(struct mm_struct *mm,
					     enum vm_event_item idx)
{
	if (mem_cgroup_disabled())
		return;
	__mem_cgroup_count_vm_event(mm, idx);
}
195
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
196
void mem_cgroup_split_huge_fixup(struct page *head);
197 198
#endif

199 200 201 202
#ifdef CONFIG_DEBUG_VM
bool mem_cgroup_bad_page_check(struct page *page);
void mem_cgroup_print_bad_page(struct page *page);
#endif
A
Andrew Morton 已提交
203
#else /* CONFIG_MEMCG */
204 205 206
struct mem_cgroup;

static inline int mem_cgroup_newpage_charge(struct page *page,
H
Hugh Dickins 已提交
207
					struct mm_struct *mm, gfp_t gfp_mask)
208 209 210 211
{
	return 0;
}

H
Hugh Dickins 已提交
212 213
static inline int mem_cgroup_cache_charge(struct page *page,
					struct mm_struct *mm, gfp_t gfp_mask)
214
{
H
Hugh Dickins 已提交
215
	return 0;
216 217
}

218
static inline int mem_cgroup_try_charge_swapin(struct mm_struct *mm,
219
		struct page *page, gfp_t gfp_mask, struct mem_cgroup **memcgp)
220 221 222 223 224
{
	return 0;
}

static inline void mem_cgroup_commit_charge_swapin(struct page *page,
225
					  struct mem_cgroup *memcg)
226 227 228
{
}

229
static inline void mem_cgroup_cancel_charge_swapin(struct mem_cgroup *memcg)
230 231 232
{
}

233 234 235 236 237 238 239 240
static inline void mem_cgroup_uncharge_start(void)
{
}

static inline void mem_cgroup_uncharge_end(void)
{
}

241 242 243 244
static inline void mem_cgroup_uncharge_page(struct page *page)
{
}

245 246 247 248
static inline void mem_cgroup_uncharge_cache_page(struct page *page)
{
}

249 250
static inline struct lruvec *mem_cgroup_zone_lruvec(struct zone *zone,
						    struct mem_cgroup *memcg)
K
KAMEZAWA Hiroyuki 已提交
251
{
252
	return &zone->lruvec;
K
KAMEZAWA Hiroyuki 已提交
253 254
}

255 256
static inline struct lruvec *mem_cgroup_page_lruvec(struct page *page,
						    struct zone *zone)
257
{
258
	return &zone->lruvec;
259 260
}

261 262 263 264 265
static inline struct mem_cgroup *try_get_mem_cgroup_from_page(struct page *page)
{
	return NULL;
}

266 267 268 269 270
static inline struct mem_cgroup *try_get_mem_cgroup_from_mm(struct mm_struct *mm)
{
	return NULL;
}

271
static inline bool mm_match_cgroup(struct mm_struct *mm,
272
		struct mem_cgroup *memcg)
273
{
274
	return true;
275 276
}

277
static inline int task_in_mem_cgroup(struct task_struct *task,
278
				     const struct mem_cgroup *memcg)
279 280 281 282
{
	return 1;
}

283 284
static inline struct cgroup_subsys_state
		*mem_cgroup_css(struct mem_cgroup *memcg)
285 286 287 288
{
	return NULL;
}

289
static inline void
290
mem_cgroup_prepare_migration(struct page *page, struct page *newpage,
291
			     struct mem_cgroup **memcgp)
292 293 294
{
}

295
static inline void mem_cgroup_end_migration(struct mem_cgroup *memcg,
296
		struct page *oldpage, struct page *newpage, bool migration_ok)
297 298 299
{
}

300 301 302 303 304 305 306 307 308 309 310 311 312
static inline struct mem_cgroup *
mem_cgroup_iter(struct mem_cgroup *root,
		struct mem_cgroup *prev,
		struct mem_cgroup_reclaim_cookie *reclaim)
{
	return NULL;
}

static inline void mem_cgroup_iter_break(struct mem_cgroup *root,
					 struct mem_cgroup *prev)
{
}

313 314 315 316
static inline bool mem_cgroup_disabled(void)
{
	return true;
}
317

318
static inline int
319
mem_cgroup_inactive_anon_is_low(struct lruvec *lruvec)
320 321 322 323
{
	return 1;
}

324
static inline int
325
mem_cgroup_inactive_file_is_low(struct lruvec *lruvec)
326 327 328 329
{
	return 1;
}

330
static inline unsigned long
331
mem_cgroup_get_lru_size(struct lruvec *lruvec, enum lru_list lru)
332 333 334 335
{
	return 0;
}

336 337 338
static inline void
mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
			      int increment)
K
KOSAKI Motohiro 已提交
339 340 341
{
}

342 343 344 345 346
static inline void
mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p)
{
}

347 348 349 350 351 352 353 354 355 356
static inline void mem_cgroup_begin_update_page_stat(struct page *page,
					bool *locked, unsigned long *flags)
{
}

static inline void mem_cgroup_end_update_page_stat(struct page *page,
					bool *locked, unsigned long *flags)
{
}

357 358 359 360 361 362 363
static inline void mem_cgroup_inc_page_stat(struct page *page,
					    enum mem_cgroup_page_stat_item idx)
{
}

static inline void mem_cgroup_dec_page_stat(struct page *page,
					    enum mem_cgroup_page_stat_item idx)
364 365 366
{
}

367 368
static inline
unsigned long mem_cgroup_soft_limit_reclaim(struct zone *zone, int order,
369 370
					    gfp_t gfp_mask,
					    unsigned long *total_scanned)
371 372 373 374
{
	return 0;
}

375
static inline void mem_cgroup_split_huge_fixup(struct page *head)
376 377 378
{
}

379 380 381 382
static inline
void mem_cgroup_count_vm_event(struct mm_struct *mm, enum vm_event_item idx)
{
}
383 384 385 386
static inline void mem_cgroup_replace_page_cache(struct page *oldpage,
				struct page *newpage)
{
}
A
Andrew Morton 已提交
387
#endif /* CONFIG_MEMCG */
388

A
Andrew Morton 已提交
389
#if !defined(CONFIG_MEMCG) || !defined(CONFIG_DEBUG_VM)
390 391 392 393 394 395 396 397 398 399 400 401
static inline bool
mem_cgroup_bad_page_check(struct page *page)
{
	return false;
}

static inline void
mem_cgroup_print_bad_page(struct page *page)
{
}
#endif

G
Glauber Costa 已提交
402 403 404 405 406 407 408
enum {
	UNDER_LIMIT,
	SOFT_LIMIT,
	OVER_LIMIT,
};

struct sock;
409
#if defined(CONFIG_INET) && defined(CONFIG_MEMCG_KMEM)
G
Glauber Costa 已提交
410 411 412 413 414 415 416 417 418
void sock_update_memcg(struct sock *sk);
void sock_release_memcg(struct sock *sk);
#else
static inline void sock_update_memcg(struct sock *sk)
{
}
static inline void sock_release_memcg(struct sock *sk)
{
}
419
#endif /* CONFIG_INET && CONFIG_MEMCG_KMEM */
420 421

#ifdef CONFIG_MEMCG_KMEM
422
extern struct static_key memcg_kmem_enabled_key;
423 424 425 426 427

extern int memcg_limited_groups_array_size;
#define for_each_memcg_cache_index(_idx)	\
	for ((_idx) = 0; i < memcg_limited_groups_array_size; (_idx)++)

428 429
static inline bool memcg_kmem_enabled(void)
{
430
	return static_key_false(&memcg_kmem_enabled_key);
431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449
}

/*
 * In general, we'll do everything in our power to not incur in any overhead
 * for non-memcg users for the kmem functions. Not even a function call, if we
 * can avoid it.
 *
 * Therefore, we'll inline all those functions so that in the best case, we'll
 * see that kmemcg is off for everybody and proceed quickly.  If it is on,
 * we'll still do most of the flag checking inline. We check a lot of
 * conditions, but because they are pretty simple, they are expected to be
 * fast.
 */
bool __memcg_kmem_newpage_charge(gfp_t gfp, struct mem_cgroup **memcg,
					int order);
void __memcg_kmem_commit_charge(struct page *page,
				       struct mem_cgroup *memcg, int order);
void __memcg_kmem_uncharge_pages(struct page *page, int order);

450 451 452 453 454
int memcg_cache_id(struct mem_cgroup *memcg);
int memcg_register_cache(struct mem_cgroup *memcg, struct kmem_cache *s);
void memcg_release_cache(struct kmem_cache *cachep);
void memcg_cache_list_add(struct mem_cgroup *memcg, struct kmem_cache *cachep);

455 456
int memcg_update_cache_size(struct kmem_cache *s, int num_groups);
void memcg_update_array_size(int num_groups);
457 458 459 460

struct kmem_cache *
__memcg_kmem_get_cache(struct kmem_cache *cachep, gfp_t gfp);

G
Glauber Costa 已提交
461
void mem_cgroup_destroy_cache(struct kmem_cache *cachep);
462
void kmem_cache_destroy_memcg_children(struct kmem_cache *s);
G
Glauber Costa 已提交
463

464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532
/**
 * memcg_kmem_newpage_charge: verify if a new kmem allocation is allowed.
 * @gfp: the gfp allocation flags.
 * @memcg: a pointer to the memcg this was charged against.
 * @order: allocation order.
 *
 * returns true if the memcg where the current task belongs can hold this
 * allocation.
 *
 * We return true automatically if this allocation is not to be accounted to
 * any memcg.
 */
static inline bool
memcg_kmem_newpage_charge(gfp_t gfp, struct mem_cgroup **memcg, int order)
{
	if (!memcg_kmem_enabled())
		return true;

	/*
	 * __GFP_NOFAIL allocations will move on even if charging is not
	 * possible. Therefore we don't even try, and have this allocation
	 * unaccounted. We could in theory charge it with
	 * res_counter_charge_nofail, but we hope those allocations are rare,
	 * and won't be worth the trouble.
	 */
	if (!(gfp & __GFP_KMEMCG) || (gfp & __GFP_NOFAIL))
		return true;
	if (in_interrupt() || (!current->mm) || (current->flags & PF_KTHREAD))
		return true;

	/* If the test is dying, just let it go. */
	if (unlikely(fatal_signal_pending(current)))
		return true;

	return __memcg_kmem_newpage_charge(gfp, memcg, order);
}

/**
 * memcg_kmem_uncharge_pages: uncharge pages from memcg
 * @page: pointer to struct page being freed
 * @order: allocation order.
 *
 * there is no need to specify memcg here, since it is embedded in page_cgroup
 */
static inline void
memcg_kmem_uncharge_pages(struct page *page, int order)
{
	if (memcg_kmem_enabled())
		__memcg_kmem_uncharge_pages(page, order);
}

/**
 * memcg_kmem_commit_charge: embeds correct memcg in a page
 * @page: pointer to struct page recently allocated
 * @memcg: the memcg structure we charged against
 * @order: allocation order.
 *
 * Needs to be called after memcg_kmem_newpage_charge, regardless of success or
 * failure of the allocation. if @page is NULL, this function will revert the
 * charges. Otherwise, it will commit the memcg given by @memcg to the
 * corresponding page_cgroup.
 */
static inline void
memcg_kmem_commit_charge(struct page *page, struct mem_cgroup *memcg, int order)
{
	if (memcg_kmem_enabled() && memcg)
		__memcg_kmem_commit_charge(page, memcg, order);
}

533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563
/**
 * memcg_kmem_get_cache: selects the correct per-memcg cache for allocation
 * @cachep: the original global kmem cache
 * @gfp: allocation flags.
 *
 * This function assumes that the task allocating, which determines the memcg
 * in the page allocator, belongs to the same cgroup throughout the whole
 * process.  Misacounting can happen if the task calls memcg_kmem_get_cache()
 * while belonging to a cgroup, and later on changes. This is considered
 * acceptable, and should only happen upon task migration.
 *
 * Before the cache is created by the memcg core, there is also a possible
 * imbalance: the task belongs to a memcg, but the cache being allocated from
 * is the global cache, since the child cache is not yet guaranteed to be
 * ready. This case is also fine, since in this case the GFP_KMEMCG will not be
 * passed and the page allocator will not attempt any cgroup accounting.
 */
static __always_inline struct kmem_cache *
memcg_kmem_get_cache(struct kmem_cache *cachep, gfp_t gfp)
{
	if (!memcg_kmem_enabled())
		return cachep;
	if (gfp & __GFP_NOFAIL)
		return cachep;
	if (in_interrupt() || (!current->mm) || (current->flags & PF_KTHREAD))
		return cachep;
	if (unlikely(fatal_signal_pending(current)))
		return cachep;

	return __memcg_kmem_get_cache(cachep, gfp);
}
564
#else
565 566 567
#define for_each_memcg_cache_index(_idx)	\
	for (; NULL; )

568 569 570 571 572
static inline bool memcg_kmem_enabled(void)
{
	return false;
}

573 574 575 576 577 578 579 580 581 582 583 584 585 586
static inline bool
memcg_kmem_newpage_charge(gfp_t gfp, struct mem_cgroup **memcg, int order)
{
	return true;
}

static inline void memcg_kmem_uncharge_pages(struct page *page, int order)
{
}

static inline void
memcg_kmem_commit_charge(struct page *page, struct mem_cgroup *memcg, int order)
{
}
587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606

static inline int memcg_cache_id(struct mem_cgroup *memcg)
{
	return -1;
}

static inline int memcg_register_cache(struct mem_cgroup *memcg,
				       struct kmem_cache *s)
{
	return 0;
}

static inline void memcg_release_cache(struct kmem_cache *cachep)
{
}

static inline void memcg_cache_list_add(struct mem_cgroup *memcg,
					struct kmem_cache *s)
{
}
607 608 609 610 611 612

static inline struct kmem_cache *
memcg_kmem_get_cache(struct kmem_cache *cachep, gfp_t gfp)
{
	return cachep;
}
613 614 615 616

static inline void kmem_cache_destroy_memcg_children(struct kmem_cache *s)
{
}
617
#endif /* CONFIG_MEMCG_KMEM */
B
Balbir Singh 已提交
618 619
#endif /* _LINUX_MEMCONTROL_H */