pgalloc.h 6.6 KB
Newer Older
1 2
#ifndef _ASM_POWERPC_BOOK3S_64_PGALLOC_H
#define _ASM_POWERPC_BOOK3S_64_PGALLOC_H
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53
/*
 * This program is free software; you can redistribute it and/or
 * modify it under the terms of the GNU General Public License
 * as published by the Free Software Foundation; either version
 * 2 of the License, or (at your option) any later version.
 */

#include <linux/slab.h>
#include <linux/cpumask.h>
#include <linux/percpu.h>

struct vmemmap_backing {
	struct vmemmap_backing *list;
	unsigned long phys;
	unsigned long virt_addr;
};
extern struct vmemmap_backing *vmemmap_list;

/*
 * Functions that deal with pagetables that could be at any level of
 * the table need to be passed an "index_size" so they know how to
 * handle allocation.  For PTE pages (which are linked to a struct
 * page for now, and drawn from the main get_free_pages() pool), the
 * allocation size will be (2^index_size * sizeof(pointer)) and
 * allocations are drawn from the kmem_cache in PGT_CACHE(index_size).
 *
 * The maximum index size needs to be big enough to allow any
 * pagetable sizes we need, but small enough to fit in the low bits of
 * any page table pointer.  In other words all pagetables, even tiny
 * ones, must be aligned to allow at least enough low 0 bits to
 * contain this value.  This value is also used as a mask, so it must
 * be one less than a power of two.
 */
#define MAX_PGTABLE_INDEX_SIZE	0xf

extern struct kmem_cache *pgtable_cache[];
#define PGT_CACHE(shift) ({				\
			BUG_ON(!(shift));		\
			pgtable_cache[(shift) - 1];	\
		})

static inline pgd_t *pgd_alloc(struct mm_struct *mm)
{
	return kmem_cache_alloc(PGT_CACHE(PGD_INDEX_SIZE), GFP_KERNEL);
}

static inline void pgd_free(struct mm_struct *mm, pgd_t *pgd)
{
	kmem_cache_free(PGT_CACHE(PGD_INDEX_SIZE), pgd);
}

54 55 56 57
static inline void pgd_populate(struct mm_struct *mm, pgd_t *pgd, pud_t *pud)
{
	pgd_set(pgd, __pgtable_ptr_val(pud));
}
58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79

static inline pud_t *pud_alloc_one(struct mm_struct *mm, unsigned long addr)
{
	return kmem_cache_alloc(PGT_CACHE(PUD_INDEX_SIZE),
				GFP_KERNEL|__GFP_REPEAT);
}

static inline void pud_free(struct mm_struct *mm, pud_t *pud)
{
	kmem_cache_free(PGT_CACHE(PUD_INDEX_SIZE), pud);
}

static inline void pud_populate(struct mm_struct *mm, pud_t *pud, pmd_t *pmd)
{
	pud_set(pud, __pgtable_ptr_val(pmd));
}

static inline void pmd_populate_kernel(struct mm_struct *mm, pmd_t *pmd,
				       pte_t *pte)
{
	pmd_set(pmd, __pgtable_ptr_val(pte));
}
80 81 82 83 84 85 86
/*
 * FIXME!!
 * Between 4K and 64K pages, we differ in what is stored in pmd. ie.
 * typedef pte_t *pgtable_t; -> 64K
 * typedef struct page *pgtable_t; -> 4k
 */
#ifdef CONFIG_PPC_4K_PAGES
87 88 89 90 91 92
static inline void pmd_populate(struct mm_struct *mm, pmd_t *pmd,
				pgtable_t pte_page)
{
	pmd_set(pmd, __pgtable_ptr_val(page_address(pte_page)));
}

93 94 95 96
static inline pgtable_t pmd_pgtable(pmd_t pmd)
{
	return pmd_page(pmd);
}
97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176

static inline pte_t *pte_alloc_one_kernel(struct mm_struct *mm,
					  unsigned long address)
{
	return (pte_t *)__get_free_page(GFP_KERNEL | __GFP_REPEAT | __GFP_ZERO);
}

static inline pgtable_t pte_alloc_one(struct mm_struct *mm,
				      unsigned long address)
{
	struct page *page;
	pte_t *pte;

	pte = pte_alloc_one_kernel(mm, address);
	if (!pte)
		return NULL;
	page = virt_to_page(pte);
	if (!pgtable_page_ctor(page)) {
		__free_page(page);
		return NULL;
	}
	return page;
}

static inline void pte_free_kernel(struct mm_struct *mm, pte_t *pte)
{
	free_page((unsigned long)pte);
}

static inline void pte_free(struct mm_struct *mm, pgtable_t ptepage)
{
	pgtable_page_dtor(ptepage);
	__free_page(ptepage);
}

static inline void pgtable_free(void *table, unsigned index_size)
{
	if (!index_size)
		free_page((unsigned long)table);
	else {
		BUG_ON(index_size > MAX_PGTABLE_INDEX_SIZE);
		kmem_cache_free(PGT_CACHE(index_size), table);
	}
}

#ifdef CONFIG_SMP
static inline void pgtable_free_tlb(struct mmu_gather *tlb,
				    void *table, int shift)
{
	unsigned long pgf = (unsigned long)table;
	BUG_ON(shift > MAX_PGTABLE_INDEX_SIZE);
	pgf |= shift;
	tlb_remove_table(tlb, (void *)pgf);
}

static inline void __tlb_remove_table(void *_table)
{
	void *table = (void *)((unsigned long)_table & ~MAX_PGTABLE_INDEX_SIZE);
	unsigned shift = (unsigned long)_table & MAX_PGTABLE_INDEX_SIZE;

	pgtable_free(table, shift);
}
#else /* !CONFIG_SMP */
static inline void pgtable_free_tlb(struct mmu_gather *tlb,
				    void *table, int shift)
{
	pgtable_free(table, shift);
}
#endif /* CONFIG_SMP */

static inline void __pte_free_tlb(struct mmu_gather *tlb, pgtable_t table,
				  unsigned long address)
{
	tlb_flush_pgtable(tlb, address);
	pgtable_page_dtor(table);
	pgtable_free_tlb(tlb, page_address(table), 0);
}

#else /* if CONFIG_PPC_64K_PAGES */

177 178
extern pte_t *pte_fragment_alloc(struct mm_struct *, unsigned long, int);
extern void pte_fragment_free(unsigned long *, int);
179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197
extern void pgtable_free_tlb(struct mmu_gather *tlb, void *table, int shift);
#ifdef CONFIG_SMP
extern void __tlb_remove_table(void *_table);
#endif

static inline void pmd_populate(struct mm_struct *mm, pmd_t *pmd,
				pgtable_t pte_page)
{
	pmd_set(pmd, __pgtable_ptr_val(pte_page));
}

static inline pgtable_t pmd_pgtable(pmd_t pmd)
{
	return (pgtable_t)pmd_page_vaddr(pmd);
}

static inline pte_t *pte_alloc_one_kernel(struct mm_struct *mm,
					  unsigned long address)
{
198
	return (pte_t *)pte_fragment_alloc(mm, address, 1);
199 200 201 202 203
}

static inline pgtable_t pte_alloc_one(struct mm_struct *mm,
					unsigned long address)
{
204
	return (pgtable_t)pte_fragment_alloc(mm, address, 0);
205 206 207 208
}

static inline void pte_free_kernel(struct mm_struct *mm, pte_t *pte)
{
209
	pte_fragment_free((unsigned long *)pte, 1);
210 211 212 213
}

static inline void pte_free(struct mm_struct *mm, pgtable_t ptepage)
{
214
	pte_fragment_free((unsigned long *)ptepage, 0);
215 216 217 218 219 220 221 222
}

static inline void __pte_free_tlb(struct mmu_gather *tlb, pgtable_t table,
				  unsigned long address)
{
	tlb_flush_pgtable(tlb, address);
	pgtable_free_tlb(tlb, table, 0);
}
223
#endif /* CONFIG_PPC_4K_PAGES */
224 225 226 227 228 229 230 231 232 233 234 235

static inline pmd_t *pmd_alloc_one(struct mm_struct *mm, unsigned long addr)
{
	return kmem_cache_alloc(PGT_CACHE(PMD_CACHE_INDEX),
				GFP_KERNEL|__GFP_REPEAT);
}

static inline void pmd_free(struct mm_struct *mm, pmd_t *pmd)
{
	kmem_cache_free(PGT_CACHE(PMD_CACHE_INDEX), pmd);
}

236 237 238 239 240
static inline void __pmd_free_tlb(struct mmu_gather *tlb, pmd_t *pmd,
                                  unsigned long address)
{
        return pgtable_free_tlb(tlb, pmd, PMD_CACHE_INDEX);
}
241

242 243 244 245 246
static inline void __pud_free_tlb(struct mmu_gather *tlb, pud_t *pud,
                                  unsigned long address)
{
        pgtable_free_tlb(tlb, pud, PUD_INDEX_SIZE);
}
247 248 249

#define check_pgt_cache()	do { } while (0)

250
#endif /* _ASM_POWERPC_BOOK3S_64_PGALLOC_H */