octeon-wdt-main.c 16.5 KB
Newer Older
1 2 3
/*
 * Octeon Watchdog driver
 *
4
 * Copyright (C) 2007-2017 Cavium, Inc.
5
 *
6 7
 * Converted to use WATCHDOG_CORE by Aaro Koskinen <aaro.koskinen@iki.fi>.
 *
8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56
 * Some parts derived from wdt.c
 *
 *	(c) Copyright 1996-1997 Alan Cox <alan@lxorguk.ukuu.org.uk>,
 *						All Rights Reserved.
 *
 *	This program is free software; you can redistribute it and/or
 *	modify it under the terms of the GNU General Public License
 *	as published by the Free Software Foundation; either version
 *	2 of the License, or (at your option) any later version.
 *
 *	Neither Alan Cox nor CymruNet Ltd. admit liability nor provide
 *	warranty for any of this software. This material is provided
 *	"AS-IS" and at no charge.
 *
 *	(c) Copyright 1995    Alan Cox <alan@lxorguk.ukuu.org.uk>
 *
 * This file is subject to the terms and conditions of the GNU General Public
 * License.  See the file "COPYING" in the main directory of this archive
 * for more details.
 *
 *
 * The OCTEON watchdog has a maximum timeout of 2^32 * io_clock.
 * For most systems this is less than 10 seconds, so to allow for
 * software to request longer watchdog heartbeats, we maintain software
 * counters to count multiples of the base rate.  If the system locks
 * up in such a manner that we can not run the software counters, the
 * only result is a watchdog reset sooner than was requested.  But
 * that is OK, because in this case userspace would likely not be able
 * to do anything anyhow.
 *
 * The hardware watchdog interval we call the period.  The OCTEON
 * watchdog goes through several stages, after the first period an
 * irq is asserted, then if it is not reset, after the next period NMI
 * is asserted, then after an additional period a chip wide soft reset.
 * So for the software counters, we reset watchdog after each period
 * and decrement the counter.  But for the last two periods we need to
 * let the watchdog progress to the NMI stage so we disable the irq
 * and let it proceed.  Once in the NMI, we print the register state
 * to the serial port and then wait for the reset.
 *
 * A watchdog is maintained for each CPU in the system, that way if
 * one CPU suffers a lockup, we also get a register dump and reset.
 * The userspace ping resets the watchdog on all CPUs.
 *
 * Before userspace opens the watchdog device, we still run the
 * watchdogs to catch any lockups that may be kernel related.
 *
 */

57 58
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt

59 60 61 62 63 64
#include <linux/interrupt.h>
#include <linux/watchdog.h>
#include <linux/cpumask.h>
#include <linux/module.h>
#include <linux/delay.h>
#include <linux/cpu.h>
65
#include <linux/irq.h>
66 67 68 69 70

#include <asm/mipsregs.h>
#include <asm/uasm.h>

#include <asm/octeon/octeon.h>
71
#include <asm/octeon/cvmx-boot-vector.h>
72
#include <asm/octeon/cvmx-ciu2-defs.h>
73 74 75 76
#include <asm/octeon/cvmx-rst-defs.h>

/* Watchdog interrupt major block number (8 MSBs of intsn) */
#define WD_BLOCK_NUMBER		0x01
77 78

static int divisor;
79 80 81 82 83 84 85 86 87 88 89

/* The count needed to achieve timeout_sec. */
static unsigned int timeout_cnt;

/* The maximum period supported. */
static unsigned int max_timeout_sec;

/* The current period.  */
static unsigned int timeout_sec;

/* Set to non-zero when userspace countdown mode active */
90
static bool do_countdown;
91 92 93 94 95 96 97
static unsigned int countdown_reset;
static unsigned int per_cpu_countdown[NR_CPUS];

static cpumask_t irq_enabled_cpus;

#define WD_TIMO 60			/* Default heartbeat = 60 seconds */

98 99
#define CVMX_GSERX_SCRATCH(offset) (CVMX_ADD_IO_SEG(0x0001180090000020ull) + ((offset) & 15) * 0x1000000ull)

100
static int heartbeat = WD_TIMO;
101
module_param(heartbeat, int, 0444);
102 103 104 105
MODULE_PARM_DESC(heartbeat,
	"Watchdog heartbeat in seconds. (0 < heartbeat, default="
				__MODULE_STRING(WD_TIMO) ")");

W
Wim Van Sebroeck 已提交
106
static bool nowayout = WATCHDOG_NOWAYOUT;
107
module_param(nowayout, bool, 0444);
108 109 110 111
MODULE_PARM_DESC(nowayout,
	"Watchdog cannot be stopped once started (default="
				__MODULE_STRING(WATCHDOG_NOWAYOUT) ")");

112 113 114 115 116
static int disable;
module_param(disable, int, 0444);
MODULE_PARM_DESC(disable,
	"Disable the watchdog entirely (default=0)");

117
static struct cvmx_boot_vector_element *octeon_wdt_bootvector;
118 119 120 121 122 123

void octeon_wdt_nmi_stage2(void);

static int cpu2core(int cpu)
{
#ifdef CONFIG_SMP
124
	return cpu_logical_map(cpu) & 0x3f;
125 126 127 128 129 130 131 132 133 134 135 136 137 138 139
#else
	return cvmx_get_core_num();
#endif
}

/**
 * Poke the watchdog when an interrupt is received
 *
 * @cpl:
 * @dev_id:
 *
 * Returns
 */
static irqreturn_t octeon_wdt_poke_irq(int cpl, void *dev_id)
{
140 141 142
	int cpu = raw_smp_processor_id();
	unsigned int core = cpu2core(cpu);
	int node = cpu_to_node(cpu);
143

144
	if (do_countdown) {
145 146
		if (per_cpu_countdown[cpu] > 0) {
			/* We're alive, poke the watchdog */
147
			cvmx_write_csr_node(node, CVMX_CIU_PP_POKEX(core), 1);
148 149 150 151 152 153 154 155
			per_cpu_countdown[cpu]--;
		} else {
			/* Bad news, you are about to reboot. */
			disable_irq_nosync(cpl);
			cpumask_clear_cpu(cpu, &irq_enabled_cpus);
		}
	} else {
		/* Not open, just ping away... */
156
		cvmx_write_csr_node(node, CVMX_CIU_PP_POKEX(core), 1);
157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185
	}
	return IRQ_HANDLED;
}

/* From setup.c */
extern int prom_putchar(char c);

/**
 * Write a string to the uart
 *
 * @str:        String to write
 */
static void octeon_wdt_write_string(const char *str)
{
	/* Just loop writing one byte at a time */
	while (*str)
		prom_putchar(*str++);
}

/**
 * Write a hex number out of the uart
 *
 * @value:      Number to display
 * @digits:     Number of digits to print (1 to 16)
 */
static void octeon_wdt_write_hex(u64 value, int digits)
{
	int d;
	int v;
186

187 188 189 190 191 192 193 194 195
	for (d = 0; d < digits; d++) {
		v = (value >> ((digits - d - 1) * 4)) & 0xf;
		if (v >= 10)
			prom_putchar('a' + v - 10);
		else
			prom_putchar('0' + v);
	}
}

196
static const char reg_name[][3] = {
197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230
	"$0", "at", "v0", "v1", "a0", "a1", "a2", "a3",
	"a4", "a5", "a6", "a7", "t0", "t1", "t2", "t3",
	"s0", "s1", "s2", "s3", "s4", "s5", "s6", "s7",
	"t8", "t9", "k0", "k1", "gp", "sp", "s8", "ra"
};

/**
 * NMI stage 3 handler. NMIs are handled in the following manner:
 * 1) The first NMI handler enables CVMSEG and transfers from
 * the bootbus region into normal memory. It is careful to not
 * destroy any registers.
 * 2) The second stage handler uses CVMSEG to save the registers
 * and create a stack for C code. It then calls the third level
 * handler with one argument, a pointer to the register values.
 * 3) The third, and final, level handler is the following C
 * function that prints out some useful infomration.
 *
 * @reg:    Pointer to register state before the NMI
 */
void octeon_wdt_nmi_stage3(u64 reg[32])
{
	u64 i;

	unsigned int coreid = cvmx_get_core_num();
	/*
	 * Save status and cause early to get them before any changes
	 * might happen.
	 */
	u64 cp0_cause = read_c0_cause();
	u64 cp0_status = read_c0_status();
	u64 cp0_error_epc = read_c0_errorepc();
	u64 cp0_epc = read_c0_epc();

	/* Delay so output from all cores output is not jumbled together. */
231
	udelay(85000 * coreid);
232 233

	octeon_wdt_write_string("\r\n*** NMI Watchdog interrupt on Core 0x");
234
	octeon_wdt_write_hex(coreid, 2);
235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256
	octeon_wdt_write_string(" ***\r\n");
	for (i = 0; i < 32; i++) {
		octeon_wdt_write_string("\t");
		octeon_wdt_write_string(reg_name[i]);
		octeon_wdt_write_string("\t0x");
		octeon_wdt_write_hex(reg[i], 16);
		if (i & 1)
			octeon_wdt_write_string("\r\n");
	}
	octeon_wdt_write_string("\terr_epc\t0x");
	octeon_wdt_write_hex(cp0_error_epc, 16);

	octeon_wdt_write_string("\tepc\t0x");
	octeon_wdt_write_hex(cp0_epc, 16);
	octeon_wdt_write_string("\r\n");

	octeon_wdt_write_string("\tstatus\t0x");
	octeon_wdt_write_hex(cp0_status, 16);
	octeon_wdt_write_string("\tcause\t0x");
	octeon_wdt_write_hex(cp0_cause, 16);
	octeon_wdt_write_string("\r\n");

257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278
	/* The CIU register is different for each Octeon model. */
	if (OCTEON_IS_MODEL(OCTEON_CN68XX)) {
		octeon_wdt_write_string("\tsrc_wd\t0x");
		octeon_wdt_write_hex(cvmx_read_csr(CVMX_CIU2_SRC_PPX_IP2_WDOG(coreid)), 16);
		octeon_wdt_write_string("\ten_wd\t0x");
		octeon_wdt_write_hex(cvmx_read_csr(CVMX_CIU2_EN_PPX_IP2_WDOG(coreid)), 16);
		octeon_wdt_write_string("\r\n");
		octeon_wdt_write_string("\tsrc_rml\t0x");
		octeon_wdt_write_hex(cvmx_read_csr(CVMX_CIU2_SRC_PPX_IP2_RML(coreid)), 16);
		octeon_wdt_write_string("\ten_rml\t0x");
		octeon_wdt_write_hex(cvmx_read_csr(CVMX_CIU2_EN_PPX_IP2_RML(coreid)), 16);
		octeon_wdt_write_string("\r\n");
		octeon_wdt_write_string("\tsum\t0x");
		octeon_wdt_write_hex(cvmx_read_csr(CVMX_CIU2_SUM_PPX_IP2(coreid)), 16);
		octeon_wdt_write_string("\r\n");
	} else if (!octeon_has_feature(OCTEON_FEATURE_CIU3)) {
		octeon_wdt_write_string("\tsum0\t0x");
		octeon_wdt_write_hex(cvmx_read_csr(CVMX_CIU_INTX_SUM0(coreid * 2)), 16);
		octeon_wdt_write_string("\ten0\t0x");
		octeon_wdt_write_hex(cvmx_read_csr(CVMX_CIU_INTX_EN0(coreid * 2)), 16);
		octeon_wdt_write_string("\r\n");
	}
279 280

	octeon_wdt_write_string("*** Chip soft reset soon ***\r\n");
281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328

	/*
	 * G-30204: We must trigger a soft reset before watchdog
	 * does an incomplete job of doing it.
	 */
	if (OCTEON_IS_OCTEON3() && !OCTEON_IS_MODEL(OCTEON_CN70XX)) {
		u64 scr;
		unsigned int node = cvmx_get_node_num();
		unsigned int lcore = cvmx_get_local_core_num();
		union cvmx_ciu_wdogx ciu_wdog;

		/*
		 * Wait for other cores to print out information, but
		 * not too long.  Do the soft reset before watchdog
		 * can trigger it.
		 */
		do {
			ciu_wdog.u64 = cvmx_read_csr_node(node, CVMX_CIU_WDOGX(lcore));
		} while (ciu_wdog.s.cnt > 0x10000);

		scr = cvmx_read_csr_node(0, CVMX_GSERX_SCRATCH(0));
		scr |= 1 << 11; /* Indicate watchdog in bit 11 */
		cvmx_write_csr_node(0, CVMX_GSERX_SCRATCH(0), scr);
		cvmx_write_csr_node(0, CVMX_RST_SOFT_RST, 1);
	}
}

static int octeon_wdt_cpu_to_irq(int cpu)
{
	unsigned int coreid;
	int node;
	int irq;

	coreid = cpu2core(cpu);
	node = cpu_to_node(cpu);

	if (octeon_has_feature(OCTEON_FEATURE_CIU3)) {
		struct irq_domain *domain;
		int hwirq;

		domain = octeon_irq_get_block_domain(node,
						     WD_BLOCK_NUMBER);
		hwirq = WD_BLOCK_NUMBER << 12 | 0x200 | coreid;
		irq = irq_find_mapping(domain, hwirq);
	} else {
		irq = OCTEON_IRQ_WDOG0 + coreid;
	}
	return irq;
329 330
}

331
static int octeon_wdt_cpu_pre_down(unsigned int cpu)
332 333
{
	unsigned int core;
334
	int node;
335 336 337 338
	union cvmx_ciu_wdogx ciu_wdog;

	core = cpu2core(cpu);

339
	node = cpu_to_node(cpu);
340 341

	/* Poke the watchdog to clear out its state */
342
	cvmx_write_csr_node(node, CVMX_CIU_PP_POKEX(core), 1);
343 344 345

	/* Disable the hardware. */
	ciu_wdog.u64 = 0;
346
	cvmx_write_csr_node(node, CVMX_CIU_WDOGX(core), ciu_wdog.u64);
347

348
	free_irq(octeon_wdt_cpu_to_irq(cpu), octeon_wdt_poke_irq);
349
	return 0;
350 351
}

352
static int octeon_wdt_cpu_online(unsigned int cpu)
353 354 355 356
{
	unsigned int core;
	unsigned int irq;
	union cvmx_ciu_wdogx ciu_wdog;
357 358 359
	int node;
	struct irq_domain *domain;
	int hwirq;
360 361

	core = cpu2core(cpu);
362
	node = cpu_to_node(cpu);
363

364 365
	octeon_wdt_bootvector[core].target_ptr = (u64)octeon_wdt_nmi_stage2;

366 367
	/* Disable it before doing anything with the interrupts. */
	ciu_wdog.u64 = 0;
368
	cvmx_write_csr_node(node, CVMX_CIU_WDOGX(core), ciu_wdog.u64);
369 370 371

	per_cpu_countdown[cpu] = countdown_reset;

372 373 374 375 376 377 378 379 380 381 382
	if (octeon_has_feature(OCTEON_FEATURE_CIU3)) {
		/* Must get the domain for the watchdog block */
		domain = octeon_irq_get_block_domain(node, WD_BLOCK_NUMBER);

		/* Get a irq for the wd intsn (hardware interrupt) */
		hwirq = WD_BLOCK_NUMBER << 12 | 0x200 | core;
		irq = irq_create_mapping(domain, hwirq);
		irqd_set_trigger_type(irq_get_irq_data(irq),
				      IRQ_TYPE_EDGE_RISING);
	} else
		irq = OCTEON_IRQ_WDOG0 + core;
383 384

	if (request_irq(irq, octeon_wdt_poke_irq,
385
			IRQF_NO_THREAD, "octeon_wdt", octeon_wdt_poke_irq))
386 387
		panic("octeon_wdt: Couldn't obtain irq %d", irq);

388 389 390 391 392 393 394 395 396
	/* Must set the irq affinity here */
	if (octeon_has_feature(OCTEON_FEATURE_CIU3)) {
		cpumask_t mask;

		cpumask_clear(&mask);
		cpumask_set_cpu(cpu, &mask);
		irq_set_affinity(irq, &mask);
	}

397 398 399
	cpumask_set_cpu(cpu, &irq_enabled_cpus);

	/* Poke the watchdog to clear out its state */
400
	cvmx_write_csr_node(node, CVMX_CIU_PP_POKEX(core), 1);
401 402 403 404 405

	/* Finally enable the watchdog now that all handlers are installed */
	ciu_wdog.u64 = 0;
	ciu_wdog.s.len = timeout_cnt;
	ciu_wdog.s.mode = 3;	/* 3 = Interrupt + NMI + Soft-Reset */
406
	cvmx_write_csr_node(node, CVMX_CIU_WDOGX(core), ciu_wdog.u64);
407

408
	return 0;
409 410
}

411
static int octeon_wdt_ping(struct watchdog_device __always_unused *wdog)
412 413 414
{
	int cpu;
	int coreid;
415
	int node;
416

417 418 419
	if (disable)
		return 0;

420 421
	for_each_online_cpu(cpu) {
		coreid = cpu2core(cpu);
422 423
		node = cpu_to_node(cpu);
		cvmx_write_csr_node(node, CVMX_CIU_PP_POKEX(coreid), 1);
424
		per_cpu_countdown[cpu] = countdown_reset;
425
		if ((countdown_reset || !do_countdown) &&
426 427
		    !cpumask_test_cpu(cpu, &irq_enabled_cpus)) {
			/* We have to enable the irq */
428
			enable_irq(octeon_wdt_cpu_to_irq(cpu));
429 430 431
			cpumask_set_cpu(cpu, &irq_enabled_cpus);
		}
	}
432
	return 0;
433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457
}

static void octeon_wdt_calc_parameters(int t)
{
	unsigned int periods;

	timeout_sec = max_timeout_sec;


	/*
	 * Find the largest interrupt period, that can evenly divide
	 * the requested heartbeat time.
	 */
	while ((t % timeout_sec) != 0)
		timeout_sec--;

	periods = t / timeout_sec;

	/*
	 * The last two periods are after the irq is disabled, and
	 * then to the nmi, so we subtract them off.
	 */

	countdown_reset = periods > 2 ? periods - 2 : 0;
	heartbeat = t;
458
	timeout_cnt = ((octeon_get_io_clock_rate() / divisor) * timeout_sec) >> 8;
459 460
}

461 462
static int octeon_wdt_set_timeout(struct watchdog_device *wdog,
				  unsigned int t)
463 464 465 466
{
	int cpu;
	int coreid;
	union cvmx_ciu_wdogx ciu_wdog;
467
	int node;
468 469 470 471 472 473

	if (t <= 0)
		return -1;

	octeon_wdt_calc_parameters(t);

474 475 476
	if (disable)
		return 0;

477 478
	for_each_online_cpu(cpu) {
		coreid = cpu2core(cpu);
479 480
		node = cpu_to_node(cpu);
		cvmx_write_csr_node(node, CVMX_CIU_PP_POKEX(coreid), 1);
481 482 483
		ciu_wdog.u64 = 0;
		ciu_wdog.s.len = timeout_cnt;
		ciu_wdog.s.mode = 3;	/* 3 = Interrupt + NMI + Soft-Reset */
484 485
		cvmx_write_csr_node(node, CVMX_CIU_WDOGX(coreid), ciu_wdog.u64);
		cvmx_write_csr_node(node, CVMX_CIU_PP_POKEX(coreid), 1);
486
	}
487
	octeon_wdt_ping(wdog); /* Get the irqs back on. */
488 489 490
	return 0;
}

491
static int octeon_wdt_start(struct watchdog_device *wdog)
492
{
493
	octeon_wdt_ping(wdog);
494
	do_countdown = 1;
495
	return 0;
496 497
}

498
static int octeon_wdt_stop(struct watchdog_device *wdog)
499
{
500
	do_countdown = 0;
501
	octeon_wdt_ping(wdog);
502 503 504
	return 0;
}

505 506 507
static const struct watchdog_info octeon_wdt_info = {
	.options = WDIOF_SETTIMEOUT | WDIOF_MAGICCLOSE | WDIOF_KEEPALIVEPING,
	.identity = "OCTEON",
508 509
};

510 511 512 513 514 515
static const struct watchdog_ops octeon_wdt_ops = {
	.owner		= THIS_MODULE,
	.start		= octeon_wdt_start,
	.stop		= octeon_wdt_stop,
	.ping		= octeon_wdt_ping,
	.set_timeout	= octeon_wdt_set_timeout,
516 517
};

518 519 520 521
static struct watchdog_device octeon_wdt = {
	.info	= &octeon_wdt_info,
	.ops	= &octeon_wdt_ops,
};
522

523
static enum cpuhp_state octeon_wdt_online;
524 525 526 527 528 529 530 531 532
/**
 * Module/ driver initialization.
 *
 * Returns Zero on success
 */
static int __init octeon_wdt_init(void)
{
	int ret;

533 534 535 536 537 538
	octeon_wdt_bootvector = cvmx_boot_vector_get();
	if (!octeon_wdt_bootvector) {
		pr_err("Error: Cannot allocate boot vector.\n");
		return -ENOMEM;
	}

539 540
	if (OCTEON_IS_MODEL(OCTEON_CN68XX))
		divisor = 0x200;
541 542
	else if (OCTEON_IS_MODEL(OCTEON_CN78XX))
		divisor = 0x400;
543 544 545
	else
		divisor = 0x100;

546 547 548
	/*
	 * Watchdog time expiration length = The 16 bits of LEN
	 * represent the most significant bits of a 24 bit decrementer
549
	 * that decrements every divisor cycle.
550 551 552 553 554 555 556
	 *
	 * Try for a timeout of 5 sec, if that fails a smaller number
	 * of even seconds,
	 */
	max_timeout_sec = 6;
	do {
		max_timeout_sec--;
557
		timeout_cnt = ((octeon_get_io_clock_rate() / divisor) * max_timeout_sec) >> 8;
558 559 560 561 562 563
	} while (timeout_cnt > 65535);

	BUG_ON(timeout_cnt == 0);

	octeon_wdt_calc_parameters(heartbeat);

564
	pr_info("Initial granularity %d Sec\n", timeout_sec);
565

566 567 568 569 570 571
	octeon_wdt.timeout	= timeout_sec;
	octeon_wdt.max_timeout	= UINT_MAX;

	watchdog_set_nowayout(&octeon_wdt, nowayout);

	ret = watchdog_register_device(&octeon_wdt);
572
	if (ret) {
573 574
		pr_err("watchdog_register_device() failed: %d\n", ret);
		return ret;
575 576
	}

577 578 579 580 581
	if (disable) {
		pr_notice("disabled\n");
		return 0;
	}

582 583
	cpumask_clear(&irq_enabled_cpus);

584 585 586 587 588
	ret = cpuhp_setup_state(CPUHP_AP_ONLINE_DYN, "watchdog/octeon:online",
				octeon_wdt_cpu_online, octeon_wdt_cpu_pre_down);
	if (ret < 0)
		goto err;
	octeon_wdt_online = ret;
589
	return 0;
590 591 592 593
err:
	cvmx_write_csr(CVMX_MIO_BOOT_LOC_CFGX(0), 0);
	watchdog_unregister_device(&octeon_wdt);
	return ret;
594 595 596 597 598 599 600
}

/**
 * Module / driver shutdown
 */
static void __exit octeon_wdt_cleanup(void)
{
601
	watchdog_unregister_device(&octeon_wdt);
602 603 604 605

	if (disable)
		return;

606
	cpuhp_remove_state(octeon_wdt_online);
607

608 609 610 611 612 613 614 615
	/*
	 * Disable the boot-bus memory, the code it points to is soon
	 * to go missing.
	 */
	cvmx_write_csr(CVMX_MIO_BOOT_LOC_CFGX(0), 0);
}

MODULE_LICENSE("GPL");
616 617
MODULE_AUTHOR("Cavium Inc. <support@cavium.com>");
MODULE_DESCRIPTION("Cavium Inc. OCTEON Watchdog driver.");
618 619
module_init(octeon_wdt_init);
module_exit(octeon_wdt_cleanup);