setup.c 30.8 KB
Newer Older
1 2 3 4 5 6
/*
 * This file is subject to the terms and conditions of the GNU General Public
 * License.  See the file "COPYING" in the main directory of this archive
 * for more details.
 *
 * Copyright (C) 2004-2007 Cavium Networks
R
Ralf Baechle 已提交
7 8
 * Copyright (C) 2008, 2009 Wind River Systems
 *   written by Ralf Baechle <ralf@linux-mips.org>
9
 */
R
Ralf Baechle 已提交
10
#include <linux/compiler.h>
11
#include <linux/vmalloc.h>
12
#include <linux/init.h>
R
Ralf Baechle 已提交
13
#include <linux/kernel.h>
14 15
#include <linux/console.h>
#include <linux/delay.h>
16
#include <linux/export.h>
17 18 19
#include <linux/interrupt.h>
#include <linux/io.h>
#include <linux/serial.h>
20
#include <linux/smp.h>
21 22 23 24 25 26 27
#include <linux/types.h>
#include <linux/string.h>	/* for memset */
#include <linux/tty.h>
#include <linux/time.h>
#include <linux/platform_device.h>
#include <linux/serial_core.h>
#include <linux/serial_8250.h>
28 29
#include <linux/of_fdt.h>
#include <linux/libfdt.h>
30
#include <linux/kexec.h>
31 32 33 34 35 36 37 38 39 40 41

#include <asm/processor.h>
#include <asm/reboot.h>
#include <asm/smp-ops.h>
#include <asm/irq_cpu.h>
#include <asm/mipsregs.h>
#include <asm/bootinfo.h>
#include <asm/sections.h>
#include <asm/time.h>

#include <asm/octeon/octeon.h>
42
#include <asm/octeon/pci-octeon.h>
43
#include <asm/octeon/cvmx-mio-defs.h>
44 45 46 47 48 49 50 51 52 53 54 55 56 57

extern struct plat_smp_ops octeon_smp_ops;

#ifdef CONFIG_PCI
extern void pci_console_init(const char *arg);
#endif

static unsigned long long MAX_MEMORY = 512ull << 20;

struct octeon_boot_descriptor *octeon_boot_desc_ptr;

struct cvmx_bootinfo *octeon_bootinfo;
EXPORT_SYMBOL(octeon_bootinfo);

58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172
static unsigned long long RESERVE_LOW_MEM = 0ull;
#ifdef CONFIG_KEXEC
#ifdef CONFIG_SMP
/*
 * Wait for relocation code is prepared and send
 * secondary CPUs to spin until kernel is relocated.
 */
static void octeon_kexec_smp_down(void *ignored)
{
	int cpu = smp_processor_id();

	local_irq_disable();
	set_cpu_online(cpu, false);
	while (!atomic_read(&kexec_ready_to_reboot))
		cpu_relax();

	asm volatile (
	"	sync						\n"
	"	synci	($0)					\n");

	relocated_kexec_smp_wait(NULL);
}
#endif

#define OCTEON_DDR0_BASE    (0x0ULL)
#define OCTEON_DDR0_SIZE    (0x010000000ULL)
#define OCTEON_DDR1_BASE    (0x410000000ULL)
#define OCTEON_DDR1_SIZE    (0x010000000ULL)
#define OCTEON_DDR2_BASE    (0x020000000ULL)
#define OCTEON_DDR2_SIZE    (0x3e0000000ULL)
#define OCTEON_MAX_PHY_MEM_SIZE (16*1024*1024*1024ULL)

static struct kimage *kimage_ptr;

static void kexec_bootmem_init(uint64_t mem_size, uint32_t low_reserved_bytes)
{
	int64_t addr;
	struct cvmx_bootmem_desc *bootmem_desc;

	bootmem_desc = cvmx_bootmem_get_desc();

	if (mem_size > OCTEON_MAX_PHY_MEM_SIZE) {
		mem_size = OCTEON_MAX_PHY_MEM_SIZE;
		pr_err("Error: requested memory too large,"
		       "truncating to maximum size\n");
	}

	bootmem_desc->major_version = CVMX_BOOTMEM_DESC_MAJ_VER;
	bootmem_desc->minor_version = CVMX_BOOTMEM_DESC_MIN_VER;

	addr = (OCTEON_DDR0_BASE + RESERVE_LOW_MEM + low_reserved_bytes);
	bootmem_desc->head_addr = 0;

	if (mem_size <= OCTEON_DDR0_SIZE) {
		__cvmx_bootmem_phy_free(addr,
				mem_size - RESERVE_LOW_MEM -
				low_reserved_bytes, 0);
		return;
	}

	__cvmx_bootmem_phy_free(addr,
			OCTEON_DDR0_SIZE - RESERVE_LOW_MEM -
			low_reserved_bytes, 0);

	mem_size -= OCTEON_DDR0_SIZE;

	if (mem_size > OCTEON_DDR1_SIZE) {
		__cvmx_bootmem_phy_free(OCTEON_DDR1_BASE, OCTEON_DDR1_SIZE, 0);
		__cvmx_bootmem_phy_free(OCTEON_DDR2_BASE,
				mem_size - OCTEON_DDR1_SIZE, 0);
	} else
		__cvmx_bootmem_phy_free(OCTEON_DDR1_BASE, mem_size, 0);
}

static int octeon_kexec_prepare(struct kimage *image)
{
	int i;
	char *bootloader = "kexec";

	octeon_boot_desc_ptr->argc = 0;
	for (i = 0; i < image->nr_segments; i++) {
		if (!strncmp(bootloader, (char *)image->segment[i].buf,
				strlen(bootloader))) {
			/*
			 * convert command line string to array
			 * of parameters (as bootloader does).
			 */
			int argc = 0, offt;
			char *str = (char *)image->segment[i].buf;
			char *ptr = strchr(str, ' ');
			while (ptr && (OCTEON_ARGV_MAX_ARGS > argc)) {
				*ptr = '\0';
				if (ptr[1] != ' ') {
					offt = (int)(ptr - str + 1);
					octeon_boot_desc_ptr->argv[argc] =
						image->segment[i].mem + offt;
					argc++;
				}
				ptr = strchr(ptr + 1, ' ');
			}
			octeon_boot_desc_ptr->argc = argc;
			break;
		}
	}

	/*
	 * Information about segments will be needed during pre-boot memory
	 * initialization.
	 */
	kimage_ptr = image;
	return 0;
}

static void octeon_generic_shutdown(void)
{
173 174 175 176
	int i;
#ifdef CONFIG_SMP
	int cpu;
#endif
177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251
	struct cvmx_bootmem_desc *bootmem_desc;
	void *named_block_array_ptr;

	bootmem_desc = cvmx_bootmem_get_desc();
	named_block_array_ptr =
		cvmx_phys_to_ptr(bootmem_desc->named_block_array_addr);

#ifdef CONFIG_SMP
	/* disable watchdogs */
	for_each_online_cpu(cpu)
		cvmx_write_csr(CVMX_CIU_WDOGX(cpu_logical_map(cpu)), 0);
#else
	cvmx_write_csr(CVMX_CIU_WDOGX(cvmx_get_core_num()), 0);
#endif
	if (kimage_ptr != kexec_crash_image) {
		memset(named_block_array_ptr,
			0x0,
			CVMX_BOOTMEM_NUM_NAMED_BLOCKS *
			sizeof(struct cvmx_bootmem_named_block_desc));
		/*
		 * Mark all memory (except low 0x100000 bytes) as free.
		 * It is the same thing that bootloader does.
		 */
		kexec_bootmem_init(octeon_bootinfo->dram_size*1024ULL*1024ULL,
				0x100000);
		/*
		 * Allocate all segments to avoid their corruption during boot.
		 */
		for (i = 0; i < kimage_ptr->nr_segments; i++)
			cvmx_bootmem_alloc_address(
				kimage_ptr->segment[i].memsz + 2*PAGE_SIZE,
				kimage_ptr->segment[i].mem - PAGE_SIZE,
				PAGE_SIZE);
	} else {
		/*
		 * Do not mark all memory as free. Free only named sections
		 * leaving the rest of memory unchanged.
		 */
		struct cvmx_bootmem_named_block_desc *ptr =
			(struct cvmx_bootmem_named_block_desc *)
			named_block_array_ptr;

		for (i = 0; i < bootmem_desc->named_block_num_blocks; i++)
			if (ptr[i].size)
				cvmx_bootmem_free_named(ptr[i].name);
	}
	kexec_args[2] = 1UL; /* running on octeon_main_processor */
	kexec_args[3] = (unsigned long)octeon_boot_desc_ptr;
#ifdef CONFIG_SMP
	secondary_kexec_args[2] = 0UL; /* running on secondary cpu */
	secondary_kexec_args[3] = (unsigned long)octeon_boot_desc_ptr;
#endif
}

static void octeon_shutdown(void)
{
	octeon_generic_shutdown();
#ifdef CONFIG_SMP
	smp_call_function(octeon_kexec_smp_down, NULL, 0);
	smp_wmb();
	while (num_online_cpus() > 1) {
		cpu_relax();
		mdelay(1);
	}
#endif
}

static void octeon_crash_shutdown(struct pt_regs *regs)
{
	octeon_generic_shutdown();
	default_machine_crash_shutdown(regs);
}

#endif /* CONFIG_KEXEC */

252 253 254 255 256
#ifdef CONFIG_CAVIUM_RESERVE32
uint64_t octeon_reserve32_memory;
EXPORT_SYMBOL(octeon_reserve32_memory);
#endif

257 258 259 260 261 262
#ifdef CONFIG_KEXEC
/* crashkernel cmdline parameter is parsed _after_ memory setup
 * we also parse it here (workaround for EHB5200) */
static uint64_t crashk_size, crashk_base;
#endif

263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299
static int octeon_uart;

extern asmlinkage void handle_int(void);

/**
 * Return non zero if we are currently running in the Octeon simulator
 *
 * Returns
 */
int octeon_is_simulation(void)
{
	return octeon_bootinfo->board_type == CVMX_BOARD_TYPE_SIM;
}
EXPORT_SYMBOL(octeon_is_simulation);

/**
 * Return true if Octeon is in PCI Host mode. This means
 * Linux can control the PCI bus.
 *
 * Returns Non zero if Octeon in host mode.
 */
int octeon_is_pci_host(void)
{
#ifdef CONFIG_PCI
	return octeon_bootinfo->config_flags & CVMX_BOOTINFO_CFG_FLAG_PCI_HOST;
#else
	return 0;
#endif
}

/**
 * Get the clock rate of Octeon
 *
 * Returns Clock rate in HZ
 */
uint64_t octeon_get_clock_rate(void)
{
300 301 302
	struct cvmx_sysinfo *sysinfo = cvmx_sysinfo_get();

	return sysinfo->cpu_clock_hz;
303 304 305
}
EXPORT_SYMBOL(octeon_get_clock_rate);

306 307 308 309 310 311 312 313 314
static u64 octeon_io_clock_rate;

u64 octeon_get_io_clock_rate(void)
{
	return octeon_io_clock_rate;
}
EXPORT_SYMBOL(octeon_get_io_clock_rate);


315 316 317 318 319
/**
 * Write to the LCD display connected to the bootbus. This display
 * exists on most Cavium evaluation boards. If it doesn't exist, then
 * this function doesn't do anything.
 *
R
Ralf Baechle 已提交
320
 * @s:	    String to write
321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341
 */
void octeon_write_lcd(const char *s)
{
	if (octeon_bootinfo->led_display_base_addr) {
		void __iomem *lcd_address =
			ioremap_nocache(octeon_bootinfo->led_display_base_addr,
					8);
		int i;
		for (i = 0; i < 8; i++, s++) {
			if (*s)
				iowrite8(*s, lcd_address + i);
			else
				iowrite8(' ', lcd_address + i);
		}
		iounmap(lcd_address);
	}
}

/**
 * Return the console uart passed by the bootloader
 *
R
Ralf Baechle 已提交
342
 * Returns uart	  (0 or 1)
343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425
 */
int octeon_get_boot_uart(void)
{
	int uart;
#ifdef CONFIG_CAVIUM_OCTEON_2ND_KERNEL
	uart = 1;
#else
	uart = (octeon_boot_desc_ptr->flags & OCTEON_BL_FLAG_CONSOLE_UART1) ?
		1 : 0;
#endif
	return uart;
}

/**
 * Get the coremask Linux was booted on.
 *
 * Returns Core mask
 */
int octeon_get_boot_coremask(void)
{
	return octeon_boot_desc_ptr->core_mask;
}

/**
 * Check the hardware BIST results for a CPU
 */
void octeon_check_cpu_bist(void)
{
	const int coreid = cvmx_get_core_num();
	unsigned long long mask;
	unsigned long long bist_val;

	/* Check BIST results for COP0 registers */
	mask = 0x1f00000000ull;
	bist_val = read_octeon_c0_icacheerr();
	if (bist_val & mask)
		pr_err("Core%d BIST Failure: CacheErr(icache) = 0x%llx\n",
		       coreid, bist_val);

	bist_val = read_octeon_c0_dcacheerr();
	if (bist_val & 1)
		pr_err("Core%d L1 Dcache parity error: "
		       "CacheErr(dcache) = 0x%llx\n",
		       coreid, bist_val);

	mask = 0xfc00000000000000ull;
	bist_val = read_c0_cvmmemctl();
	if (bist_val & mask)
		pr_err("Core%d BIST Failure: COP0_CVM_MEM_CTL = 0x%llx\n",
		       coreid, bist_val);

	write_octeon_c0_dcacheerr(0);
}

/**
 * Reboot Octeon
 *
 * @command: Command to pass to the bootloader. Currently ignored.
 */
static void octeon_restart(char *command)
{
	/* Disable all watchdogs before soft reset. They don't get cleared */
#ifdef CONFIG_SMP
	int cpu;
	for_each_online_cpu(cpu)
		cvmx_write_csr(CVMX_CIU_WDOGX(cpu_logical_map(cpu)), 0);
#else
	cvmx_write_csr(CVMX_CIU_WDOGX(cvmx_get_core_num()), 0);
#endif

	mb();
	while (1)
		cvmx_write_csr(CVMX_CIU_SOFT_RST, 1);
}


/**
 * Permanently stop a core.
 *
 * @arg: Ignored.
 */
static void octeon_kill_core(void *arg)
{
426
	if (octeon_is_simulation())
427
		/* A break instruction causes the simulator stop a core */
428 429 430 431 432 433 434 435
		asm volatile ("break" ::: "memory");

	local_irq_disable();
	/* Disable watchdog on this core. */
	cvmx_write_csr(CVMX_CIU_WDOGX(cvmx_get_core_num()), 0);
	/* Spin in a low power mode. */
	while (true)
		asm volatile ("wait" ::: "memory");
436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459
}


/**
 * Halt the system
 */
static void octeon_halt(void)
{
	smp_call_function(octeon_kill_core, NULL, 0);

	switch (octeon_bootinfo->board_type) {
	case CVMX_BOARD_TYPE_NAO38:
		/* Driving a 1 to GPIO 12 shuts off this board */
		cvmx_write_csr(CVMX_GPIO_BIT_CFGX(12), 1);
		cvmx_write_csr(CVMX_GPIO_TX_SET, 0x1000);
		break;
	default:
		octeon_write_lcd("PowerOff");
		break;
	}

	octeon_kill_core(NULL);
}

460 461 462 463 464 465 466 467 468 469 470 471
static char __read_mostly octeon_system_type[80];

static int __init init_octeon_system_type(void)
{
	snprintf(octeon_system_type, sizeof(octeon_system_type), "%s (%s)",
		cvmx_board_type_to_string(octeon_bootinfo->board_type),
		octeon_model_get_string(read_c0_prid()));

	return 0;
}
early_initcall(init_octeon_system_type);

472 473 474 475 476 477 478
/**
 * Return a string representing the system type
 *
 * Returns
 */
const char *octeon_board_type_string(void)
{
479
	return octeon_system_type;
480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556
}

const char *get_system_type(void)
	__attribute__ ((alias("octeon_board_type_string")));

void octeon_user_io_init(void)
{
	union octeon_cvmemctl cvmmemctl;
	union cvmx_iob_fau_timeout fau_timeout;
	union cvmx_pow_nw_tim nm_tim;

	/* Get the current settings for CP0_CVMMEMCTL_REG */
	cvmmemctl.u64 = read_c0_cvmmemctl();
	/* R/W If set, marked write-buffer entries time out the same
	 * as as other entries; if clear, marked write-buffer entries
	 * use the maximum timeout. */
	cvmmemctl.s.dismarkwblongto = 1;
	/* R/W If set, a merged store does not clear the write-buffer
	 * entry timeout state. */
	cvmmemctl.s.dismrgclrwbto = 0;
	/* R/W Two bits that are the MSBs of the resultant CVMSEG LM
	 * word location for an IOBDMA. The other 8 bits come from the
	 * SCRADDR field of the IOBDMA. */
	cvmmemctl.s.iobdmascrmsb = 0;
	/* R/W If set, SYNCWS and SYNCS only order marked stores; if
	 * clear, SYNCWS and SYNCS only order unmarked
	 * stores. SYNCWSMARKED has no effect when DISSYNCWS is
	 * set. */
	cvmmemctl.s.syncwsmarked = 0;
	/* R/W If set, SYNCWS acts as SYNCW and SYNCS acts as SYNC. */
	cvmmemctl.s.dissyncws = 0;
	/* R/W If set, no stall happens on write buffer full. */
	if (OCTEON_IS_MODEL(OCTEON_CN38XX_PASS2))
		cvmmemctl.s.diswbfst = 1;
	else
		cvmmemctl.s.diswbfst = 0;
	/* R/W If set (and SX set), supervisor-level loads/stores can
	 * use XKPHYS addresses with <48>==0 */
	cvmmemctl.s.xkmemenas = 0;

	/* R/W If set (and UX set), user-level loads/stores can use
	 * XKPHYS addresses with VA<48>==0 */
	cvmmemctl.s.xkmemenau = 0;

	/* R/W If set (and SX set), supervisor-level loads/stores can
	 * use XKPHYS addresses with VA<48>==1 */
	cvmmemctl.s.xkioenas = 0;

	/* R/W If set (and UX set), user-level loads/stores can use
	 * XKPHYS addresses with VA<48>==1 */
	cvmmemctl.s.xkioenau = 0;

	/* R/W If set, all stores act as SYNCW (NOMERGE must be set
	 * when this is set) RW, reset to 0. */
	cvmmemctl.s.allsyncw = 0;

	/* R/W If set, no stores merge, and all stores reach the
	 * coherent bus in order. */
	cvmmemctl.s.nomerge = 0;
	/* R/W Selects the bit in the counter used for DID time-outs 0
	 * = 231, 1 = 230, 2 = 229, 3 = 214. Actual time-out is
	 * between 1x and 2x this interval. For example, with
	 * DIDTTO=3, expiration interval is between 16K and 32K. */
	cvmmemctl.s.didtto = 0;
	/* R/W If set, the (mem) CSR clock never turns off. */
	cvmmemctl.s.csrckalwys = 0;
	/* R/W If set, mclk never turns off. */
	cvmmemctl.s.mclkalwys = 0;
	/* R/W Selects the bit in the counter used for write buffer
	 * flush time-outs (WBFLT+11) is the bit position in an
	 * internal counter used to determine expiration. The write
	 * buffer expires between 1x and 2x this interval. For
	 * example, with WBFLT = 0, a write buffer expires between 2K
	 * and 4K cycles after the write buffer entry is allocated. */
	cvmmemctl.s.wbfltime = 0;
	/* R/W If set, do not put Istream in the L2 cache. */
	cvmmemctl.s.istrnol2 = 0;
557 558 559 560 561 562 563 564 565 566 567 568

	/*
	 * R/W The write buffer threshold. As per erratum Core-14752
	 * for CN63XX, a sc/scd might fail if the write buffer is
	 * full.  Lowering WBTHRESH greatly lowers the chances of the
	 * write buffer ever being full and triggering the erratum.
	 */
	if (OCTEON_IS_MODEL(OCTEON_CN63XX_PASS1_X))
		cvmmemctl.s.wbthresh = 4;
	else
		cvmmemctl.s.wbthresh = 10;

569 570 571 572 573 574 575 576 577 578 579 580 581 582
	/* R/W If set, CVMSEG is available for loads/stores in
	 * kernel/debug mode. */
#if CONFIG_CAVIUM_OCTEON_CVMSEG_SIZE > 0
	cvmmemctl.s.cvmsegenak = 1;
#else
	cvmmemctl.s.cvmsegenak = 0;
#endif
	/* R/W If set, CVMSEG is available for loads/stores in
	 * supervisor mode. */
	cvmmemctl.s.cvmsegenas = 0;
	/* R/W If set, CVMSEG is available for loads/stores in user
	 * mode. */
	cvmmemctl.s.cvmsegenau = 0;

583
	write_c0_cvmmemctl(cvmmemctl.u64);
584

585
	/* Setup of CVMSEG is done in kernel-entry-init.h */
586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612
	if (smp_processor_id() == 0)
		pr_notice("CVMSEG size: %d cache lines (%d bytes)\n",
			  CONFIG_CAVIUM_OCTEON_CVMSEG_SIZE,
			  CONFIG_CAVIUM_OCTEON_CVMSEG_SIZE * 128);

	/* Set a default for the hardware timeouts */
	fau_timeout.u64 = 0;
	fau_timeout.s.tout_val = 0xfff;
	/* Disable tagwait FAU timeout */
	fau_timeout.s.tout_enb = 0;
	cvmx_write_csr(CVMX_IOB_FAU_TIMEOUT, fau_timeout.u64);

	nm_tim.u64 = 0;
	/* 4096 cycles */
	nm_tim.s.nw_tim = 3;
	cvmx_write_csr(CVMX_POW_NW_TIM, nm_tim.u64);

	write_octeon_c0_icacheerr(0);
	write_c0_derraddr1(0);
}

/**
 * Early entry point for arch setup
 */
void __init prom_init(void)
{
	struct cvmx_sysinfo *sysinfo;
613 614
	const char *arg;
	char *p;
615
	int i;
616
	u64 t;
617 618 619 620 621 622 623 624 625 626 627 628 629
	int argc;
#ifdef CONFIG_CAVIUM_RESERVE32
	int64_t addr = -1;
#endif
	/*
	 * The bootloader passes a pointer to the boot descriptor in
	 * $a3, this is available as fw_arg3.
	 */
	octeon_boot_desc_ptr = (struct octeon_boot_descriptor *)fw_arg3;
	octeon_bootinfo =
		cvmx_phys_to_ptr(octeon_boot_desc_ptr->cvmx_desc_vaddr);
	cvmx_bootmem_init(cvmx_phys_to_ptr(octeon_bootinfo->phy_mem_desc_addr));

630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655
	sysinfo = cvmx_sysinfo_get();
	memset(sysinfo, 0, sizeof(*sysinfo));
	sysinfo->system_dram_size = octeon_bootinfo->dram_size << 20;
	sysinfo->phy_mem_desc_ptr =
		cvmx_phys_to_ptr(octeon_bootinfo->phy_mem_desc_addr);
	sysinfo->core_mask = octeon_bootinfo->core_mask;
	sysinfo->exception_base_addr = octeon_bootinfo->exception_base_addr;
	sysinfo->cpu_clock_hz = octeon_bootinfo->eclock_hz;
	sysinfo->dram_data_rate_hz = octeon_bootinfo->dclock_hz * 2;
	sysinfo->board_type = octeon_bootinfo->board_type;
	sysinfo->board_rev_major = octeon_bootinfo->board_rev_major;
	sysinfo->board_rev_minor = octeon_bootinfo->board_rev_minor;
	memcpy(sysinfo->mac_addr_base, octeon_bootinfo->mac_addr_base,
	       sizeof(sysinfo->mac_addr_base));
	sysinfo->mac_addr_count = octeon_bootinfo->mac_addr_count;
	memcpy(sysinfo->board_serial_number,
	       octeon_bootinfo->board_serial_number,
	       sizeof(sysinfo->board_serial_number));
	sysinfo->compact_flash_common_base_addr =
		octeon_bootinfo->compact_flash_common_base_addr;
	sysinfo->compact_flash_attribute_base_addr =
		octeon_bootinfo->compact_flash_attribute_base_addr;
	sysinfo->led_display_base_addr = octeon_bootinfo->led_display_base_addr;
	sysinfo->dfa_ref_clock_hz = octeon_bootinfo->dfa_ref_clock_hz;
	sysinfo->bootloader_config_flags = octeon_bootinfo->config_flags;

656
	if (OCTEON_IS_OCTEON2() || OCTEON_IS_OCTEON3()) {
657 658 659 660 661 662 663 664
		/* I/O clock runs at a different rate than the CPU. */
		union cvmx_mio_rst_boot rst_boot;
		rst_boot.u64 = cvmx_read_csr(CVMX_MIO_RST_BOOT);
		octeon_io_clock_rate = 50000000 * rst_boot.s.pnr_mul;
	} else {
		octeon_io_clock_rate = sysinfo->cpu_clock_hz;
	}

665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700
	t = read_c0_cvmctl();
	if ((t & (1ull << 27)) == 0) {
		/*
		 * Setup the multiplier save/restore code if
		 * CvmCtl[NOMUL] clear.
		 */
		void *save;
		void *save_end;
		void *restore;
		void *restore_end;
		int save_len;
		int restore_len;
		int save_max = (char *)octeon_mult_save_end -
			(char *)octeon_mult_save;
		int restore_max = (char *)octeon_mult_restore_end -
			(char *)octeon_mult_restore;
		if (current_cpu_data.cputype == CPU_CAVIUM_OCTEON3) {
			save = octeon_mult_save3;
			save_end = octeon_mult_save3_end;
			restore = octeon_mult_restore3;
			restore_end = octeon_mult_restore3_end;
		} else {
			save = octeon_mult_save2;
			save_end = octeon_mult_save2_end;
			restore = octeon_mult_restore2;
			restore_end = octeon_mult_restore2_end;
		}
		save_len = (char *)save_end - (char *)save;
		restore_len = (char *)restore_end - (char *)restore;
		if (!WARN_ON(save_len > save_max ||
				restore_len > restore_max)) {
			memcpy(octeon_mult_save, save, save_len);
			memcpy(octeon_mult_restore, restore, restore_len);
		}
	}

701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723
	/*
	 * Only enable the LED controller if we're running on a CN38XX, CN58XX,
	 * or CN56XX. The CN30XX and CN31XX don't have an LED controller.
	 */
	if (!octeon_is_simulation() &&
	    octeon_has_feature(OCTEON_FEATURE_LED_CONTROLLER)) {
		cvmx_write_csr(CVMX_LED_EN, 0);
		cvmx_write_csr(CVMX_LED_PRT, 0);
		cvmx_write_csr(CVMX_LED_DBG, 0);
		cvmx_write_csr(CVMX_LED_PRT_FMT, 0);
		cvmx_write_csr(CVMX_LED_UDD_CNTX(0), 32);
		cvmx_write_csr(CVMX_LED_UDD_CNTX(1), 32);
		cvmx_write_csr(CVMX_LED_UDD_DATX(0), 0);
		cvmx_write_csr(CVMX_LED_UDD_DATX(1), 0);
		cvmx_write_csr(CVMX_LED_EN, 1);
	}
#ifdef CONFIG_CAVIUM_RESERVE32
	/*
	 * We need to temporarily allocate all memory in the reserve32
	 * region. This makes sure the kernel doesn't allocate this
	 * memory when it is getting memory from the
	 * bootloader. Later, after the memory allocations are
	 * complete, the reserve32 will be freed.
724
	 *
725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740
	 * Allocate memory for RESERVED32 aligned on 2MB boundary. This
	 * is in case we later use hugetlb entries with it.
	 */
	addr = cvmx_bootmem_phy_named_block_alloc(CONFIG_CAVIUM_RESERVE32 << 20,
						0, 0, 2 << 20,
						"CAVIUM_RESERVE32", 0);
	if (addr < 0)
		pr_err("Failed to allocate CAVIUM_RESERVE32 memory area\n");
	else
		octeon_reserve32_memory = addr;
#endif

#ifdef CONFIG_CAVIUM_OCTEON_LOCK_L2
	if (cvmx_read_csr(CVMX_L2D_FUS3) & (3ull << 34)) {
		pr_info("Skipping L2 locking due to reduced L2 cache size\n");
	} else {
R
Ralf Baechle 已提交
741
		uint32_t __maybe_unused ebase = read_c0_ebase() & 0x3ffff000;
742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773
#ifdef CONFIG_CAVIUM_OCTEON_LOCK_L2_TLB
		/* TLB refill */
		cvmx_l2c_lock_mem_region(ebase, 0x100);
#endif
#ifdef CONFIG_CAVIUM_OCTEON_LOCK_L2_EXCEPTION
		/* General exception */
		cvmx_l2c_lock_mem_region(ebase + 0x180, 0x80);
#endif
#ifdef CONFIG_CAVIUM_OCTEON_LOCK_L2_LOW_LEVEL_INTERRUPT
		/* Interrupt handler */
		cvmx_l2c_lock_mem_region(ebase + 0x200, 0x80);
#endif
#ifdef CONFIG_CAVIUM_OCTEON_LOCK_L2_INTERRUPT
		cvmx_l2c_lock_mem_region(__pa_symbol(handle_int), 0x100);
		cvmx_l2c_lock_mem_region(__pa_symbol(plat_irq_dispatch), 0x80);
#endif
#ifdef CONFIG_CAVIUM_OCTEON_LOCK_L2_MEMCPY
		cvmx_l2c_lock_mem_region(__pa_symbol(memcpy), 0x480);
#endif
	}
#endif

	octeon_check_cpu_bist();

	octeon_uart = octeon_get_boot_uart();

#ifdef CONFIG_SMP
	octeon_write_lcd("LinuxSMP");
#else
	octeon_write_lcd("Linux");
#endif

774 775
	octeon_setup_delays();

776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791
	/*
	 * BIST should always be enabled when doing a soft reset. L2
	 * Cache locking for instance is not cleared unless BIST is
	 * enabled.  Unfortunately due to a chip errata G-200 for
	 * Cn38XX and CN31XX, BIST msut be disabled on these parts.
	 */
	if (OCTEON_IS_MODEL(OCTEON_CN38XX_PASS2) ||
	    OCTEON_IS_MODEL(OCTEON_CN31XX))
		cvmx_write_csr(CVMX_CIU_SOFT_BIST, 0);
	else
		cvmx_write_csr(CVMX_CIU_SOFT_BIST, 1);

	/* Default to 64MB in the simulator to speed things up */
	if (octeon_is_simulation())
		MAX_MEMORY = 64ull << 20;

792 793 794 795 796 797 798 799 800
	arg = strstr(arcs_cmdline, "mem=");
	if (arg) {
		MAX_MEMORY = memparse(arg + 4, &p);
		if (MAX_MEMORY == 0)
			MAX_MEMORY = 32ull << 30;
		if (*p == '@')
			RESERVE_LOW_MEM = memparse(p + 1, &p);
	}

801 802 803 804 805 806 807
	arcs_cmdline[0] = 0;
	argc = octeon_boot_desc_ptr->argc;
	for (i = 0; i < argc; i++) {
		const char *arg =
			cvmx_phys_to_ptr(octeon_boot_desc_ptr->argv[i]);
		if ((strncmp(arg, "MEM=", 4) == 0) ||
		    (strncmp(arg, "mem=", 4) == 0)) {
808
			MAX_MEMORY = memparse(arg + 4, &p);
809 810
			if (MAX_MEMORY == 0)
				MAX_MEMORY = 32ull << 30;
811 812 813 814 815 816 817 818 819 820 821 822
			if (*p == '@')
				RESERVE_LOW_MEM = memparse(p + 1, &p);
#ifdef CONFIG_KEXEC
		} else if (strncmp(arg, "crashkernel=", 12) == 0) {
			crashk_size = memparse(arg+12, &p);
			if (*p == '@')
				crashk_base = memparse(p+1, &p);
			strcat(arcs_cmdline, " ");
			strcat(arcs_cmdline, arg);
			/*
			 * To do: switch parsing to new style, something like:
			 * parse_crashkernel(arg, sysinfo->system_dram_size,
R
Ralf Baechle 已提交
823
			 *		  &crashk_size, &crashk_base);
824
			 */
825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850
#endif
		} else if (strlen(arcs_cmdline) + strlen(arg) + 1 <
			   sizeof(arcs_cmdline) - 1) {
			strcat(arcs_cmdline, " ");
			strcat(arcs_cmdline, arg);
		}
	}

	if (strstr(arcs_cmdline, "console=") == NULL) {
#ifdef CONFIG_CAVIUM_OCTEON_2ND_KERNEL
		strcat(arcs_cmdline, " console=ttyS0,115200");
#else
		if (octeon_uart == 1)
			strcat(arcs_cmdline, " console=ttyS1,115200");
		else
			strcat(arcs_cmdline, " console=ttyS0,115200");
#endif
	}

	mips_hpt_frequency = octeon_get_clock_rate();

	octeon_init_cvmcount();

	_machine_restart = octeon_restart;
	_machine_halt = octeon_halt;

851 852 853 854 855 856
#ifdef CONFIG_KEXEC
	_machine_kexec_shutdown = octeon_shutdown;
	_machine_crash_shutdown = octeon_crash_shutdown;
	_machine_kexec_prepare = octeon_kexec_prepare;
#endif

857 858 859 860
	octeon_user_io_init();
	register_smp_ops(&octeon_smp_ops);
}

861
/* Exclude a single page from the regions obtained in plat_mem_setup. */
862
#ifndef CONFIG_CRASH_DUMP
863 864 865 866 867 868 869 870 871 872 873 874 875 876
static __init void memory_exclude_page(u64 addr, u64 *mem, u64 *size)
{
	if (addr > *mem && addr < *mem + *size) {
		u64 inc = addr - *mem;
		add_memory_region(*mem, inc, BOOT_MEM_RAM);
		*mem += inc;
		*size -= inc;
	}

	if (addr == *mem && *size > PAGE_SIZE) {
		*mem += PAGE_SIZE;
		*size -= PAGE_SIZE;
	}
}
877
#endif /* CONFIG_CRASH_DUMP */
878

879 880 881 882
void __init plat_mem_setup(void)
{
	uint64_t mem_alloc_size;
	uint64_t total;
883 884
	uint64_t crashk_end;
#ifndef CONFIG_CRASH_DUMP
885
	int64_t memory;
886 887 888
	uint64_t kernel_start;
	uint64_t kernel_size;
#endif
889 890

	total = 0;
891
	crashk_end = 0;
892 893 894 895 896 897

	/*
	 * The Mips memory init uses the first memory location for
	 * some memory vectors. When SPARSEMEM is in use, it doesn't
	 * verify that the size is big enough for the final
	 * vectors. Making the smallest chuck 4MB seems to be enough
L
Lucas De Marchi 已提交
898
	 * to consistently work.
899 900 901 902 903
	 */
	mem_alloc_size = 4 << 20;
	if (mem_alloc_size > MAX_MEMORY)
		mem_alloc_size = MAX_MEMORY;

904 905 906 907 908 909 910 911 912 913 914
/* Crashkernel ignores bootmem list. It relies on mem=X@Y option */
#ifdef CONFIG_CRASH_DUMP
	add_memory_region(RESERVE_LOW_MEM, MAX_MEMORY, BOOT_MEM_RAM);
	total += MAX_MEMORY;
#else
#ifdef CONFIG_KEXEC
	if (crashk_size > 0) {
		add_memory_region(crashk_base, crashk_size, BOOT_MEM_RAM);
		crashk_end = crashk_base + crashk_size;
	}
#endif
915 916 917 918 919 920 921 922 923 924 925 926 927
	/*
	 * When allocating memory, we want incrementing addresses from
	 * bootmem_alloc so the code in add_memory_region can merge
	 * regions next to each other.
	 */
	cvmx_bootmem_lock();
	while ((boot_mem_map.nr_map < BOOT_MEM_MAP_MAX)
		&& (total < MAX_MEMORY)) {
		memory = cvmx_bootmem_phy_alloc(mem_alloc_size,
						__pa_symbol(&__init_end), -1,
						0x100000,
						CVMX_BOOTMEM_FLAG_NO_LOCKING);
		if (memory >= 0) {
928
			u64 size = mem_alloc_size;
929 930 931
#ifdef CONFIG_KEXEC
			uint64_t end;
#endif
932 933 934 935 936 937 938 939 940 941 942 943

			/*
			 * exclude a page at the beginning and end of
			 * the 256MB PCIe 'hole' so the kernel will not
			 * try to allocate multi-page buffers that
			 * span the discontinuity.
			 */
			memory_exclude_page(CVMX_PCIE_BAR1_PHYS_BASE,
					    &memory, &size);
			memory_exclude_page(CVMX_PCIE_BAR1_PHYS_BASE +
					    CVMX_PCIE_BAR1_PHYS_SIZE,
					    &memory, &size);
944 945
#ifdef CONFIG_KEXEC
			end = memory + mem_alloc_size;
946

947
			/*
948 949 950
			 * This function automatically merges address regions
			 * next to each other if they are received in
			 * incrementing order
951
			 */
952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988
			if (memory < crashk_base && end >  crashk_end) {
				/* region is fully in */
				add_memory_region(memory,
						  crashk_base - memory,
						  BOOT_MEM_RAM);
				total += crashk_base - memory;
				add_memory_region(crashk_end,
						  end - crashk_end,
						  BOOT_MEM_RAM);
				total += end - crashk_end;
				continue;
			}

			if (memory >= crashk_base && end <= crashk_end)
				/*
				 * Entire memory region is within the new
				 *  kernel's memory, ignore it.
				 */
				continue;

			if (memory > crashk_base && memory < crashk_end &&
			    end > crashk_end) {
				/*
				 * Overlap with the beginning of the region,
				 * reserve the beginning.
				  */
				mem_alloc_size -= crashk_end - memory;
				memory = crashk_end;
			} else if (memory < crashk_base && end > crashk_base &&
				   end < crashk_end)
				/*
				 * Overlap with the beginning of the region,
				 * chop of end.
				 */
				mem_alloc_size -= end - crashk_base;
#endif
			add_memory_region(memory, mem_alloc_size, BOOT_MEM_RAM);
989
			total += mem_alloc_size;
990 991
			/* Recovering mem_alloc_size */
			mem_alloc_size = 4 << 20;
992 993 994 995 996
		} else {
			break;
		}
	}
	cvmx_bootmem_unlock();
997 998
	/* Add the memory region for the kernel. */
	kernel_start = (unsigned long) _text;
999
	kernel_size = _end - _text;
1000 1001 1002 1003 1004

	/* Adjust for physical offset. */
	kernel_start &= ~0xffffffff80000000ULL;
	add_memory_region(kernel_start, kernel_size, BOOT_MEM_RAM);
#endif /* CONFIG_CRASH_DUMP */
1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017

#ifdef CONFIG_CAVIUM_RESERVE32
	/*
	 * Now that we've allocated the kernel memory it is safe to
	 * free the reserved region. We free it here so that builtin
	 * drivers can use the memory.
	 */
	if (octeon_reserve32_memory)
		cvmx_bootmem_free_named("CAVIUM_RESERVE32");
#endif /* CONFIG_CAVIUM_RESERVE32 */

	if (total == 0)
		panic("Unable to allocate memory from "
1018
		      "cvmx_bootmem_phy_alloc");
1019 1020
}

1021
/*
R
Ralf Baechle 已提交
1022
 * Emit one character to the boot UART.	 Exported for use by the
1023 1024
 * watchdog timer.
 */
1025 1026 1027 1028 1029 1030 1031 1032 1033 1034
int prom_putchar(char c)
{
	uint64_t lsrval;

	/* Spin until there is room */
	do {
		lsrval = cvmx_read_csr(CVMX_MIO_UARTX_LSR(octeon_uart));
	} while ((lsrval & 0x20) == 0);

	/* Write the byte */
1035
	cvmx_write_csr(CVMX_MIO_UARTX_THR(octeon_uart), c & 0xffull);
1036 1037
	return 1;
}
1038
EXPORT_SYMBOL(prom_putchar);
1039 1040 1041

void prom_free_prom_memory(void)
{
1042
	if (CAVIUM_OCTEON_DCACHE_PREFETCH_WAR) {
1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060
		/* Check for presence of Core-14449 fix.  */
		u32 insn;
		u32 *foo;

		foo = &insn;

		asm volatile("# before" : : : "memory");
		prefetch(foo);
		asm volatile(
			".set push\n\t"
			".set noreorder\n\t"
			"bal 1f\n\t"
			"nop\n"
			"1:\tlw %0,-12($31)\n\t"
			".set pop\n\t"
			: "=r" (insn) : : "$31", "memory");

		if ((insn >> 26) != 0x33)
1061
			panic("No PREF instruction at Core-14449 probe point.");
1062 1063

		if (((insn >> 16) & 0x1f) != 28)
1064 1065 1066
			panic("OCTEON II DCache prefetch workaround not in place (%04x).\n"
			      "Please build kernel with proper options (CONFIG_CAVIUM_CN63XXP1).",
			      insn);
1067
	}
1068
}
1069 1070 1071 1072 1073 1074 1075

int octeon_prune_device_tree(void);

extern const char __dtb_octeon_3xxx_begin;
extern const char __dtb_octeon_68xx_begin;
void __init device_tree_init(void)
{
1076
	const void *fdt;
1077 1078 1079 1080 1081 1082 1083 1084
	bool do_prune;

	if (octeon_bootinfo->minor_version >= 3 && octeon_bootinfo->fdt_addr) {
		fdt = phys_to_virt(octeon_bootinfo->fdt_addr);
		if (fdt_check_header(fdt))
			panic("Corrupt Device Tree passed to kernel.");
		do_prune = false;
	} else if (OCTEON_IS_MODEL(OCTEON_CN68XX)) {
1085
		fdt = &__dtb_octeon_68xx_begin;
1086 1087
		do_prune = true;
	} else {
1088
		fdt = &__dtb_octeon_3xxx_begin;
1089 1090 1091
		do_prune = true;
	}

1092
	initial_boot_params = (void *)fdt;
1093 1094 1095 1096 1097 1098 1099

	if (do_prune) {
		octeon_prune_device_tree();
		pr_info("Using internal Device Tree.\n");
	} else {
		pr_info("Using passed Device Tree.\n");
	}
1100
	unflatten_and_copy_device_tree();
1101
}
R
Ralf Baechle 已提交
1102

1103 1104 1105 1106 1107 1108 1109 1110 1111
static int __initdata disable_octeon_edac_p;

static int __init disable_octeon_edac(char *str)
{
	disable_octeon_edac_p = 1;
	return 0;
}
early_param("disable_octeon_edac", disable_octeon_edac);

R
Ralf Baechle 已提交
1112
static char *edac_device_names[] = {
1113 1114
	"octeon_l2c_edac",
	"octeon_pc_edac",
R
Ralf Baechle 已提交
1115 1116 1117 1118 1119 1120
};

static int __init edac_devinit(void)
{
	struct platform_device *dev;
	int i, err = 0;
1121
	int num_lmc;
R
Ralf Baechle 已提交
1122 1123
	char *name;

1124 1125 1126
	if (disable_octeon_edac_p)
		return 0;

R
Ralf Baechle 已提交
1127 1128 1129 1130
	for (i = 0; i < ARRAY_SIZE(edac_device_names); i++) {
		name = edac_device_names[i];
		dev = platform_device_register_simple(name, -1, NULL, 0);
		if (IS_ERR(dev)) {
1131
			pr_err("Registration of %s failed!\n", name);
R
Ralf Baechle 已提交
1132 1133 1134 1135
			err = PTR_ERR(dev);
		}
	}

1136 1137 1138 1139 1140 1141
	num_lmc = OCTEON_IS_MODEL(OCTEON_CN68XX) ? 4 :
		(OCTEON_IS_MODEL(OCTEON_CN56XX) ? 2 : 1);
	for (i = 0; i < num_lmc; i++) {
		dev = platform_device_register_simple("octeon_lmc_edac",
						      i, NULL, 0);
		if (IS_ERR(dev)) {
1142
			pr_err("Registration of octeon_lmc_edac %d failed!\n", i);
1143 1144 1145 1146
			err = PTR_ERR(dev);
		}
	}

R
Ralf Baechle 已提交
1147 1148 1149
	return err;
}
device_initcall(edac_devinit);
1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176

static void __initdata *octeon_dummy_iospace;

static int __init octeon_no_pci_init(void)
{
	/*
	 * Initially assume there is no PCI. The PCI/PCIe platform code will
	 * later re-initialize these to correct values if they are present.
	 */
	octeon_dummy_iospace = vzalloc(IO_SPACE_LIMIT);
	set_io_port_base((unsigned long)octeon_dummy_iospace);
	ioport_resource.start = MAX_RESOURCE;
	ioport_resource.end = 0;
	return 0;
}
core_initcall(octeon_no_pci_init);

static int __init octeon_no_pci_release(void)
{
	/*
	 * Release the allocated memory if a real IO space is there.
	 */
	if ((unsigned long)octeon_dummy_iospace != mips_io_port_base)
		vfree(octeon_dummy_iospace);
	return 0;
}
late_initcall(octeon_no_pci_release);