ccp-dev-v5.c 29.6 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
/*
 * AMD Cryptographic Coprocessor (CCP) driver
 *
 * Copyright (C) 2016 Advanced Micro Devices, Inc.
 *
 * Author: Gary R Hook <gary.hook@amd.com>
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License version 2 as
 * published by the Free Software Foundation.
 */

#include <linux/module.h>
#include <linux/kernel.h>
#include <linux/pci.h>
#include <linux/kthread.h>
17
#include <linux/debugfs.h>
18 19 20 21 22 23 24
#include <linux/dma-mapping.h>
#include <linux/interrupt.h>
#include <linux/compiler.h>
#include <linux/ccp.h>

#include "ccp-dev.h"

25 26 27 28 29 30
/* Allocate the requested number of contiguous LSB slots
 * from the LSB bitmap. Look in the private range for this
 * queue first; failing that, check the public area.
 * If no space is available, wait around.
 * Return: first slot number
 */
31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59
static u32 ccp_lsb_alloc(struct ccp_cmd_queue *cmd_q, unsigned int count)
{
	struct ccp_device *ccp;
	int start;

	/* First look at the map for the queue */
	if (cmd_q->lsb >= 0) {
		start = (u32)bitmap_find_next_zero_area(cmd_q->lsbmap,
							LSB_SIZE,
							0, count, 0);
		if (start < LSB_SIZE) {
			bitmap_set(cmd_q->lsbmap, start, count);
			return start + cmd_q->lsb * LSB_SIZE;
		}
	}

	/* No joy; try to get an entry from the shared blocks */
	ccp = cmd_q->ccp;
	for (;;) {
		mutex_lock(&ccp->sb_mutex);

		start = (u32)bitmap_find_next_zero_area(ccp->lsbmap,
							MAX_LSB_CNT * LSB_SIZE,
							0,
							count, 0);
		if (start <= MAX_LSB_CNT * LSB_SIZE) {
			bitmap_set(ccp->lsbmap, start, count);

			mutex_unlock(&ccp->sb_mutex);
60
			return start;
61 62 63 64 65 66 67 68 69 70 71 72
		}

		ccp->sb_avail = 0;

		mutex_unlock(&ccp->sb_mutex);

		/* Wait for KSB entries to become available */
		if (wait_event_interruptible(ccp->sb_queue, ccp->sb_avail))
			return 0;
	}
}

73 74 75
/* Free a number of LSB slots from the bitmap, starting at
 * the indicated starting slot number.
 */
76 77 78 79 80 81
static void ccp_lsb_free(struct ccp_cmd_queue *cmd_q, unsigned int start,
			 unsigned int count)
{
	if (!start)
		return;

82
	if (cmd_q->lsb == start) {
83
		/* An entry from the private LSB */
84
		bitmap_clear(cmd_q->lsbmap, start, count);
85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110
	} else {
		/* From the shared LSBs */
		struct ccp_device *ccp = cmd_q->ccp;

		mutex_lock(&ccp->sb_mutex);
		bitmap_clear(ccp->lsbmap, start, count);
		ccp->sb_avail = 1;
		mutex_unlock(&ccp->sb_mutex);
		wake_up_interruptible_all(&ccp->sb_queue);
	}
}

/* CCP version 5: Union to define the function field (cmd_reg1/dword0) */
union ccp_function {
	struct {
		u16 size:7;
		u16 encrypt:1;
		u16 mode:5;
		u16 type:2;
	} aes;
	struct {
		u16 size:7;
		u16 encrypt:1;
		u16 rsvd:5;
		u16 type:2;
	} aes_xts;
111 112 113 114 115 116
	struct {
		u16 size:7;
		u16 encrypt:1;
		u16 mode:5;
		u16 type:2;
	} des3;
117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148
	struct {
		u16 rsvd1:10;
		u16 type:4;
		u16 rsvd2:1;
	} sha;
	struct {
		u16 mode:3;
		u16 size:12;
	} rsa;
	struct {
		u16 byteswap:2;
		u16 bitwise:3;
		u16 reflect:2;
		u16 rsvd:8;
	} pt;
	struct  {
		u16 rsvd:13;
	} zlib;
	struct {
		u16 size:10;
		u16 type:2;
		u16 mode:3;
	} ecc;
	u16 raw;
};

#define	CCP_AES_SIZE(p)		((p)->aes.size)
#define	CCP_AES_ENCRYPT(p)	((p)->aes.encrypt)
#define	CCP_AES_MODE(p)		((p)->aes.mode)
#define	CCP_AES_TYPE(p)		((p)->aes.type)
#define	CCP_XTS_SIZE(p)		((p)->aes_xts.size)
#define	CCP_XTS_ENCRYPT(p)	((p)->aes_xts.encrypt)
149 150 151 152
#define	CCP_DES3_SIZE(p)	((p)->des3.size)
#define	CCP_DES3_ENCRYPT(p)	((p)->des3.encrypt)
#define	CCP_DES3_MODE(p)	((p)->des3.mode)
#define	CCP_DES3_TYPE(p)	((p)->des3.type)
153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234
#define	CCP_SHA_TYPE(p)		((p)->sha.type)
#define	CCP_RSA_SIZE(p)		((p)->rsa.size)
#define	CCP_PT_BYTESWAP(p)	((p)->pt.byteswap)
#define	CCP_PT_BITWISE(p)	((p)->pt.bitwise)
#define	CCP_ECC_MODE(p)		((p)->ecc.mode)
#define	CCP_ECC_AFFINE(p)	((p)->ecc.one)

/* Word 0 */
#define CCP5_CMD_DW0(p)		((p)->dw0)
#define CCP5_CMD_SOC(p)		(CCP5_CMD_DW0(p).soc)
#define CCP5_CMD_IOC(p)		(CCP5_CMD_DW0(p).ioc)
#define CCP5_CMD_INIT(p)	(CCP5_CMD_DW0(p).init)
#define CCP5_CMD_EOM(p)		(CCP5_CMD_DW0(p).eom)
#define CCP5_CMD_FUNCTION(p)	(CCP5_CMD_DW0(p).function)
#define CCP5_CMD_ENGINE(p)	(CCP5_CMD_DW0(p).engine)
#define CCP5_CMD_PROT(p)	(CCP5_CMD_DW0(p).prot)

/* Word 1 */
#define CCP5_CMD_DW1(p)		((p)->length)
#define CCP5_CMD_LEN(p)		(CCP5_CMD_DW1(p))

/* Word 2 */
#define CCP5_CMD_DW2(p)		((p)->src_lo)
#define CCP5_CMD_SRC_LO(p)	(CCP5_CMD_DW2(p))

/* Word 3 */
#define CCP5_CMD_DW3(p)		((p)->dw3)
#define CCP5_CMD_SRC_MEM(p)	((p)->dw3.src_mem)
#define CCP5_CMD_SRC_HI(p)	((p)->dw3.src_hi)
#define CCP5_CMD_LSB_ID(p)	((p)->dw3.lsb_cxt_id)
#define CCP5_CMD_FIX_SRC(p)	((p)->dw3.fixed)

/* Words 4/5 */
#define CCP5_CMD_DW4(p)		((p)->dw4)
#define CCP5_CMD_DST_LO(p)	(CCP5_CMD_DW4(p).dst_lo)
#define CCP5_CMD_DW5(p)		((p)->dw5.fields.dst_hi)
#define CCP5_CMD_DST_HI(p)	(CCP5_CMD_DW5(p))
#define CCP5_CMD_DST_MEM(p)	((p)->dw5.fields.dst_mem)
#define CCP5_CMD_FIX_DST(p)	((p)->dw5.fields.fixed)
#define CCP5_CMD_SHA_LO(p)	((p)->dw4.sha_len_lo)
#define CCP5_CMD_SHA_HI(p)	((p)->dw5.sha_len_hi)

/* Word 6/7 */
#define CCP5_CMD_DW6(p)		((p)->key_lo)
#define CCP5_CMD_KEY_LO(p)	(CCP5_CMD_DW6(p))
#define CCP5_CMD_DW7(p)		((p)->dw7)
#define CCP5_CMD_KEY_HI(p)	((p)->dw7.key_hi)
#define CCP5_CMD_KEY_MEM(p)	((p)->dw7.key_mem)

static inline u32 low_address(unsigned long addr)
{
	return (u64)addr & 0x0ffffffff;
}

static inline u32 high_address(unsigned long addr)
{
	return ((u64)addr >> 32) & 0x00000ffff;
}

static unsigned int ccp5_get_free_slots(struct ccp_cmd_queue *cmd_q)
{
	unsigned int head_idx, n;
	u32 head_lo, queue_start;

	queue_start = low_address(cmd_q->qdma_tail);
	head_lo = ioread32(cmd_q->reg_head_lo);
	head_idx = (head_lo - queue_start) / sizeof(struct ccp5_desc);

	n = head_idx + COMMANDS_PER_QUEUE - cmd_q->qidx - 1;

	return n % COMMANDS_PER_QUEUE; /* Always one unused spot */
}

static int ccp5_do_cmd(struct ccp5_desc *desc,
		       struct ccp_cmd_queue *cmd_q)
{
	u32 *mP;
	__le32 *dP;
	u32 tail;
	int	i;
	int ret = 0;

235 236
	cmd_q->total_ops++;

237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265
	if (CCP5_CMD_SOC(desc)) {
		CCP5_CMD_IOC(desc) = 1;
		CCP5_CMD_SOC(desc) = 0;
	}
	mutex_lock(&cmd_q->q_mutex);

	mP = (u32 *) &cmd_q->qbase[cmd_q->qidx];
	dP = (__le32 *) desc;
	for (i = 0; i < 8; i++)
		mP[i] = cpu_to_le32(dP[i]); /* handle endianness */

	cmd_q->qidx = (cmd_q->qidx + 1) % COMMANDS_PER_QUEUE;

	/* The data used by this command must be flushed to memory */
	wmb();

	/* Write the new tail address back to the queue register */
	tail = low_address(cmd_q->qdma_tail + cmd_q->qidx * Q_DESC_SIZE);
	iowrite32(tail, cmd_q->reg_tail_lo);

	/* Turn the queue back on using our cached control register */
	iowrite32(cmd_q->qcontrol | CMD5_Q_RUN, cmd_q->reg_control);
	mutex_unlock(&cmd_q->q_mutex);

	if (CCP5_CMD_IOC(desc)) {
		/* Wait for the job to complete */
		ret = wait_event_interruptible(cmd_q->int_queue,
					       cmd_q->int_rcvd);
		if (ret || cmd_q->cmd_error) {
266 267 268
			/* Log the error and flush the queue by
			 * moving the head pointer
			 */
269 270 271
			if (cmd_q->cmd_error)
				ccp_log_error(cmd_q->ccp,
					      cmd_q->cmd_error);
272
			iowrite32(tail, cmd_q->reg_head_lo);
273 274 275 276 277 278
			if (!ret)
				ret = -EIO;
		}
		cmd_q->int_rcvd = 0;
	}

279
	return ret;
280 281 282 283 284 285 286 287
}

static int ccp5_perform_aes(struct ccp_op *op)
{
	struct ccp5_desc desc;
	union ccp_function function;
	u32 key_addr = op->sb_key * LSB_ITEM_SIZE;

288 289
	op->cmd_q->total_aes_ops++;

290 291 292 293 294 295 296 297 298 299 300 301 302 303 304
	/* Zero out all the fields of the command desc */
	memset(&desc, 0, Q_DESC_SIZE);

	CCP5_CMD_ENGINE(&desc) = CCP_ENGINE_AES;

	CCP5_CMD_SOC(&desc) = op->soc;
	CCP5_CMD_IOC(&desc) = 1;
	CCP5_CMD_INIT(&desc) = op->init;
	CCP5_CMD_EOM(&desc) = op->eom;
	CCP5_CMD_PROT(&desc) = 0;

	function.raw = 0;
	CCP_AES_ENCRYPT(&function) = op->u.aes.action;
	CCP_AES_MODE(&function) = op->u.aes.mode;
	CCP_AES_TYPE(&function) = op->u.aes.type;
305
	CCP_AES_SIZE(&function) = op->u.aes.size;
306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332

	CCP5_CMD_FUNCTION(&desc) = function.raw;

	CCP5_CMD_LEN(&desc) = op->src.u.dma.length;

	CCP5_CMD_SRC_LO(&desc) = ccp_addr_lo(&op->src.u.dma);
	CCP5_CMD_SRC_HI(&desc) = ccp_addr_hi(&op->src.u.dma);
	CCP5_CMD_SRC_MEM(&desc) = CCP_MEMTYPE_SYSTEM;

	CCP5_CMD_DST_LO(&desc) = ccp_addr_lo(&op->dst.u.dma);
	CCP5_CMD_DST_HI(&desc) = ccp_addr_hi(&op->dst.u.dma);
	CCP5_CMD_DST_MEM(&desc) = CCP_MEMTYPE_SYSTEM;

	CCP5_CMD_KEY_LO(&desc) = lower_32_bits(key_addr);
	CCP5_CMD_KEY_HI(&desc) = 0;
	CCP5_CMD_KEY_MEM(&desc) = CCP_MEMTYPE_SB;
	CCP5_CMD_LSB_ID(&desc) = op->sb_ctx;

	return ccp5_do_cmd(&desc, op->cmd_q);
}

static int ccp5_perform_xts_aes(struct ccp_op *op)
{
	struct ccp5_desc desc;
	union ccp_function function;
	u32 key_addr = op->sb_key * LSB_ITEM_SIZE;

333 334
	op->cmd_q->total_xts_aes_ops++;

335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373
	/* Zero out all the fields of the command desc */
	memset(&desc, 0, Q_DESC_SIZE);

	CCP5_CMD_ENGINE(&desc) = CCP_ENGINE_XTS_AES_128;

	CCP5_CMD_SOC(&desc) = op->soc;
	CCP5_CMD_IOC(&desc) = 1;
	CCP5_CMD_INIT(&desc) = op->init;
	CCP5_CMD_EOM(&desc) = op->eom;
	CCP5_CMD_PROT(&desc) = 0;

	function.raw = 0;
	CCP_XTS_ENCRYPT(&function) = op->u.xts.action;
	CCP_XTS_SIZE(&function) = op->u.xts.unit_size;
	CCP5_CMD_FUNCTION(&desc) = function.raw;

	CCP5_CMD_LEN(&desc) = op->src.u.dma.length;

	CCP5_CMD_SRC_LO(&desc) = ccp_addr_lo(&op->src.u.dma);
	CCP5_CMD_SRC_HI(&desc) = ccp_addr_hi(&op->src.u.dma);
	CCP5_CMD_SRC_MEM(&desc) = CCP_MEMTYPE_SYSTEM;

	CCP5_CMD_DST_LO(&desc) = ccp_addr_lo(&op->dst.u.dma);
	CCP5_CMD_DST_HI(&desc) = ccp_addr_hi(&op->dst.u.dma);
	CCP5_CMD_DST_MEM(&desc) = CCP_MEMTYPE_SYSTEM;

	CCP5_CMD_KEY_LO(&desc) = lower_32_bits(key_addr);
	CCP5_CMD_KEY_HI(&desc) =  0;
	CCP5_CMD_KEY_MEM(&desc) = CCP_MEMTYPE_SB;
	CCP5_CMD_LSB_ID(&desc) = op->sb_ctx;

	return ccp5_do_cmd(&desc, op->cmd_q);
}

static int ccp5_perform_sha(struct ccp_op *op)
{
	struct ccp5_desc desc;
	union ccp_function function;

374 375
	op->cmd_q->total_sha_ops++;

376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409
	/* Zero out all the fields of the command desc */
	memset(&desc, 0, Q_DESC_SIZE);

	CCP5_CMD_ENGINE(&desc) = CCP_ENGINE_SHA;

	CCP5_CMD_SOC(&desc) = op->soc;
	CCP5_CMD_IOC(&desc) = 1;
	CCP5_CMD_INIT(&desc) = 1;
	CCP5_CMD_EOM(&desc) = op->eom;
	CCP5_CMD_PROT(&desc) = 0;

	function.raw = 0;
	CCP_SHA_TYPE(&function) = op->u.sha.type;
	CCP5_CMD_FUNCTION(&desc) = function.raw;

	CCP5_CMD_LEN(&desc) = op->src.u.dma.length;

	CCP5_CMD_SRC_LO(&desc) = ccp_addr_lo(&op->src.u.dma);
	CCP5_CMD_SRC_HI(&desc) = ccp_addr_hi(&op->src.u.dma);
	CCP5_CMD_SRC_MEM(&desc) = CCP_MEMTYPE_SYSTEM;

	CCP5_CMD_LSB_ID(&desc) = op->sb_ctx;

	if (op->eom) {
		CCP5_CMD_SHA_LO(&desc) = lower_32_bits(op->u.sha.msg_bits);
		CCP5_CMD_SHA_HI(&desc) = upper_32_bits(op->u.sha.msg_bits);
	} else {
		CCP5_CMD_SHA_LO(&desc) = 0;
		CCP5_CMD_SHA_HI(&desc) = 0;
	}

	return ccp5_do_cmd(&desc, op->cmd_q);
}

410 411 412 413 414 415
static int ccp5_perform_des3(struct ccp_op *op)
{
	struct ccp5_desc desc;
	union ccp_function function;
	u32 key_addr = op->sb_key * LSB_ITEM_SIZE;

416 417
	op->cmd_q->total_3des_ops++;

418 419 420 421 422 423 424 425 426 427 428 429 430 431 432
	/* Zero out all the fields of the command desc */
	memset(&desc, 0, sizeof(struct ccp5_desc));

	CCP5_CMD_ENGINE(&desc) = CCP_ENGINE_DES3;

	CCP5_CMD_SOC(&desc) = op->soc;
	CCP5_CMD_IOC(&desc) = 1;
	CCP5_CMD_INIT(&desc) = op->init;
	CCP5_CMD_EOM(&desc) = op->eom;
	CCP5_CMD_PROT(&desc) = 0;

	function.raw = 0;
	CCP_DES3_ENCRYPT(&function) = op->u.des3.action;
	CCP_DES3_MODE(&function) = op->u.des3.mode;
	CCP_DES3_TYPE(&function) = op->u.des3.type;
433
	CCP5_CMD_FUNCTION(&desc) = function.raw;
434

435
	CCP5_CMD_LEN(&desc) = op->src.u.dma.length;
436

437 438 439
	CCP5_CMD_SRC_LO(&desc) = ccp_addr_lo(&op->src.u.dma);
	CCP5_CMD_SRC_HI(&desc) = ccp_addr_hi(&op->src.u.dma);
	CCP5_CMD_SRC_MEM(&desc) = CCP_MEMTYPE_SYSTEM;
440

441 442 443
	CCP5_CMD_DST_LO(&desc) = ccp_addr_lo(&op->dst.u.dma);
	CCP5_CMD_DST_HI(&desc) = ccp_addr_hi(&op->dst.u.dma);
	CCP5_CMD_DST_MEM(&desc) = CCP_MEMTYPE_SYSTEM;
444

445
	CCP5_CMD_KEY_LO(&desc) = lower_32_bits(key_addr);
446
	CCP5_CMD_KEY_HI(&desc) = 0;
447 448
	CCP5_CMD_KEY_MEM(&desc) = CCP_MEMTYPE_SB;
	CCP5_CMD_LSB_ID(&desc) = op->sb_ctx;
449 450 451 452

	return ccp5_do_cmd(&desc, op->cmd_q);
}

453 454 455 456 457
static int ccp5_perform_rsa(struct ccp_op *op)
{
	struct ccp5_desc desc;
	union ccp_function function;

458 459
	op->cmd_q->total_rsa_ops++;

460 461 462 463 464 465 466 467 468 469 470 471
	/* Zero out all the fields of the command desc */
	memset(&desc, 0, Q_DESC_SIZE);

	CCP5_CMD_ENGINE(&desc) = CCP_ENGINE_RSA;

	CCP5_CMD_SOC(&desc) = op->soc;
	CCP5_CMD_IOC(&desc) = 1;
	CCP5_CMD_INIT(&desc) = 0;
	CCP5_CMD_EOM(&desc) = 1;
	CCP5_CMD_PROT(&desc) = 0;

	function.raw = 0;
472
	CCP_RSA_SIZE(&function) = op->u.rsa.mod_size >> 3;
473 474 475 476 477 478 479 480 481 482 483 484 485 486
	CCP5_CMD_FUNCTION(&desc) = function.raw;

	CCP5_CMD_LEN(&desc) = op->u.rsa.input_len;

	/* Source is from external memory */
	CCP5_CMD_SRC_LO(&desc) = ccp_addr_lo(&op->src.u.dma);
	CCP5_CMD_SRC_HI(&desc) = ccp_addr_hi(&op->src.u.dma);
	CCP5_CMD_SRC_MEM(&desc) = CCP_MEMTYPE_SYSTEM;

	/* Destination is in external memory */
	CCP5_CMD_DST_LO(&desc) = ccp_addr_lo(&op->dst.u.dma);
	CCP5_CMD_DST_HI(&desc) = ccp_addr_hi(&op->dst.u.dma);
	CCP5_CMD_DST_MEM(&desc) = CCP_MEMTYPE_SYSTEM;

487 488 489 490
	/* Exponent is in LSB memory */
	CCP5_CMD_KEY_LO(&desc) = op->sb_key * LSB_ITEM_SIZE;
	CCP5_CMD_KEY_HI(&desc) = 0;
	CCP5_CMD_KEY_MEM(&desc) = CCP_MEMTYPE_SB;
491 492 493 494 495 496 497 498 499 500 501

	return ccp5_do_cmd(&desc, op->cmd_q);
}

static int ccp5_perform_passthru(struct ccp_op *op)
{
	struct ccp5_desc desc;
	union ccp_function function;
	struct ccp_dma_info *saddr = &op->src.u.dma;
	struct ccp_dma_info *daddr = &op->dst.u.dma;

502

503 504
	op->cmd_q->total_pt_ops++;

505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560
	memset(&desc, 0, Q_DESC_SIZE);

	CCP5_CMD_ENGINE(&desc) = CCP_ENGINE_PASSTHRU;

	CCP5_CMD_SOC(&desc) = 0;
	CCP5_CMD_IOC(&desc) = 1;
	CCP5_CMD_INIT(&desc) = 0;
	CCP5_CMD_EOM(&desc) = op->eom;
	CCP5_CMD_PROT(&desc) = 0;

	function.raw = 0;
	CCP_PT_BYTESWAP(&function) = op->u.passthru.byte_swap;
	CCP_PT_BITWISE(&function) = op->u.passthru.bit_mod;
	CCP5_CMD_FUNCTION(&desc) = function.raw;

	/* Length of source data is always 256 bytes */
	if (op->src.type == CCP_MEMTYPE_SYSTEM)
		CCP5_CMD_LEN(&desc) = saddr->length;
	else
		CCP5_CMD_LEN(&desc) = daddr->length;

	if (op->src.type == CCP_MEMTYPE_SYSTEM) {
		CCP5_CMD_SRC_LO(&desc) = ccp_addr_lo(&op->src.u.dma);
		CCP5_CMD_SRC_HI(&desc) = ccp_addr_hi(&op->src.u.dma);
		CCP5_CMD_SRC_MEM(&desc) = CCP_MEMTYPE_SYSTEM;

		if (op->u.passthru.bit_mod != CCP_PASSTHRU_BITWISE_NOOP)
			CCP5_CMD_LSB_ID(&desc) = op->sb_key;
	} else {
		u32 key_addr = op->src.u.sb * CCP_SB_BYTES;

		CCP5_CMD_SRC_LO(&desc) = lower_32_bits(key_addr);
		CCP5_CMD_SRC_HI(&desc) = 0;
		CCP5_CMD_SRC_MEM(&desc) = CCP_MEMTYPE_SB;
	}

	if (op->dst.type == CCP_MEMTYPE_SYSTEM) {
		CCP5_CMD_DST_LO(&desc) = ccp_addr_lo(&op->dst.u.dma);
		CCP5_CMD_DST_HI(&desc) = ccp_addr_hi(&op->dst.u.dma);
		CCP5_CMD_DST_MEM(&desc) = CCP_MEMTYPE_SYSTEM;
	} else {
		u32 key_addr = op->dst.u.sb * CCP_SB_BYTES;

		CCP5_CMD_DST_LO(&desc) = lower_32_bits(key_addr);
		CCP5_CMD_DST_HI(&desc) = 0;
		CCP5_CMD_DST_MEM(&desc) = CCP_MEMTYPE_SB;
	}

	return ccp5_do_cmd(&desc, op->cmd_q);
}

static int ccp5_perform_ecc(struct ccp_op *op)
{
	struct ccp5_desc desc;
	union ccp_function function;

561 562
	op->cmd_q->total_ecc_ops++;

563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605
	/* Zero out all the fields of the command desc */
	memset(&desc, 0, Q_DESC_SIZE);

	CCP5_CMD_ENGINE(&desc) = CCP_ENGINE_ECC;

	CCP5_CMD_SOC(&desc) = 0;
	CCP5_CMD_IOC(&desc) = 1;
	CCP5_CMD_INIT(&desc) = 0;
	CCP5_CMD_EOM(&desc) = 1;
	CCP5_CMD_PROT(&desc) = 0;

	function.raw = 0;
	function.ecc.mode = op->u.ecc.function;
	CCP5_CMD_FUNCTION(&desc) = function.raw;

	CCP5_CMD_LEN(&desc) = op->src.u.dma.length;

	CCP5_CMD_SRC_LO(&desc) = ccp_addr_lo(&op->src.u.dma);
	CCP5_CMD_SRC_HI(&desc) = ccp_addr_hi(&op->src.u.dma);
	CCP5_CMD_SRC_MEM(&desc) = CCP_MEMTYPE_SYSTEM;

	CCP5_CMD_DST_LO(&desc) = ccp_addr_lo(&op->dst.u.dma);
	CCP5_CMD_DST_HI(&desc) = ccp_addr_hi(&op->dst.u.dma);
	CCP5_CMD_DST_MEM(&desc) = CCP_MEMTYPE_SYSTEM;

	return ccp5_do_cmd(&desc, op->cmd_q);
}

static int ccp_find_lsb_regions(struct ccp_cmd_queue *cmd_q, u64 status)
{
	int q_mask = 1 << cmd_q->id;
	int queues = 0;
	int j;

	/* Build a bit mask to know which LSBs this queue has access to.
	 * Don't bother with segment 0 as it has special privileges.
	 */
	for (j = 1; j < MAX_LSB_CNT; j++) {
		if (status & q_mask)
			bitmap_set(cmd_q->lsbmask, j, 1);
		status >>= LSB_REGION_WIDTH;
	}
	queues = bitmap_weight(cmd_q->lsbmask, MAX_LSB_CNT);
606
	dev_dbg(cmd_q->ccp->dev, "Queue %d can access %d LSB regions\n",
607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646
		 cmd_q->id, queues);

	return queues ? 0 : -EINVAL;
}

static int ccp_find_and_assign_lsb_to_q(struct ccp_device *ccp,
					int lsb_cnt, int n_lsbs,
					unsigned long *lsb_pub)
{
	DECLARE_BITMAP(qlsb, MAX_LSB_CNT);
	int bitno;
	int qlsb_wgt;
	int i;

	/* For each queue:
	 * If the count of potential LSBs available to a queue matches the
	 * ordinal given to us in lsb_cnt:
	 * Copy the mask of possible LSBs for this queue into "qlsb";
	 * For each bit in qlsb, see if the corresponding bit in the
	 * aggregation mask is set; if so, we have a match.
	 *     If we have a match, clear the bit in the aggregation to
	 *     mark it as no longer available.
	 *     If there is no match, clear the bit in qlsb and keep looking.
	 */
	for (i = 0; i < ccp->cmd_q_count; i++) {
		struct ccp_cmd_queue *cmd_q = &ccp->cmd_q[i];

		qlsb_wgt = bitmap_weight(cmd_q->lsbmask, MAX_LSB_CNT);

		if (qlsb_wgt == lsb_cnt) {
			bitmap_copy(qlsb, cmd_q->lsbmask, MAX_LSB_CNT);

			bitno = find_first_bit(qlsb, MAX_LSB_CNT);
			while (bitno < MAX_LSB_CNT) {
				if (test_bit(bitno, lsb_pub)) {
					/* We found an available LSB
					 * that this queue can access
					 */
					cmd_q->lsb = bitno;
					bitmap_clear(lsb_pub, bitno, 1);
647
					dev_dbg(ccp->dev,
648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723
						 "Queue %d gets LSB %d\n",
						 i, bitno);
					break;
				}
				bitmap_clear(qlsb, bitno, 1);
				bitno = find_first_bit(qlsb, MAX_LSB_CNT);
			}
			if (bitno >= MAX_LSB_CNT)
				return -EINVAL;
			n_lsbs--;
		}
	}
	return n_lsbs;
}

/* For each queue, from the most- to least-constrained:
 * find an LSB that can be assigned to the queue. If there are N queues that
 * can only use M LSBs, where N > M, fail; otherwise, every queue will get a
 * dedicated LSB. Remaining LSB regions become a shared resource.
 * If we have fewer LSBs than queues, all LSB regions become shared resources.
 */
static int ccp_assign_lsbs(struct ccp_device *ccp)
{
	DECLARE_BITMAP(lsb_pub, MAX_LSB_CNT);
	DECLARE_BITMAP(qlsb, MAX_LSB_CNT);
	int n_lsbs = 0;
	int bitno;
	int i, lsb_cnt;
	int rc = 0;

	bitmap_zero(lsb_pub, MAX_LSB_CNT);

	/* Create an aggregate bitmap to get a total count of available LSBs */
	for (i = 0; i < ccp->cmd_q_count; i++)
		bitmap_or(lsb_pub,
			  lsb_pub, ccp->cmd_q[i].lsbmask,
			  MAX_LSB_CNT);

	n_lsbs = bitmap_weight(lsb_pub, MAX_LSB_CNT);

	if (n_lsbs >= ccp->cmd_q_count) {
		/* We have enough LSBS to give every queue a private LSB.
		 * Brute force search to start with the queues that are more
		 * constrained in LSB choice. When an LSB is privately
		 * assigned, it is removed from the public mask.
		 * This is an ugly N squared algorithm with some optimization.
		 */
		for (lsb_cnt = 1;
		     n_lsbs && (lsb_cnt <= MAX_LSB_CNT);
		     lsb_cnt++) {
			rc = ccp_find_and_assign_lsb_to_q(ccp, lsb_cnt, n_lsbs,
							  lsb_pub);
			if (rc < 0)
				return -EINVAL;
			n_lsbs = rc;
		}
	}

	rc = 0;
	/* What's left of the LSBs, according to the public mask, now become
	 * shared. Any zero bits in the lsb_pub mask represent an LSB region
	 * that can't be used as a shared resource, so mark the LSB slots for
	 * them as "in use".
	 */
	bitmap_copy(qlsb, lsb_pub, MAX_LSB_CNT);

	bitno = find_first_zero_bit(qlsb, MAX_LSB_CNT);
	while (bitno < MAX_LSB_CNT) {
		bitmap_set(ccp->lsbmap, bitno * LSB_SIZE, LSB_SIZE);
		bitmap_set(qlsb, bitno, 1);
		bitno = find_first_zero_bit(qlsb, MAX_LSB_CNT);
	}

	return rc;
}

724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771
static void ccp5_disable_queue_interrupts(struct ccp_device *ccp)
{
	unsigned int i;

	for (i = 0; i < ccp->cmd_q_count; i++)
		iowrite32(0x0, ccp->cmd_q[i].reg_int_enable);
}

static void ccp5_enable_queue_interrupts(struct ccp_device *ccp)
{
	unsigned int i;

	for (i = 0; i < ccp->cmd_q_count; i++)
		iowrite32(SUPPORTED_INTERRUPTS, ccp->cmd_q[i].reg_int_enable);
}

static void ccp5_irq_bh(unsigned long data)
{
	struct ccp_device *ccp = (struct ccp_device *)data;
	u32 status;
	unsigned int i;

	for (i = 0; i < ccp->cmd_q_count; i++) {
		struct ccp_cmd_queue *cmd_q = &ccp->cmd_q[i];

		status = ioread32(cmd_q->reg_interrupt_status);

		if (status) {
			cmd_q->int_status = status;
			cmd_q->q_status = ioread32(cmd_q->reg_status);
			cmd_q->q_int_status = ioread32(cmd_q->reg_int_status);

			/* On error, only save the first error value */
			if ((status & INT_ERROR) && !cmd_q->cmd_error)
				cmd_q->cmd_error = CMD_Q_ERROR(cmd_q->q_status);

			cmd_q->int_rcvd = 1;

			/* Acknowledge the interrupt and wake the kthread */
			iowrite32(status, cmd_q->reg_interrupt_status);
			wake_up_interruptible(&cmd_q->int_queue);
		}
	}
	ccp5_enable_queue_interrupts(ccp);
}

static irqreturn_t ccp5_irq_handler(int irq, void *data)
{
772
	struct ccp_device *ccp = (struct ccp_device *)data;
773 774

	ccp5_disable_queue_interrupts(ccp);
775
	ccp->total_interrupts++;
776 777 778 779 780 781 782
	if (ccp->use_tasklet)
		tasklet_schedule(&ccp->irq_tasklet);
	else
		ccp5_irq_bh((unsigned long)ccp);
	return IRQ_HANDLED;
}

783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858
static int ccp5_init(struct ccp_device *ccp)
{
	struct device *dev = ccp->dev;
	struct ccp_cmd_queue *cmd_q;
	struct dma_pool *dma_pool;
	char dma_pool_name[MAX_DMAPOOL_NAME_LEN];
	unsigned int qmr, qim, i;
	u64 status;
	u32 status_lo, status_hi;
	int ret;

	/* Find available queues */
	qim = 0;
	qmr = ioread32(ccp->io_regs + Q_MASK_REG);
	for (i = 0; i < MAX_HW_QUEUES; i++) {

		if (!(qmr & (1 << i)))
			continue;

		/* Allocate a dma pool for this queue */
		snprintf(dma_pool_name, sizeof(dma_pool_name), "%s_q%d",
			 ccp->name, i);
		dma_pool = dma_pool_create(dma_pool_name, dev,
					   CCP_DMAPOOL_MAX_SIZE,
					   CCP_DMAPOOL_ALIGN, 0);
		if (!dma_pool) {
			dev_err(dev, "unable to allocate dma pool\n");
			ret = -ENOMEM;
		}

		cmd_q = &ccp->cmd_q[ccp->cmd_q_count];
		ccp->cmd_q_count++;

		cmd_q->ccp = ccp;
		cmd_q->id = i;
		cmd_q->dma_pool = dma_pool;
		mutex_init(&cmd_q->q_mutex);

		/* Page alignment satisfies our needs for N <= 128 */
		BUILD_BUG_ON(COMMANDS_PER_QUEUE > 128);
		cmd_q->qsize = Q_SIZE(Q_DESC_SIZE);
		cmd_q->qbase = dma_zalloc_coherent(dev, cmd_q->qsize,
						   &cmd_q->qbase_dma,
						   GFP_KERNEL);
		if (!cmd_q->qbase) {
			dev_err(dev, "unable to allocate command queue\n");
			ret = -ENOMEM;
			goto e_pool;
		}

		cmd_q->qidx = 0;
		/* Preset some register values and masks that are queue
		 * number dependent
		 */
		cmd_q->reg_control = ccp->io_regs +
				     CMD5_Q_STATUS_INCR * (i + 1);
		cmd_q->reg_tail_lo = cmd_q->reg_control + CMD5_Q_TAIL_LO_BASE;
		cmd_q->reg_head_lo = cmd_q->reg_control + CMD5_Q_HEAD_LO_BASE;
		cmd_q->reg_int_enable = cmd_q->reg_control +
					CMD5_Q_INT_ENABLE_BASE;
		cmd_q->reg_interrupt_status = cmd_q->reg_control +
					      CMD5_Q_INTERRUPT_STATUS_BASE;
		cmd_q->reg_status = cmd_q->reg_control + CMD5_Q_STATUS_BASE;
		cmd_q->reg_int_status = cmd_q->reg_control +
					CMD5_Q_INT_STATUS_BASE;
		cmd_q->reg_dma_status = cmd_q->reg_control +
					CMD5_Q_DMA_STATUS_BASE;
		cmd_q->reg_dma_read_status = cmd_q->reg_control +
					     CMD5_Q_DMA_READ_STATUS_BASE;
		cmd_q->reg_dma_write_status = cmd_q->reg_control +
					      CMD5_Q_DMA_WRITE_STATUS_BASE;

		init_waitqueue_head(&cmd_q->int_queue);

		dev_dbg(dev, "queue #%u available\n", i);
	}
859

860 861 862 863 864 865 866
	if (ccp->cmd_q_count == 0) {
		dev_notice(dev, "no command queues available\n");
		ret = -EIO;
		goto e_pool;
	}

	/* Turn off the queues and disable interrupts until ready */
867
	ccp5_disable_queue_interrupts(ccp);
868 869 870 871 872 873 874 875 876
	for (i = 0; i < ccp->cmd_q_count; i++) {
		cmd_q = &ccp->cmd_q[i];

		cmd_q->qcontrol = 0; /* Start with nothing */
		iowrite32(cmd_q->qcontrol, cmd_q->reg_control);

		ioread32(cmd_q->reg_int_status);
		ioread32(cmd_q->reg_status);

877
		/* Clear the interrupt status */
878
		iowrite32(SUPPORTED_INTERRUPTS, cmd_q->reg_interrupt_status);
879 880 881 882 883 884 885 886 887
	}

	dev_dbg(dev, "Requesting an IRQ...\n");
	/* Request an irq */
	ret = ccp->get_irq(ccp);
	if (ret) {
		dev_err(dev, "unable to allocate an IRQ\n");
		goto e_pool;
	}
888 889 890 891
	/* Initialize the ISR tasklet */
	if (ccp->use_tasklet)
		tasklet_init(&ccp->irq_tasklet, ccp5_irq_bh,
			     (unsigned long)ccp);
892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959

	dev_dbg(dev, "Loading LSB map...\n");
	/* Copy the private LSB mask to the public registers */
	status_lo = ioread32(ccp->io_regs + LSB_PRIVATE_MASK_LO_OFFSET);
	status_hi = ioread32(ccp->io_regs + LSB_PRIVATE_MASK_HI_OFFSET);
	iowrite32(status_lo, ccp->io_regs + LSB_PUBLIC_MASK_LO_OFFSET);
	iowrite32(status_hi, ccp->io_regs + LSB_PUBLIC_MASK_HI_OFFSET);
	status = ((u64)status_hi<<30) | (u64)status_lo;

	dev_dbg(dev, "Configuring virtual queues...\n");
	/* Configure size of each virtual queue accessible to host */
	for (i = 0; i < ccp->cmd_q_count; i++) {
		u32 dma_addr_lo;
		u32 dma_addr_hi;

		cmd_q = &ccp->cmd_q[i];

		cmd_q->qcontrol &= ~(CMD5_Q_SIZE << CMD5_Q_SHIFT);
		cmd_q->qcontrol |= QUEUE_SIZE_VAL << CMD5_Q_SHIFT;

		cmd_q->qdma_tail = cmd_q->qbase_dma;
		dma_addr_lo = low_address(cmd_q->qdma_tail);
		iowrite32((u32)dma_addr_lo, cmd_q->reg_tail_lo);
		iowrite32((u32)dma_addr_lo, cmd_q->reg_head_lo);

		dma_addr_hi = high_address(cmd_q->qdma_tail);
		cmd_q->qcontrol |= (dma_addr_hi << 16);
		iowrite32(cmd_q->qcontrol, cmd_q->reg_control);

		/* Find the LSB regions accessible to the queue */
		ccp_find_lsb_regions(cmd_q, status);
		cmd_q->lsb = -1; /* Unassigned value */
	}

	dev_dbg(dev, "Assigning LSBs...\n");
	ret = ccp_assign_lsbs(ccp);
	if (ret) {
		dev_err(dev, "Unable to assign LSBs (%d)\n", ret);
		goto e_irq;
	}

	/* Optimization: pre-allocate LSB slots for each queue */
	for (i = 0; i < ccp->cmd_q_count; i++) {
		ccp->cmd_q[i].sb_key = ccp_lsb_alloc(&ccp->cmd_q[i], 2);
		ccp->cmd_q[i].sb_ctx = ccp_lsb_alloc(&ccp->cmd_q[i], 2);
	}

	dev_dbg(dev, "Starting threads...\n");
	/* Create a kthread for each queue */
	for (i = 0; i < ccp->cmd_q_count; i++) {
		struct task_struct *kthread;

		cmd_q = &ccp->cmd_q[i];

		kthread = kthread_create(ccp_cmd_queue_thread, cmd_q,
					 "%s-q%u", ccp->name, cmd_q->id);
		if (IS_ERR(kthread)) {
			dev_err(dev, "error creating queue thread (%ld)\n",
				PTR_ERR(kthread));
			ret = PTR_ERR(kthread);
			goto e_kthread;
		}

		cmd_q->kthread = kthread;
		wake_up_process(kthread);
	}

	dev_dbg(dev, "Enabling interrupts...\n");
960
	ccp5_enable_queue_interrupts(ccp);
961 962 963 964 965

	dev_dbg(dev, "Registering device...\n");
	/* Put this on the unit list to make it available */
	ccp_add_device(ccp);

966 967 968 969
	ret = ccp_register_rng(ccp);
	if (ret)
		goto e_kthread;

970 971 972
	/* Register the DMA engine support */
	ret = ccp_dmaengine_register(ccp);
	if (ret)
973
		goto e_hwrng;
974

975 976 977
	/* Set up debugfs entries */
	ccp5_debugfs_setup(ccp);

978 979
	return 0;

980 981 982
e_hwrng:
	ccp_unregister_rng(ccp);

983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004
e_kthread:
	for (i = 0; i < ccp->cmd_q_count; i++)
		if (ccp->cmd_q[i].kthread)
			kthread_stop(ccp->cmd_q[i].kthread);

e_irq:
	ccp->free_irq(ccp);

e_pool:
	for (i = 0; i < ccp->cmd_q_count; i++)
		dma_pool_destroy(ccp->cmd_q[i].dma_pool);

	return ret;
}

static void ccp5_destroy(struct ccp_device *ccp)
{
	struct device *dev = ccp->dev;
	struct ccp_cmd_queue *cmd_q;
	struct ccp_cmd *cmd;
	unsigned int i;

1005 1006 1007
	/* Unregister the DMA engine */
	ccp_dmaengine_unregister(ccp);

1008 1009 1010
	/* Unregister the RNG */
	ccp_unregister_rng(ccp);

1011 1012 1013
	/* Remove this device from the list of available units first */
	ccp_del_device(ccp);

1014 1015 1016 1017 1018 1019
	/* We're in the process of tearing down the entire driver;
	 * when all the devices are gone clean up debugfs
	 */
	if (ccp_present())
		ccp5_debugfs_destroy();

1020
	/* Disable and clear interrupts */
1021
	ccp5_disable_queue_interrupts(ccp);
1022 1023 1024 1025 1026 1027 1028
	for (i = 0; i < ccp->cmd_q_count; i++) {
		cmd_q = &ccp->cmd_q[i];

		/* Turn off the run bit */
		iowrite32(cmd_q->qcontrol & ~CMD5_Q_RUN, cmd_q->reg_control);

		/* Clear the interrupt status */
1029
		iowrite32(SUPPORTED_INTERRUPTS, cmd_q->reg_interrupt_status);
1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064
		ioread32(cmd_q->reg_int_status);
		ioread32(cmd_q->reg_status);
	}

	/* Stop the queue kthreads */
	for (i = 0; i < ccp->cmd_q_count; i++)
		if (ccp->cmd_q[i].kthread)
			kthread_stop(ccp->cmd_q[i].kthread);

	ccp->free_irq(ccp);

	for (i = 0; i < ccp->cmd_q_count; i++) {
		cmd_q = &ccp->cmd_q[i];
		dma_free_coherent(dev, cmd_q->qsize, cmd_q->qbase,
				  cmd_q->qbase_dma);
	}

	/* Flush the cmd and backlog queue */
	while (!list_empty(&ccp->cmd)) {
		/* Invoke the callback directly with an error code */
		cmd = list_first_entry(&ccp->cmd, struct ccp_cmd, entry);
		list_del(&cmd->entry);
		cmd->callback(cmd->data, -ENODEV);
	}
	while (!list_empty(&ccp->backlog)) {
		/* Invoke the callback directly with an error code */
		cmd = list_first_entry(&ccp->backlog, struct ccp_cmd, entry);
		list_del(&cmd->entry);
		cmd->callback(cmd->data, -ENODEV);
	}
}

static void ccp5_config(struct ccp_device *ccp)
{
	/* Public side */
1065
	iowrite32(0x0, ccp->io_regs + CMD5_REQID_CONFIG_OFFSET);
1066 1067
}

1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094
static void ccp5other_config(struct ccp_device *ccp)
{
	int i;
	u32 rnd;

	/* We own all of the queues on the NTB CCP */

	iowrite32(0x00012D57, ccp->io_regs + CMD5_TRNG_CTL_OFFSET);
	iowrite32(0x00000003, ccp->io_regs + CMD5_CONFIG_0_OFFSET);
	for (i = 0; i < 12; i++) {
		rnd = ioread32(ccp->io_regs + TRNG_OUT_REG);
		iowrite32(rnd, ccp->io_regs + CMD5_AES_MASK_OFFSET);
	}

	iowrite32(0x0000001F, ccp->io_regs + CMD5_QUEUE_MASK_OFFSET);
	iowrite32(0x00005B6D, ccp->io_regs + CMD5_QUEUE_PRIO_OFFSET);
	iowrite32(0x00000000, ccp->io_regs + CMD5_CMD_TIMEOUT_OFFSET);

	iowrite32(0x3FFFFFFF, ccp->io_regs + LSB_PRIVATE_MASK_LO_OFFSET);
	iowrite32(0x000003FF, ccp->io_regs + LSB_PRIVATE_MASK_HI_OFFSET);

	iowrite32(0x00108823, ccp->io_regs + CMD5_CLK_GATE_CTL_OFFSET);

	ccp5_config(ccp);
}

/* Version 5 adds some function, but is essentially the same as v5 */
1095 1096 1097 1098
static const struct ccp_actions ccp5_actions = {
	.aes = ccp5_perform_aes,
	.xts_aes = ccp5_perform_xts_aes,
	.sha = ccp5_perform_sha,
1099
	.des3 = ccp5_perform_des3,
1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110
	.rsa = ccp5_perform_rsa,
	.passthru = ccp5_perform_passthru,
	.ecc = ccp5_perform_ecc,
	.sballoc = ccp_lsb_alloc,
	.sbfree = ccp_lsb_free,
	.init = ccp5_init,
	.destroy = ccp5_destroy,
	.get_free_slots = ccp5_get_free_slots,
	.irqhandler = ccp5_irq_handler,
};

1111
const struct ccp_vdata ccpv5a = {
1112 1113 1114 1115 1116
	.version = CCP_VERSION(5, 0),
	.setup = ccp5_config,
	.perform = &ccp5_actions,
	.offset = 0x0,
};
1117

1118
const struct ccp_vdata ccpv5b = {
1119
	.version = CCP_VERSION(5, 0),
1120
	.dma_chan_attr = DMA_PRIVATE,
1121 1122 1123 1124
	.setup = ccp5other_config,
	.perform = &ccp5_actions,
	.offset = 0x0,
};