remoteproc_core.c 36.1 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37
/*
 * Remote Processor Framework
 *
 * Copyright (C) 2011 Texas Instruments, Inc.
 * Copyright (C) 2011 Google, Inc.
 *
 * Ohad Ben-Cohen <ohad@wizery.com>
 * Brian Swetland <swetland@google.com>
 * Mark Grosen <mgrosen@ti.com>
 * Fernando Guzman Lugo <fernando.lugo@ti.com>
 * Suman Anna <s-anna@ti.com>
 * Robert Tivy <rtivy@ti.com>
 * Armando Uribe De Leon <x0095078@ti.com>
 *
 * This program is free software; you can redistribute it and/or
 * modify it under the terms of the GNU General Public License
 * version 2 as published by the Free Software Foundation.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 */

#define pr_fmt(fmt)    "%s: " fmt, __func__

#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/device.h>
#include <linux/slab.h>
#include <linux/mutex.h>
#include <linux/dma-mapping.h>
#include <linux/firmware.h>
#include <linux/string.h>
#include <linux/debugfs.h>
#include <linux/remoteproc.h>
#include <linux/iommu.h>
38
#include <linux/idr.h>
39 40 41
#include <linux/elf.h>
#include <linux/virtio_ids.h>
#include <linux/virtio_ring.h>
42
#include <asm/byteorder.h>
43 44 45 46

#include "remoteproc_internal.h"

typedef int (*rproc_handle_resources_t)(struct rproc *rproc,
47 48
				struct resource_table *table, int len);
typedef int (*rproc_handle_resource_t)(struct rproc *rproc, void *, int avail);
49

50 51 52
/* Unique indices for remoteproc devices */
static DEFINE_IDA(rproc_dev_index);

53 54 55 56 57 58 59 60 61 62 63 64
static const char * const rproc_crash_names[] = {
	[RPROC_MMUFAULT]	= "mmufault",
};

/* translate rproc_crash_type to string */
static const char *rproc_crash_to_string(enum rproc_crash_type type)
{
	if (type < ARRAY_SIZE(rproc_crash_names))
		return rproc_crash_names[type];
	return "unkown";
}

65 66 67 68 69 70 71 72 73
/*
 * This is the IOMMU fault handler we register with the IOMMU API
 * (when relevant; not all remote processors access memory through
 * an IOMMU).
 *
 * IOMMU core will invoke this handler whenever the remote processor
 * will try to access an unmapped device address.
 */
static int rproc_iommu_fault(struct iommu_domain *domain, struct device *dev,
74
		unsigned long iova, int flags, void *token)
75
{
76 77
	struct rproc *rproc = token;

78 79
	dev_err(dev, "iommu fault: da 0x%lx flags 0x%x\n", iova, flags);

80 81
	rproc_report_crash(rproc, RPROC_MMUFAULT);

82 83
	/*
	 * Let the iommu core know we're not really handling this fault;
84
	 * we just used it as a recovery trigger.
85 86 87 88 89 90 91
	 */
	return -ENOSYS;
}

static int rproc_enable_iommu(struct rproc *rproc)
{
	struct iommu_domain *domain;
92
	struct device *dev = rproc->dev.parent;
93 94 95 96 97 98 99 100 101 102 103 104 105 106
	int ret;

	/*
	 * We currently use iommu_present() to decide if an IOMMU
	 * setup is needed.
	 *
	 * This works for simple cases, but will easily fail with
	 * platforms that do have an IOMMU, but not for this specific
	 * rproc.
	 *
	 * This will be easily solved by introducing hw capabilities
	 * that will be set by the remoteproc driver.
	 */
	if (!iommu_present(dev->bus)) {
107 108
		dev_dbg(dev, "iommu not found\n");
		return 0;
109 110 111 112 113 114 115 116
	}

	domain = iommu_domain_alloc(dev->bus);
	if (!domain) {
		dev_err(dev, "can't alloc iommu domain\n");
		return -ENOMEM;
	}

117
	iommu_set_fault_handler(domain, rproc_iommu_fault, rproc);
118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136

	ret = iommu_attach_device(domain, dev);
	if (ret) {
		dev_err(dev, "can't attach iommu device: %d\n", ret);
		goto free_domain;
	}

	rproc->domain = domain;

	return 0;

free_domain:
	iommu_domain_free(domain);
	return ret;
}

static void rproc_disable_iommu(struct rproc *rproc)
{
	struct iommu_domain *domain = rproc->domain;
137
	struct device *dev = rproc->dev.parent;
138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164

	if (!domain)
		return;

	iommu_detach_device(domain, dev);
	iommu_domain_free(domain);

	return;
}

/*
 * Some remote processors will ask us to allocate them physically contiguous
 * memory regions (which we call "carveouts"), and map them to specific
 * device addresses (which are hardcoded in the firmware).
 *
 * They may then ask us to copy objects into specific device addresses (e.g.
 * code/data sections) or expose us certain symbols in other device address
 * (e.g. their trace buffer).
 *
 * This function is an internal helper with which we can go over the allocated
 * carveouts and translate specific device address to kernel virtual addresses
 * so we can access the referenced memory.
 *
 * Note: phys_to_virt(iommu_iova_to_phys(rproc->domain, da)) will work too,
 * but only on kernel direct mapped RAM memory. Instead, we're just using
 * here the output of the DMA API, which should be more correct.
 */
165
void *rproc_da_to_va(struct rproc *rproc, u64 da, int len)
166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187
{
	struct rproc_mem_entry *carveout;
	void *ptr = NULL;

	list_for_each_entry(carveout, &rproc->carveouts, node) {
		int offset = da - carveout->da;

		/* try next carveout if da is too small */
		if (offset < 0)
			continue;

		/* try next carveout if da is too large */
		if (offset + len > carveout->len)
			continue;

		ptr = carveout->va + offset;

		break;
	}

	return ptr;
}
188
EXPORT_SYMBOL(rproc_da_to_va);
189

190
int rproc_alloc_vring(struct rproc_vdev *rvdev, int i)
191
{
192
	struct rproc *rproc = rvdev->rproc;
193
	struct device *dev = &rproc->dev;
194
	struct rproc_vring *rvring = &rvdev->vring[i];
195 196 197
	dma_addr_t dma;
	void *va;
	int ret, size, notifyid;
198

199
	/* actual size of vring (in bytes) */
200
	size = PAGE_ALIGN(vring_size(rvring->len, rvring->align));
201 202 203 204 205 206 207 208 209

	if (!idr_pre_get(&rproc->notifyids, GFP_KERNEL)) {
		dev_err(dev, "idr_pre_get failed\n");
		return -ENOMEM;
	}

	/*
	 * Allocate non-cacheable memory for the vring. In the future
	 * this call will also configure the IOMMU for us
210
	 * TODO: let the rproc know the da of this vring
211
	 */
212
	va = dma_alloc_coherent(dev->parent, size, &dma, GFP_KERNEL);
213
	if (!va) {
214
		dev_err(dev->parent, "dma_alloc_coherent failed\n");
215 216 217
		return -EINVAL;
	}

218 219 220 221 222 223 224
	/*
	 * Assign an rproc-wide unique index for this vring
	 * TODO: assign a notifyid for rvdev updates as well
	 * TODO: let the rproc know the notifyid of this vring
	 * TODO: support predefined notifyids (via resource table)
	 */
	ret = idr_get_new(&rproc->notifyids, rvring, &notifyid);
225 226
	if (ret) {
		dev_err(dev, "idr_get_new failed: %d\n", ret);
227
		dma_free_coherent(dev->parent, size, va, dma);
228 229
		return ret;
	}
230

231 232 233
	dev_dbg(dev, "vring%d: va %p dma %x size %x idr %d\n", i, va,
					dma, size, notifyid);

234 235 236
	rvring->va = va;
	rvring->dma = dma;
	rvring->notifyid = notifyid;
237 238 239 240

	return 0;
}

241 242
static int
rproc_parse_vring(struct rproc_vdev *rvdev, struct fw_rsc_vdev *rsc, int i)
243 244
{
	struct rproc *rproc = rvdev->rproc;
245
	struct device *dev = &rproc->dev;
246 247
	struct fw_rsc_vdev_vring *vring = &rsc->vring[i];
	struct rproc_vring *rvring = &rvdev->vring[i];
248

249 250
	dev_dbg(dev, "vdev rsc: vring%d: da %x, qsz %d, align %d\n",
				i, vring->da, vring->num, vring->align);
251

252 253 254 255 256
	/* make sure reserved bytes are zeroes */
	if (vring->reserved) {
		dev_err(dev, "vring rsc has non zero reserved bytes\n");
		return -EINVAL;
	}
257

258 259 260 261 262
	/* verify queue size and vring alignment are sane */
	if (!vring->num || !vring->align) {
		dev_err(dev, "invalid qsz (%d) or alignment (%d)\n",
						vring->num, vring->align);
		return -EINVAL;
263
	}
264 265 266 267 268 269 270 271 272 273 274 275 276

	rvring->len = vring->num;
	rvring->align = vring->align;
	rvring->rvdev = rvdev;

	return 0;
}

void rproc_free_vring(struct rproc_vring *rvring)
{
	int size = PAGE_ALIGN(vring_size(rvring->len, rvring->align));
	struct rproc *rproc = rvring->rvdev->rproc;

277
	dma_free_coherent(rproc->dev.parent, size, rvring->va, rvring->dma);
278
	idr_remove(&rproc->notifyids, rvring->notifyid);
279 280
}

281
/**
282
 * rproc_handle_vdev() - handle a vdev fw resource
283 284
 * @rproc: the remote processor
 * @rsc: the vring resource descriptor
285
 * @avail: size of available data (for sanity checking the image)
286
 *
287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304
 * This resource entry requests the host to statically register a virtio
 * device (vdev), and setup everything needed to support it. It contains
 * everything needed to make it possible: the virtio device id, virtio
 * device features, vrings information, virtio config space, etc...
 *
 * Before registering the vdev, the vrings are allocated from non-cacheable
 * physically contiguous memory. Currently we only support two vrings per
 * remote processor (temporary limitation). We might also want to consider
 * doing the vring allocation only later when ->find_vqs() is invoked, and
 * then release them upon ->del_vqs().
 *
 * Note: @da is currently not really handled correctly: we dynamically
 * allocate it using the DMA API, ignoring requested hard coded addresses,
 * and we don't take care of any required IOMMU programming. This is all
 * going to be taken care of when the generic iommu-based DMA API will be
 * merged. Meanwhile, statically-addressed iommu-based firmware images should
 * use RSC_DEVMEM resource entries to map their required @da to the physical
 * address of their base CMA region (ouch, hacky!).
305 306 307
 *
 * Returns 0 on success, or an appropriate error code otherwise
 */
308 309
static int rproc_handle_vdev(struct rproc *rproc, struct fw_rsc_vdev *rsc,
								int avail)
310
{
311
	struct device *dev = &rproc->dev;
312 313
	struct rproc_vdev *rvdev;
	int i, ret;
314

315 316 317
	/* make sure resource isn't truncated */
	if (sizeof(*rsc) + rsc->num_of_vrings * sizeof(struct fw_rsc_vdev_vring)
			+ rsc->config_len > avail) {
318
		dev_err(dev, "vdev rsc is truncated\n");
319 320 321
		return -EINVAL;
	}

322 323 324
	/* make sure reserved bytes are zeroes */
	if (rsc->reserved[0] || rsc->reserved[1]) {
		dev_err(dev, "vdev rsc has non zero reserved bytes\n");
325 326 327
		return -EINVAL;
	}

328 329 330
	dev_dbg(dev, "vdev rsc: id %d, dfeatures %x, cfg len %d, %d vrings\n",
		rsc->id, rsc->dfeatures, rsc->config_len, rsc->num_of_vrings);

331 332
	/* we currently support only two vrings per rvdev */
	if (rsc->num_of_vrings > ARRAY_SIZE(rvdev->vring)) {
333
		dev_err(dev, "too many vrings: %d\n", rsc->num_of_vrings);
334 335 336
		return -EINVAL;
	}

337 338 339
	rvdev = kzalloc(sizeof(struct rproc_vdev), GFP_KERNEL);
	if (!rvdev)
		return -ENOMEM;
340

341
	rvdev->rproc = rproc;
342

343
	/* parse the vrings */
344
	for (i = 0; i < rsc->num_of_vrings; i++) {
345
		ret = rproc_parse_vring(rvdev, rsc, i);
346
		if (ret)
347
			goto free_rvdev;
348
	}
349

350 351
	/* remember the device features */
	rvdev->dfeatures = rsc->dfeatures;
352

353
	list_add_tail(&rvdev->node, &rproc->rvdevs);
354

355 356 357
	/* it is now safe to add the virtio device */
	ret = rproc_add_virtio_dev(rvdev, rsc->id);
	if (ret)
358
		goto free_rvdev;
359 360

	return 0;
361

362
free_rvdev:
363 364
	kfree(rvdev);
	return ret;
365 366 367 368 369 370
}

/**
 * rproc_handle_trace() - handle a shared trace buffer resource
 * @rproc: the remote processor
 * @rsc: the trace resource descriptor
371
 * @avail: size of available data (for sanity checking the image)
372 373 374 375 376 377 378 379 380 381 382
 *
 * In case the remote processor dumps trace logs into memory,
 * export it via debugfs.
 *
 * Currently, the 'da' member of @rsc should contain the device address
 * where the remote processor is dumping the traces. Later we could also
 * support dynamically allocating this address using the generic
 * DMA API (but currently there isn't a use case for that).
 *
 * Returns 0 on success, or an appropriate error code otherwise
 */
383 384
static int rproc_handle_trace(struct rproc *rproc, struct fw_rsc_trace *rsc,
								int avail)
385 386
{
	struct rproc_mem_entry *trace;
387
	struct device *dev = &rproc->dev;
388 389 390
	void *ptr;
	char name[15];

391
	if (sizeof(*rsc) > avail) {
392
		dev_err(dev, "trace rsc is truncated\n");
393 394 395 396 397 398 399 400 401
		return -EINVAL;
	}

	/* make sure reserved bytes are zeroes */
	if (rsc->reserved) {
		dev_err(dev, "trace rsc has non zero reserved bytes\n");
		return -EINVAL;
	}

402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433
	/* what's the kernel address of this resource ? */
	ptr = rproc_da_to_va(rproc, rsc->da, rsc->len);
	if (!ptr) {
		dev_err(dev, "erroneous trace resource entry\n");
		return -EINVAL;
	}

	trace = kzalloc(sizeof(*trace), GFP_KERNEL);
	if (!trace) {
		dev_err(dev, "kzalloc trace failed\n");
		return -ENOMEM;
	}

	/* set the trace buffer dma properties */
	trace->len = rsc->len;
	trace->va = ptr;

	/* make sure snprintf always null terminates, even if truncating */
	snprintf(name, sizeof(name), "trace%d", rproc->num_traces);

	/* create the debugfs entry */
	trace->priv = rproc_create_trace_file(name, rproc, trace);
	if (!trace->priv) {
		trace->va = NULL;
		kfree(trace);
		return -EINVAL;
	}

	list_add_tail(&trace->node, &rproc->traces);

	rproc->num_traces++;

434
	dev_dbg(dev, "%s added: va %p, da 0x%x, len 0x%x\n", name, ptr,
435 436 437 438 439 440 441 442 443
						rsc->da, rsc->len);

	return 0;
}

/**
 * rproc_handle_devmem() - handle devmem resource entry
 * @rproc: remote processor handle
 * @rsc: the devmem resource entry
444
 * @avail: size of available data (for sanity checking the image)
445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464
 *
 * Remote processors commonly need to access certain on-chip peripherals.
 *
 * Some of these remote processors access memory via an iommu device,
 * and might require us to configure their iommu before they can access
 * the on-chip peripherals they need.
 *
 * This resource entry is a request to map such a peripheral device.
 *
 * These devmem entries will contain the physical address of the device in
 * the 'pa' member. If a specific device address is expected, then 'da' will
 * contain it (currently this is the only use case supported). 'len' will
 * contain the size of the physical region we need to map.
 *
 * Currently we just "trust" those devmem entries to contain valid physical
 * addresses, but this is going to change: we want the implementations to
 * tell us ranges of physical addresses the firmware is allowed to request,
 * and not allow firmwares to request access to physical addresses that
 * are outside those ranges.
 */
465 466
static int rproc_handle_devmem(struct rproc *rproc, struct fw_rsc_devmem *rsc,
								int avail)
467 468
{
	struct rproc_mem_entry *mapping;
469
	struct device *dev = &rproc->dev;
470 471 472 473 474 475
	int ret;

	/* no point in handling this resource without a valid iommu domain */
	if (!rproc->domain)
		return -EINVAL;

476
	if (sizeof(*rsc) > avail) {
477
		dev_err(dev, "devmem rsc is truncated\n");
478 479 480 481 482
		return -EINVAL;
	}

	/* make sure reserved bytes are zeroes */
	if (rsc->reserved) {
483
		dev_err(dev, "devmem rsc has non zero reserved bytes\n");
484 485 486
		return -EINVAL;
	}

487 488
	mapping = kzalloc(sizeof(*mapping), GFP_KERNEL);
	if (!mapping) {
489
		dev_err(dev, "kzalloc mapping failed\n");
490 491 492 493 494
		return -ENOMEM;
	}

	ret = iommu_map(rproc->domain, rsc->da, rsc->pa, rsc->len, rsc->flags);
	if (ret) {
495
		dev_err(dev, "failed to map devmem: %d\n", ret);
496 497 498 499 500 501 502 503 504 505 506 507 508 509
		goto out;
	}

	/*
	 * We'll need this info later when we'll want to unmap everything
	 * (e.g. on shutdown).
	 *
	 * We can't trust the remote processor not to change the resource
	 * table, so we must maintain this info independently.
	 */
	mapping->da = rsc->da;
	mapping->len = rsc->len;
	list_add_tail(&mapping->node, &rproc->mappings);

510
	dev_dbg(dev, "mapped devmem pa 0x%x, da 0x%x, len 0x%x\n",
511 512 513 514 515 516 517 518 519 520 521 522 523
					rsc->pa, rsc->da, rsc->len);

	return 0;

out:
	kfree(mapping);
	return ret;
}

/**
 * rproc_handle_carveout() - handle phys contig memory allocation requests
 * @rproc: rproc handle
 * @rsc: the resource entry
524
 * @avail: size of available data (for image validation)
525 526 527 528 529 530 531 532 533 534 535 536 537
 *
 * This function will handle firmware requests for allocation of physically
 * contiguous memory regions.
 *
 * These request entries should come first in the firmware's resource table,
 * as other firmware entries might request placing other data objects inside
 * these memory regions (e.g. data/code segments, trace resource entries, ...).
 *
 * Allocating memory this way helps utilizing the reserved physical memory
 * (e.g. CMA) more efficiently, and also minimizes the number of TLB entries
 * needed to map it (in case @rproc is using an IOMMU). Reducing the TLB
 * pressure is important; it may have a substantial impact on performance.
 */
538 539
static int rproc_handle_carveout(struct rproc *rproc,
				struct fw_rsc_carveout *rsc, int avail)
540 541
{
	struct rproc_mem_entry *carveout, *mapping;
542
	struct device *dev = &rproc->dev;
543 544 545 546
	dma_addr_t dma;
	void *va;
	int ret;

547
	if (sizeof(*rsc) > avail) {
548
		dev_err(dev, "carveout rsc is truncated\n");
549 550 551 552 553 554 555 556 557 558 559 560
		return -EINVAL;
	}

	/* make sure reserved bytes are zeroes */
	if (rsc->reserved) {
		dev_err(dev, "carveout rsc has non zero reserved bytes\n");
		return -EINVAL;
	}

	dev_dbg(dev, "carveout rsc: da %x, pa %x, len %x, flags %x\n",
			rsc->da, rsc->pa, rsc->len, rsc->flags);

561 562 563 564 565 566 567 568 569 570 571 572 573
	mapping = kzalloc(sizeof(*mapping), GFP_KERNEL);
	if (!mapping) {
		dev_err(dev, "kzalloc mapping failed\n");
		return -ENOMEM;
	}

	carveout = kzalloc(sizeof(*carveout), GFP_KERNEL);
	if (!carveout) {
		dev_err(dev, "kzalloc carveout failed\n");
		ret = -ENOMEM;
		goto free_mapping;
	}

574
	va = dma_alloc_coherent(dev->parent, rsc->len, &dma, GFP_KERNEL);
575
	if (!va) {
576
		dev_err(dev->parent, "dma_alloc_coherent err: %d\n", rsc->len);
577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618
		ret = -ENOMEM;
		goto free_carv;
	}

	dev_dbg(dev, "carveout va %p, dma %x, len 0x%x\n", va, dma, rsc->len);

	/*
	 * Ok, this is non-standard.
	 *
	 * Sometimes we can't rely on the generic iommu-based DMA API
	 * to dynamically allocate the device address and then set the IOMMU
	 * tables accordingly, because some remote processors might
	 * _require_ us to use hard coded device addresses that their
	 * firmware was compiled with.
	 *
	 * In this case, we must use the IOMMU API directly and map
	 * the memory to the device address as expected by the remote
	 * processor.
	 *
	 * Obviously such remote processor devices should not be configured
	 * to use the iommu-based DMA API: we expect 'dma' to contain the
	 * physical address in this case.
	 */
	if (rproc->domain) {
		ret = iommu_map(rproc->domain, rsc->da, dma, rsc->len,
								rsc->flags);
		if (ret) {
			dev_err(dev, "iommu_map failed: %d\n", ret);
			goto dma_free;
		}

		/*
		 * We'll need this info later when we'll want to unmap
		 * everything (e.g. on shutdown).
		 *
		 * We can't trust the remote processor not to change the
		 * resource table, so we must maintain this info independently.
		 */
		mapping->da = rsc->da;
		mapping->len = rsc->len;
		list_add_tail(&mapping->node, &rproc->mappings);

619
		dev_dbg(dev, "carveout mapped 0x%x to 0x%x\n", rsc->da, dma);
620 621
	}

622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640
	/*
	 * Some remote processors might need to know the pa
	 * even though they are behind an IOMMU. E.g., OMAP4's
	 * remote M3 processor needs this so it can control
	 * on-chip hardware accelerators that are not behind
	 * the IOMMU, and therefor must know the pa.
	 *
	 * Generally we don't want to expose physical addresses
	 * if we don't have to (remote processors are generally
	 * _not_ trusted), so we might want to do this only for
	 * remote processor that _must_ have this (e.g. OMAP4's
	 * dual M3 subsystem).
	 *
	 * Non-IOMMU processors might also want to have this info.
	 * In this case, the device address and the physical address
	 * are the same.
	 */
	rsc->pa = dma;

641 642 643 644 645 646 647 648 649 650
	carveout->va = va;
	carveout->len = rsc->len;
	carveout->dma = dma;
	carveout->da = rsc->da;

	list_add_tail(&carveout->node, &rproc->carveouts);

	return 0;

dma_free:
651
	dma_free_coherent(dev->parent, rsc->len, va, dma);
652 653 654 655 656 657 658
free_carv:
	kfree(carveout);
free_mapping:
	kfree(mapping);
	return ret;
}

659 660 661 662 663
/*
 * A lookup table for resource handlers. The indices are defined in
 * enum fw_resource_type.
 */
static rproc_handle_resource_t rproc_handle_rsc[] = {
664 665 666
	[RSC_CARVEOUT] = (rproc_handle_resource_t)rproc_handle_carveout,
	[RSC_DEVMEM] = (rproc_handle_resource_t)rproc_handle_devmem,
	[RSC_TRACE] = (rproc_handle_resource_t)rproc_handle_trace,
667
	[RSC_VDEV] = NULL, /* VDEVs were handled upon registrarion */
668 669
};

670 671
/* handle firmware resource entries before booting the remote processor */
static int
672
rproc_handle_boot_rsc(struct rproc *rproc, struct resource_table *table, int len)
673
{
674
	struct device *dev = &rproc->dev;
675
	rproc_handle_resource_t handler;
676 677 678 679 680 681 682 683 684 685 686 687 688
	int ret = 0, i;

	for (i = 0; i < table->num; i++) {
		int offset = table->offset[i];
		struct fw_rsc_hdr *hdr = (void *)table + offset;
		int avail = len - offset - sizeof(*hdr);
		void *rsc = (void *)hdr + sizeof(*hdr);

		/* make sure table isn't truncated */
		if (avail < 0) {
			dev_err(dev, "rsc table is truncated\n");
			return -EINVAL;
		}
689

690
		dev_dbg(dev, "rsc: type %d\n", hdr->type);
691

692 693
		if (hdr->type >= RSC_LAST) {
			dev_warn(dev, "unsupported resource %d\n", hdr->type);
694
			continue;
695 696
		}

697
		handler = rproc_handle_rsc[hdr->type];
698 699 700
		if (!handler)
			continue;

701
		ret = handler(rproc, rsc, avail);
702 703 704 705 706 707 708 709 710
		if (ret)
			break;
	}

	return ret;
}

/* handle firmware resource entries while registering the remote processor */
static int
711
rproc_handle_virtio_rsc(struct rproc *rproc, struct resource_table *table, int len)
712
{
713
	struct device *dev = &rproc->dev;
714 715 716 717 718 719
	int ret = 0, i;

	for (i = 0; i < table->num; i++) {
		int offset = table->offset[i];
		struct fw_rsc_hdr *hdr = (void *)table + offset;
		int avail = len - offset - sizeof(*hdr);
720
		struct fw_rsc_vdev *vrsc;
721

722 723 724 725 726 727 728 729
		/* make sure table isn't truncated */
		if (avail < 0) {
			dev_err(dev, "rsc table is truncated\n");
			return -EINVAL;
		}

		dev_dbg(dev, "%s: rsc type %d\n", __func__, hdr->type);

730 731 732 733 734 735 736
		if (hdr->type != RSC_VDEV)
			continue;

		vrsc = (struct fw_rsc_vdev *)hdr->data;

		ret = rproc_handle_vdev(rproc, vrsc, avail);
		if (ret)
737
			break;
738
	}
739 740 741 742 743 744 745 746 747

	return ret;
}

/**
 * rproc_resource_cleanup() - clean up and free all acquired resources
 * @rproc: rproc handle
 *
 * This function will free all resources acquired for @rproc, and it
748
 * is called whenever @rproc either shuts down or fails to boot.
749 750 751 752
 */
static void rproc_resource_cleanup(struct rproc *rproc)
{
	struct rproc_mem_entry *entry, *tmp;
753
	struct device *dev = &rproc->dev;
754 755 756 757 758 759 760 761 762 763 764

	/* clean up debugfs trace entries */
	list_for_each_entry_safe(entry, tmp, &rproc->traces, node) {
		rproc_remove_trace_file(entry->priv);
		rproc->num_traces--;
		list_del(&entry->node);
		kfree(entry);
	}

	/* clean up carveout allocations */
	list_for_each_entry_safe(entry, tmp, &rproc->carveouts, node) {
765
		dma_free_coherent(dev->parent, entry->len, entry->va, entry->dma);
766 767 768 769 770 771 772 773 774 775 776
		list_del(&entry->node);
		kfree(entry);
	}

	/* clean up iommu mapping entries */
	list_for_each_entry_safe(entry, tmp, &rproc->mappings, node) {
		size_t unmapped;

		unmapped = iommu_unmap(rproc->domain, entry->da, entry->len);
		if (unmapped != entry->len) {
			/* nothing much to do besides complaining */
777
			dev_err(dev, "failed to unmap %u/%zu\n", entry->len,
778 779 780 781 782 783 784 785 786 787 788 789 790
								unmapped);
		}

		list_del(&entry->node);
		kfree(entry);
	}
}

/*
 * take a firmware and boot a remote processor with it.
 */
static int rproc_fw_boot(struct rproc *rproc, const struct firmware *fw)
{
791
	struct device *dev = &rproc->dev;
792
	const char *name = rproc->firmware;
793 794
	struct resource_table *table;
	int ret, tablesz;
795 796 797 798 799

	ret = rproc_fw_sanity_check(rproc, fw);
	if (ret)
		return ret;

800
	dev_info(dev, "Booting fw image %s, size %zd\n", name, fw->size);
801 802 803 804 805 806 807 808 809 810 811

	/*
	 * if enabling an IOMMU isn't relevant for this rproc, this is
	 * just a nop
	 */
	ret = rproc_enable_iommu(rproc);
	if (ret) {
		dev_err(dev, "can't enable iommu: %d\n", ret);
		return ret;
	}

812
	rproc->bootaddr = rproc_get_boot_addr(rproc, fw);
813

814
	/* look for the resource table */
815
	table = rproc_find_rsc_table(rproc, fw, &tablesz);
816 817
	if (!table) {
		ret = -EINVAL;
818
		goto clean_up;
819
	}
820

821
	/* handle fw resources which are required to boot rproc */
822
	ret = rproc_handle_boot_rsc(rproc, table, tablesz);
823 824 825 826 827 828
	if (ret) {
		dev_err(dev, "Failed to process resources: %d\n", ret);
		goto clean_up;
	}

	/* load the ELF segments to memory */
829
	ret = rproc_load_segments(rproc, fw);
830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864
	if (ret) {
		dev_err(dev, "Failed to load program segments: %d\n", ret);
		goto clean_up;
	}

	/* power up the remote processor */
	ret = rproc->ops->start(rproc);
	if (ret) {
		dev_err(dev, "can't start rproc %s: %d\n", rproc->name, ret);
		goto clean_up;
	}

	rproc->state = RPROC_RUNNING;

	dev_info(dev, "remote processor %s is now up\n", rproc->name);

	return 0;

clean_up:
	rproc_resource_cleanup(rproc);
	rproc_disable_iommu(rproc);
	return ret;
}

/*
 * take a firmware and look for virtio devices to register.
 *
 * Note: this function is called asynchronously upon registration of the
 * remote processor (so we must wait until it completes before we try
 * to unregister the device. one other option is just to use kref here,
 * that might be cleaner).
 */
static void rproc_fw_config_virtio(const struct firmware *fw, void *context)
{
	struct rproc *rproc = context;
865 866
	struct resource_table *table;
	int ret, tablesz;
867 868 869 870

	if (rproc_fw_sanity_check(rproc, fw) < 0)
		goto out;

871
	/* look for the resource table */
872
	table = rproc_find_rsc_table(rproc, fw,  &tablesz);
873 874 875 876 877 878
	if (!table)
		goto out;

	/* look for virtio devices and register them */
	ret = rproc_handle_virtio_rsc(rproc, table, tablesz);
	if (ret)
879 880 881
		goto out;

out:
882
	release_firmware(fw);
883
	/* allow rproc_del() contexts, if any, to proceed */
884 885 886
	complete_all(&rproc->firmware_loading_complete);
}

887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940
static int rproc_add_virtio_devices(struct rproc *rproc)
{
	int ret;

	/* rproc_del() calls must wait until async loader completes */
	init_completion(&rproc->firmware_loading_complete);

	/*
	 * We must retrieve early virtio configuration info from
	 * the firmware (e.g. whether to register a virtio device,
	 * what virtio features does it support, ...).
	 *
	 * We're initiating an asynchronous firmware loading, so we can
	 * be built-in kernel code, without hanging the boot process.
	 */
	ret = request_firmware_nowait(THIS_MODULE, FW_ACTION_HOTPLUG,
				      rproc->firmware, &rproc->dev, GFP_KERNEL,
				      rproc, rproc_fw_config_virtio);
	if (ret < 0) {
		dev_err(&rproc->dev, "request_firmware_nowait err: %d\n", ret);
		complete_all(&rproc->firmware_loading_complete);
	}

	return ret;
}

/**
 * rproc_trigger_recovery() - recover a remoteproc
 * @rproc: the remote processor
 *
 * The recovery is done by reseting all the virtio devices, that way all the
 * rpmsg drivers will be reseted along with the remote processor making the
 * remoteproc functional again.
 *
 * This function can sleep, so it cannot be called from atomic context.
 */
int rproc_trigger_recovery(struct rproc *rproc)
{
	struct rproc_vdev *rvdev, *rvtmp;

	dev_err(&rproc->dev, "recovering %s\n", rproc->name);

	init_completion(&rproc->crash_comp);

	/* clean up remote vdev entries */
	list_for_each_entry_safe(rvdev, rvtmp, &rproc->rvdevs, node)
		rproc_remove_virtio_dev(rvdev);

	/* wait until there is no more rproc users */
	wait_for_completion(&rproc->crash_comp);

	return rproc_add_virtio_devices(rproc);
}

941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967
/**
 * rproc_crash_handler_work() - handle a crash
 *
 * This function needs to handle everything related to a crash, like cpu
 * registers and stack dump, information to help to debug the fatal error, etc.
 */
static void rproc_crash_handler_work(struct work_struct *work)
{
	struct rproc *rproc = container_of(work, struct rproc, crash_handler);
	struct device *dev = &rproc->dev;

	dev_dbg(dev, "enter %s\n", __func__);

	mutex_lock(&rproc->lock);

	if (rproc->state == RPROC_CRASHED || rproc->state == RPROC_OFFLINE) {
		/* handle only the first crash detected */
		mutex_unlock(&rproc->lock);
		return;
	}

	rproc->state = RPROC_CRASHED;
	dev_err(dev, "handling crash #%u in %s\n", ++rproc->crash_cnt,
		rproc->name);

	mutex_unlock(&rproc->lock);

968
	rproc_trigger_recovery(rproc);
969 970
}

971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992
/**
 * rproc_boot() - boot a remote processor
 * @rproc: handle of a remote processor
 *
 * Boot a remote processor (i.e. load its firmware, power it on, ...).
 *
 * If the remote processor is already powered on, this function immediately
 * returns (successfully).
 *
 * Returns 0 on success, and an appropriate error value otherwise.
 */
int rproc_boot(struct rproc *rproc)
{
	const struct firmware *firmware_p;
	struct device *dev;
	int ret;

	if (!rproc) {
		pr_err("invalid rproc handle\n");
		return -EINVAL;
	}

993
	dev = &rproc->dev;
994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008

	ret = mutex_lock_interruptible(&rproc->lock);
	if (ret) {
		dev_err(dev, "can't lock rproc %s: %d\n", rproc->name, ret);
		return ret;
	}

	/* loading a firmware is required */
	if (!rproc->firmware) {
		dev_err(dev, "%s: no firmware to load\n", __func__);
		ret = -EINVAL;
		goto unlock_mutex;
	}

	/* prevent underlying implementation from being removed */
1009
	if (!try_module_get(dev->parent->driver->owner)) {
1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035
		dev_err(dev, "%s: can't get owner\n", __func__);
		ret = -EINVAL;
		goto unlock_mutex;
	}

	/* skip the boot process if rproc is already powered up */
	if (atomic_inc_return(&rproc->power) > 1) {
		ret = 0;
		goto unlock_mutex;
	}

	dev_info(dev, "powering up %s\n", rproc->name);

	/* load firmware */
	ret = request_firmware(&firmware_p, rproc->firmware, dev);
	if (ret < 0) {
		dev_err(dev, "request_firmware failed: %d\n", ret);
		goto downref_rproc;
	}

	ret = rproc_fw_boot(rproc, firmware_p);

	release_firmware(firmware_p);

downref_rproc:
	if (ret) {
1036
		module_put(dev->parent->driver->owner);
1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065
		atomic_dec(&rproc->power);
	}
unlock_mutex:
	mutex_unlock(&rproc->lock);
	return ret;
}
EXPORT_SYMBOL(rproc_boot);

/**
 * rproc_shutdown() - power off the remote processor
 * @rproc: the remote processor
 *
 * Power off a remote processor (previously booted with rproc_boot()).
 *
 * In case @rproc is still being used by an additional user(s), then
 * this function will just decrement the power refcount and exit,
 * without really powering off the device.
 *
 * Every call to rproc_boot() must (eventually) be accompanied by a call
 * to rproc_shutdown(). Calling rproc_shutdown() redundantly is a bug.
 *
 * Notes:
 * - we're not decrementing the rproc's refcount, only the power refcount.
 *   which means that the @rproc handle stays valid even after rproc_shutdown()
 *   returns, and users can still use it with a subsequent rproc_boot(), if
 *   needed.
 */
void rproc_shutdown(struct rproc *rproc)
{
1066
	struct device *dev = &rproc->dev;
1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091
	int ret;

	ret = mutex_lock_interruptible(&rproc->lock);
	if (ret) {
		dev_err(dev, "can't lock rproc %s: %d\n", rproc->name, ret);
		return;
	}

	/* if the remote proc is still needed, bail out */
	if (!atomic_dec_and_test(&rproc->power))
		goto out;

	/* power off the remote processor */
	ret = rproc->ops->stop(rproc);
	if (ret) {
		atomic_inc(&rproc->power);
		dev_err(dev, "can't stop rproc: %d\n", ret);
		goto out;
	}

	/* clean up all acquired resources */
	rproc_resource_cleanup(rproc);

	rproc_disable_iommu(rproc);

1092 1093 1094 1095
	/* if in crash state, unlock crash handler */
	if (rproc->state == RPROC_CRASHED)
		complete_all(&rproc->crash_comp);

1096 1097 1098 1099 1100 1101 1102
	rproc->state = RPROC_OFFLINE;

	dev_info(dev, "stopped remote processor %s\n", rproc->name);

out:
	mutex_unlock(&rproc->lock);
	if (!ret)
1103
		module_put(dev->parent->driver->owner);
1104 1105 1106 1107
}
EXPORT_SYMBOL(rproc_shutdown);

/**
1108
 * rproc_add() - register a remote processor
1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123
 * @rproc: the remote processor handle to register
 *
 * Registers @rproc with the remoteproc framework, after it has been
 * allocated with rproc_alloc().
 *
 * This is called by the platform-specific rproc implementation, whenever
 * a new remote processor device is probed.
 *
 * Returns 0 on success and an appropriate error code otherwise.
 *
 * Note: this function initiates an asynchronous firmware loading
 * context, which will look for virtio devices supported by the rproc's
 * firmware.
 *
 * If found, those virtio devices will be created and added, so as a result
1124
 * of registering this remote processor, additional virtio drivers might be
1125 1126
 * probed.
 */
1127
int rproc_add(struct rproc *rproc)
1128
{
1129
	struct device *dev = &rproc->dev;
1130
	int ret;
1131

1132 1133 1134
	ret = device_add(dev);
	if (ret < 0)
		return ret;
1135

1136
	dev_info(dev, "%s is available\n", rproc->name);
1137

1138 1139 1140
	dev_info(dev, "Note: remoteproc is still under development and considered experimental.\n");
	dev_info(dev, "THE BINARY FORMAT IS NOT YET FINALIZED, and backward compatibility isn't yet guaranteed.\n");

1141 1142 1143
	/* create debugfs entries */
	rproc_create_debug_dir(rproc);

1144
	return rproc_add_virtio_devices(rproc);
1145
}
1146
EXPORT_SYMBOL(rproc_add);
1147

1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160
/**
 * rproc_type_release() - release a remote processor instance
 * @dev: the rproc's device
 *
 * This function should _never_ be called directly.
 *
 * It will be called by the driver core when no one holds a valid pointer
 * to @dev anymore.
 */
static void rproc_type_release(struct device *dev)
{
	struct rproc *rproc = container_of(dev, struct rproc, dev);

1161 1162 1163 1164
	dev_info(&rproc->dev, "releasing %s\n", rproc->name);

	rproc_delete_debug_dir(rproc);

1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177
	idr_remove_all(&rproc->notifyids);
	idr_destroy(&rproc->notifyids);

	if (rproc->index >= 0)
		ida_simple_remove(&rproc_dev_index, rproc->index);

	kfree(rproc);
}

static struct device_type rproc_type = {
	.name		= "remoteproc",
	.release	= rproc_type_release,
};
1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193

/**
 * rproc_alloc() - allocate a remote processor handle
 * @dev: the underlying device
 * @name: name of this remote processor
 * @ops: platform-specific handlers (mainly start/stop)
 * @firmware: name of firmware file to load
 * @len: length of private data needed by the rproc driver (in bytes)
 *
 * Allocates a new remote processor handle, but does not register
 * it yet.
 *
 * This function should be used by rproc implementations during initialization
 * of the remote processor.
 *
 * After creating an rproc handle using this function, and when ready,
1194
 * implementations should then call rproc_add() to complete
1195 1196 1197 1198 1199
 * the registration of the remote processor.
 *
 * On success the new rproc is returned, and on failure, NULL.
 *
 * Note: _never_ directly deallocate @rproc, even if it was not registered
1200
 * yet. Instead, when you need to unroll rproc_alloc(), use rproc_put().
1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221
 */
struct rproc *rproc_alloc(struct device *dev, const char *name,
				const struct rproc_ops *ops,
				const char *firmware, int len)
{
	struct rproc *rproc;

	if (!dev || !name || !ops)
		return NULL;

	rproc = kzalloc(sizeof(struct rproc) + len, GFP_KERNEL);
	if (!rproc) {
		dev_err(dev, "%s: kzalloc failed\n", __func__);
		return NULL;
	}

	rproc->name = name;
	rproc->ops = ops;
	rproc->firmware = firmware;
	rproc->priv = &rproc[1];

1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235
	device_initialize(&rproc->dev);
	rproc->dev.parent = dev;
	rproc->dev.type = &rproc_type;

	/* Assign a unique device index and name */
	rproc->index = ida_simple_get(&rproc_dev_index, 0, 0, GFP_KERNEL);
	if (rproc->index < 0) {
		dev_err(dev, "ida_simple_get failed: %d\n", rproc->index);
		put_device(&rproc->dev);
		return NULL;
	}

	dev_set_name(&rproc->dev, "remoteproc%d", rproc->index);

1236 1237
	atomic_set(&rproc->power, 0);

1238 1239
	/* Set ELF as the default fw_ops handler */
	rproc->fw_ops = &rproc_elf_fw_ops;
1240 1241 1242

	mutex_init(&rproc->lock);

1243 1244
	idr_init(&rproc->notifyids);

1245 1246 1247
	INIT_LIST_HEAD(&rproc->carveouts);
	INIT_LIST_HEAD(&rproc->mappings);
	INIT_LIST_HEAD(&rproc->traces);
1248
	INIT_LIST_HEAD(&rproc->rvdevs);
1249

1250
	INIT_WORK(&rproc->crash_handler, rproc_crash_handler_work);
1251
	init_completion(&rproc->crash_comp);
1252

1253 1254 1255 1256 1257 1258 1259
	rproc->state = RPROC_OFFLINE;

	return rproc;
}
EXPORT_SYMBOL(rproc_alloc);

/**
1260
 * rproc_put() - unroll rproc_alloc()
1261 1262
 * @rproc: the remote processor handle
 *
1263
 * This function decrements the rproc dev refcount.
1264
 *
1265 1266
 * If no one holds any reference to rproc anymore, then its refcount would
 * now drop to zero, and it would be freed.
1267
 */
1268
void rproc_put(struct rproc *rproc)
1269
{
1270
	put_device(&rproc->dev);
1271
}
1272
EXPORT_SYMBOL(rproc_put);
1273 1274

/**
1275
 * rproc_del() - unregister a remote processor
1276 1277 1278 1279
 * @rproc: rproc handle to unregister
 *
 * This function should be called when the platform specific rproc
 * implementation decides to remove the rproc device. it should
1280
 * _only_ be called if a previous invocation of rproc_add()
1281 1282
 * has completed successfully.
 *
1283
 * After rproc_del() returns, @rproc isn't freed yet, because
1284
 * of the outstanding reference created by rproc_alloc. To decrement that
1285
 * one last refcount, one still needs to call rproc_put().
1286 1287 1288
 *
 * Returns 0 on success and -EINVAL if @rproc isn't valid.
 */
1289
int rproc_del(struct rproc *rproc)
1290
{
1291
	struct rproc_vdev *rvdev, *tmp;
1292

1293 1294 1295 1296 1297 1298
	if (!rproc)
		return -EINVAL;

	/* if rproc is just being registered, wait */
	wait_for_completion(&rproc->firmware_loading_complete);

1299
	/* clean up remote vdev entries */
1300
	list_for_each_entry_safe(rvdev, tmp, &rproc->rvdevs, node)
1301
		rproc_remove_virtio_dev(rvdev);
1302

1303
	device_del(&rproc->dev);
1304 1305 1306

	return 0;
}
1307
EXPORT_SYMBOL(rproc_del);
1308

1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334
/**
 * rproc_report_crash() - rproc crash reporter function
 * @rproc: remote processor
 * @type: crash type
 *
 * This function must be called every time a crash is detected by the low-level
 * drivers implementing a specific remoteproc. This should not be called from a
 * non-remoteproc driver.
 *
 * This function can be called from atomic/interrupt context.
 */
void rproc_report_crash(struct rproc *rproc, enum rproc_crash_type type)
{
	if (!rproc) {
		pr_err("NULL rproc pointer\n");
		return;
	}

	dev_err(&rproc->dev, "crash detected in %s: type %s\n",
		rproc->name, rproc_crash_to_string(type));

	/* create a new task to handle the error */
	schedule_work(&rproc->crash_handler);
}
EXPORT_SYMBOL(rproc_report_crash);

1335 1336 1337
static int __init remoteproc_init(void)
{
	rproc_init_debugfs();
1338

1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350
	return 0;
}
module_init(remoteproc_init);

static void __exit remoteproc_exit(void)
{
	rproc_exit_debugfs();
}
module_exit(remoteproc_exit);

MODULE_LICENSE("GPL v2");
MODULE_DESCRIPTION("Generic Remote Processor Framework");