ssfdc.c 11.3 KB
Newer Older
1 2
/*
 * Linux driver for SSFDC Flash Translation Layer (Read only)
D
David Woodhouse 已提交
3
 * © 2005 Eptar srl
4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
 * Author: Claudio Lanconelli <lanconelli.claudio@eptar.com>
 *
 * Based on NTFL and MTDBLOCK_RO drivers
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License version 2 as
 * published by the Free Software Foundation.
 */

#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/init.h>
#include <linux/slab.h>
#include <linux/hdreg.h>
#include <linux/mtd/mtd.h>
#include <linux/mtd/nand.h>
#include <linux/mtd/blktrans.h>

struct ssfdcr_record {
	struct mtd_blktrans_dev mbd;
	int usecount;
	unsigned char heads;
	unsigned char sectors;
	unsigned short cylinders;
	int cis_block;			/* block n. containing CIS/IDI */
	int erase_size;			/* phys_block_size */
	unsigned short *logic_block_map; /* all zones (max 8192 phys blocks on
31
					    the 128MiB) */
32 33 34 35 36 37 38 39 40 41 42 43 44
	int map_len;			/* n. phys_blocks on the card */
};

#define SSFDCR_MAJOR		257
#define SSFDCR_PARTN_BITS	3

#define SECTOR_SIZE		512
#define SECTOR_SHIFT		9
#define OOB_SIZE		16

#define MAX_LOGIC_BLK_PER_ZONE	1000
#define MAX_PHYS_BLK_PER_ZONE	1024

45 46
#define KiB(x)	( (x) * 1024L )
#define MiB(x)	( KiB(x) * 1024L )
47 48

/** CHS Table
49
		1MiB	2MiB	4MiB	8MiB	16MiB	32MiB	64MiB	128MiB
50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65
NCylinder	125	125	250	250	500	500	500	500
NHead		4	4	4	4	4	8	8	16
NSector		4	8	8	16	16	16	32	32
SumSector	2,000	4,000	8,000	16,000	32,000	64,000	128,000	256,000
SectorSize	512	512	512	512	512	512	512	512
**/

typedef struct {
	unsigned long size;
	unsigned short cyl;
	unsigned char head;
	unsigned char sec;
} chs_entry_t;

/* Must be ordered by size */
static const chs_entry_t chs_table[] = {
66 67 68 69 70 71 72 73
	{ MiB(  1), 125,  4,  4 },
	{ MiB(  2), 125,  4,  8 },
	{ MiB(  4), 250,  4,  8 },
	{ MiB(  8), 250,  4, 16 },
	{ MiB( 16), 500,  4, 16 },
	{ MiB( 32), 500,  8, 16 },
	{ MiB( 64), 500,  8, 32 },
	{ MiB(128), 500, 16, 32 },
74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110
	{ 0 },
};

static int get_chs(unsigned long size, unsigned short *cyl, unsigned char *head,
			unsigned char *sec)
{
	int k;
	int found = 0;

	k = 0;
	while (chs_table[k].size > 0 && size > chs_table[k].size)
		k++;

	if (chs_table[k].size > 0) {
		if (cyl)
			*cyl = chs_table[k].cyl;
		if (head)
			*head = chs_table[k].head;
		if (sec)
			*sec = chs_table[k].sec;
		found = 1;
	}

	return found;
}

/* These bytes are the signature for the CIS/IDI sector */
static const uint8_t cis_numbers[] = {
	0x01, 0x03, 0xD9, 0x01, 0xFF, 0x18, 0x02, 0xDF, 0x01, 0x20
};

/* Read and check for a valid CIS sector */
static int get_valid_cis_sector(struct mtd_info *mtd)
{
	int ret, k, cis_sector;
	size_t retlen;
	loff_t offset;
111 112 113 114 115 116 117
	uint8_t *sect_buf;

	cis_sector = -1;

	sect_buf = kmalloc(SECTOR_SIZE, GFP_KERNEL);
	if (!sect_buf)
		goto out;
118 119 120 121 122 123 124

	/*
	 * Look for CIS/IDI sector on the first GOOD block (give up after 4 bad
	 * blocks). If the first good block doesn't contain CIS number the flash
	 * is not SSFDC formatted
	 */
	for (k = 0, offset = 0; k < 4; k++, offset += mtd->erasesize) {
125
		if (mtd_block_isbad(mtd, offset)) {
126 127
			ret = mtd_read(mtd, offset, SECTOR_SIZE, &retlen,
				       sect_buf);
128 129

			/* CIS pattern match on the sector buffer */
130
			if (ret < 0 || retlen != SECTOR_SIZE) {
131 132
				printk(KERN_WARNING
					"SSFDC_RO:can't read CIS/IDI sector\n");
133 134
			} else if (!memcmp(sect_buf, cis_numbers,
					sizeof(cis_numbers))) {
135 136 137
				/* Found */
				cis_sector = (int)(offset >> SECTOR_SHIFT);
			} else {
138
				pr_debug("SSFDC_RO: CIS/IDI sector not found"
139 140 141 142 143 144 145
					" on %s (mtd%d)\n", mtd->name,
					mtd->index);
			}
			break;
		}
	}

146 147
	kfree(sect_buf);
 out:
148 149 150 151 152 153 154 155 156 157 158
	return cis_sector;
}

/* Read physical sector (wrapper to MTD_READ) */
static int read_physical_sector(struct mtd_info *mtd, uint8_t *sect_buf,
				int sect_no)
{
	int ret;
	size_t retlen;
	loff_t offset = (loff_t)sect_no << SECTOR_SHIFT;

159
	ret = mtd_read(mtd, offset, SECTOR_SIZE, &retlen, sect_buf);
160 161 162 163 164 165 166 167 168 169 170 171
	if (ret < 0 || retlen != SECTOR_SIZE)
		return -1;

	return 0;
}

/* Read redundancy area (wrapper to MTD_READ_OOB */
static int read_raw_oob(struct mtd_info *mtd, loff_t offs, uint8_t *buf)
{
	struct mtd_oob_ops ops;
	int ret;

172
	ops.mode = MTD_OPS_RAW;
173
	ops.ooboffs = 0;
174
	ops.ooblen = OOB_SIZE;
175 176 177
	ops.oobbuf = buf;
	ops.datbuf = NULL;

178
	ret = mtd_read_oob(mtd, offs, &ops);
179
	if (ret < 0 || ops.oobretlen != OOB_SIZE)
180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222
		return -1;

	return 0;
}

/* Parity calculator on a word of n bit size */
static int get_parity(int number, int size)
{
 	int k;
	int parity;

	parity = 1;
	for (k = 0; k < size; k++) {
		parity += (number >> k);
		parity &= 1;
	}
	return parity;
}

/* Read and validate the logical block address field stored in the OOB */
static int get_logical_address(uint8_t *oob_buf)
{
	int block_address, parity;
	int offset[2] = {6, 11}; /* offset of the 2 address fields within OOB */
	int j;
	int ok = 0;

	/*
	 * Look for the first valid logical address
	 * Valid address has fixed pattern on most significant bits and
	 * parity check
	 */
	for (j = 0; j < ARRAY_SIZE(offset); j++) {
		block_address = ((int)oob_buf[offset[j]] << 8) |
			oob_buf[offset[j]+1];

		/* Check for the signature bits in the address field (MSBits) */
		if ((block_address & ~0x7FF) == 0x1000) {
			parity = block_address & 0x01;
			block_address &= 0x7FF;
			block_address >>= 1;

			if (get_parity(block_address, 10) != parity) {
223
				pr_debug("SSFDC_RO: logical address field%d"
224 225 226 227 228 229 230 231 232
					"parity error(0x%04X)\n", j+1,
					block_address);
			} else {
				ok = 1;
				break;
			}
		}
	}

233
	if (!ok)
234 235
		block_address = -2;

236
	pr_debug("SSFDC_RO: get_logical_address() %d\n",
237 238 239 240 241 242 243 244 245 246 247 248 249
		block_address);

	return block_address;
}

/* Build the logic block map */
static int build_logical_block_map(struct ssfdcr_record *ssfdc)
{
	unsigned long offset;
	uint8_t oob_buf[OOB_SIZE];
	int ret, block_address, phys_block;
	struct mtd_info *mtd = ssfdc->mbd.mtd;

250
	pr_debug("SSFDC_RO: build_block_map() nblks=%d (%luK)\n",
251 252
	      ssfdc->map_len,
	      (unsigned long)ssfdc->map_len * ssfdc->erase_size / 1024);
253 254 255 256 257

	/* Scan every physical block, skip CIS block */
	for (phys_block = ssfdc->cis_block + 1; phys_block < ssfdc->map_len;
			phys_block++) {
		offset = (unsigned long)phys_block * ssfdc->erase_size;
258
		if (mtd_block_isbad(mtd, offset))
259 260 261 262
			continue;	/* skip bad blocks */

		ret = read_raw_oob(mtd, offset, oob_buf);
		if (ret < 0) {
263
			pr_debug("SSFDC_RO: mtd read_oob() failed at %lu\n",
264 265 266 267 268 269 270 271 272 273 274 275 276 277 278
				offset);
			return -1;
		}
		block_address = get_logical_address(oob_buf);

		/* Skip invalid addresses */
		if (block_address >= 0 &&
				block_address < MAX_LOGIC_BLK_PER_ZONE) {
			int zone_index;

			zone_index = phys_block / MAX_PHYS_BLK_PER_ZONE;
			block_address += zone_index * MAX_LOGIC_BLK_PER_ZONE;
			ssfdc->logic_block_map[block_address] =
				(unsigned short)phys_block;

279
			pr_debug("SSFDC_RO: build_block_map() phys_block=%d,"
280 281 282 283 284 285 286 287 288 289 290 291 292
				"logic_block_addr=%d, zone=%d\n",
				phys_block, block_address, zone_index);
		}
	}
	return 0;
}

static void ssfdcr_add_mtd(struct mtd_blktrans_ops *tr, struct mtd_info *mtd)
{
	struct ssfdcr_record *ssfdc;
	int cis_sector;

	/* Check for small page NAND flash */
293 294
	if (mtd->type != MTD_NANDFLASH || mtd->oobsize != OOB_SIZE ||
	    mtd->size > UINT_MAX)
295 296 297 298 299 300 301 302
		return;

	/* Check for SSDFC format by reading CIS/IDI sector */
	cis_sector = get_valid_cis_sector(mtd);
	if (cis_sector == -1)
		return;

	ssfdc = kzalloc(sizeof(struct ssfdcr_record), GFP_KERNEL);
303
	if (!ssfdc)
304 305 306 307 308 309 310 311 312
		return;

	ssfdc->mbd.mtd = mtd;
	ssfdc->mbd.devnum = -1;
	ssfdc->mbd.tr = tr;
	ssfdc->mbd.readonly = 1;

	ssfdc->cis_block = cis_sector / (mtd->erasesize >> SECTOR_SHIFT);
	ssfdc->erase_size = mtd->erasesize;
313
	ssfdc->map_len = (u32)mtd->size / mtd->erasesize;
314

315
	pr_debug("SSFDC_RO: cis_block=%d,erase_size=%d,map_len=%d,n_zones=%d\n",
316
		ssfdc->cis_block, ssfdc->erase_size, ssfdc->map_len,
J
Julia Lawall 已提交
317
		DIV_ROUND_UP(ssfdc->map_len, MAX_PHYS_BLK_PER_ZONE));
318 319 320 321

	/* Set geometry */
	ssfdc->heads = 16;
	ssfdc->sectors = 32;
322
	get_chs(mtd->size, NULL, &ssfdc->heads, &ssfdc->sectors);
323
	ssfdc->cylinders = (unsigned short)(((u32)mtd->size >> SECTOR_SHIFT) /
324 325
			((long)ssfdc->sectors * (long)ssfdc->heads));

326
	pr_debug("SSFDC_RO: using C:%d H:%d S:%d == %ld sects\n",
327 328
		ssfdc->cylinders, ssfdc->heads , ssfdc->sectors,
		(long)ssfdc->cylinders * (long)ssfdc->heads *
329
		(long)ssfdc->sectors);
330 331 332 333 334

	ssfdc->mbd.size = (long)ssfdc->heads * (long)ssfdc->cylinders *
				(long)ssfdc->sectors;

	/* Allocate logical block map */
335 336
	ssfdc->logic_block_map = kmalloc(sizeof(ssfdc->logic_block_map[0]) *
					 ssfdc->map_len, GFP_KERNEL);
337
	if (!ssfdc->logic_block_map)
338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362
		goto out_err;
	memset(ssfdc->logic_block_map, 0xff, sizeof(ssfdc->logic_block_map[0]) *
		ssfdc->map_len);

	/* Build logical block map */
	if (build_logical_block_map(ssfdc) < 0)
		goto out_err;

	/* Register device + partitions */
	if (add_mtd_blktrans_dev(&ssfdc->mbd))
		goto out_err;

	printk(KERN_INFO "SSFDC_RO: Found ssfdc%c on mtd%d (%s)\n",
		ssfdc->mbd.devnum + 'a', mtd->index, mtd->name);
	return;

out_err:
	kfree(ssfdc->logic_block_map);
        kfree(ssfdc);
}

static void ssfdcr_remove_dev(struct mtd_blktrans_dev *dev)
{
	struct ssfdcr_record *ssfdc = (struct ssfdcr_record *)dev;

363
	pr_debug("SSFDC_RO: remove_dev (i=%d)\n", dev->devnum);
364 365 366 367 368 369 370 371 372 373 374 375 376 377 378

	del_mtd_blktrans_dev(dev);
	kfree(ssfdc->logic_block_map);
}

static int ssfdcr_readsect(struct mtd_blktrans_dev *dev,
				unsigned long logic_sect_no, char *buf)
{
	struct ssfdcr_record *ssfdc = (struct ssfdcr_record *)dev;
	int sectors_per_block, offset, block_address;

	sectors_per_block = ssfdc->erase_size >> SECTOR_SHIFT;
	offset = (int)(logic_sect_no % sectors_per_block);
	block_address = (int)(logic_sect_no / sectors_per_block);

379
	pr_debug("SSFDC_RO: ssfdcr_readsect(%lu) sec_per_blk=%d, ofst=%d,"
380 381 382 383 384 385 386 387
		" block_addr=%d\n", logic_sect_no, sectors_per_block, offset,
		block_address);

	if (block_address >= ssfdc->map_len)
		BUG();

	block_address = ssfdc->logic_block_map[block_address];

388
	pr_debug("SSFDC_RO: ssfdcr_readsect() phys_block_addr=%d\n",
389 390 391 392 393 394 395 396
		block_address);

	if (block_address < 0xffff) {
		unsigned long sect_no;

		sect_no = (unsigned long)block_address * sectors_per_block +
				offset;

397
		pr_debug("SSFDC_RO: ssfdcr_readsect() phys_sect_no=%lu\n",
398 399
			sect_no);

400
		if (read_physical_sector(ssfdc->mbd.mtd, buf, sect_no) < 0)
401 402 403 404 405 406 407 408 409 410 411 412
			return -EIO;
	} else {
		memset(buf, 0xff, SECTOR_SIZE);
	}

	return 0;
}

static int ssfdcr_getgeo(struct mtd_blktrans_dev *dev,  struct hd_geometry *geo)
{
	struct ssfdcr_record *ssfdc = (struct ssfdcr_record *)dev;

413
	pr_debug("SSFDC_RO: ssfdcr_getgeo() C=%d, H=%d, S=%d\n",
414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432
			ssfdc->cylinders, ssfdc->heads, ssfdc->sectors);

	geo->heads = ssfdc->heads;
	geo->sectors = ssfdc->sectors;
	geo->cylinders = ssfdc->cylinders;

	return 0;
}

/****************************************************************************
 *
 * Module stuff
 *
 ****************************************************************************/

static struct mtd_blktrans_ops ssfdcr_tr = {
	.name		= "ssfdc",
	.major		= SSFDCR_MAJOR,
	.part_bits	= SSFDCR_PARTN_BITS,
D
David Woodhouse 已提交
433
	.blksize	= SECTOR_SIZE,
434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458
	.getgeo		= ssfdcr_getgeo,
	.readsect	= ssfdcr_readsect,
	.add_mtd	= ssfdcr_add_mtd,
	.remove_dev	= ssfdcr_remove_dev,
	.owner		= THIS_MODULE,
};

static int __init init_ssfdcr(void)
{
	printk(KERN_INFO "SSFDC read-only Flash Translation layer\n");

	return register_mtd_blktrans(&ssfdcr_tr);
}

static void __exit cleanup_ssfdcr(void)
{
	deregister_mtd_blktrans(&ssfdcr_tr);
}

module_init(init_ssfdcr);
module_exit(cleanup_ssfdcr);

MODULE_LICENSE("GPL");
MODULE_AUTHOR("Claudio Lanconelli <lanconelli.claudio@eptar.com>");
MODULE_DESCRIPTION("Flash Translation Layer for read-only SSFDC SmartMedia card");