decode_rs.c 6.8 KB
Newer Older
1
/*
L
Linus Torvalds 已提交
2 3 4 5
 * lib/reed_solomon/decode_rs.c
 *
 * Overview:
 *   Generic Reed Solomon encoder / decoder library
6
 *
L
Linus Torvalds 已提交
7 8 9 10 11
 * Copyright 2002, Phil Karn, KA9Q
 * May be used under the terms of the GNU General Public License (GPL)
 *
 * Adaption to the kernel by Thomas Gleixner (tglx@linutronix.de)
 *
12
 * $Id: decode_rs.c,v 1.7 2005/11/07 11:14:59 gleixner Exp $
L
Linus Torvalds 已提交
13 14 15
 *
 */

16
/* Generic data width independent code which is included by the
L
Linus Torvalds 已提交
17 18
 * wrappers.
 */
19
{
L
Linus Torvalds 已提交
20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41
	int deg_lambda, el, deg_omega;
	int i, j, r, k, pad;
	int nn = rs->nn;
	int nroots = rs->nroots;
	int fcr = rs->fcr;
	int prim = rs->prim;
	int iprim = rs->iprim;
	uint16_t *alpha_to = rs->alpha_to;
	uint16_t *index_of = rs->index_of;
	uint16_t u, q, tmp, num1, num2, den, discr_r, syn_error;
	/* Err+Eras Locator poly and syndrome poly The maximum value
	 * of nroots is 8. So the necessary stack size will be about
	 * 220 bytes max.
	 */
	uint16_t lambda[nroots + 1], syn[nroots];
	uint16_t b[nroots + 1], t[nroots + 1], omega[nroots + 1];
	uint16_t root[nroots], reg[nroots + 1], loc[nroots];
	int count = 0;
	uint16_t msk = (uint16_t) rs->nn;

	/* Check length parameter for validity */
	pad = nn - nroots - len;
42
	BUG_ON(pad < 0 || pad >= nn);
43

L
Linus Torvalds 已提交
44
	/* Does the caller provide the syndrome ? */
45
	if (s != NULL)
L
Linus Torvalds 已提交
46 47 48 49 50 51 52 53 54 55
		goto decode;

	/* form the syndromes; i.e., evaluate data(x) at roots of
	 * g(x) */
	for (i = 0; i < nroots; i++)
		syn[i] = (((uint16_t) data[0]) ^ invmsk) & msk;

	for (j = 1; j < len; j++) {
		for (i = 0; i < nroots; i++) {
			if (syn[i] == 0) {
56
				syn[i] = (((uint16_t) data[j]) ^
L
Linus Torvalds 已提交
57 58 59
					  invmsk) & msk;
			} else {
				syn[i] = ((((uint16_t) data[j]) ^
60
					   invmsk) & msk) ^
L
Linus Torvalds 已提交
61 62 63 64 65 66 67 68 69 70 71
					alpha_to[rs_modnn(rs, index_of[syn[i]] +
						       (fcr + i) * prim)];
			}
		}
	}

	for (j = 0; j < nroots; j++) {
		for (i = 0; i < nroots; i++) {
			if (syn[i] == 0) {
				syn[i] = ((uint16_t) par[j]) & msk;
			} else {
72
				syn[i] = (((uint16_t) par[j]) & msk) ^
L
Linus Torvalds 已提交
73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100
					alpha_to[rs_modnn(rs, index_of[syn[i]] +
						       (fcr+i)*prim)];
			}
		}
	}
	s = syn;

	/* Convert syndromes to index form, checking for nonzero condition */
	syn_error = 0;
	for (i = 0; i < nroots; i++) {
		syn_error |= s[i];
		s[i] = index_of[s[i]];
	}

	if (!syn_error) {
		/* if syndrome is zero, data[] is a codeword and there are no
		 * errors to correct. So return data[] unmodified
		 */
		count = 0;
		goto finish;
	}

 decode:
	memset(&lambda[1], 0, nroots * sizeof(lambda[0]));
	lambda[0] = 1;

	if (no_eras > 0) {
		/* Init lambda to be the erasure locator polynomial */
101
		lambda[1] = alpha_to[rs_modnn(rs,
L
Linus Torvalds 已提交
102 103 104 105 106 107
					      prim * (nn - 1 - eras_pos[0]))];
		for (i = 1; i < no_eras; i++) {
			u = rs_modnn(rs, prim * (nn - 1 - eras_pos[i]));
			for (j = i + 1; j > 0; j--) {
				tmp = index_of[lambda[j - 1]];
				if (tmp != nn) {
108
					lambda[j] ^=
L
Linus Torvalds 已提交
109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128
						alpha_to[rs_modnn(rs, u + tmp)];
				}
			}
		}
	}

	for (i = 0; i < nroots + 1; i++)
		b[i] = index_of[lambda[i]];

	/*
	 * Begin Berlekamp-Massey algorithm to determine error+erasure
	 * locator polynomial
	 */
	r = no_eras;
	el = no_eras;
	while (++r <= nroots) {	/* r is the step number */
		/* Compute discrepancy at the r-th step in poly-form */
		discr_r = 0;
		for (i = 0; i < r; i++) {
			if ((lambda[i] != 0) && (s[r - i - 1] != nn)) {
129 130
				discr_r ^=
					alpha_to[rs_modnn(rs,
L
Linus Torvalds 已提交
131 132 133 134 135 136 137 138 139 140 141 142 143 144
							  index_of[lambda[i]] +
							  s[r - i - 1])];
			}
		}
		discr_r = index_of[discr_r];	/* Index form */
		if (discr_r == nn) {
			/* 2 lines below: B(x) <-- x*B(x) */
			memmove (&b[1], b, nroots * sizeof (b[0]));
			b[0] = nn;
		} else {
			/* 7 lines below: T(x) <-- lambda(x)-discr_r*x*b(x) */
			t[0] = lambda[0];
			for (i = 0; i < nroots; i++) {
				if (b[i] != nn) {
145
					t[i + 1] = lambda[i + 1] ^
L
Linus Torvalds 已提交
146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204
						alpha_to[rs_modnn(rs, discr_r +
								  b[i])];
				} else
					t[i + 1] = lambda[i + 1];
			}
			if (2 * el <= r + no_eras - 1) {
				el = r + no_eras - el;
				/*
				 * 2 lines below: B(x) <-- inv(discr_r) *
				 * lambda(x)
				 */
				for (i = 0; i <= nroots; i++) {
					b[i] = (lambda[i] == 0) ? nn :
						rs_modnn(rs, index_of[lambda[i]]
							 - discr_r + nn);
				}
			} else {
				/* 2 lines below: B(x) <-- x*B(x) */
				memmove(&b[1], b, nroots * sizeof(b[0]));
				b[0] = nn;
			}
			memcpy(lambda, t, (nroots + 1) * sizeof(t[0]));
		}
	}

	/* Convert lambda to index form and compute deg(lambda(x)) */
	deg_lambda = 0;
	for (i = 0; i < nroots + 1; i++) {
		lambda[i] = index_of[lambda[i]];
		if (lambda[i] != nn)
			deg_lambda = i;
	}
	/* Find roots of error+erasure locator polynomial by Chien search */
	memcpy(&reg[1], &lambda[1], nroots * sizeof(reg[0]));
	count = 0;		/* Number of roots of lambda(x) */
	for (i = 1, k = iprim - 1; i <= nn; i++, k = rs_modnn(rs, k + iprim)) {
		q = 1;		/* lambda[0] is always 0 */
		for (j = deg_lambda; j > 0; j--) {
			if (reg[j] != nn) {
				reg[j] = rs_modnn(rs, reg[j] + j);
				q ^= alpha_to[reg[j]];
			}
		}
		if (q != 0)
			continue;	/* Not a root */
		/* store root (index-form) and error location number */
		root[count] = i;
		loc[count] = k;
		/* If we've already found max possible roots,
		 * abort the search to save time
		 */
		if (++count == deg_lambda)
			break;
	}
	if (deg_lambda != count) {
		/*
		 * deg(lambda) unequal to number of roots => uncorrectable
		 * error detected
		 */
205
		count = -EBADMSG;
L
Linus Torvalds 已提交
206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230
		goto finish;
	}
	/*
	 * Compute err+eras evaluator poly omega(x) = s(x)*lambda(x) (modulo
	 * x**nroots). in index form. Also find deg(omega).
	 */
	deg_omega = deg_lambda - 1;
	for (i = 0; i <= deg_omega; i++) {
		tmp = 0;
		for (j = i; j >= 0; j--) {
			if ((s[i - j] != nn) && (lambda[j] != nn))
				tmp ^=
				    alpha_to[rs_modnn(rs, s[i - j] + lambda[j])];
		}
		omega[i] = index_of[tmp];
	}

	/*
	 * Compute error values in poly-form. num1 = omega(inv(X(l))), num2 =
	 * inv(X(l))**(fcr-1) and den = lambda_pr(inv(X(l))) all in poly-form
	 */
	for (j = count - 1; j >= 0; j--) {
		num1 = 0;
		for (i = deg_omega; i >= 0; i--) {
			if (omega[i] != nn)
231
				num1 ^= alpha_to[rs_modnn(rs, omega[i] +
L
Linus Torvalds 已提交
232 233 234 235 236 237 238 239 240
							i * root[j])];
		}
		num2 = alpha_to[rs_modnn(rs, root[j] * (fcr - 1) + nn)];
		den = 0;

		/* lambda[i+1] for i even is the formal derivative
		 * lambda_pr of lambda[i] */
		for (i = min(deg_lambda, nroots - 1) & ~1; i >= 0; i -= 2) {
			if (lambda[i + 1] != nn) {
241
				den ^= alpha_to[rs_modnn(rs, lambda[i + 1] +
L
Linus Torvalds 已提交
242 243 244 245 246
						       i * root[j])];
			}
		}
		/* Apply error to data */
		if (num1 != 0 && loc[j] >= pad) {
247
			uint16_t cor = alpha_to[rs_modnn(rs,index_of[num1] +
L
Linus Torvalds 已提交
248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271
						       index_of[num2] +
						       nn - index_of[den])];
			/* Store the error correction pattern, if a
			 * correction buffer is available */
			if (corr) {
				corr[j] = cor;
			} else {
				/* If a data buffer is given and the
				 * error is inside the message,
				 * correct it */
				if (data && (loc[j] < (nn - nroots)))
					data[loc[j] - pad] ^= cor;
			}
		}
	}

finish:
	if (eras_pos != NULL) {
		for (i = 0; i < count; i++)
			eras_pos[i] = loc[i] - pad;
	}
	return count;

}