blk-mq-sched.c 15.1 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13
/*
 * blk-mq scheduling framework
 *
 * Copyright (C) 2016 Jens Axboe
 */
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/blk-mq.h>

#include <trace/events/block.h>

#include "blk.h"
#include "blk-mq.h"
14
#include "blk-mq-debugfs.h"
15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34
#include "blk-mq-sched.h"
#include "blk-mq-tag.h"
#include "blk-wbt.h"

void blk_mq_sched_free_hctx_data(struct request_queue *q,
				 void (*exit)(struct blk_mq_hw_ctx *))
{
	struct blk_mq_hw_ctx *hctx;
	int i;

	queue_for_each_hw_ctx(q, hctx, i) {
		if (exit && hctx->sched_data)
			exit(hctx);
		kfree(hctx->sched_data);
		hctx->sched_data = NULL;
	}
}
EXPORT_SYMBOL_GPL(blk_mq_sched_free_hctx_data);

static void __blk_mq_sched_assign_ioc(struct request_queue *q,
35 36 37
				      struct request *rq,
				      struct bio *bio,
				      struct io_context *ioc)
38 39 40 41 42 43 44 45 46 47 48 49 50 51
{
	struct io_cq *icq;

	spin_lock_irq(q->queue_lock);
	icq = ioc_lookup_icq(ioc, q);
	spin_unlock_irq(q->queue_lock);

	if (!icq) {
		icq = ioc_create_icq(ioc, q, GFP_ATOMIC);
		if (!icq)
			return;
	}

	rq->elv.icq = icq;
52
	if (!blk_mq_sched_get_rq_priv(q, rq, bio)) {
53 54 55 56 57 58 59 60 61 62 63 64 65 66 67
		rq->rq_flags |= RQF_ELVPRIV;
		get_io_context(icq->ioc);
		return;
	}

	rq->elv.icq = NULL;
}

static void blk_mq_sched_assign_ioc(struct request_queue *q,
				    struct request *rq, struct bio *bio)
{
	struct io_context *ioc;

	ioc = rq_ioc(bio);
	if (ioc)
68
		__blk_mq_sched_assign_ioc(q, rq, bio, ioc);
69 70 71 72 73 74 75 76 77 78 79
}

struct request *blk_mq_sched_get_request(struct request_queue *q,
					 struct bio *bio,
					 unsigned int op,
					 struct blk_mq_alloc_data *data)
{
	struct elevator_queue *e = q->elevator;
	struct request *rq;

	blk_queue_enter_live(q);
80 81 82 83 84
	data->q = q;
	if (likely(!data->ctx))
		data->ctx = blk_mq_get_ctx(q);
	if (likely(!data->hctx))
		data->hctx = blk_mq_map_queue(q, data->ctx->cpu);
85

86
	if (e) {
87 88 89 90 91 92
		data->flags |= BLK_MQ_REQ_INTERNAL;

		/*
		 * Flush requests are special and go directly to the
		 * dispatch list.
		 */
93
		if (!op_is_flush(op) && e->type->ops.mq.get_request) {
94 95 96 97 98 99 100 101 102 103
			rq = e->type->ops.mq.get_request(q, op, data);
			if (rq)
				rq->rq_flags |= RQF_QUEUED;
		} else
			rq = __blk_mq_alloc_request(data, op);
	} else {
		rq = __blk_mq_alloc_request(data, op);
	}

	if (rq) {
104
		if (!op_is_flush(op)) {
105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137
			rq->elv.icq = NULL;
			if (e && e->type->icq_cache)
				blk_mq_sched_assign_ioc(q, rq, bio);
		}
		data->hctx->queued++;
		return rq;
	}

	blk_queue_exit(q);
	return NULL;
}

void blk_mq_sched_put_request(struct request *rq)
{
	struct request_queue *q = rq->q;
	struct elevator_queue *e = q->elevator;

	if (rq->rq_flags & RQF_ELVPRIV) {
		blk_mq_sched_put_rq_priv(rq->q, rq);
		if (rq->elv.icq) {
			put_io_context(rq->elv.icq->ioc);
			rq->elv.icq = NULL;
		}
	}

	if ((rq->rq_flags & RQF_QUEUED) && e && e->type->ops.mq.put_request)
		e->type->ops.mq.put_request(rq);
	else
		blk_mq_finish_request(rq);
}

void blk_mq_sched_dispatch_requests(struct blk_mq_hw_ctx *hctx)
{
138 139
	struct request_queue *q = hctx->queue;
	struct elevator_queue *e = q->elevator;
140 141
	const bool has_sched_dispatch = e && e->type->ops.mq.dispatch_request;
	bool did_work = false;
142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168
	LIST_HEAD(rq_list);

	if (unlikely(blk_mq_hctx_stopped(hctx)))
		return;

	hctx->run++;

	/*
	 * If we have previous entries on our dispatch list, grab them first for
	 * more fair dispatch.
	 */
	if (!list_empty_careful(&hctx->dispatch)) {
		spin_lock(&hctx->lock);
		if (!list_empty(&hctx->dispatch))
			list_splice_init(&hctx->dispatch, &rq_list);
		spin_unlock(&hctx->lock);
	}

	/*
	 * Only ask the scheduler for requests, if we didn't have residual
	 * requests from the dispatch list. This is to avoid the case where
	 * we only ever dispatch a fraction of the requests available because
	 * of low device queue depth. Once we pull requests out of the IO
	 * scheduler, we can no longer merge or sort them. So it's best to
	 * leave them there for as long as we can. Mark the hw queue as
	 * needing a restart in that case.
	 */
169
	if (!list_empty(&rq_list)) {
170
		blk_mq_sched_mark_restart_hctx(hctx);
171
		did_work = blk_mq_dispatch_rq_list(q, &rq_list);
172
	} else if (!has_sched_dispatch) {
173
		blk_mq_flush_busy_ctxs(hctx, &rq_list);
174
		blk_mq_dispatch_rq_list(q, &rq_list);
175 176 177 178 179 180 181 182
	}

	/*
	 * We want to dispatch from the scheduler if we had no work left
	 * on the dispatch list, OR if we did have work but weren't able
	 * to make progress.
	 */
	if (!did_work && has_sched_dispatch) {
183 184 185 186 187 188 189
		do {
			struct request *rq;

			rq = e->type->ops.mq.dispatch_request(hctx);
			if (!rq)
				break;
			list_add(&rq->queuelist, &rq_list);
190
		} while (blk_mq_dispatch_rq_list(q, &rq_list));
191
	}
192 193
}

194 195
bool blk_mq_sched_try_merge(struct request_queue *q, struct bio *bio,
			    struct request **merged_request)
196 197 198
{
	struct request *rq;

199 200
	switch (elv_merge(q, &rq, bio)) {
	case ELEVATOR_BACK_MERGE:
201 202
		if (!blk_mq_sched_allow_merge(q, rq, bio))
			return false;
203 204 205 206 207 208 209
		if (!bio_attempt_back_merge(q, rq, bio))
			return false;
		*merged_request = attempt_back_merge(q, rq);
		if (!*merged_request)
			elv_merged_request(q, rq, ELEVATOR_BACK_MERGE);
		return true;
	case ELEVATOR_FRONT_MERGE:
210 211
		if (!blk_mq_sched_allow_merge(q, rq, bio))
			return false;
212 213 214 215 216 217 218 219
		if (!bio_attempt_front_merge(q, rq, bio))
			return false;
		*merged_request = attempt_front_merge(q, rq);
		if (!*merged_request)
			elv_merged_request(q, rq, ELEVATOR_FRONT_MERGE);
		return true;
	default:
		return false;
220 221 222 223
	}
}
EXPORT_SYMBOL_GPL(blk_mq_sched_try_merge);

224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267
/*
 * Reverse check our software queue for entries that we could potentially
 * merge with. Currently includes a hand-wavy stop count of 8, to not spend
 * too much time checking for merges.
 */
static bool blk_mq_attempt_merge(struct request_queue *q,
				 struct blk_mq_ctx *ctx, struct bio *bio)
{
	struct request *rq;
	int checked = 8;

	list_for_each_entry_reverse(rq, &ctx->rq_list, queuelist) {
		bool merged = false;

		if (!checked--)
			break;

		if (!blk_rq_merge_ok(rq, bio))
			continue;

		switch (blk_try_merge(rq, bio)) {
		case ELEVATOR_BACK_MERGE:
			if (blk_mq_sched_allow_merge(q, rq, bio))
				merged = bio_attempt_back_merge(q, rq, bio);
			break;
		case ELEVATOR_FRONT_MERGE:
			if (blk_mq_sched_allow_merge(q, rq, bio))
				merged = bio_attempt_front_merge(q, rq, bio);
			break;
		case ELEVATOR_DISCARD_MERGE:
			merged = bio_attempt_discard_merge(q, rq, bio);
			break;
		default:
			continue;
		}

		if (merged)
			ctx->rq_merged++;
		return merged;
	}

	return false;
}

268 269 270
bool __blk_mq_sched_bio_merge(struct request_queue *q, struct bio *bio)
{
	struct elevator_queue *e = q->elevator;
271 272 273
	struct blk_mq_ctx *ctx = blk_mq_get_ctx(q);
	struct blk_mq_hw_ctx *hctx = blk_mq_map_queue(q, ctx->cpu);
	bool ret = false;
274

275
	if (e && e->type->ops.mq.bio_merge) {
276 277 278 279
		blk_mq_put_ctx(ctx);
		return e->type->ops.mq.bio_merge(hctx, bio);
	}

280 281 282 283 284 285 286 287 288
	if (hctx->flags & BLK_MQ_F_SHOULD_MERGE) {
		/* default per sw-queue merge */
		spin_lock(&ctx->lock);
		ret = blk_mq_attempt_merge(q, ctx, bio);
		spin_unlock(&ctx->lock);
	}

	blk_mq_put_ctx(ctx);
	return ret;
289 290 291 292 293 294 295 296 297 298 299 300 301 302
}

bool blk_mq_sched_try_insert_merge(struct request_queue *q, struct request *rq)
{
	return rq_mergeable(rq) && elv_attempt_insert_merge(q, rq);
}
EXPORT_SYMBOL_GPL(blk_mq_sched_try_insert_merge);

void blk_mq_sched_request_inserted(struct request *rq)
{
	trace_block_rq_insert(rq->q, rq);
}
EXPORT_SYMBOL_GPL(blk_mq_sched_request_inserted);

303 304
static bool blk_mq_sched_bypass_insert(struct blk_mq_hw_ctx *hctx,
				       struct request *rq)
305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320
{
	if (rq->tag == -1) {
		rq->rq_flags |= RQF_SORTED;
		return false;
	}

	/*
	 * If we already have a real request tag, send directly to
	 * the dispatch list.
	 */
	spin_lock(&hctx->lock);
	list_add(&rq->queuelist, &hctx->dispatch);
	spin_unlock(&hctx->lock);
	return true;
}

321
static bool blk_mq_sched_restart_hctx(struct blk_mq_hw_ctx *hctx)
322 323 324
{
	if (test_bit(BLK_MQ_S_SCHED_RESTART, &hctx->state)) {
		clear_bit(BLK_MQ_S_SCHED_RESTART, &hctx->state);
325
		if (blk_mq_hctx_has_pending(hctx)) {
326
			blk_mq_run_hw_queue(hctx, true);
327 328
			return true;
		}
329
	}
330
	return false;
331 332
}

333 334 335 336 337 338 339 340 341 342 343 344 345 346 347
/**
 * list_for_each_entry_rcu_rr - iterate in a round-robin fashion over rcu list
 * @pos:    loop cursor.
 * @skip:   the list element that will not be examined. Iteration starts at
 *          @skip->next.
 * @head:   head of the list to examine. This list must have at least one
 *          element, namely @skip.
 * @member: name of the list_head structure within typeof(*pos).
 */
#define list_for_each_entry_rcu_rr(pos, skip, head, member)		\
	for ((pos) = (skip);						\
	     (pos = (pos)->member.next != (head) ? list_entry_rcu(	\
			(pos)->member.next, typeof(*pos), member) :	\
	      list_entry_rcu((pos)->member.next->next, typeof(*pos), member)), \
	     (pos) != (skip); )
348

349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379
/*
 * Called after a driver tag has been freed to check whether a hctx needs to
 * be restarted. Restarts @hctx if its tag set is not shared. Restarts hardware
 * queues in a round-robin fashion if the tag set of @hctx is shared with other
 * hardware queues.
 */
void blk_mq_sched_restart(struct blk_mq_hw_ctx *const hctx)
{
	struct blk_mq_tags *const tags = hctx->tags;
	struct blk_mq_tag_set *const set = hctx->queue->tag_set;
	struct request_queue *const queue = hctx->queue, *q;
	struct blk_mq_hw_ctx *hctx2;
	unsigned int i, j;

	if (set->flags & BLK_MQ_F_TAG_SHARED) {
		rcu_read_lock();
		list_for_each_entry_rcu_rr(q, queue, &set->tag_list,
					   tag_set_list) {
			queue_for_each_hw_ctx(q, hctx2, i)
				if (hctx2->tags == tags &&
				    blk_mq_sched_restart_hctx(hctx2))
					goto done;
		}
		j = hctx->queue_num + 1;
		for (i = 0; i < queue->nr_hw_queues; i++, j++) {
			if (j == queue->nr_hw_queues)
				j = 0;
			hctx2 = queue->queue_hw_ctx[j];
			if (hctx2->tags == tags &&
			    blk_mq_sched_restart_hctx(hctx2))
				break;
380
		}
381 382
done:
		rcu_read_unlock();
383
	} else {
384 385 386 387
		blk_mq_sched_restart_hctx(hctx);
	}
}

388 389 390 391 392 393 394 395 396 397 398 399
/*
 * Add flush/fua to the queue. If we fail getting a driver tag, then
 * punt to the requeue list. Requeue will re-invoke us from a context
 * that's safe to block from.
 */
static void blk_mq_sched_insert_flush(struct blk_mq_hw_ctx *hctx,
				      struct request *rq, bool can_block)
{
	if (blk_mq_get_driver_tag(rq, &hctx, can_block)) {
		blk_insert_flush(rq);
		blk_mq_run_hw_queue(hctx, true);
	} else
400
		blk_mq_add_to_requeue_list(rq, false, true);
401 402 403 404 405 406 407 408 409 410
}

void blk_mq_sched_insert_request(struct request *rq, bool at_head,
				 bool run_queue, bool async, bool can_block)
{
	struct request_queue *q = rq->q;
	struct elevator_queue *e = q->elevator;
	struct blk_mq_ctx *ctx = rq->mq_ctx;
	struct blk_mq_hw_ctx *hctx = blk_mq_map_queue(q, ctx->cpu);

411
	if (rq->tag == -1 && op_is_flush(rq->cmd_flags)) {
412 413 414 415
		blk_mq_sched_insert_flush(hctx, rq, can_block);
		return;
	}

416 417 418
	if (e && blk_mq_sched_bypass_insert(hctx, rq))
		goto run;

419 420 421 422 423 424 425 426 427 428 429
	if (e && e->type->ops.mq.insert_requests) {
		LIST_HEAD(list);

		list_add(&rq->queuelist, &list);
		e->type->ops.mq.insert_requests(hctx, &list, at_head);
	} else {
		spin_lock(&ctx->lock);
		__blk_mq_insert_request(hctx, rq, at_head);
		spin_unlock(&ctx->lock);
	}

430
run:
431 432 433 434 435 436 437 438 439 440 441
	if (run_queue)
		blk_mq_run_hw_queue(hctx, async);
}

void blk_mq_sched_insert_requests(struct request_queue *q,
				  struct blk_mq_ctx *ctx,
				  struct list_head *list, bool run_queue_async)
{
	struct blk_mq_hw_ctx *hctx = blk_mq_map_queue(q, ctx->cpu);
	struct elevator_queue *e = hctx->queue->elevator;

442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458
	if (e) {
		struct request *rq, *next;

		/*
		 * We bypass requests that already have a driver tag assigned,
		 * which should only be flushes. Flushes are only ever inserted
		 * as single requests, so we shouldn't ever hit the
		 * WARN_ON_ONCE() below (but let's handle it just in case).
		 */
		list_for_each_entry_safe(rq, next, list, queuelist) {
			if (WARN_ON_ONCE(rq->tag != -1)) {
				list_del_init(&rq->queuelist);
				blk_mq_sched_bypass_insert(hctx, rq);
			}
		}
	}

459 460 461 462 463 464 465 466
	if (e && e->type->ops.mq.insert_requests)
		e->type->ops.mq.insert_requests(hctx, list, false);
	else
		blk_mq_insert_requests(hctx, ctx, list);

	blk_mq_run_hw_queue(hctx, run_queue_async);
}

467 468 469 470 471 472 473 474 475 476 477
static void blk_mq_sched_free_tags(struct blk_mq_tag_set *set,
				   struct blk_mq_hw_ctx *hctx,
				   unsigned int hctx_idx)
{
	if (hctx->sched_tags) {
		blk_mq_free_rqs(set, hctx->sched_tags, hctx_idx);
		blk_mq_free_rq_map(hctx->sched_tags);
		hctx->sched_tags = NULL;
	}
}

478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496
static int blk_mq_sched_alloc_tags(struct request_queue *q,
				   struct blk_mq_hw_ctx *hctx,
				   unsigned int hctx_idx)
{
	struct blk_mq_tag_set *set = q->tag_set;
	int ret;

	hctx->sched_tags = blk_mq_alloc_rq_map(set, hctx_idx, q->nr_requests,
					       set->reserved_tags);
	if (!hctx->sched_tags)
		return -ENOMEM;

	ret = blk_mq_alloc_rqs(set, hctx->sched_tags, hctx_idx, q->nr_requests);
	if (ret)
		blk_mq_sched_free_tags(set, hctx, hctx_idx);

	return ret;
}

497
static void blk_mq_sched_tags_teardown(struct request_queue *q)
498 499 500
{
	struct blk_mq_tag_set *set = q->tag_set;
	struct blk_mq_hw_ctx *hctx;
501 502 503 504 505 506
	int i;

	queue_for_each_hw_ctx(q, hctx, i)
		blk_mq_sched_free_tags(set, hctx, i);
}

507 508 509 510
int blk_mq_sched_init_hctx(struct request_queue *q, struct blk_mq_hw_ctx *hctx,
			   unsigned int hctx_idx)
{
	struct elevator_queue *e = q->elevator;
511
	int ret;
512 513 514 515

	if (!e)
		return 0;

516 517 518 519 520 521 522 523 524 525 526 527
	ret = blk_mq_sched_alloc_tags(q, hctx, hctx_idx);
	if (ret)
		return ret;

	if (e->type->ops.mq.init_hctx) {
		ret = e->type->ops.mq.init_hctx(hctx, hctx_idx);
		if (ret) {
			blk_mq_sched_free_tags(q->tag_set, hctx, hctx_idx);
			return ret;
		}
	}

528 529
	blk_mq_debugfs_register_sched_hctx(q, hctx);

530
	return 0;
531 532 533 534 535 536 537 538 539 540
}

void blk_mq_sched_exit_hctx(struct request_queue *q, struct blk_mq_hw_ctx *hctx,
			    unsigned int hctx_idx)
{
	struct elevator_queue *e = q->elevator;

	if (!e)
		return;

541 542
	blk_mq_debugfs_unregister_sched_hctx(hctx);

543 544 545 546 547
	if (e->type->ops.mq.exit_hctx && hctx->sched_data) {
		e->type->ops.mq.exit_hctx(hctx, hctx_idx);
		hctx->sched_data = NULL;
	}

548 549 550
	blk_mq_sched_free_tags(q->tag_set, hctx, hctx_idx);
}

551 552 553
int blk_mq_init_sched(struct request_queue *q, struct elevator_type *e)
{
	struct blk_mq_hw_ctx *hctx;
554
	struct elevator_queue *eq;
555 556 557 558 559 560 561
	unsigned int i;
	int ret;

	if (!e) {
		q->elevator = NULL;
		return 0;
	}
562 563 564 565 566 567 568 569

	/*
	 * Default to 256, since we don't split into sync/async like the
	 * old code did. Additionally, this is a per-hw queue depth.
	 */
	q->nr_requests = 2 * BLKDEV_MAX_RQ;

	queue_for_each_hw_ctx(q, hctx, i) {
570
		ret = blk_mq_sched_alloc_tags(q, hctx, i);
571
		if (ret)
572
			goto err;
573 574
	}

575 576 577
	ret = e->ops.mq.init_sched(q, e);
	if (ret)
		goto err;
578

579 580 581 582
	blk_mq_debugfs_register_sched(q);

	queue_for_each_hw_ctx(q, hctx, i) {
		if (e->ops.mq.init_hctx) {
583 584 585 586 587 588 589 590
			ret = e->ops.mq.init_hctx(hctx, i);
			if (ret) {
				eq = q->elevator;
				blk_mq_exit_sched(q, eq);
				kobject_put(&eq->kobj);
				return ret;
			}
		}
591
		blk_mq_debugfs_register_sched_hctx(q, hctx);
592 593
	}

594 595
	return 0;

596
err:
597 598
	blk_mq_sched_tags_teardown(q);
	q->elevator = NULL;
599
	return ret;
600
}
601

602 603
void blk_mq_exit_sched(struct request_queue *q, struct elevator_queue *e)
{
604 605 606
	struct blk_mq_hw_ctx *hctx;
	unsigned int i;

607 608 609 610 611
	queue_for_each_hw_ctx(q, hctx, i) {
		blk_mq_debugfs_unregister_sched_hctx(hctx);
		if (e->type->ops.mq.exit_hctx && hctx->sched_data) {
			e->type->ops.mq.exit_hctx(hctx, i);
			hctx->sched_data = NULL;
612 613
		}
	}
614
	blk_mq_debugfs_unregister_sched(q);
615 616 617 618 619 620
	if (e->type->ops.mq.exit_sched)
		e->type->ops.mq.exit_sched(e);
	blk_mq_sched_tags_teardown(q);
	q->elevator = NULL;
}

621 622 623 624 625 626 627 628 629 630
int blk_mq_sched_init(struct request_queue *q)
{
	int ret;

	mutex_lock(&q->sysfs_lock);
	ret = elevator_init(q, NULL);
	mutex_unlock(&q->sysfs_lock);

	return ret;
}