sched_cpupri.c 4.4 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174
/*
 *  kernel/sched_cpupri.c
 *
 *  CPU priority management
 *
 *  Copyright (C) 2007-2008 Novell
 *
 *  Author: Gregory Haskins <ghaskins@novell.com>
 *
 *  This code tracks the priority of each CPU so that global migration
 *  decisions are easy to calculate.  Each CPU can be in a state as follows:
 *
 *                 (INVALID), IDLE, NORMAL, RT1, ... RT99
 *
 *  going from the lowest priority to the highest.  CPUs in the INVALID state
 *  are not eligible for routing.  The system maintains this state with
 *  a 2 dimensional bitmap (the first for priority class, the second for cpus
 *  in that class).  Therefore a typical application without affinity
 *  restrictions can find a suitable CPU with O(1) complexity (e.g. two bit
 *  searches).  For tasks with affinity restrictions, the algorithm has a
 *  worst case complexity of O(min(102, nr_domcpus)), though the scenario that
 *  yields the worst case search is fairly contrived.
 *
 *  This program is free software; you can redistribute it and/or
 *  modify it under the terms of the GNU General Public License
 *  as published by the Free Software Foundation; version 2
 *  of the License.
 */

#include "sched_cpupri.h"

/* Convert between a 140 based task->prio, and our 102 based cpupri */
static int convert_prio(int prio)
{
	int cpupri;

	if (prio == CPUPRI_INVALID)
		cpupri = CPUPRI_INVALID;
	else if (prio == MAX_PRIO)
		cpupri = CPUPRI_IDLE;
	else if (prio >= MAX_RT_PRIO)
		cpupri = CPUPRI_NORMAL;
	else
		cpupri = MAX_RT_PRIO - prio + 1;

	return cpupri;
}

#define for_each_cpupri_active(array, idx)                    \
  for (idx = find_first_bit(array, CPUPRI_NR_PRIORITIES);     \
       idx < CPUPRI_NR_PRIORITIES;                            \
       idx = find_next_bit(array, CPUPRI_NR_PRIORITIES, idx+1))

/**
 * cpupri_find - find the best (lowest-pri) CPU in the system
 * @cp: The cpupri context
 * @p: The task
 * @lowest_mask: A mask to fill in with selected CPUs
 *
 * Note: This function returns the recommended CPUs as calculated during the
 * current invokation.  By the time the call returns, the CPUs may have in
 * fact changed priorities any number of times.  While not ideal, it is not
 * an issue of correctness since the normal rebalancer logic will correct
 * any discrepancies created by racing against the uncertainty of the current
 * priority configuration.
 *
 * Returns: (int)bool - CPUs were found
 */
int cpupri_find(struct cpupri *cp, struct task_struct *p,
		cpumask_t *lowest_mask)
{
	int                  idx      = 0;
	int                  task_pri = convert_prio(p->prio);

	for_each_cpupri_active(cp->pri_active, idx) {
		struct cpupri_vec *vec  = &cp->pri_to_cpu[idx];
		cpumask_t mask;

		if (idx >= task_pri)
			break;

		cpus_and(mask, p->cpus_allowed, vec->mask);

		if (cpus_empty(mask))
			continue;

		*lowest_mask = mask;
		return 1;
	}

	return 0;
}

/**
 * cpupri_set - update the cpu priority setting
 * @cp: The cpupri context
 * @cpu: The target cpu
 * @pri: The priority (INVALID-RT99) to assign to this CPU
 *
 * Note: Assumes cpu_rq(cpu)->lock is locked
 *
 * Returns: (void)
 */
void cpupri_set(struct cpupri *cp, int cpu, int newpri)
{
	int                 *currpri = &cp->cpu_to_pri[cpu];
	int                  oldpri  = *currpri;
	unsigned long        flags;

	newpri = convert_prio(newpri);

	BUG_ON(newpri >= CPUPRI_NR_PRIORITIES);

	if (newpri == oldpri)
		return;

	/*
	 * If the cpu was currently mapped to a different value, we
	 * first need to unmap the old value
	 */
	if (likely(oldpri != CPUPRI_INVALID)) {
		struct cpupri_vec *vec  = &cp->pri_to_cpu[oldpri];

		spin_lock_irqsave(&vec->lock, flags);

		vec->count--;
		if (!vec->count)
			clear_bit(oldpri, cp->pri_active);
		cpu_clear(cpu, vec->mask);

		spin_unlock_irqrestore(&vec->lock, flags);
	}

	if (likely(newpri != CPUPRI_INVALID)) {
		struct cpupri_vec *vec = &cp->pri_to_cpu[newpri];

		spin_lock_irqsave(&vec->lock, flags);

		cpu_set(cpu, vec->mask);
		vec->count++;
		if (vec->count == 1)
			set_bit(newpri, cp->pri_active);

		spin_unlock_irqrestore(&vec->lock, flags);
	}

	*currpri = newpri;
}

/**
 * cpupri_init - initialize the cpupri structure
 * @cp: The cpupri context
 *
 * Returns: (void)
 */
void cpupri_init(struct cpupri *cp)
{
	int i;

	memset(cp, 0, sizeof(*cp));

	for (i = 0; i < CPUPRI_NR_PRIORITIES; i++) {
		struct cpupri_vec *vec = &cp->pri_to_cpu[i];

		spin_lock_init(&vec->lock);
		vec->count = 0;
		cpus_clear(vec->mask);
	}

	for_each_possible_cpu(i)
		cp->cpu_to_pri[i] = CPUPRI_INVALID;
}