kvm_book3s_64.h 11.2 KB
Newer Older
A
Alexander Graf 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
/*
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License, version 2, as
 * published by the Free Software Foundation.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301, USA.
 *
 * Copyright SUSE Linux Products GmbH 2010
 *
 * Authors: Alexander Graf <agraf@suse.de>
 */

#ifndef __ASM_KVM_BOOK3S_64_H__
#define __ASM_KVM_BOOK3S_64_H__

23
#ifdef CONFIG_KVM_BOOK3S_PR_POSSIBLE
24
static inline struct kvmppc_book3s_shadow_vcpu *svcpu_get(struct kvm_vcpu *vcpu)
A
Alexander Graf 已提交
25
{
26
	preempt_disable();
A
Alexander Graf 已提交
27 28
	return &get_paca()->shadow_vcpu;
}
29 30 31 32 33

static inline void svcpu_put(struct kvmppc_book3s_shadow_vcpu *svcpu)
{
	preempt_enable();
}
34
#endif
A
Alexander Graf 已提交
35

36 37
#define SPAPR_TCE_SHIFT		12

38
#ifdef CONFIG_KVM_BOOK3S_HV_POSSIBLE
39
#define KVM_DEFAULT_HPT_ORDER	24	/* 16MB HPT by default */
40 41
#endif

42 43
#define VRMA_VSID	0x1ffffffUL	/* 1TB VSID reserved for VRMA */

44 45 46 47 48 49
/*
 * We use a lock bit in HPTE dword 0 to synchronize updates and
 * accesses to each HPTE, and another bit to indicate non-present
 * HPTEs.
 */
#define HPTE_V_HVLOCK	0x40UL
50
#define HPTE_V_ABSENT	0x20UL
51

52 53 54 55 56 57 58 59 60
/*
 * We use this bit in the guest_rpte field of the revmap entry
 * to indicate a modified HPTE.
 */
#define HPTE_GR_MODIFIED	(1ul << 62)

/* These bits are reserved in the guest view of the HPTE */
#define HPTE_GR_RESERVED	HPTE_GR_MODIFIED

61
static inline long try_lock_hpte(__be64 *hpte, unsigned long bits)
62 63
{
	unsigned long tmp, old;
64 65 66 67 68 69 70 71 72
	__be64 be_lockbit, be_bits;

	/*
	 * We load/store in native endian, but the HTAB is in big endian. If
	 * we byte swap all data we apply on the PTE we're implicitly correct
	 * again.
	 */
	be_lockbit = cpu_to_be64(HPTE_V_HVLOCK);
	be_bits = cpu_to_be64(bits);
73 74 75 76

	asm volatile("	ldarx	%0,0,%2\n"
		     "	and.	%1,%0,%3\n"
		     "	bne	2f\n"
77
		     "	or	%0,%0,%4\n"
78 79
		     "  stdcx.	%0,0,%2\n"
		     "	beq+	2f\n"
80
		     "	mr	%1,%3\n"
81 82
		     "2:	isync"
		     : "=&r" (tmp), "=&r" (old)
83
		     : "r" (hpte), "r" (be_bits), "r" (be_lockbit)
84 85 86 87
		     : "cc", "memory");
	return old == 0;
}

88 89 90 91 92 93 94 95 96 97 98 99 100 101
static inline void unlock_hpte(__be64 *hpte, unsigned long hpte_v)
{
	hpte_v &= ~HPTE_V_HVLOCK;
	asm volatile(PPC_RELEASE_BARRIER "" : : : "memory");
	hpte[0] = cpu_to_be64(hpte_v);
}

/* Without barrier */
static inline void __unlock_hpte(__be64 *hpte, unsigned long hpte_v)
{
	hpte_v &= ~HPTE_V_HVLOCK;
	hpte[0] = cpu_to_be64(hpte_v);
}

102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131
static inline int __hpte_actual_psize(unsigned int lp, int psize)
{
	int i, shift;
	unsigned int mask;

	/* start from 1 ignoring MMU_PAGE_4K */
	for (i = 1; i < MMU_PAGE_COUNT; i++) {

		/* invalid penc */
		if (mmu_psize_defs[psize].penc[i] == -1)
			continue;
		/*
		 * encoding bits per actual page size
		 *        PTE LP     actual page size
		 *    rrrr rrrz		>=8KB
		 *    rrrr rrzz		>=16KB
		 *    rrrr rzzz		>=32KB
		 *    rrrr zzzz		>=64KB
		 * .......
		 */
		shift = mmu_psize_defs[i].shift - LP_SHIFT;
		if (shift > LP_BITS)
			shift = LP_BITS;
		mask = (1 << shift) - 1;
		if ((lp & mask) == mmu_psize_defs[psize].penc[i])
			return i;
	}
	return -1;
}

132 133 134
static inline unsigned long compute_tlbie_rb(unsigned long v, unsigned long r,
					     unsigned long pte_index)
{
135
	int b_psize = MMU_PAGE_4K, a_psize = MMU_PAGE_4K;
136 137 138 139
	unsigned int penc;
	unsigned long rb = 0, va_low, sllp;
	unsigned int lp = (r >> LP_SHIFT) & ((1 << LP_BITS) - 1);

140
	if (v & HPTE_V_LARGE) {
141 142 143 144 145
		for (b_psize = 0; b_psize < MMU_PAGE_COUNT; b_psize++) {

			/* valid entries have a shift value */
			if (!mmu_psize_defs[b_psize].shift)
				continue;
146

147 148 149 150 151 152 153 154 155 156 157 158 159 160 161
			a_psize = __hpte_actual_psize(lp, b_psize);
			if (a_psize != -1)
				break;
		}
	}
	/*
	 * Ignore the top 14 bits of va
	 * v have top two bits covering segment size, hence move
	 * by 16 bits, Also clear the lower HPTE_V_AVPN_SHIFT (7) bits.
	 * AVA field in v also have the lower 23 bits ignored.
	 * For base page size 4K we need 14 .. 65 bits (so need to
	 * collect extra 11 bits)
	 * For others we need 14..14+i
	 */
	/* This covers 14..54 bits of va*/
162
	rb = (v & ~0x7fUL) << 16;		/* AVA field */
163

164
	rb |= (v >> HPTE_V_SSIZE_SHIFT) << 8;	/*  B field */
165 166 167 168
	/*
	 * AVA in v had cleared lower 23 bits. We need to derive
	 * that from pteg index
	 */
169 170 171
	va_low = pte_index >> 3;
	if (v & HPTE_V_SECONDARY)
		va_low = ~va_low;
172 173 174 175 176 177
	/*
	 * get the vpn bits from va_low using reverse of hashing.
	 * In v we have va with 23 bits dropped and then left shifted
	 * HPTE_V_AVPN_SHIFT (7) bits. Now to find vsid we need
	 * right shift it with (SID_SHIFT - (23 - 7))
	 */
178
	if (!(v & HPTE_V_1TB_SEG))
179
		va_low ^= v >> (SID_SHIFT - 16);
180
	else
181
		va_low ^= v >> (SID_SHIFT_1T - 16);
182
	va_low &= 0x7ff;
183 184 185 186 187 188 189 190 191 192 193 194

	switch (b_psize) {
	case MMU_PAGE_4K:
		sllp = ((mmu_psize_defs[a_psize].sllp & SLB_VSID_L) >> 6) |
			((mmu_psize_defs[a_psize].sllp & SLB_VSID_LP) >> 4);
		rb |= sllp << 5;	/*  AP field */
		rb |= (va_low & 0x7ff) << 12;	/* remaining 11 bits of AVA */
		break;
	default:
	{
		int aval_shift;
		/*
195
		 * remaining bits of AVA/LP fields
196 197
		 * Also contain the rr bits of LP
		 */
198
		rb |= (va_low << mmu_psize_defs[b_psize].shift) & 0x7ff000;
199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215
		/*
		 * Now clear not needed LP bits based on actual psize
		 */
		rb &= ~((1ul << mmu_psize_defs[a_psize].shift) - 1);
		/*
		 * AVAL field 58..77 - base_page_shift bits of va
		 * we have space for 58..64 bits, Missing bits should
		 * be zero filled. +1 is to take care of L bit shift
		 */
		aval_shift = 64 - (77 - mmu_psize_defs[b_psize].shift) + 1;
		rb |= ((va_low << aval_shift) & 0xfe);

		rb |= 1;		/* L field */
		penc = mmu_psize_defs[b_psize].penc[a_psize];
		rb |= penc << 12;	/* LP field */
		break;
	}
216 217 218 219 220
	}
	rb |= (v >> 54) & 0x300;		/* B field */
	return rb;
}

221 222
static inline unsigned long __hpte_page_size(unsigned long h, unsigned long l,
					     bool is_base_size)
223
{
224

225 226 227 228
	int size, a_psize;
	/* Look at the 8 bit LP value */
	unsigned int lp = (l >> LP_SHIFT) & ((1 << LP_BITS) - 1);

229 230
	/* only handle 4k, 64k and 16M pages for now */
	if (!(h & HPTE_V_LARGE))
231 232 233 234 235 236 237 238
		return 1ul << 12;
	else {
		for (size = 0; size < MMU_PAGE_COUNT; size++) {
			/* valid entries have a shift value */
			if (!mmu_psize_defs[size].shift)
				continue;

			a_psize = __hpte_actual_psize(lp, size);
239 240 241
			if (a_psize != -1) {
				if (is_base_size)
					return 1ul << mmu_psize_defs[size].shift;
242
				return 1ul << mmu_psize_defs[a_psize].shift;
243
			}
244 245 246 247
		}

	}
	return 0;
248 249
}

250 251 252 253 254 255 256 257 258 259
static inline unsigned long hpte_page_size(unsigned long h, unsigned long l)
{
	return __hpte_page_size(h, l, 0);
}

static inline unsigned long hpte_base_page_size(unsigned long h, unsigned long l)
{
	return __hpte_page_size(h, l, 1);
}

260 261 262 263 264
static inline unsigned long hpte_rpn(unsigned long ptel, unsigned long psize)
{
	return ((ptel & HPTE_R_RPN) & ~(psize - 1)) >> PAGE_SHIFT;
}

265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280
static inline int hpte_is_writable(unsigned long ptel)
{
	unsigned long pp = ptel & (HPTE_R_PP0 | HPTE_R_PP);

	return pp != PP_RXRX && pp != PP_RXXX;
}

static inline unsigned long hpte_make_readonly(unsigned long ptel)
{
	if ((ptel & HPTE_R_PP0) || (ptel & HPTE_R_PP) == PP_RWXX)
		ptel = (ptel & ~HPTE_R_PP) | PP_RXXX;
	else
		ptel |= PP_RXRX;
	return ptel;
}

281 282 283 284 285 286 287 288 289 290 291 292 293 294 295
static inline int hpte_cache_flags_ok(unsigned long ptel, unsigned long io_type)
{
	unsigned int wimg = ptel & HPTE_R_WIMG;

	/* Handle SAO */
	if (wimg == (HPTE_R_W | HPTE_R_I | HPTE_R_M) &&
	    cpu_has_feature(CPU_FTR_ARCH_206))
		wimg = HPTE_R_M;

	if (!io_type)
		return wimg == HPTE_R_M;

	return (wimg & (HPTE_R_W | HPTE_R_I)) == io_type;
}

296
/*
297 298 299
 * If it's present and writable, atomically set dirty and referenced bits and
 * return the PTE, otherwise return 0. If we find a transparent hugepage
 * and if it is marked splitting we return 0;
300
 */
301 302
static inline pte_t kvmppc_read_update_linux_pte(pte_t *ptep, int writing,
						 unsigned int hugepage)
303
{
304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323
	pte_t old_pte, new_pte = __pte(0);

	while (1) {
		old_pte = pte_val(*ptep);
		/*
		 * wait until _PAGE_BUSY is clear then set it atomically
		 */
		if (unlikely(old_pte & _PAGE_BUSY)) {
			cpu_relax();
			continue;
		}
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
		/* If hugepage and is trans splitting return None */
		if (unlikely(hugepage &&
			     pmd_trans_splitting(pte_pmd(old_pte))))
			return __pte(0);
#endif
		/* If pte is not present return None */
		if (unlikely(!(old_pte & _PAGE_PRESENT)))
			return __pte(0);
324

325 326 327
		new_pte = pte_mkyoung(old_pte);
		if (writing && pte_write(old_pte))
			new_pte = pte_mkdirty(new_pte);
328

329 330 331 332 333
		if (old_pte == __cmpxchg_u64((unsigned long *)ptep, old_pte,
					     new_pte))
			break;
	}
	return new_pte;
334 335
}

336

337 338 339 340 341 342 343 344 345 346 347
/* Return HPTE cache control bits corresponding to Linux pte bits */
static inline unsigned long hpte_cache_bits(unsigned long pte_val)
{
#if _PAGE_NO_CACHE == HPTE_R_I && _PAGE_WRITETHRU == HPTE_R_W
	return pte_val & (HPTE_R_W | HPTE_R_I);
#else
	return ((pte_val & _PAGE_NO_CACHE) ? HPTE_R_I : 0) +
		((pte_val & _PAGE_WRITETHRU) ? HPTE_R_W : 0);
#endif
}

348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370
static inline bool hpte_read_permission(unsigned long pp, unsigned long key)
{
	if (key)
		return PP_RWRX <= pp && pp <= PP_RXRX;
	return 1;
}

static inline bool hpte_write_permission(unsigned long pp, unsigned long key)
{
	if (key)
		return pp == PP_RWRW;
	return pp <= PP_RWRW;
}

static inline int hpte_get_skey_perm(unsigned long hpte_r, unsigned long amr)
{
	unsigned long skey;

	skey = ((hpte_r & HPTE_R_KEY_HI) >> 57) |
		((hpte_r & HPTE_R_KEY_LO) >> 9);
	return (amr >> (62 - 2 * skey)) & 3;
}

371 372 373 374 375 376 377 378 379 380 381 382 383
static inline void lock_rmap(unsigned long *rmap)
{
	do {
		while (test_bit(KVMPPC_RMAP_LOCK_BIT, rmap))
			cpu_relax();
	} while (test_and_set_bit_lock(KVMPPC_RMAP_LOCK_BIT, rmap));
}

static inline void unlock_rmap(unsigned long *rmap)
{
	__clear_bit_unlock(KVMPPC_RMAP_LOCK_BIT, rmap);
}

384 385 386 387 388 389 390 391 392 393
static inline bool slot_is_aligned(struct kvm_memory_slot *memslot,
				   unsigned long pagesize)
{
	unsigned long mask = (pagesize >> PAGE_SHIFT) - 1;

	if (pagesize <= PAGE_SIZE)
		return 1;
	return !(memslot->base_gfn & mask) && !(memslot->npages & mask);
}

394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415
/*
 * This works for 4k, 64k and 16M pages on POWER7,
 * and 4k and 16M pages on PPC970.
 */
static inline unsigned long slb_pgsize_encoding(unsigned long psize)
{
	unsigned long senc = 0;

	if (psize > 0x1000) {
		senc = SLB_VSID_L;
		if (psize == 0x10000)
			senc |= SLB_VSID_LP_01;
	}
	return senc;
}

static inline int is_vrma_hpte(unsigned long hpte_v)
{
	return (hpte_v & ~0xffffffUL) ==
		(HPTE_V_1TB_SEG | (VRMA_VSID << (40 - 16)));
}

416
#ifdef CONFIG_KVM_BOOK3S_HV_POSSIBLE
417 418 419 420 421 422 423 424 425 426
/*
 * Note modification of an HPTE; set the HPTE modified bit
 * if anyone is interested.
 */
static inline void note_hpte_modification(struct kvm *kvm,
					  struct revmap_entry *rev)
{
	if (atomic_read(&kvm->arch.hpte_mod_interest))
		rev->guest_rpte |= HPTE_GR_MODIFIED;
}
427 428 429 430 431 432 433 434 435 436 437 438

/*
 * Like kvm_memslots(), but for use in real mode when we can't do
 * any RCU stuff (since the secondary threads are offline from the
 * kernel's point of view), and we can't print anything.
 * Thus we use rcu_dereference_raw() rather than rcu_dereference_check().
 */
static inline struct kvm_memslots *kvm_memslots_raw(struct kvm *kvm)
{
	return rcu_dereference_raw_notrace(kvm->memslots);
}

439
#endif /* CONFIG_KVM_BOOK3S_HV_POSSIBLE */
440

A
Alexander Graf 已提交
441
#endif /* __ASM_KVM_BOOK3S_64_H__ */