rcutree.c 98.3 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27
/*
 * Read-Copy Update mechanism for mutual exclusion
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
 *
 * Copyright IBM Corporation, 2008
 *
 * Authors: Dipankar Sarma <dipankar@in.ibm.com>
 *	    Manfred Spraul <manfred@colorfullife.com>
 *	    Paul E. McKenney <paulmck@linux.vnet.ibm.com> Hierarchical version
 *
 * Based on the original work by Paul McKenney <paulmck@us.ibm.com>
 * and inputs from Rusty Russell, Andrea Arcangeli and Andi Kleen.
 *
 * For detailed explanation of Read-Copy Update mechanism see -
28
 *	Documentation/RCU
29 30 31 32 33 34 35 36 37
 */
#include <linux/types.h>
#include <linux/kernel.h>
#include <linux/init.h>
#include <linux/spinlock.h>
#include <linux/smp.h>
#include <linux/rcupdate.h>
#include <linux/interrupt.h>
#include <linux/sched.h>
38
#include <linux/nmi.h>
39
#include <linux/atomic.h>
40
#include <linux/bitops.h>
41
#include <linux/export.h>
42 43 44 45 46 47 48
#include <linux/completion.h>
#include <linux/moduleparam.h>
#include <linux/percpu.h>
#include <linux/notifier.h>
#include <linux/cpu.h>
#include <linux/mutex.h>
#include <linux/time.h>
49
#include <linux/kernel_stat.h>
50 51
#include <linux/wait.h>
#include <linux/kthread.h>
52
#include <linux/prefetch.h>
53 54
#include <linux/delay.h>
#include <linux/stop_machine.h>
55
#include <linux/random.h>
56

57
#include "rcutree.h"
58 59 60
#include <trace/events/rcu.h>

#include "rcu.h"
61

62 63
/* Data structures. */

64
static struct lock_class_key rcu_node_class[RCU_NUM_LVLS];
65
static struct lock_class_key rcu_fqs_class[RCU_NUM_LVLS];
66

67
#define RCU_STATE_INITIALIZER(sname, cr) { \
68
	.level = { &sname##_state.node[0] }, \
69
	.call = cr, \
70
	.fqs_state = RCU_GP_IDLE, \
P
Paul E. McKenney 已提交
71 72
	.gpnum = 0UL - 300UL, \
	.completed = 0UL - 300UL, \
73
	.orphan_lock = __RAW_SPIN_LOCK_UNLOCKED(&sname##_state.orphan_lock), \
74 75
	.orphan_nxttail = &sname##_state.orphan_nxtlist, \
	.orphan_donetail = &sname##_state.orphan_donelist, \
76
	.barrier_mutex = __MUTEX_INITIALIZER(sname##_state.barrier_mutex), \
77
	.onoff_mutex = __MUTEX_INITIALIZER(sname##_state.onoff_mutex), \
78
	.name = #sname, \
79 80
}

81 82
struct rcu_state rcu_sched_state =
	RCU_STATE_INITIALIZER(rcu_sched, call_rcu_sched);
83
DEFINE_PER_CPU(struct rcu_data, rcu_sched_data);
84

85
struct rcu_state rcu_bh_state = RCU_STATE_INITIALIZER(rcu_bh, call_rcu_bh);
86
DEFINE_PER_CPU(struct rcu_data, rcu_bh_data);
87

88
static struct rcu_state *rcu_state;
89
LIST_HEAD(rcu_struct_flavors);
90

91 92
/* Increase (but not decrease) the CONFIG_RCU_FANOUT_LEAF at boot time. */
static int rcu_fanout_leaf = CONFIG_RCU_FANOUT_LEAF;
93
module_param(rcu_fanout_leaf, int, 0444);
94 95 96 97 98 99 100 101 102 103
int rcu_num_lvls __read_mostly = RCU_NUM_LVLS;
static int num_rcu_lvl[] = {  /* Number of rcu_nodes at specified level. */
	NUM_RCU_LVL_0,
	NUM_RCU_LVL_1,
	NUM_RCU_LVL_2,
	NUM_RCU_LVL_3,
	NUM_RCU_LVL_4,
};
int rcu_num_nodes __read_mostly = NUM_RCU_NODES; /* Total # rcu_nodes in use. */

104 105 106 107
/*
 * The rcu_scheduler_active variable transitions from zero to one just
 * before the first task is spawned.  So when this variable is zero, RCU
 * can assume that there is but one task, allowing RCU to (for example)
108
 * optimize synchronize_sched() to a simple barrier().  When this variable
109 110 111 112
 * is one, RCU must actually do all the hard work required to detect real
 * grace periods.  This variable is also used to suppress boot-time false
 * positives from lockdep-RCU error checking.
 */
113 114 115
int rcu_scheduler_active __read_mostly;
EXPORT_SYMBOL_GPL(rcu_scheduler_active);

116 117 118 119 120 121 122 123 124 125 126 127 128 129
/*
 * The rcu_scheduler_fully_active variable transitions from zero to one
 * during the early_initcall() processing, which is after the scheduler
 * is capable of creating new tasks.  So RCU processing (for example,
 * creating tasks for RCU priority boosting) must be delayed until after
 * rcu_scheduler_fully_active transitions from zero to one.  We also
 * currently delay invocation of any RCU callbacks until after this point.
 *
 * It might later prove better for people registering RCU callbacks during
 * early boot to take responsibility for these callbacks, but one step at
 * a time.
 */
static int rcu_scheduler_fully_active __read_mostly;

130 131
#ifdef CONFIG_RCU_BOOST

132 133 134 135 136
/*
 * Control variables for per-CPU and per-rcu_node kthreads.  These
 * handle all flavors of RCU.
 */
static DEFINE_PER_CPU(struct task_struct *, rcu_cpu_kthread_task);
137
DEFINE_PER_CPU(unsigned int, rcu_cpu_kthread_status);
138
DEFINE_PER_CPU(unsigned int, rcu_cpu_kthread_loops);
139
DEFINE_PER_CPU(char, rcu_cpu_has_work);
140

141 142
#endif /* #ifdef CONFIG_RCU_BOOST */

T
Thomas Gleixner 已提交
143
static void rcu_boost_kthread_setaffinity(struct rcu_node *rnp, int outgoingcpu);
144 145
static void invoke_rcu_core(void);
static void invoke_rcu_callbacks(struct rcu_state *rsp, struct rcu_data *rdp);
146

147 148 149 150 151 152 153 154 155 156 157 158
/*
 * Track the rcutorture test sequence number and the update version
 * number within a given test.  The rcutorture_testseq is incremented
 * on every rcutorture module load and unload, so has an odd value
 * when a test is running.  The rcutorture_vernum is set to zero
 * when rcutorture starts and is incremented on each rcutorture update.
 * These variables enable correlating rcutorture output with the
 * RCU tracing information.
 */
unsigned long rcutorture_testseq;
unsigned long rcutorture_vernum;

159 160 161 162 163 164 165 166 167 168
/*
 * Return true if an RCU grace period is in progress.  The ACCESS_ONCE()s
 * permit this function to be invoked without holding the root rcu_node
 * structure's ->lock, but of course results can be subject to change.
 */
static int rcu_gp_in_progress(struct rcu_state *rsp)
{
	return ACCESS_ONCE(rsp->completed) != ACCESS_ONCE(rsp->gpnum);
}

169
/*
170
 * Note a quiescent state.  Because we do not need to know
171
 * how many quiescent states passed, just if there was at least
172
 * one since the start of the grace period, this just sets a flag.
173
 * The caller must have disabled preemption.
174
 */
175
void rcu_sched_qs(int cpu)
176
{
177
	struct rcu_data *rdp = &per_cpu(rcu_sched_data, cpu);
178

179
	if (rdp->passed_quiesce == 0)
180
		trace_rcu_grace_period("rcu_sched", rdp->gpnum, "cpuqs");
181
	rdp->passed_quiesce = 1;
182 183
}

184
void rcu_bh_qs(int cpu)
185
{
186
	struct rcu_data *rdp = &per_cpu(rcu_bh_data, cpu);
187

188
	if (rdp->passed_quiesce == 0)
189
		trace_rcu_grace_period("rcu_bh", rdp->gpnum, "cpuqs");
190
	rdp->passed_quiesce = 1;
191
}
192

193 194 195
/*
 * Note a context switch.  This is a quiescent state for RCU-sched,
 * and requires special handling for preemptible RCU.
196
 * The caller must have disabled preemption.
197 198 199
 */
void rcu_note_context_switch(int cpu)
{
200
	trace_rcu_utilization("Start context switch");
201
	rcu_sched_qs(cpu);
202
	rcu_preempt_note_context_switch(cpu);
203
	trace_rcu_utilization("End context switch");
204
}
205
EXPORT_SYMBOL_GPL(rcu_note_context_switch);
206

207
DEFINE_PER_CPU(struct rcu_dynticks, rcu_dynticks) = {
208
	.dynticks_nesting = DYNTICK_TASK_EXIT_IDLE,
209
	.dynticks = ATOMIC_INIT(1),
210
};
211

E
Eric Dumazet 已提交
212 213 214
static long blimit = 10;	/* Maximum callbacks per rcu_do_batch. */
static long qhimark = 10000;	/* If this many pending, ignore blimit. */
static long qlowmark = 100;	/* Once only this many pending, use blimit. */
215

E
Eric Dumazet 已提交
216 217 218
module_param(blimit, long, 0444);
module_param(qhimark, long, 0444);
module_param(qlowmark, long, 0444);
219

220 221 222 223 224 225
static ulong jiffies_till_first_fqs = RCU_JIFFIES_TILL_FORCE_QS;
static ulong jiffies_till_next_fqs = RCU_JIFFIES_TILL_FORCE_QS;

module_param(jiffies_till_first_fqs, ulong, 0644);
module_param(jiffies_till_next_fqs, ulong, 0644);

226 227
static void force_qs_rnp(struct rcu_state *rsp, int (*f)(struct rcu_data *));
static void force_quiescent_state(struct rcu_state *rsp);
228
static int rcu_pending(int cpu);
229 230

/*
231
 * Return the number of RCU-sched batches processed thus far for debug & stats.
232
 */
233
long rcu_batches_completed_sched(void)
234
{
235
	return rcu_sched_state.completed;
236
}
237
EXPORT_SYMBOL_GPL(rcu_batches_completed_sched);
238 239 240 241 242 243 244 245 246 247

/*
 * Return the number of RCU BH batches processed thus far for debug & stats.
 */
long rcu_batches_completed_bh(void)
{
	return rcu_bh_state.completed;
}
EXPORT_SYMBOL_GPL(rcu_batches_completed_bh);

248 249 250 251 252
/*
 * Force a quiescent state for RCU BH.
 */
void rcu_bh_force_quiescent_state(void)
{
253
	force_quiescent_state(&rcu_bh_state);
254 255 256
}
EXPORT_SYMBOL_GPL(rcu_bh_force_quiescent_state);

257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281
/*
 * Record the number of times rcutorture tests have been initiated and
 * terminated.  This information allows the debugfs tracing stats to be
 * correlated to the rcutorture messages, even when the rcutorture module
 * is being repeatedly loaded and unloaded.  In other words, we cannot
 * store this state in rcutorture itself.
 */
void rcutorture_record_test_transition(void)
{
	rcutorture_testseq++;
	rcutorture_vernum = 0;
}
EXPORT_SYMBOL_GPL(rcutorture_record_test_transition);

/*
 * Record the number of writer passes through the current rcutorture test.
 * This is also used to correlate debugfs tracing stats with the rcutorture
 * messages.
 */
void rcutorture_record_progress(unsigned long vernum)
{
	rcutorture_vernum++;
}
EXPORT_SYMBOL_GPL(rcutorture_record_progress);

282 283 284 285 286
/*
 * Force a quiescent state for RCU-sched.
 */
void rcu_sched_force_quiescent_state(void)
{
287
	force_quiescent_state(&rcu_sched_state);
288 289 290
}
EXPORT_SYMBOL_GPL(rcu_sched_force_quiescent_state);

291 292 293 294 295 296
/*
 * Does the CPU have callbacks ready to be invoked?
 */
static int
cpu_has_callbacks_ready_to_invoke(struct rcu_data *rdp)
{
P
Paul E. McKenney 已提交
297 298
	return &rdp->nxtlist != rdp->nxttail[RCU_DONE_TAIL] &&
	       rdp->nxttail[RCU_DONE_TAIL] != NULL;
299 300 301
}

/*
302 303 304
 * Does the current CPU require a not-yet-started grace period?
 * The caller must have disabled interrupts to prevent races with
 * normal callback registry.
305 306 307 308
 */
static int
cpu_needs_another_gp(struct rcu_state *rsp, struct rcu_data *rdp)
{
309
	int i;
P
Paul E. McKenney 已提交
310

311 312 313 314 315 316 317 318 319 320 321 322
	if (rcu_gp_in_progress(rsp))
		return 0;  /* No, a grace period is already in progress. */
	if (!rdp->nxttail[RCU_NEXT_TAIL])
		return 0;  /* No, this is a no-CBs (or offline) CPU. */
	if (*rdp->nxttail[RCU_NEXT_READY_TAIL])
		return 1;  /* Yes, this CPU has newly registered callbacks. */
	for (i = RCU_WAIT_TAIL; i < RCU_NEXT_TAIL; i++)
		if (rdp->nxttail[i - 1] != rdp->nxttail[i] &&
		    ULONG_CMP_LT(ACCESS_ONCE(rsp->completed),
				 rdp->nxtcompleted[i]))
			return 1;  /* Yes, CBs for future grace period. */
	return 0; /* No grace period needed. */
323 324 325 326 327 328 329 330 331 332
}

/*
 * Return the root node of the specified rcu_state structure.
 */
static struct rcu_node *rcu_get_root(struct rcu_state *rsp)
{
	return &rsp->node[0];
}

333
/*
334
 * rcu_eqs_enter_common - current CPU is moving towards extended quiescent state
335 336 337 338 339
 *
 * If the new value of the ->dynticks_nesting counter now is zero,
 * we really have entered idle, and must do the appropriate accounting.
 * The caller must have disabled interrupts.
 */
340 341
static void rcu_eqs_enter_common(struct rcu_dynticks *rdtp, long long oldval,
				bool user)
342
{
343
	trace_rcu_dyntick("Start", oldval, rdtp->dynticks_nesting);
344
	if (!user && !is_idle_task(current)) {
345 346
		struct task_struct *idle = idle_task(smp_processor_id());

347
		trace_rcu_dyntick("Error on entry: not idle task", oldval, 0);
348
		ftrace_dump(DUMP_ORIG);
349 350 351
		WARN_ONCE(1, "Current pid: %d comm: %s / Idle pid: %d comm: %s",
			  current->pid, current->comm,
			  idle->pid, idle->comm); /* must be idle task! */
352
	}
353
	rcu_prepare_for_idle(smp_processor_id());
354 355 356 357 358
	/* CPUs seeing atomic_inc() must see prior RCU read-side crit sects */
	smp_mb__before_atomic_inc();  /* See above. */
	atomic_inc(&rdtp->dynticks);
	smp_mb__after_atomic_inc();  /* Force ordering with next sojourn. */
	WARN_ON_ONCE(atomic_read(&rdtp->dynticks) & 0x1);
359 360

	/*
361
	 * It is illegal to enter an extended quiescent state while
362 363 364 365 366 367 368 369
	 * in an RCU read-side critical section.
	 */
	rcu_lockdep_assert(!lock_is_held(&rcu_lock_map),
			   "Illegal idle entry in RCU read-side critical section.");
	rcu_lockdep_assert(!lock_is_held(&rcu_bh_lock_map),
			   "Illegal idle entry in RCU-bh read-side critical section.");
	rcu_lockdep_assert(!lock_is_held(&rcu_sched_lock_map),
			   "Illegal idle entry in RCU-sched read-side critical section.");
370
}
371

372 373 374
/*
 * Enter an RCU extended quiescent state, which can be either the
 * idle loop or adaptive-tickless usermode execution.
375
 */
376
static void rcu_eqs_enter(bool user)
377
{
378
	long long oldval;
379 380 381
	struct rcu_dynticks *rdtp;

	rdtp = &__get_cpu_var(rcu_dynticks);
382
	oldval = rdtp->dynticks_nesting;
383 384 385 386 387
	WARN_ON_ONCE((oldval & DYNTICK_TASK_NEST_MASK) == 0);
	if ((oldval & DYNTICK_TASK_NEST_MASK) == DYNTICK_TASK_NEST_VALUE)
		rdtp->dynticks_nesting = 0;
	else
		rdtp->dynticks_nesting -= DYNTICK_TASK_NEST_VALUE;
388
	rcu_eqs_enter_common(rdtp, oldval, user);
389
}
390 391 392 393 394 395 396 397 398 399 400 401 402 403 404

/**
 * rcu_idle_enter - inform RCU that current CPU is entering idle
 *
 * Enter idle mode, in other words, -leave- the mode in which RCU
 * read-side critical sections can occur.  (Though RCU read-side
 * critical sections can occur in irq handlers in idle, a possibility
 * handled by irq_enter() and irq_exit().)
 *
 * We crowbar the ->dynticks_nesting field to zero to allow for
 * the possibility of usermode upcalls having messed up our count
 * of interrupt nesting level during the prior busy period.
 */
void rcu_idle_enter(void)
{
405 406 407
	unsigned long flags;

	local_irq_save(flags);
408
	rcu_eqs_enter(false);
409
	local_irq_restore(flags);
410
}
411
EXPORT_SYMBOL_GPL(rcu_idle_enter);
412

413
#ifdef CONFIG_RCU_USER_QS
414 415 416 417 418 419 420 421 422 423
/**
 * rcu_user_enter - inform RCU that we are resuming userspace.
 *
 * Enter RCU idle mode right before resuming userspace.  No use of RCU
 * is permitted between this call and rcu_user_exit(). This way the
 * CPU doesn't need to maintain the tick for RCU maintenance purposes
 * when the CPU runs in userspace.
 */
void rcu_user_enter(void)
{
424
	rcu_eqs_enter(1);
425 426
}

427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446
/**
 * rcu_user_enter_after_irq - inform RCU that we are going to resume userspace
 * after the current irq returns.
 *
 * This is similar to rcu_user_enter() but in the context of a non-nesting
 * irq. After this call, RCU enters into idle mode when the interrupt
 * returns.
 */
void rcu_user_enter_after_irq(void)
{
	unsigned long flags;
	struct rcu_dynticks *rdtp;

	local_irq_save(flags);
	rdtp = &__get_cpu_var(rcu_dynticks);
	/* Ensure this irq is interrupting a non-idle RCU state.  */
	WARN_ON_ONCE(!(rdtp->dynticks_nesting & DYNTICK_TASK_MASK));
	rdtp->dynticks_nesting = 1;
	local_irq_restore(flags);
}
447
#endif /* CONFIG_RCU_USER_QS */
448

449 450 451 452 453 454
/**
 * rcu_irq_exit - inform RCU that current CPU is exiting irq towards idle
 *
 * Exit from an interrupt handler, which might possibly result in entering
 * idle mode, in other words, leaving the mode in which read-side critical
 * sections can occur.
455
 *
456 457 458 459 460 461 462 463
 * This code assumes that the idle loop never does anything that might
 * result in unbalanced calls to irq_enter() and irq_exit().  If your
 * architecture violates this assumption, RCU will give you what you
 * deserve, good and hard.  But very infrequently and irreproducibly.
 *
 * Use things like work queues to work around this limitation.
 *
 * You have been warned.
464
 */
465
void rcu_irq_exit(void)
466 467
{
	unsigned long flags;
468
	long long oldval;
469 470 471 472
	struct rcu_dynticks *rdtp;

	local_irq_save(flags);
	rdtp = &__get_cpu_var(rcu_dynticks);
473
	oldval = rdtp->dynticks_nesting;
474 475
	rdtp->dynticks_nesting--;
	WARN_ON_ONCE(rdtp->dynticks_nesting < 0);
476 477 478
	if (rdtp->dynticks_nesting)
		trace_rcu_dyntick("--=", oldval, rdtp->dynticks_nesting);
	else
479
		rcu_eqs_enter_common(rdtp, oldval, true);
480 481 482 483
	local_irq_restore(flags);
}

/*
484
 * rcu_eqs_exit_common - current CPU moving away from extended quiescent state
485 486 487 488 489
 *
 * If the new value of the ->dynticks_nesting counter was previously zero,
 * we really have exited idle, and must do the appropriate accounting.
 * The caller must have disabled interrupts.
 */
490 491
static void rcu_eqs_exit_common(struct rcu_dynticks *rdtp, long long oldval,
			       int user)
492
{
493 494 495 496 497
	smp_mb__before_atomic_inc();  /* Force ordering w/previous sojourn. */
	atomic_inc(&rdtp->dynticks);
	/* CPUs seeing atomic_inc() must see later RCU read-side crit sects */
	smp_mb__after_atomic_inc();  /* See above. */
	WARN_ON_ONCE(!(atomic_read(&rdtp->dynticks) & 0x1));
498
	rcu_cleanup_after_idle(smp_processor_id());
499
	trace_rcu_dyntick("End", oldval, rdtp->dynticks_nesting);
500
	if (!user && !is_idle_task(current)) {
501 502
		struct task_struct *idle = idle_task(smp_processor_id());

503 504
		trace_rcu_dyntick("Error on exit: not idle task",
				  oldval, rdtp->dynticks_nesting);
505
		ftrace_dump(DUMP_ORIG);
506 507 508
		WARN_ONCE(1, "Current pid: %d comm: %s / Idle pid: %d comm: %s",
			  current->pid, current->comm,
			  idle->pid, idle->comm); /* must be idle task! */
509 510 511
	}
}

512 513 514
/*
 * Exit an RCU extended quiescent state, which can be either the
 * idle loop or adaptive-tickless usermode execution.
515
 */
516
static void rcu_eqs_exit(bool user)
517 518 519 520 521 522
{
	struct rcu_dynticks *rdtp;
	long long oldval;

	rdtp = &__get_cpu_var(rcu_dynticks);
	oldval = rdtp->dynticks_nesting;
523 524 525 526 527
	WARN_ON_ONCE(oldval < 0);
	if (oldval & DYNTICK_TASK_NEST_MASK)
		rdtp->dynticks_nesting += DYNTICK_TASK_NEST_VALUE;
	else
		rdtp->dynticks_nesting = DYNTICK_TASK_EXIT_IDLE;
528
	rcu_eqs_exit_common(rdtp, oldval, user);
529
}
530 531 532 533 534 535 536 537 538 539 540 541 542 543

/**
 * rcu_idle_exit - inform RCU that current CPU is leaving idle
 *
 * Exit idle mode, in other words, -enter- the mode in which RCU
 * read-side critical sections can occur.
 *
 * We crowbar the ->dynticks_nesting field to DYNTICK_TASK_NEST to
 * allow for the possibility of usermode upcalls messing up our count
 * of interrupt nesting level during the busy period that is just
 * now starting.
 */
void rcu_idle_exit(void)
{
544 545 546
	unsigned long flags;

	local_irq_save(flags);
547
	rcu_eqs_exit(false);
548
	local_irq_restore(flags);
549
}
550
EXPORT_SYMBOL_GPL(rcu_idle_exit);
551

552
#ifdef CONFIG_RCU_USER_QS
553 554 555 556 557 558 559 560
/**
 * rcu_user_exit - inform RCU that we are exiting userspace.
 *
 * Exit RCU idle mode while entering the kernel because it can
 * run a RCU read side critical section anytime.
 */
void rcu_user_exit(void)
{
561
	rcu_eqs_exit(1);
562 563
}

564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584
/**
 * rcu_user_exit_after_irq - inform RCU that we won't resume to userspace
 * idle mode after the current non-nesting irq returns.
 *
 * This is similar to rcu_user_exit() but in the context of an irq.
 * This is called when the irq has interrupted a userspace RCU idle mode
 * context. When the current non-nesting interrupt returns after this call,
 * the CPU won't restore the RCU idle mode.
 */
void rcu_user_exit_after_irq(void)
{
	unsigned long flags;
	struct rcu_dynticks *rdtp;

	local_irq_save(flags);
	rdtp = &__get_cpu_var(rcu_dynticks);
	/* Ensure we are interrupting an RCU idle mode. */
	WARN_ON_ONCE(rdtp->dynticks_nesting & DYNTICK_TASK_NEST_MASK);
	rdtp->dynticks_nesting += DYNTICK_TASK_EXIT_IDLE;
	local_irq_restore(flags);
}
585
#endif /* CONFIG_RCU_USER_QS */
586

587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616
/**
 * rcu_irq_enter - inform RCU that current CPU is entering irq away from idle
 *
 * Enter an interrupt handler, which might possibly result in exiting
 * idle mode, in other words, entering the mode in which read-side critical
 * sections can occur.
 *
 * Note that the Linux kernel is fully capable of entering an interrupt
 * handler that it never exits, for example when doing upcalls to
 * user mode!  This code assumes that the idle loop never does upcalls to
 * user mode.  If your architecture does do upcalls from the idle loop (or
 * does anything else that results in unbalanced calls to the irq_enter()
 * and irq_exit() functions), RCU will give you what you deserve, good
 * and hard.  But very infrequently and irreproducibly.
 *
 * Use things like work queues to work around this limitation.
 *
 * You have been warned.
 */
void rcu_irq_enter(void)
{
	unsigned long flags;
	struct rcu_dynticks *rdtp;
	long long oldval;

	local_irq_save(flags);
	rdtp = &__get_cpu_var(rcu_dynticks);
	oldval = rdtp->dynticks_nesting;
	rdtp->dynticks_nesting++;
	WARN_ON_ONCE(rdtp->dynticks_nesting == 0);
617 618 619
	if (oldval)
		trace_rcu_dyntick("++=", oldval, rdtp->dynticks_nesting);
	else
620
		rcu_eqs_exit_common(rdtp, oldval, true);
621 622 623 624 625 626 627 628 629 630 631 632 633 634
	local_irq_restore(flags);
}

/**
 * rcu_nmi_enter - inform RCU of entry to NMI context
 *
 * If the CPU was idle with dynamic ticks active, and there is no
 * irq handler running, this updates rdtp->dynticks_nmi to let the
 * RCU grace-period handling know that the CPU is active.
 */
void rcu_nmi_enter(void)
{
	struct rcu_dynticks *rdtp = &__get_cpu_var(rcu_dynticks);

635 636
	if (rdtp->dynticks_nmi_nesting == 0 &&
	    (atomic_read(&rdtp->dynticks) & 0x1))
637
		return;
638 639 640 641 642 643
	rdtp->dynticks_nmi_nesting++;
	smp_mb__before_atomic_inc();  /* Force delay from prior write. */
	atomic_inc(&rdtp->dynticks);
	/* CPUs seeing atomic_inc() must see later RCU read-side crit sects */
	smp_mb__after_atomic_inc();  /* See above. */
	WARN_ON_ONCE(!(atomic_read(&rdtp->dynticks) & 0x1));
644 645 646 647 648 649 650 651 652 653 654 655 656
}

/**
 * rcu_nmi_exit - inform RCU of exit from NMI context
 *
 * If the CPU was idle with dynamic ticks active, and there is no
 * irq handler running, this updates rdtp->dynticks_nmi to let the
 * RCU grace-period handling know that the CPU is no longer active.
 */
void rcu_nmi_exit(void)
{
	struct rcu_dynticks *rdtp = &__get_cpu_var(rcu_dynticks);

657 658
	if (rdtp->dynticks_nmi_nesting == 0 ||
	    --rdtp->dynticks_nmi_nesting != 0)
659
		return;
660 661 662 663 664
	/* CPUs seeing atomic_inc() must see prior RCU read-side crit sects */
	smp_mb__before_atomic_inc();  /* See above. */
	atomic_inc(&rdtp->dynticks);
	smp_mb__after_atomic_inc();  /* Force delay to next write. */
	WARN_ON_ONCE(atomic_read(&rdtp->dynticks) & 0x1);
665 666 667
}

/**
668
 * rcu_is_cpu_idle - see if RCU thinks that the current CPU is idle
669
 *
670
 * If the current CPU is in its idle loop and is neither in an interrupt
671
 * or NMI handler, return true.
672
 */
673
int rcu_is_cpu_idle(void)
674
{
675 676 677 678 679 680
	int ret;

	preempt_disable();
	ret = (atomic_read(&__get_cpu_var(rcu_dynticks).dynticks) & 0x1) == 0;
	preempt_enable();
	return ret;
681
}
682
EXPORT_SYMBOL(rcu_is_cpu_idle);
683

684
#if defined(CONFIG_PROVE_RCU) && defined(CONFIG_HOTPLUG_CPU)
685 686 687 688 689 690 691

/*
 * Is the current CPU online?  Disable preemption to avoid false positives
 * that could otherwise happen due to the current CPU number being sampled,
 * this task being preempted, its old CPU being taken offline, resuming
 * on some other CPU, then determining that its old CPU is now offline.
 * It is OK to use RCU on an offline processor during initial boot, hence
692 693 694 695 696 697 698 699 700 701 702
 * the check for rcu_scheduler_fully_active.  Note also that it is OK
 * for a CPU coming online to use RCU for one jiffy prior to marking itself
 * online in the cpu_online_mask.  Similarly, it is OK for a CPU going
 * offline to continue to use RCU for one jiffy after marking itself
 * offline in the cpu_online_mask.  This leniency is necessary given the
 * non-atomic nature of the online and offline processing, for example,
 * the fact that a CPU enters the scheduler after completing the CPU_DYING
 * notifiers.
 *
 * This is also why RCU internally marks CPUs online during the
 * CPU_UP_PREPARE phase and offline during the CPU_DEAD phase.
703 704 705 706 707 708
 *
 * Disable checking if in an NMI handler because we cannot safely report
 * errors from NMI handlers anyway.
 */
bool rcu_lockdep_current_cpu_online(void)
{
709 710
	struct rcu_data *rdp;
	struct rcu_node *rnp;
711 712 713 714 715
	bool ret;

	if (in_nmi())
		return 1;
	preempt_disable();
716 717 718
	rdp = &__get_cpu_var(rcu_sched_data);
	rnp = rdp->mynode;
	ret = (rdp->grpmask & rnp->qsmaskinit) ||
719 720 721 722 723 724
	      !rcu_scheduler_fully_active;
	preempt_enable();
	return ret;
}
EXPORT_SYMBOL_GPL(rcu_lockdep_current_cpu_online);

725
#endif /* #if defined(CONFIG_PROVE_RCU) && defined(CONFIG_HOTPLUG_CPU) */
726

727
/**
728
 * rcu_is_cpu_rrupt_from_idle - see if idle or immediately interrupted from idle
729
 *
730 731 732
 * If the current CPU is idle or running at a first-level (not nested)
 * interrupt from idle, return true.  The caller must have at least
 * disabled preemption.
733
 */
734
static int rcu_is_cpu_rrupt_from_idle(void)
735
{
736
	return __get_cpu_var(rcu_dynticks).dynticks_nesting <= 1;
737 738 739 740 741
}

/*
 * Snapshot the specified CPU's dynticks counter so that we can later
 * credit them with an implicit quiescent state.  Return 1 if this CPU
742
 * is in dynticks idle mode, which is an extended quiescent state.
743 744 745
 */
static int dyntick_save_progress_counter(struct rcu_data *rdp)
{
746
	rdp->dynticks_snap = atomic_add_return(0, &rdp->dynticks->dynticks);
747
	return (rdp->dynticks_snap & 0x1) == 0;
748 749 750 751 752 753
}

/*
 * Return true if the specified CPU has passed through a quiescent
 * state by virtue of being in or having passed through an dynticks
 * idle state since the last call to dyntick_save_progress_counter()
754
 * for this same CPU, or by virtue of having been offline.
755 756 757
 */
static int rcu_implicit_dynticks_qs(struct rcu_data *rdp)
{
758 759
	unsigned int curr;
	unsigned int snap;
760

761 762
	curr = (unsigned int)atomic_add_return(0, &rdp->dynticks->dynticks);
	snap = (unsigned int)rdp->dynticks_snap;
763 764 765 766 767 768 769 770 771

	/*
	 * If the CPU passed through or entered a dynticks idle phase with
	 * no active irq/NMI handlers, then we can safely pretend that the CPU
	 * already acknowledged the request to pass through a quiescent
	 * state.  Either way, that CPU cannot possibly be in an RCU
	 * read-side critical section that started before the beginning
	 * of the current RCU grace period.
	 */
772
	if ((curr & 0x1) == 0 || UINT_CMP_GE(curr, snap + 2)) {
773
		trace_rcu_fqs(rdp->rsp->name, rdp->gpnum, rdp->cpu, "dti");
774 775 776 777
		rdp->dynticks_fqs++;
		return 1;
	}

778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797
	/*
	 * Check for the CPU being offline, but only if the grace period
	 * is old enough.  We don't need to worry about the CPU changing
	 * state: If we see it offline even once, it has been through a
	 * quiescent state.
	 *
	 * The reason for insisting that the grace period be at least
	 * one jiffy old is that CPUs that are not quite online and that
	 * have just gone offline can still execute RCU read-side critical
	 * sections.
	 */
	if (ULONG_CMP_GE(rdp->rsp->gp_start + 2, jiffies))
		return 0;  /* Grace period is not old enough. */
	barrier();
	if (cpu_is_offline(rdp->cpu)) {
		trace_rcu_fqs(rdp->rsp->name, rdp->gpnum, rdp->cpu, "ofl");
		rdp->offline_fqs++;
		return 1;
	}
	return 0;
798 799 800 801 802
}

static void record_gp_stall_check_time(struct rcu_state *rsp)
{
	rsp->gp_start = jiffies;
803
	rsp->jiffies_stall = jiffies + rcu_jiffies_till_stall_check();
804 805
}

806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828
/*
 * Dump stacks of all tasks running on stalled CPUs.  This is a fallback
 * for architectures that do not implement trigger_all_cpu_backtrace().
 * The NMI-triggered stack traces are more accurate because they are
 * printed by the target CPU.
 */
static void rcu_dump_cpu_stacks(struct rcu_state *rsp)
{
	int cpu;
	unsigned long flags;
	struct rcu_node *rnp;

	rcu_for_each_leaf_node(rsp, rnp) {
		raw_spin_lock_irqsave(&rnp->lock, flags);
		if (rnp->qsmask != 0) {
			for (cpu = 0; cpu <= rnp->grphi - rnp->grplo; cpu++)
				if (rnp->qsmask & (1UL << cpu))
					dump_cpu_task(rnp->grplo + cpu);
		}
		raw_spin_unlock_irqrestore(&rnp->lock, flags);
	}
}

829 830 831 832 833
static void print_other_cpu_stall(struct rcu_state *rsp)
{
	int cpu;
	long delta;
	unsigned long flags;
834
	int ndetected = 0;
835
	struct rcu_node *rnp = rcu_get_root(rsp);
836
	long totqlen = 0;
837 838 839

	/* Only let one CPU complain about others per time interval. */

P
Paul E. McKenney 已提交
840
	raw_spin_lock_irqsave(&rnp->lock, flags);
841
	delta = jiffies - rsp->jiffies_stall;
842
	if (delta < RCU_STALL_RAT_DELAY || !rcu_gp_in_progress(rsp)) {
P
Paul E. McKenney 已提交
843
		raw_spin_unlock_irqrestore(&rnp->lock, flags);
844 845
		return;
	}
846
	rsp->jiffies_stall = jiffies + 3 * rcu_jiffies_till_stall_check() + 3;
P
Paul E. McKenney 已提交
847
	raw_spin_unlock_irqrestore(&rnp->lock, flags);
848

849 850 851 852 853
	/*
	 * OK, time to rat on our buddy...
	 * See Documentation/RCU/stallwarn.txt for info on how to debug
	 * RCU CPU stall warnings.
	 */
854
	printk(KERN_ERR "INFO: %s detected stalls on CPUs/tasks:",
855
	       rsp->name);
856
	print_cpu_stall_info_begin();
857
	rcu_for_each_leaf_node(rsp, rnp) {
858
		raw_spin_lock_irqsave(&rnp->lock, flags);
859
		ndetected += rcu_print_task_stall(rnp);
860 861 862 863 864 865 866 867
		if (rnp->qsmask != 0) {
			for (cpu = 0; cpu <= rnp->grphi - rnp->grplo; cpu++)
				if (rnp->qsmask & (1UL << cpu)) {
					print_cpu_stall_info(rsp,
							     rnp->grplo + cpu);
					ndetected++;
				}
		}
868
		raw_spin_unlock_irqrestore(&rnp->lock, flags);
869
	}
870 871 872 873 874 875 876

	/*
	 * Now rat on any tasks that got kicked up to the root rcu_node
	 * due to CPU offlining.
	 */
	rnp = rcu_get_root(rsp);
	raw_spin_lock_irqsave(&rnp->lock, flags);
877
	ndetected += rcu_print_task_stall(rnp);
878 879 880
	raw_spin_unlock_irqrestore(&rnp->lock, flags);

	print_cpu_stall_info_end();
881 882 883
	for_each_possible_cpu(cpu)
		totqlen += per_cpu_ptr(rsp->rda, cpu)->qlen;
	pr_cont("(detected by %d, t=%ld jiffies, g=%lu, c=%lu, q=%lu)\n",
884
	       smp_processor_id(), (long)(jiffies - rsp->gp_start),
885
	       rsp->gpnum, rsp->completed, totqlen);
886 887 888
	if (ndetected == 0)
		printk(KERN_ERR "INFO: Stall ended before state dump start\n");
	else if (!trigger_all_cpu_backtrace())
889
		rcu_dump_cpu_stacks(rsp);
890

891
	/* Complain about tasks blocking the grace period. */
892 893 894

	rcu_print_detail_task_stall(rsp);

895
	force_quiescent_state(rsp);  /* Kick them all. */
896 897 898 899
}

static void print_cpu_stall(struct rcu_state *rsp)
{
900
	int cpu;
901 902
	unsigned long flags;
	struct rcu_node *rnp = rcu_get_root(rsp);
903
	long totqlen = 0;
904

905 906 907 908 909
	/*
	 * OK, time to rat on ourselves...
	 * See Documentation/RCU/stallwarn.txt for info on how to debug
	 * RCU CPU stall warnings.
	 */
910 911 912 913
	printk(KERN_ERR "INFO: %s self-detected stall on CPU", rsp->name);
	print_cpu_stall_info_begin();
	print_cpu_stall_info(rsp, smp_processor_id());
	print_cpu_stall_info_end();
914 915 916 917
	for_each_possible_cpu(cpu)
		totqlen += per_cpu_ptr(rsp->rda, cpu)->qlen;
	pr_cont(" (t=%lu jiffies g=%lu c=%lu q=%lu)\n",
		jiffies - rsp->gp_start, rsp->gpnum, rsp->completed, totqlen);
918 919
	if (!trigger_all_cpu_backtrace())
		dump_stack();
920

P
Paul E. McKenney 已提交
921
	raw_spin_lock_irqsave(&rnp->lock, flags);
922
	if (ULONG_CMP_GE(jiffies, rsp->jiffies_stall))
923
		rsp->jiffies_stall = jiffies +
924
				     3 * rcu_jiffies_till_stall_check() + 3;
P
Paul E. McKenney 已提交
925
	raw_spin_unlock_irqrestore(&rnp->lock, flags);
926

927 928 929 930 931
	set_need_resched();  /* kick ourselves to get things going. */
}

static void check_cpu_stall(struct rcu_state *rsp, struct rcu_data *rdp)
{
932 933
	unsigned long j;
	unsigned long js;
934 935
	struct rcu_node *rnp;

936
	if (rcu_cpu_stall_suppress)
937
		return;
938 939
	j = ACCESS_ONCE(jiffies);
	js = ACCESS_ONCE(rsp->jiffies_stall);
940
	rnp = rdp->mynode;
941 942
	if (rcu_gp_in_progress(rsp) &&
	    (ACCESS_ONCE(rnp->qsmask) & rdp->grpmask) && ULONG_CMP_GE(j, js)) {
943 944 945 946

		/* We haven't checked in, so go dump stack. */
		print_cpu_stall(rsp);

947 948
	} else if (rcu_gp_in_progress(rsp) &&
		   ULONG_CMP_GE(j, js + RCU_STALL_RAT_DELAY)) {
949

950
		/* They had a few time units to dump stack, so complain. */
951 952 953 954
		print_other_cpu_stall(rsp);
	}
}

955 956 957 958 959 960 961 962 963 964 965
/**
 * rcu_cpu_stall_reset - prevent further stall warnings in current grace period
 *
 * Set the stall-warning timeout way off into the future, thus preventing
 * any RCU CPU stall-warning messages from appearing in the current set of
 * RCU grace periods.
 *
 * The caller must disable hard irqs.
 */
void rcu_cpu_stall_reset(void)
{
966 967 968 969
	struct rcu_state *rsp;

	for_each_rcu_flavor(rsp)
		rsp->jiffies_stall = jiffies + ULONG_MAX / 2;
970 971
}

972 973 974
/*
 * Update CPU-local rcu_data state to record the newly noticed grace period.
 * This is used both when we started the grace period and when we notice
975 976 977
 * that someone else started the grace period.  The caller must hold the
 * ->lock of the leaf rcu_node structure corresponding to the current CPU,
 *  and must have irqs disabled.
978
 */
979 980 981
static void __note_new_gpnum(struct rcu_state *rsp, struct rcu_node *rnp, struct rcu_data *rdp)
{
	if (rdp->gpnum != rnp->gpnum) {
982 983 984 985 986
		/*
		 * If the current grace period is waiting for this CPU,
		 * set up to detect a quiescent state, otherwise don't
		 * go looking for one.
		 */
987
		rdp->gpnum = rnp->gpnum;
988
		trace_rcu_grace_period(rsp->name, rdp->gpnum, "cpustart");
989 990
		rdp->passed_quiesce = 0;
		rdp->qs_pending = !!(rnp->qsmask & rdp->grpmask);
991
		zero_cpu_stall_ticks(rdp);
992 993 994
	}
}

995 996
static void note_new_gpnum(struct rcu_state *rsp, struct rcu_data *rdp)
{
997 998 999 1000 1001 1002
	unsigned long flags;
	struct rcu_node *rnp;

	local_irq_save(flags);
	rnp = rdp->mynode;
	if (rdp->gpnum == ACCESS_ONCE(rnp->gpnum) || /* outside lock. */
P
Paul E. McKenney 已提交
1003
	    !raw_spin_trylock(&rnp->lock)) { /* irqs already off, so later. */
1004 1005 1006 1007
		local_irq_restore(flags);
		return;
	}
	__note_new_gpnum(rsp, rnp, rdp);
P
Paul E. McKenney 已提交
1008
	raw_spin_unlock_irqrestore(&rnp->lock, flags);
1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030
}

/*
 * Did someone else start a new RCU grace period start since we last
 * checked?  Update local state appropriately if so.  Must be called
 * on the CPU corresponding to rdp.
 */
static int
check_for_new_grace_period(struct rcu_state *rsp, struct rcu_data *rdp)
{
	unsigned long flags;
	int ret = 0;

	local_irq_save(flags);
	if (rdp->gpnum != rsp->gpnum) {
		note_new_gpnum(rsp, rdp);
		ret = 1;
	}
	local_irq_restore(flags);
	return ret;
}

1031 1032 1033 1034 1035 1036 1037 1038 1039 1040
/*
 * Initialize the specified rcu_data structure's callback list to empty.
 */
static void init_callback_list(struct rcu_data *rdp)
{
	int i;

	rdp->nxtlist = NULL;
	for (i = 0; i < RCU_NEXT_SIZE; i++)
		rdp->nxttail[i] = &rdp->nxtlist;
P
Paul E. McKenney 已提交
1041
	init_nocb_callback_list(rdp);
1042 1043
}

1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131
/*
 * Determine the value that ->completed will have at the end of the
 * next subsequent grace period.  This is used to tag callbacks so that
 * a CPU can invoke callbacks in a timely fashion even if that CPU has
 * been dyntick-idle for an extended period with callbacks under the
 * influence of RCU_FAST_NO_HZ.
 *
 * The caller must hold rnp->lock with interrupts disabled.
 */
static unsigned long rcu_cbs_completed(struct rcu_state *rsp,
				       struct rcu_node *rnp)
{
	/*
	 * If RCU is idle, we just wait for the next grace period.
	 * But we can only be sure that RCU is idle if we are looking
	 * at the root rcu_node structure -- otherwise, a new grace
	 * period might have started, but just not yet gotten around
	 * to initializing the current non-root rcu_node structure.
	 */
	if (rcu_get_root(rsp) == rnp && rnp->gpnum == rnp->completed)
		return rnp->completed + 1;

	/*
	 * Otherwise, wait for a possible partial grace period and
	 * then the subsequent full grace period.
	 */
	return rnp->completed + 2;
}

/*
 * If there is room, assign a ->completed number to any callbacks on
 * this CPU that have not already been assigned.  Also accelerate any
 * callbacks that were previously assigned a ->completed number that has
 * since proven to be too conservative, which can happen if callbacks get
 * assigned a ->completed number while RCU is idle, but with reference to
 * a non-root rcu_node structure.  This function is idempotent, so it does
 * not hurt to call it repeatedly.
 *
 * The caller must hold rnp->lock with interrupts disabled.
 */
static void rcu_accelerate_cbs(struct rcu_state *rsp, struct rcu_node *rnp,
			       struct rcu_data *rdp)
{
	unsigned long c;
	int i;

	/* If the CPU has no callbacks, nothing to do. */
	if (!rdp->nxttail[RCU_NEXT_TAIL] || !*rdp->nxttail[RCU_DONE_TAIL])
		return;

	/*
	 * Starting from the sublist containing the callbacks most
	 * recently assigned a ->completed number and working down, find the
	 * first sublist that is not assignable to an upcoming grace period.
	 * Such a sublist has something in it (first two tests) and has
	 * a ->completed number assigned that will complete sooner than
	 * the ->completed number for newly arrived callbacks (last test).
	 *
	 * The key point is that any later sublist can be assigned the
	 * same ->completed number as the newly arrived callbacks, which
	 * means that the callbacks in any of these later sublist can be
	 * grouped into a single sublist, whether or not they have already
	 * been assigned a ->completed number.
	 */
	c = rcu_cbs_completed(rsp, rnp);
	for (i = RCU_NEXT_TAIL - 1; i > RCU_DONE_TAIL; i--)
		if (rdp->nxttail[i] != rdp->nxttail[i - 1] &&
		    !ULONG_CMP_GE(rdp->nxtcompleted[i], c))
			break;

	/*
	 * If there are no sublist for unassigned callbacks, leave.
	 * At the same time, advance "i" one sublist, so that "i" will
	 * index into the sublist where all the remaining callbacks should
	 * be grouped into.
	 */
	if (++i >= RCU_NEXT_TAIL)
		return;

	/*
	 * Assign all subsequent callbacks' ->completed number to the next
	 * full grace period and group them all in the sublist initially
	 * indexed by "i".
	 */
	for (; i <= RCU_NEXT_TAIL; i++) {
		rdp->nxttail[i] = rdp->nxttail[RCU_NEXT_TAIL];
		rdp->nxtcompleted[i] = c;
	}
1132 1133 1134 1135 1136 1137

	/* Trace depending on how much we were able to accelerate. */
	if (!*rdp->nxttail[RCU_WAIT_TAIL])
		trace_rcu_grace_period(rsp->name, rdp->gpnum, "AccWaitCB");
	else
		trace_rcu_grace_period(rsp->name, rdp->gpnum, "AccReadyCB");
1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182
}

/*
 * Move any callbacks whose grace period has completed to the
 * RCU_DONE_TAIL sublist, then compact the remaining sublists and
 * assign ->completed numbers to any callbacks in the RCU_NEXT_TAIL
 * sublist.  This function is idempotent, so it does not hurt to
 * invoke it repeatedly.  As long as it is not invoked -too- often...
 *
 * The caller must hold rnp->lock with interrupts disabled.
 */
static void rcu_advance_cbs(struct rcu_state *rsp, struct rcu_node *rnp,
			    struct rcu_data *rdp)
{
	int i, j;

	/* If the CPU has no callbacks, nothing to do. */
	if (!rdp->nxttail[RCU_NEXT_TAIL] || !*rdp->nxttail[RCU_DONE_TAIL])
		return;

	/*
	 * Find all callbacks whose ->completed numbers indicate that they
	 * are ready to invoke, and put them into the RCU_DONE_TAIL sublist.
	 */
	for (i = RCU_WAIT_TAIL; i < RCU_NEXT_TAIL; i++) {
		if (ULONG_CMP_LT(rnp->completed, rdp->nxtcompleted[i]))
			break;
		rdp->nxttail[RCU_DONE_TAIL] = rdp->nxttail[i];
	}
	/* Clean up any sublist tail pointers that were misordered above. */
	for (j = RCU_WAIT_TAIL; j < i; j++)
		rdp->nxttail[j] = rdp->nxttail[RCU_DONE_TAIL];

	/* Copy down callbacks to fill in empty sublists. */
	for (j = RCU_WAIT_TAIL; i < RCU_NEXT_TAIL; i++, j++) {
		if (rdp->nxttail[j] == rdp->nxttail[RCU_NEXT_TAIL])
			break;
		rdp->nxttail[j] = rdp->nxttail[i];
		rdp->nxtcompleted[j] = rdp->nxtcompleted[i];
	}

	/* Classify any remaining callbacks. */
	rcu_accelerate_cbs(rsp, rnp, rdp);
}

1183 1184 1185 1186 1187 1188 1189 1190 1191 1192
/*
 * Advance this CPU's callbacks, but only if the current grace period
 * has ended.  This may be called only from the CPU to whom the rdp
 * belongs.  In addition, the corresponding leaf rcu_node structure's
 * ->lock must be held by the caller, with irqs disabled.
 */
static void
__rcu_process_gp_end(struct rcu_state *rsp, struct rcu_node *rnp, struct rcu_data *rdp)
{
	/* Did another grace period end? */
1193
	if (rdp->completed == rnp->completed) {
1194

1195 1196
		/* No, so just accelerate recent callbacks. */
		rcu_accelerate_cbs(rsp, rnp, rdp);
1197

1198 1199 1200 1201
	} else {

		/* Advance callbacks. */
		rcu_advance_cbs(rsp, rnp, rdp);
1202 1203 1204

		/* Remember that we saw this grace-period completion. */
		rdp->completed = rnp->completed;
1205
		trace_rcu_grace_period(rsp->name, rdp->gpnum, "cpuend");
1206

1207 1208
		/*
		 * If we were in an extended quiescent state, we may have
1209
		 * missed some grace periods that others CPUs handled on
1210
		 * our behalf. Catch up with this state to avoid noting
1211 1212
		 * spurious new grace periods.  If another grace period
		 * has started, then rnp->gpnum will have advanced, so
1213 1214
		 * we will detect this later on.  Of course, any quiescent
		 * states we found for the old GP are now invalid.
1215
		 */
1216
		if (ULONG_CMP_LT(rdp->gpnum, rdp->completed)) {
1217
			rdp->gpnum = rdp->completed;
1218 1219
			rdp->passed_quiesce = 0;
		}
1220

1221
		/*
1222 1223
		 * If RCU does not need a quiescent state from this CPU,
		 * then make sure that this CPU doesn't go looking for one.
1224
		 */
1225
		if ((rnp->qsmask & rdp->grpmask) == 0)
1226
			rdp->qs_pending = 0;
1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243
	}
}

/*
 * Advance this CPU's callbacks, but only if the current grace period
 * has ended.  This may be called only from the CPU to whom the rdp
 * belongs.
 */
static void
rcu_process_gp_end(struct rcu_state *rsp, struct rcu_data *rdp)
{
	unsigned long flags;
	struct rcu_node *rnp;

	local_irq_save(flags);
	rnp = rdp->mynode;
	if (rdp->completed == ACCESS_ONCE(rnp->completed) || /* outside lock. */
P
Paul E. McKenney 已提交
1244
	    !raw_spin_trylock(&rnp->lock)) { /* irqs already off, so later. */
1245 1246 1247 1248
		local_irq_restore(flags);
		return;
	}
	__rcu_process_gp_end(rsp, rnp, rdp);
P
Paul E. McKenney 已提交
1249
	raw_spin_unlock_irqrestore(&rnp->lock, flags);
1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262
}

/*
 * Do per-CPU grace-period initialization for running CPU.  The caller
 * must hold the lock of the leaf rcu_node structure corresponding to
 * this CPU.
 */
static void
rcu_start_gp_per_cpu(struct rcu_state *rsp, struct rcu_node *rnp, struct rcu_data *rdp)
{
	/* Prior grace period ended, so advance callbacks for current CPU. */
	__rcu_process_gp_end(rsp, rnp, rdp);

1263 1264
	/* Set state so that this CPU will detect the next quiescent state. */
	__note_new_gpnum(rsp, rnp, rdp);
1265 1266
}

1267
/*
1268
 * Initialize a new grace period.
1269
 */
1270
static int rcu_gp_init(struct rcu_state *rsp)
1271 1272
{
	struct rcu_data *rdp;
1273
	struct rcu_node *rnp = rcu_get_root(rsp);
1274

1275
	raw_spin_lock_irq(&rnp->lock);
1276
	rsp->gp_flags = 0; /* Clear all flags: New grace period. */
1277

1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290
	if (rcu_gp_in_progress(rsp)) {
		/* Grace period already in progress, don't start another.  */
		raw_spin_unlock_irq(&rnp->lock);
		return 0;
	}

	/* Advance to a new grace period and initialize state. */
	rsp->gpnum++;
	trace_rcu_grace_period(rsp->name, rsp->gpnum, "start");
	record_gp_stall_check_time(rsp);
	raw_spin_unlock_irq(&rnp->lock);

	/* Exclude any concurrent CPU-hotplug operations. */
1291
	mutex_lock(&rsp->onoff_mutex);
1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306

	/*
	 * Set the quiescent-state-needed bits in all the rcu_node
	 * structures for all currently online CPUs in breadth-first order,
	 * starting from the root rcu_node structure, relying on the layout
	 * of the tree within the rsp->node[] array.  Note that other CPUs
	 * will access only the leaves of the hierarchy, thus seeing that no
	 * grace period is in progress, at least until the corresponding
	 * leaf node has been initialized.  In addition, we have excluded
	 * CPU-hotplug operations.
	 *
	 * The grace period cannot complete until the initialization
	 * process finishes, because this kthread handles both.
	 */
	rcu_for_each_node_breadth_first(rsp, rnp) {
1307 1308
		raw_spin_lock_irq(&rnp->lock);
		rdp = this_cpu_ptr(rsp->rda);
1309 1310 1311
		rcu_preempt_check_blocked_tasks(rnp);
		rnp->qsmask = rnp->qsmaskinit;
		rnp->gpnum = rsp->gpnum;
1312
		WARN_ON_ONCE(rnp->completed != rsp->completed);
1313 1314 1315 1316 1317 1318 1319 1320
		rnp->completed = rsp->completed;
		if (rnp == rdp->mynode)
			rcu_start_gp_per_cpu(rsp, rnp, rdp);
		rcu_preempt_boost_start_gp(rnp);
		trace_rcu_grace_period_init(rsp->name, rnp->gpnum,
					    rnp->level, rnp->grplo,
					    rnp->grphi, rnp->qsmask);
		raw_spin_unlock_irq(&rnp->lock);
1321
#ifdef CONFIG_PROVE_RCU_DELAY
1322
		if ((prandom_u32() % (rcu_num_nodes * 8)) == 0)
1323 1324
			schedule_timeout_uninterruptible(2);
#endif /* #ifdef CONFIG_PROVE_RCU_DELAY */
1325 1326
		cond_resched();
	}
1327

1328
	mutex_unlock(&rsp->onoff_mutex);
1329 1330
	return 1;
}
1331

1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357
/*
 * Do one round of quiescent-state forcing.
 */
int rcu_gp_fqs(struct rcu_state *rsp, int fqs_state_in)
{
	int fqs_state = fqs_state_in;
	struct rcu_node *rnp = rcu_get_root(rsp);

	rsp->n_force_qs++;
	if (fqs_state == RCU_SAVE_DYNTICK) {
		/* Collect dyntick-idle snapshots. */
		force_qs_rnp(rsp, dyntick_save_progress_counter);
		fqs_state = RCU_FORCE_QS;
	} else {
		/* Handle dyntick-idle and offline CPUs. */
		force_qs_rnp(rsp, rcu_implicit_dynticks_qs);
	}
	/* Clear flag to prevent immediate re-entry. */
	if (ACCESS_ONCE(rsp->gp_flags) & RCU_GP_FLAG_FQS) {
		raw_spin_lock_irq(&rnp->lock);
		rsp->gp_flags &= ~RCU_GP_FLAG_FQS;
		raw_spin_unlock_irq(&rnp->lock);
	}
	return fqs_state;
}

1358 1359 1360
/*
 * Clean up after the old grace period.
 */
1361
static void rcu_gp_cleanup(struct rcu_state *rsp)
1362 1363 1364 1365
{
	unsigned long gp_duration;
	struct rcu_data *rdp;
	struct rcu_node *rnp = rcu_get_root(rsp);
1366

1367 1368 1369 1370
	raw_spin_lock_irq(&rnp->lock);
	gp_duration = jiffies - rsp->gp_start;
	if (gp_duration > rsp->gp_max)
		rsp->gp_max = gp_duration;
1371

1372 1373 1374 1375 1376 1377 1378 1379
	/*
	 * We know the grace period is complete, but to everyone else
	 * it appears to still be ongoing.  But it is also the case
	 * that to everyone else it looks like there is nothing that
	 * they can do to advance the grace period.  It is therefore
	 * safe for us to drop the lock in order to mark the grace
	 * period as completed in all of the rcu_node structures.
	 */
1380
	raw_spin_unlock_irq(&rnp->lock);
1381

1382 1383 1384 1385 1386 1387 1388 1389 1390 1391
	/*
	 * Propagate new ->completed value to rcu_node structures so
	 * that other CPUs don't have to wait until the start of the next
	 * grace period to process their callbacks.  This also avoids
	 * some nasty RCU grace-period initialization races by forcing
	 * the end of the current grace period to be completely recorded in
	 * all of the rcu_node structures before the beginning of the next
	 * grace period is recorded in any of the rcu_node structures.
	 */
	rcu_for_each_node_breadth_first(rsp, rnp) {
1392
		raw_spin_lock_irq(&rnp->lock);
1393 1394 1395
		rnp->completed = rsp->gpnum;
		raw_spin_unlock_irq(&rnp->lock);
		cond_resched();
1396
	}
1397 1398
	rnp = rcu_get_root(rsp);
	raw_spin_lock_irq(&rnp->lock);
1399 1400 1401 1402

	rsp->completed = rsp->gpnum; /* Declare grace period done. */
	trace_rcu_grace_period(rsp->name, rsp->completed, "end");
	rsp->fqs_state = RCU_GP_IDLE;
1403
	rdp = this_cpu_ptr(rsp->rda);
1404 1405 1406 1407 1408 1409 1410 1411 1412 1413
	if (cpu_needs_another_gp(rsp, rdp))
		rsp->gp_flags = 1;
	raw_spin_unlock_irq(&rnp->lock);
}

/*
 * Body of kthread that handles grace periods.
 */
static int __noreturn rcu_gp_kthread(void *arg)
{
1414
	int fqs_state;
1415
	unsigned long j;
1416
	int ret;
1417 1418 1419 1420 1421 1422 1423
	struct rcu_state *rsp = arg;
	struct rcu_node *rnp = rcu_get_root(rsp);

	for (;;) {

		/* Handle grace-period start. */
		for (;;) {
1424 1425 1426 1427 1428
			wait_event_interruptible(rsp->gp_wq,
						 rsp->gp_flags &
						 RCU_GP_FLAG_INIT);
			if ((rsp->gp_flags & RCU_GP_FLAG_INIT) &&
			    rcu_gp_init(rsp))
1429 1430 1431 1432
				break;
			cond_resched();
			flush_signals(current);
		}
1433

1434 1435
		/* Handle quiescent-state forcing. */
		fqs_state = RCU_SAVE_DYNTICK;
1436 1437 1438 1439 1440
		j = jiffies_till_first_fqs;
		if (j > HZ) {
			j = HZ;
			jiffies_till_first_fqs = HZ;
		}
1441
		for (;;) {
1442
			rsp->jiffies_force_qs = jiffies + j;
1443 1444 1445 1446
			ret = wait_event_interruptible_timeout(rsp->gp_wq,
					(rsp->gp_flags & RCU_GP_FLAG_FQS) ||
					(!ACCESS_ONCE(rnp->qsmask) &&
					 !rcu_preempt_blocked_readers_cgp(rnp)),
1447
					j);
1448
			/* If grace period done, leave loop. */
1449
			if (!ACCESS_ONCE(rnp->qsmask) &&
1450
			    !rcu_preempt_blocked_readers_cgp(rnp))
1451
				break;
1452 1453 1454 1455 1456 1457 1458 1459 1460
			/* If time for quiescent-state forcing, do it. */
			if (ret == 0 || (rsp->gp_flags & RCU_GP_FLAG_FQS)) {
				fqs_state = rcu_gp_fqs(rsp, fqs_state);
				cond_resched();
			} else {
				/* Deal with stray signal. */
				cond_resched();
				flush_signals(current);
			}
1461 1462 1463 1464 1465 1466 1467 1468
			j = jiffies_till_next_fqs;
			if (j > HZ) {
				j = HZ;
				jiffies_till_next_fqs = HZ;
			} else if (j < 1) {
				j = 1;
				jiffies_till_next_fqs = 1;
			}
1469
		}
1470 1471 1472

		/* Handle grace-period end. */
		rcu_gp_cleanup(rsp);
1473 1474 1475
	}
}

1476 1477 1478 1479 1480
/*
 * Start a new RCU grace period if warranted, re-initializing the hierarchy
 * in preparation for detecting the next grace period.  The caller must hold
 * the root node's ->lock, which is released before return.  Hard irqs must
 * be disabled.
1481 1482 1483 1484
 *
 * Note that it is legal for a dying CPU (which is marked as offline) to
 * invoke this function.  This can happen when the dying CPU reports its
 * quiescent state.
1485 1486 1487 1488 1489
 */
static void
rcu_start_gp(struct rcu_state *rsp, unsigned long flags)
	__releases(rcu_get_root(rsp)->lock)
{
1490
	struct rcu_data *rdp = this_cpu_ptr(rsp->rda);
1491 1492
	struct rcu_node *rnp = rcu_get_root(rsp);

1493
	if (!rsp->gp_kthread ||
1494 1495
	    !cpu_needs_another_gp(rsp, rdp)) {
		/*
1496
		 * Either we have not yet spawned the grace-period
1497 1498
		 * task, this CPU does not need another grace period,
		 * or a grace period is already in progress.
1499
		 * Either way, don't start a new grace period.
1500 1501 1502 1503
		 */
		raw_spin_unlock_irqrestore(&rnp->lock, flags);
		return;
	}
1504

1505 1506 1507
	/*
	 * Because there is no grace period in progress right now,
	 * any callbacks we have up to this point will be satisfied
1508 1509
	 * by the next grace period.  So this is a good place to
	 * assign a grace period number to recently posted callbacks.
1510
	 */
1511
	rcu_accelerate_cbs(rsp, rnp, rdp);
1512

1513
	rsp->gp_flags = RCU_GP_FLAG_INIT;
1514 1515 1516 1517 1518 1519 1520
	raw_spin_unlock(&rnp->lock); /* Interrupts remain disabled. */

	/* Ensure that CPU is aware of completion of last grace period. */
	rcu_process_gp_end(rsp, rdp);
	local_irq_restore(flags);

	/* Wake up rcu_gp_kthread() to start the grace period. */
1521
	wake_up(&rsp->gp_wq);
1522 1523
}

1524
/*
P
Paul E. McKenney 已提交
1525 1526 1527 1528 1529
 * Report a full set of quiescent states to the specified rcu_state
 * data structure.  This involves cleaning up after the prior grace
 * period and letting rcu_start_gp() start up the next grace period
 * if one is needed.  Note that the caller must hold rnp->lock, as
 * required by rcu_start_gp(), which will release it.
1530
 */
P
Paul E. McKenney 已提交
1531
static void rcu_report_qs_rsp(struct rcu_state *rsp, unsigned long flags)
1532
	__releases(rcu_get_root(rsp)->lock)
1533
{
1534
	WARN_ON_ONCE(!rcu_gp_in_progress(rsp));
1535 1536
	raw_spin_unlock_irqrestore(&rcu_get_root(rsp)->lock, flags);
	wake_up(&rsp->gp_wq);  /* Memory barrier implied by wake_up() path. */
1537 1538
}

1539
/*
P
Paul E. McKenney 已提交
1540 1541 1542 1543 1544 1545
 * Similar to rcu_report_qs_rdp(), for which it is a helper function.
 * Allows quiescent states for a group of CPUs to be reported at one go
 * to the specified rcu_node structure, though all the CPUs in the group
 * must be represented by the same rcu_node structure (which need not be
 * a leaf rcu_node structure, though it often will be).  That structure's
 * lock must be held upon entry, and it is released before return.
1546 1547
 */
static void
P
Paul E. McKenney 已提交
1548 1549
rcu_report_qs_rnp(unsigned long mask, struct rcu_state *rsp,
		  struct rcu_node *rnp, unsigned long flags)
1550 1551
	__releases(rnp->lock)
{
1552 1553
	struct rcu_node *rnp_c;

1554 1555 1556 1557 1558
	/* Walk up the rcu_node hierarchy. */
	for (;;) {
		if (!(rnp->qsmask & mask)) {

			/* Our bit has already been cleared, so done. */
P
Paul E. McKenney 已提交
1559
			raw_spin_unlock_irqrestore(&rnp->lock, flags);
1560 1561 1562
			return;
		}
		rnp->qsmask &= ~mask;
1563 1564 1565 1566
		trace_rcu_quiescent_state_report(rsp->name, rnp->gpnum,
						 mask, rnp->qsmask, rnp->level,
						 rnp->grplo, rnp->grphi,
						 !!rnp->gp_tasks);
1567
		if (rnp->qsmask != 0 || rcu_preempt_blocked_readers_cgp(rnp)) {
1568 1569

			/* Other bits still set at this level, so done. */
P
Paul E. McKenney 已提交
1570
			raw_spin_unlock_irqrestore(&rnp->lock, flags);
1571 1572 1573 1574 1575 1576 1577 1578 1579
			return;
		}
		mask = rnp->grpmask;
		if (rnp->parent == NULL) {

			/* No more levels.  Exit loop holding root lock. */

			break;
		}
P
Paul E. McKenney 已提交
1580
		raw_spin_unlock_irqrestore(&rnp->lock, flags);
1581
		rnp_c = rnp;
1582
		rnp = rnp->parent;
P
Paul E. McKenney 已提交
1583
		raw_spin_lock_irqsave(&rnp->lock, flags);
1584
		WARN_ON_ONCE(rnp_c->qsmask);
1585 1586 1587 1588
	}

	/*
	 * Get here if we are the last CPU to pass through a quiescent
P
Paul E. McKenney 已提交
1589
	 * state for this grace period.  Invoke rcu_report_qs_rsp()
1590
	 * to clean up and start the next grace period if one is needed.
1591
	 */
P
Paul E. McKenney 已提交
1592
	rcu_report_qs_rsp(rsp, flags); /* releases rnp->lock. */
1593 1594 1595
}

/*
P
Paul E. McKenney 已提交
1596 1597 1598 1599 1600 1601 1602
 * Record a quiescent state for the specified CPU to that CPU's rcu_data
 * structure.  This must be either called from the specified CPU, or
 * called when the specified CPU is known to be offline (and when it is
 * also known that no other CPU is concurrently trying to help the offline
 * CPU).  The lastcomp argument is used to make sure we are still in the
 * grace period of interest.  We don't want to end the current grace period
 * based on quiescent states detected in an earlier grace period!
1603 1604
 */
static void
1605
rcu_report_qs_rdp(int cpu, struct rcu_state *rsp, struct rcu_data *rdp)
1606 1607 1608 1609 1610 1611
{
	unsigned long flags;
	unsigned long mask;
	struct rcu_node *rnp;

	rnp = rdp->mynode;
P
Paul E. McKenney 已提交
1612
	raw_spin_lock_irqsave(&rnp->lock, flags);
1613 1614
	if (rdp->passed_quiesce == 0 || rdp->gpnum != rnp->gpnum ||
	    rnp->completed == rnp->gpnum) {
1615 1616

		/*
1617 1618 1619 1620
		 * The grace period in which this quiescent state was
		 * recorded has ended, so don't report it upwards.
		 * We will instead need a new quiescent state that lies
		 * within the current grace period.
1621
		 */
1622
		rdp->passed_quiesce = 0;	/* need qs for new gp. */
P
Paul E. McKenney 已提交
1623
		raw_spin_unlock_irqrestore(&rnp->lock, flags);
1624 1625 1626 1627
		return;
	}
	mask = rdp->grpmask;
	if ((rnp->qsmask & mask) == 0) {
P
Paul E. McKenney 已提交
1628
		raw_spin_unlock_irqrestore(&rnp->lock, flags);
1629 1630 1631 1632 1633 1634 1635
	} else {
		rdp->qs_pending = 0;

		/*
		 * This GP can't end until cpu checks in, so all of our
		 * callbacks can be processed during the next GP.
		 */
1636
		rcu_accelerate_cbs(rsp, rnp, rdp);
1637

P
Paul E. McKenney 已提交
1638
		rcu_report_qs_rnp(mask, rsp, rnp, flags); /* rlses rnp->lock */
1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665
	}
}

/*
 * Check to see if there is a new grace period of which this CPU
 * is not yet aware, and if so, set up local rcu_data state for it.
 * Otherwise, see if this CPU has just passed through its first
 * quiescent state for this grace period, and record that fact if so.
 */
static void
rcu_check_quiescent_state(struct rcu_state *rsp, struct rcu_data *rdp)
{
	/* If there is now a new grace period, record and return. */
	if (check_for_new_grace_period(rsp, rdp))
		return;

	/*
	 * Does this CPU still need to do its part for current grace period?
	 * If no, return and let the other CPUs do their part as well.
	 */
	if (!rdp->qs_pending)
		return;

	/*
	 * Was there a quiescent state since the beginning of the grace
	 * period? If no, then exit and wait for the next call.
	 */
1666
	if (!rdp->passed_quiesce)
1667 1668
		return;

P
Paul E. McKenney 已提交
1669 1670 1671 1672
	/*
	 * Tell RCU we are done (but rcu_report_qs_rdp() will be the
	 * judge of that).
	 */
1673
	rcu_report_qs_rdp(rdp->cpu, rsp, rdp);
1674 1675 1676 1677
}

#ifdef CONFIG_HOTPLUG_CPU

1678
/*
1679 1680
 * Send the specified CPU's RCU callbacks to the orphanage.  The
 * specified CPU must be offline, and the caller must hold the
1681
 * ->orphan_lock.
1682
 */
1683 1684 1685
static void
rcu_send_cbs_to_orphanage(int cpu, struct rcu_state *rsp,
			  struct rcu_node *rnp, struct rcu_data *rdp)
1686
{
P
Paul E. McKenney 已提交
1687 1688 1689 1690
	/* No-CBs CPUs do not have orphanable callbacks. */
	if (is_nocb_cpu(rdp->cpu))
		return;

1691 1692
	/*
	 * Orphan the callbacks.  First adjust the counts.  This is safe
1693 1694
	 * because _rcu_barrier() excludes CPU-hotplug operations, so it
	 * cannot be running now.  Thus no memory barrier is required.
1695
	 */
1696
	if (rdp->nxtlist != NULL) {
1697 1698 1699
		rsp->qlen_lazy += rdp->qlen_lazy;
		rsp->qlen += rdp->qlen;
		rdp->n_cbs_orphaned += rdp->qlen;
1700
		rdp->qlen_lazy = 0;
1701
		ACCESS_ONCE(rdp->qlen) = 0;
1702 1703 1704
	}

	/*
1705 1706 1707 1708 1709 1710 1711
	 * Next, move those callbacks still needing a grace period to
	 * the orphanage, where some other CPU will pick them up.
	 * Some of the callbacks might have gone partway through a grace
	 * period, but that is too bad.  They get to start over because we
	 * cannot assume that grace periods are synchronized across CPUs.
	 * We don't bother updating the ->nxttail[] array yet, instead
	 * we just reset the whole thing later on.
1712
	 */
1713 1714 1715 1716
	if (*rdp->nxttail[RCU_DONE_TAIL] != NULL) {
		*rsp->orphan_nxttail = *rdp->nxttail[RCU_DONE_TAIL];
		rsp->orphan_nxttail = rdp->nxttail[RCU_NEXT_TAIL];
		*rdp->nxttail[RCU_DONE_TAIL] = NULL;
1717 1718 1719
	}

	/*
1720 1721 1722
	 * Then move the ready-to-invoke callbacks to the orphanage,
	 * where some other CPU will pick them up.  These will not be
	 * required to pass though another grace period: They are done.
1723
	 */
1724
	if (rdp->nxtlist != NULL) {
1725 1726
		*rsp->orphan_donetail = rdp->nxtlist;
		rsp->orphan_donetail = rdp->nxttail[RCU_DONE_TAIL];
1727
	}
1728

1729
	/* Finally, initialize the rcu_data structure's list to empty.  */
1730
	init_callback_list(rdp);
1731 1732 1733 1734
}

/*
 * Adopt the RCU callbacks from the specified rcu_state structure's
1735
 * orphanage.  The caller must hold the ->orphan_lock.
1736 1737 1738 1739 1740 1741
 */
static void rcu_adopt_orphan_cbs(struct rcu_state *rsp)
{
	int i;
	struct rcu_data *rdp = __this_cpu_ptr(rsp->rda);

P
Paul E. McKenney 已提交
1742 1743 1744 1745
	/* No-CBs CPUs are handled specially. */
	if (rcu_nocb_adopt_orphan_cbs(rsp, rdp))
		return;

1746 1747 1748 1749
	/* Do the accounting first. */
	rdp->qlen_lazy += rsp->qlen_lazy;
	rdp->qlen += rsp->qlen;
	rdp->n_cbs_adopted += rsp->qlen;
1750 1751
	if (rsp->qlen_lazy != rsp->qlen)
		rcu_idle_count_callbacks_posted();
1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790
	rsp->qlen_lazy = 0;
	rsp->qlen = 0;

	/*
	 * We do not need a memory barrier here because the only way we
	 * can get here if there is an rcu_barrier() in flight is if
	 * we are the task doing the rcu_barrier().
	 */

	/* First adopt the ready-to-invoke callbacks. */
	if (rsp->orphan_donelist != NULL) {
		*rsp->orphan_donetail = *rdp->nxttail[RCU_DONE_TAIL];
		*rdp->nxttail[RCU_DONE_TAIL] = rsp->orphan_donelist;
		for (i = RCU_NEXT_SIZE - 1; i >= RCU_DONE_TAIL; i--)
			if (rdp->nxttail[i] == rdp->nxttail[RCU_DONE_TAIL])
				rdp->nxttail[i] = rsp->orphan_donetail;
		rsp->orphan_donelist = NULL;
		rsp->orphan_donetail = &rsp->orphan_donelist;
	}

	/* And then adopt the callbacks that still need a grace period. */
	if (rsp->orphan_nxtlist != NULL) {
		*rdp->nxttail[RCU_NEXT_TAIL] = rsp->orphan_nxtlist;
		rdp->nxttail[RCU_NEXT_TAIL] = rsp->orphan_nxttail;
		rsp->orphan_nxtlist = NULL;
		rsp->orphan_nxttail = &rsp->orphan_nxtlist;
	}
}

/*
 * Trace the fact that this CPU is going offline.
 */
static void rcu_cleanup_dying_cpu(struct rcu_state *rsp)
{
	RCU_TRACE(unsigned long mask);
	RCU_TRACE(struct rcu_data *rdp = this_cpu_ptr(rsp->rda));
	RCU_TRACE(struct rcu_node *rnp = rdp->mynode);

	RCU_TRACE(mask = rdp->grpmask);
1791 1792 1793
	trace_rcu_grace_period(rsp->name,
			       rnp->gpnum + 1 - !!(rnp->qsmask & mask),
			       "cpuofl");
1794 1795 1796
}

/*
1797
 * The CPU has been completely removed, and some other CPU is reporting
1798 1799
 * this fact from process context.  Do the remainder of the cleanup,
 * including orphaning the outgoing CPU's RCU callbacks, and also
1800 1801
 * adopting them.  There can only be one CPU hotplug operation at a time,
 * so no other CPU can be attempting to update rcu_cpu_kthread_task.
1802
 */
1803
static void rcu_cleanup_dead_cpu(int cpu, struct rcu_state *rsp)
1804
{
1805 1806 1807
	unsigned long flags;
	unsigned long mask;
	int need_report = 0;
1808
	struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
1809
	struct rcu_node *rnp = rdp->mynode;  /* Outgoing CPU's rdp & rnp. */
1810

1811
	/* Adjust any no-longer-needed kthreads. */
T
Thomas Gleixner 已提交
1812
	rcu_boost_kthread_setaffinity(rnp, -1);
1813

1814
	/* Remove the dead CPU from the bitmasks in the rcu_node hierarchy. */
1815 1816

	/* Exclude any attempts to start a new grace period. */
1817
	mutex_lock(&rsp->onoff_mutex);
1818
	raw_spin_lock_irqsave(&rsp->orphan_lock, flags);
1819

1820 1821 1822 1823
	/* Orphan the dead CPU's callbacks, and adopt them if appropriate. */
	rcu_send_cbs_to_orphanage(cpu, rsp, rnp, rdp);
	rcu_adopt_orphan_cbs(rsp);

1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844
	/* Remove the outgoing CPU from the masks in the rcu_node hierarchy. */
	mask = rdp->grpmask;	/* rnp->grplo is constant. */
	do {
		raw_spin_lock(&rnp->lock);	/* irqs already disabled. */
		rnp->qsmaskinit &= ~mask;
		if (rnp->qsmaskinit != 0) {
			if (rnp != rdp->mynode)
				raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
			break;
		}
		if (rnp == rdp->mynode)
			need_report = rcu_preempt_offline_tasks(rsp, rnp, rdp);
		else
			raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
		mask = rnp->grpmask;
		rnp = rnp->parent;
	} while (rnp != NULL);

	/*
	 * We still hold the leaf rcu_node structure lock here, and
	 * irqs are still disabled.  The reason for this subterfuge is
1845
	 * because invoking rcu_report_unblock_qs_rnp() with ->orphan_lock
1846 1847
	 * held leads to deadlock.
	 */
1848
	raw_spin_unlock(&rsp->orphan_lock); /* irqs remain disabled. */
1849 1850 1851 1852 1853 1854 1855
	rnp = rdp->mynode;
	if (need_report & RCU_OFL_TASKS_NORM_GP)
		rcu_report_unblock_qs_rnp(rnp, flags);
	else
		raw_spin_unlock_irqrestore(&rnp->lock, flags);
	if (need_report & RCU_OFL_TASKS_EXP_GP)
		rcu_report_exp_rnp(rsp, rnp, true);
1856 1857 1858
	WARN_ONCE(rdp->qlen != 0 || rdp->nxtlist != NULL,
		  "rcu_cleanup_dead_cpu: Callbacks on offline CPU %d: qlen=%lu, nxtlist=%p\n",
		  cpu, rdp->qlen, rdp->nxtlist);
1859 1860 1861
	init_callback_list(rdp);
	/* Disallow further callbacks on this CPU. */
	rdp->nxttail[RCU_NEXT_TAIL] = NULL;
1862
	mutex_unlock(&rsp->onoff_mutex);
1863 1864 1865 1866
}

#else /* #ifdef CONFIG_HOTPLUG_CPU */

1867
static void rcu_cleanup_dying_cpu(struct rcu_state *rsp)
1868 1869 1870
{
}

1871
static void rcu_cleanup_dead_cpu(int cpu, struct rcu_state *rsp)
1872 1873 1874 1875 1876 1877 1878 1879 1880
{
}

#endif /* #else #ifdef CONFIG_HOTPLUG_CPU */

/*
 * Invoke any RCU callbacks that have made it to the end of their grace
 * period.  Thottle as specified by rdp->blimit.
 */
1881
static void rcu_do_batch(struct rcu_state *rsp, struct rcu_data *rdp)
1882 1883 1884
{
	unsigned long flags;
	struct rcu_head *next, *list, **tail;
E
Eric Dumazet 已提交
1885 1886
	long bl, count, count_lazy;
	int i;
1887

1888
	/* If no callbacks are ready, just return. */
1889
	if (!cpu_has_callbacks_ready_to_invoke(rdp)) {
1890
		trace_rcu_batch_start(rsp->name, rdp->qlen_lazy, rdp->qlen, 0);
1891 1892 1893
		trace_rcu_batch_end(rsp->name, 0, !!ACCESS_ONCE(rdp->nxtlist),
				    need_resched(), is_idle_task(current),
				    rcu_is_callbacks_kthread());
1894
		return;
1895
	}
1896 1897 1898 1899 1900 1901

	/*
	 * Extract the list of ready callbacks, disabling to prevent
	 * races with call_rcu() from interrupt handlers.
	 */
	local_irq_save(flags);
1902
	WARN_ON_ONCE(cpu_is_offline(smp_processor_id()));
1903
	bl = rdp->blimit;
1904
	trace_rcu_batch_start(rsp->name, rdp->qlen_lazy, rdp->qlen, bl);
1905 1906 1907 1908
	list = rdp->nxtlist;
	rdp->nxtlist = *rdp->nxttail[RCU_DONE_TAIL];
	*rdp->nxttail[RCU_DONE_TAIL] = NULL;
	tail = rdp->nxttail[RCU_DONE_TAIL];
1909 1910 1911
	for (i = RCU_NEXT_SIZE - 1; i >= 0; i--)
		if (rdp->nxttail[i] == rdp->nxttail[RCU_DONE_TAIL])
			rdp->nxttail[i] = &rdp->nxtlist;
1912 1913 1914
	local_irq_restore(flags);

	/* Invoke callbacks. */
1915
	count = count_lazy = 0;
1916 1917 1918
	while (list) {
		next = list->next;
		prefetch(next);
1919
		debug_rcu_head_unqueue(list);
1920 1921
		if (__rcu_reclaim(rsp->name, list))
			count_lazy++;
1922
		list = next;
1923 1924 1925 1926
		/* Stop only if limit reached and CPU has something to do. */
		if (++count >= bl &&
		    (need_resched() ||
		     (!is_idle_task(current) && !rcu_is_callbacks_kthread())))
1927 1928 1929 1930
			break;
	}

	local_irq_save(flags);
1931 1932 1933
	trace_rcu_batch_end(rsp->name, count, !!list, need_resched(),
			    is_idle_task(current),
			    rcu_is_callbacks_kthread());
1934 1935 1936 1937 1938

	/* Update count, and requeue any remaining callbacks. */
	if (list != NULL) {
		*tail = rdp->nxtlist;
		rdp->nxtlist = list;
1939 1940 1941
		for (i = 0; i < RCU_NEXT_SIZE; i++)
			if (&rdp->nxtlist == rdp->nxttail[i])
				rdp->nxttail[i] = tail;
1942 1943 1944
			else
				break;
	}
1945 1946
	smp_mb(); /* List handling before counting for rcu_barrier(). */
	rdp->qlen_lazy -= count_lazy;
1947
	ACCESS_ONCE(rdp->qlen) -= count;
1948
	rdp->n_cbs_invoked += count;
1949 1950 1951 1952 1953

	/* Reinstate batch limit if we have worked down the excess. */
	if (rdp->blimit == LONG_MAX && rdp->qlen <= qlowmark)
		rdp->blimit = blimit;

1954 1955 1956 1957 1958 1959
	/* Reset ->qlen_last_fqs_check trigger if enough CBs have drained. */
	if (rdp->qlen == 0 && rdp->qlen_last_fqs_check != 0) {
		rdp->qlen_last_fqs_check = 0;
		rdp->n_force_qs_snap = rsp->n_force_qs;
	} else if (rdp->qlen < rdp->qlen_last_fqs_check - qhimark)
		rdp->qlen_last_fqs_check = rdp->qlen;
1960
	WARN_ON_ONCE((rdp->nxtlist == NULL) != (rdp->qlen == 0));
1961

1962 1963
	local_irq_restore(flags);

1964
	/* Re-invoke RCU core processing if there are callbacks remaining. */
1965
	if (cpu_has_callbacks_ready_to_invoke(rdp))
1966
		invoke_rcu_core();
1967 1968 1969 1970 1971
}

/*
 * Check to see if this CPU is in a non-context-switch quiescent state
 * (user mode or idle loop for rcu, non-softirq execution for rcu_bh).
1972
 * Also schedule RCU core processing.
1973
 *
1974
 * This function must be called from hardirq context.  It is normally
1975 1976 1977 1978 1979
 * invoked from the scheduling-clock interrupt.  If rcu_pending returns
 * false, there is no point in invoking rcu_check_callbacks().
 */
void rcu_check_callbacks(int cpu, int user)
{
1980
	trace_rcu_utilization("Start scheduler-tick");
1981
	increment_cpu_stall_ticks();
1982
	if (user || rcu_is_cpu_rrupt_from_idle()) {
1983 1984 1985 1986 1987

		/*
		 * Get here if this CPU took its interrupt from user
		 * mode or from the idle loop, and if this is not a
		 * nested interrupt.  In this case, the CPU is in
1988
		 * a quiescent state, so note it.
1989 1990
		 *
		 * No memory barrier is required here because both
1991 1992 1993
		 * rcu_sched_qs() and rcu_bh_qs() reference only CPU-local
		 * variables that other CPUs neither access nor modify,
		 * at least not while the corresponding CPU is online.
1994 1995
		 */

1996 1997
		rcu_sched_qs(cpu);
		rcu_bh_qs(cpu);
1998 1999 2000 2001 2002 2003 2004

	} else if (!in_softirq()) {

		/*
		 * Get here if this CPU did not take its interrupt from
		 * softirq, in other words, if it is not interrupting
		 * a rcu_bh read-side critical section.  This is an _bh
2005
		 * critical section, so note it.
2006 2007
		 */

2008
		rcu_bh_qs(cpu);
2009
	}
2010
	rcu_preempt_check_callbacks(cpu);
2011
	if (rcu_pending(cpu))
2012
		invoke_rcu_core();
2013
	trace_rcu_utilization("End scheduler-tick");
2014 2015 2016 2017 2018
}

/*
 * Scan the leaf rcu_node structures, processing dyntick state for any that
 * have not yet encountered a quiescent state, using the function specified.
2019 2020
 * Also initiate boosting for any threads blocked on the root rcu_node.
 *
2021
 * The caller must have suppressed start of new grace periods.
2022
 */
2023
static void force_qs_rnp(struct rcu_state *rsp, int (*f)(struct rcu_data *))
2024 2025 2026 2027 2028
{
	unsigned long bit;
	int cpu;
	unsigned long flags;
	unsigned long mask;
2029
	struct rcu_node *rnp;
2030

2031
	rcu_for_each_leaf_node(rsp, rnp) {
2032
		cond_resched();
2033
		mask = 0;
P
Paul E. McKenney 已提交
2034
		raw_spin_lock_irqsave(&rnp->lock, flags);
2035
		if (!rcu_gp_in_progress(rsp)) {
P
Paul E. McKenney 已提交
2036
			raw_spin_unlock_irqrestore(&rnp->lock, flags);
2037
			return;
2038
		}
2039
		if (rnp->qsmask == 0) {
2040
			rcu_initiate_boost(rnp, flags); /* releases rnp->lock */
2041 2042
			continue;
		}
2043
		cpu = rnp->grplo;
2044
		bit = 1;
2045
		for (; cpu <= rnp->grphi; cpu++, bit <<= 1) {
2046 2047
			if ((rnp->qsmask & bit) != 0 &&
			    f(per_cpu_ptr(rsp->rda, cpu)))
2048 2049
				mask |= bit;
		}
2050
		if (mask != 0) {
2051

P
Paul E. McKenney 已提交
2052 2053
			/* rcu_report_qs_rnp() releases rnp->lock. */
			rcu_report_qs_rnp(mask, rsp, rnp, flags);
2054 2055
			continue;
		}
P
Paul E. McKenney 已提交
2056
		raw_spin_unlock_irqrestore(&rnp->lock, flags);
2057
	}
2058
	rnp = rcu_get_root(rsp);
2059 2060 2061 2062
	if (rnp->qsmask == 0) {
		raw_spin_lock_irqsave(&rnp->lock, flags);
		rcu_initiate_boost(rnp, flags); /* releases rnp->lock. */
	}
2063 2064 2065 2066 2067 2068
}

/*
 * Force quiescent states on reluctant CPUs, and also detect which
 * CPUs are in dyntick-idle mode.
 */
2069
static void force_quiescent_state(struct rcu_state *rsp)
2070 2071
{
	unsigned long flags;
2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089
	bool ret;
	struct rcu_node *rnp;
	struct rcu_node *rnp_old = NULL;

	/* Funnel through hierarchy to reduce memory contention. */
	rnp = per_cpu_ptr(rsp->rda, raw_smp_processor_id())->mynode;
	for (; rnp != NULL; rnp = rnp->parent) {
		ret = (ACCESS_ONCE(rsp->gp_flags) & RCU_GP_FLAG_FQS) ||
		      !raw_spin_trylock(&rnp->fqslock);
		if (rnp_old != NULL)
			raw_spin_unlock(&rnp_old->fqslock);
		if (ret) {
			rsp->n_force_qs_lh++;
			return;
		}
		rnp_old = rnp;
	}
	/* rnp_old == rcu_get_root(rsp), rnp == NULL. */
2090

2091 2092 2093 2094 2095 2096
	/* Reached the root of the rcu_node tree, acquire lock. */
	raw_spin_lock_irqsave(&rnp_old->lock, flags);
	raw_spin_unlock(&rnp_old->fqslock);
	if (ACCESS_ONCE(rsp->gp_flags) & RCU_GP_FLAG_FQS) {
		rsp->n_force_qs_lh++;
		raw_spin_unlock_irqrestore(&rnp_old->lock, flags);
2097
		return;  /* Someone beat us to it. */
2098
	}
2099
	rsp->gp_flags |= RCU_GP_FLAG_FQS;
2100
	raw_spin_unlock_irqrestore(&rnp_old->lock, flags);
2101
	wake_up(&rsp->gp_wq);  /* Memory barrier implied by wake_up() path. */
2102 2103 2104
}

/*
2105 2106 2107
 * This does the RCU core processing work for the specified rcu_state
 * and rcu_data structures.  This may be called only from the CPU to
 * whom the rdp belongs.
2108 2109
 */
static void
2110
__rcu_process_callbacks(struct rcu_state *rsp)
2111 2112
{
	unsigned long flags;
2113
	struct rcu_data *rdp = __this_cpu_ptr(rsp->rda);
2114

2115 2116
	WARN_ON_ONCE(rdp->beenonline == 0);

2117
	/* Handle the end of a grace period that some other CPU ended.  */
2118 2119 2120 2121 2122 2123
	rcu_process_gp_end(rsp, rdp);

	/* Update RCU state based on any recent quiescent states. */
	rcu_check_quiescent_state(rsp, rdp);

	/* Does this CPU require a not-yet-started grace period? */
2124
	local_irq_save(flags);
2125
	if (cpu_needs_another_gp(rsp, rdp)) {
2126
		raw_spin_lock(&rcu_get_root(rsp)->lock); /* irqs disabled. */
2127
		rcu_start_gp(rsp, flags);  /* releases above lock */
2128 2129
	} else {
		local_irq_restore(flags);
2130 2131 2132
	}

	/* If there are callbacks ready, invoke them. */
2133
	if (cpu_has_callbacks_ready_to_invoke(rdp))
2134
		invoke_rcu_callbacks(rsp, rdp);
2135 2136
}

2137
/*
2138
 * Do RCU core processing for the current CPU.
2139
 */
2140
static void rcu_process_callbacks(struct softirq_action *unused)
2141
{
2142 2143
	struct rcu_state *rsp;

2144 2145
	if (cpu_is_offline(smp_processor_id()))
		return;
2146
	trace_rcu_utilization("Start RCU core");
2147 2148
	for_each_rcu_flavor(rsp)
		__rcu_process_callbacks(rsp);
2149
	trace_rcu_utilization("End RCU core");
2150 2151
}

2152
/*
2153 2154 2155 2156 2157
 * Schedule RCU callback invocation.  If the specified type of RCU
 * does not support RCU priority boosting, just do a direct call,
 * otherwise wake up the per-CPU kernel kthread.  Note that because we
 * are running on the current CPU with interrupts disabled, the
 * rcu_cpu_kthread_task cannot disappear out from under us.
2158
 */
2159
static void invoke_rcu_callbacks(struct rcu_state *rsp, struct rcu_data *rdp)
2160
{
2161 2162
	if (unlikely(!ACCESS_ONCE(rcu_scheduler_fully_active)))
		return;
2163 2164
	if (likely(!rsp->boost)) {
		rcu_do_batch(rsp, rdp);
2165 2166
		return;
	}
2167
	invoke_rcu_callbacks_kthread();
2168 2169
}

2170
static void invoke_rcu_core(void)
2171 2172 2173 2174
{
	raise_softirq(RCU_SOFTIRQ);
}

2175 2176 2177 2178 2179
/*
 * Handle any core-RCU processing required by a call_rcu() invocation.
 */
static void __call_rcu_core(struct rcu_state *rsp, struct rcu_data *rdp,
			    struct rcu_head *head, unsigned long flags)
2180
{
2181 2182 2183 2184
	/*
	 * If called from an extended quiescent state, invoke the RCU
	 * core in order to force a re-evaluation of RCU's idleness.
	 */
2185
	if (rcu_is_cpu_idle() && cpu_online(smp_processor_id()))
2186 2187
		invoke_rcu_core();

2188
	/* If interrupts were disabled or CPU offline, don't invoke RCU core. */
2189
	if (irqs_disabled_flags(flags) || cpu_is_offline(smp_processor_id()))
2190
		return;
2191

2192 2193 2194 2195 2196 2197 2198
	/*
	 * Force the grace period if too many callbacks or too long waiting.
	 * Enforce hysteresis, and don't invoke force_quiescent_state()
	 * if some other CPU has recently done so.  Also, don't bother
	 * invoking force_quiescent_state() if the newly enqueued callback
	 * is the only one waiting for a grace period to complete.
	 */
2199
	if (unlikely(rdp->qlen > rdp->qlen_last_fqs_check + qhimark)) {
2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216

		/* Are we ignoring a completed grace period? */
		rcu_process_gp_end(rsp, rdp);
		check_for_new_grace_period(rsp, rdp);

		/* Start a new grace period if one not already started. */
		if (!rcu_gp_in_progress(rsp)) {
			unsigned long nestflag;
			struct rcu_node *rnp_root = rcu_get_root(rsp);

			raw_spin_lock_irqsave(&rnp_root->lock, nestflag);
			rcu_start_gp(rsp, nestflag);  /* rlses rnp_root->lock */
		} else {
			/* Give the grace period a kick. */
			rdp->blimit = LONG_MAX;
			if (rsp->n_force_qs == rdp->n_force_qs_snap &&
			    *rdp->nxttail[RCU_DONE_TAIL] != head)
2217
				force_quiescent_state(rsp);
2218 2219 2220
			rdp->n_force_qs_snap = rsp->n_force_qs;
			rdp->qlen_last_fqs_check = rdp->qlen;
		}
2221
	}
2222 2223
}

P
Paul E. McKenney 已提交
2224 2225 2226 2227 2228 2229
/*
 * Helper function for call_rcu() and friends.  The cpu argument will
 * normally be -1, indicating "currently running CPU".  It may specify
 * a CPU only if that CPU is a no-CBs CPU.  Currently, only _rcu_barrier()
 * is expected to specify a CPU.
 */
2230 2231
static void
__call_rcu(struct rcu_head *head, void (*func)(struct rcu_head *rcu),
P
Paul E. McKenney 已提交
2232
	   struct rcu_state *rsp, int cpu, bool lazy)
2233 2234 2235 2236
{
	unsigned long flags;
	struct rcu_data *rdp;

2237
	WARN_ON_ONCE((unsigned long)head & 0x3); /* Misaligned rcu_head! */
2238
	debug_rcu_head_queue(head);
2239 2240 2241 2242 2243 2244 2245 2246 2247 2248
	head->func = func;
	head->next = NULL;

	/*
	 * Opportunistically note grace-period endings and beginnings.
	 * Note that we might see a beginning right after we see an
	 * end, but never vice versa, since this CPU has to pass through
	 * a quiescent state betweentimes.
	 */
	local_irq_save(flags);
2249
	rdp = this_cpu_ptr(rsp->rda);
2250 2251

	/* Add the callback to our list. */
P
Paul E. McKenney 已提交
2252 2253 2254 2255 2256 2257 2258
	if (unlikely(rdp->nxttail[RCU_NEXT_TAIL] == NULL) || cpu != -1) {
		int offline;

		if (cpu != -1)
			rdp = per_cpu_ptr(rsp->rda, cpu);
		offline = !__call_rcu_nocb(rdp, head, lazy);
		WARN_ON_ONCE(offline);
2259 2260 2261 2262
		/* _call_rcu() is illegal on offline CPU; leak the callback. */
		local_irq_restore(flags);
		return;
	}
2263
	ACCESS_ONCE(rdp->qlen)++;
2264 2265
	if (lazy)
		rdp->qlen_lazy++;
2266 2267
	else
		rcu_idle_count_callbacks_posted();
2268 2269 2270
	smp_mb();  /* Count before adding callback for rcu_barrier(). */
	*rdp->nxttail[RCU_NEXT_TAIL] = head;
	rdp->nxttail[RCU_NEXT_TAIL] = &head->next;
2271

2272 2273
	if (__is_kfree_rcu_offset((unsigned long)func))
		trace_rcu_kfree_callback(rsp->name, head, (unsigned long)func,
2274
					 rdp->qlen_lazy, rdp->qlen);
2275
	else
2276
		trace_rcu_callback(rsp->name, head, rdp->qlen_lazy, rdp->qlen);
2277

2278 2279
	/* Go handle any RCU core processing required. */
	__call_rcu_core(rsp, rdp, head, flags);
2280 2281 2282 2283
	local_irq_restore(flags);
}

/*
2284
 * Queue an RCU-sched callback for invocation after a grace period.
2285
 */
2286
void call_rcu_sched(struct rcu_head *head, void (*func)(struct rcu_head *rcu))
2287
{
P
Paul E. McKenney 已提交
2288
	__call_rcu(head, func, &rcu_sched_state, -1, 0);
2289
}
2290
EXPORT_SYMBOL_GPL(call_rcu_sched);
2291 2292

/*
2293
 * Queue an RCU callback for invocation after a quicker grace period.
2294 2295 2296
 */
void call_rcu_bh(struct rcu_head *head, void (*func)(struct rcu_head *rcu))
{
P
Paul E. McKenney 已提交
2297
	__call_rcu(head, func, &rcu_bh_state, -1, 0);
2298 2299 2300
}
EXPORT_SYMBOL_GPL(call_rcu_bh);

2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311
/*
 * Because a context switch is a grace period for RCU-sched and RCU-bh,
 * any blocking grace-period wait automatically implies a grace period
 * if there is only one CPU online at any point time during execution
 * of either synchronize_sched() or synchronize_rcu_bh().  It is OK to
 * occasionally incorrectly indicate that there are multiple CPUs online
 * when there was in fact only one the whole time, as this just adds
 * some overhead: RCU still operates correctly.
 */
static inline int rcu_blocking_is_gp(void)
{
2312 2313
	int ret;

2314
	might_sleep();  /* Check for RCU read-side critical section. */
2315 2316 2317 2318
	preempt_disable();
	ret = num_online_cpus() <= 1;
	preempt_enable();
	return ret;
2319 2320
}

2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332
/**
 * synchronize_sched - wait until an rcu-sched grace period has elapsed.
 *
 * Control will return to the caller some time after a full rcu-sched
 * grace period has elapsed, in other words after all currently executing
 * rcu-sched read-side critical sections have completed.   These read-side
 * critical sections are delimited by rcu_read_lock_sched() and
 * rcu_read_unlock_sched(), and may be nested.  Note that preempt_disable(),
 * local_irq_disable(), and so on may be used in place of
 * rcu_read_lock_sched().
 *
 * This means that all preempt_disable code sequences, including NMI and
2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354
 * non-threaded hardware-interrupt handlers, in progress on entry will
 * have completed before this primitive returns.  However, this does not
 * guarantee that softirq handlers will have completed, since in some
 * kernels, these handlers can run in process context, and can block.
 *
 * Note that this guarantee implies further memory-ordering guarantees.
 * On systems with more than one CPU, when synchronize_sched() returns,
 * each CPU is guaranteed to have executed a full memory barrier since the
 * end of its last RCU-sched read-side critical section whose beginning
 * preceded the call to synchronize_sched().  In addition, each CPU having
 * an RCU read-side critical section that extends beyond the return from
 * synchronize_sched() is guaranteed to have executed a full memory barrier
 * after the beginning of synchronize_sched() and before the beginning of
 * that RCU read-side critical section.  Note that these guarantees include
 * CPUs that are offline, idle, or executing in user mode, as well as CPUs
 * that are executing in the kernel.
 *
 * Furthermore, if CPU A invoked synchronize_sched(), which returned
 * to its caller on CPU B, then both CPU A and CPU B are guaranteed
 * to have executed a full memory barrier during the execution of
 * synchronize_sched() -- even if CPU A and CPU B are the same CPU (but
 * again only if the system has more than one CPU).
2355 2356 2357 2358 2359 2360 2361 2362 2363
 *
 * This primitive provides the guarantees made by the (now removed)
 * synchronize_kernel() API.  In contrast, synchronize_rcu() only
 * guarantees that rcu_read_lock() sections will have completed.
 * In "classic RCU", these two guarantees happen to be one and
 * the same, but can differ in realtime RCU implementations.
 */
void synchronize_sched(void)
{
2364 2365 2366 2367
	rcu_lockdep_assert(!lock_is_held(&rcu_bh_lock_map) &&
			   !lock_is_held(&rcu_lock_map) &&
			   !lock_is_held(&rcu_sched_lock_map),
			   "Illegal synchronize_sched() in RCU-sched read-side critical section");
2368 2369
	if (rcu_blocking_is_gp())
		return;
2370 2371 2372 2373
	if (rcu_expedited)
		synchronize_sched_expedited();
	else
		wait_rcu_gp(call_rcu_sched);
2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384
}
EXPORT_SYMBOL_GPL(synchronize_sched);

/**
 * synchronize_rcu_bh - wait until an rcu_bh grace period has elapsed.
 *
 * Control will return to the caller some time after a full rcu_bh grace
 * period has elapsed, in other words after all currently executing rcu_bh
 * read-side critical sections have completed.  RCU read-side critical
 * sections are delimited by rcu_read_lock_bh() and rcu_read_unlock_bh(),
 * and may be nested.
2385 2386 2387
 *
 * See the description of synchronize_sched() for more detailed information
 * on memory ordering guarantees.
2388 2389 2390
 */
void synchronize_rcu_bh(void)
{
2391 2392 2393 2394
	rcu_lockdep_assert(!lock_is_held(&rcu_bh_lock_map) &&
			   !lock_is_held(&rcu_lock_map) &&
			   !lock_is_held(&rcu_sched_lock_map),
			   "Illegal synchronize_rcu_bh() in RCU-bh read-side critical section");
2395 2396
	if (rcu_blocking_is_gp())
		return;
2397 2398 2399 2400
	if (rcu_expedited)
		synchronize_rcu_bh_expedited();
	else
		wait_rcu_gp(call_rcu_bh);
2401 2402 2403
}
EXPORT_SYMBOL_GPL(synchronize_rcu_bh);

2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420
static int synchronize_sched_expedited_cpu_stop(void *data)
{
	/*
	 * There must be a full memory barrier on each affected CPU
	 * between the time that try_stop_cpus() is called and the
	 * time that it returns.
	 *
	 * In the current initial implementation of cpu_stop, the
	 * above condition is already met when the control reaches
	 * this point and the following smp_mb() is not strictly
	 * necessary.  Do smp_mb() anyway for documentation and
	 * robustness against future implementation changes.
	 */
	smp_mb(); /* See above comment block. */
	return 0;
}

2421 2422 2423 2424 2425 2426 2427 2428 2429 2430
/**
 * synchronize_sched_expedited - Brute-force RCU-sched grace period
 *
 * Wait for an RCU-sched grace period to elapse, but use a "big hammer"
 * approach to force the grace period to end quickly.  This consumes
 * significant time on all CPUs and is unfriendly to real-time workloads,
 * so is thus not recommended for any sort of common-case code.  In fact,
 * if you are using synchronize_sched_expedited() in a loop, please
 * restructure your code to batch your updates, and then use a single
 * synchronize_sched() instead.
2431
 *
2432 2433 2434 2435
 * Note that it is illegal to call this function while holding any lock
 * that is acquired by a CPU-hotplug notifier.  And yes, it is also illegal
 * to call this function from a CPU-hotplug notifier.  Failing to observe
 * these restriction will result in deadlock.
2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459
 *
 * This implementation can be thought of as an application of ticket
 * locking to RCU, with sync_sched_expedited_started and
 * sync_sched_expedited_done taking on the roles of the halves
 * of the ticket-lock word.  Each task atomically increments
 * sync_sched_expedited_started upon entry, snapshotting the old value,
 * then attempts to stop all the CPUs.  If this succeeds, then each
 * CPU will have executed a context switch, resulting in an RCU-sched
 * grace period.  We are then done, so we use atomic_cmpxchg() to
 * update sync_sched_expedited_done to match our snapshot -- but
 * only if someone else has not already advanced past our snapshot.
 *
 * On the other hand, if try_stop_cpus() fails, we check the value
 * of sync_sched_expedited_done.  If it has advanced past our
 * initial snapshot, then someone else must have forced a grace period
 * some time after we took our snapshot.  In this case, our work is
 * done for us, and we can simply return.  Otherwise, we try again,
 * but keep our initial snapshot for purposes of checking for someone
 * doing our work for us.
 *
 * If we fail too many times in a row, we fall back to synchronize_sched().
 */
void synchronize_sched_expedited(void)
{
2460 2461
	long firstsnap, s, snap;
	int trycount = 0;
2462
	struct rcu_state *rsp = &rcu_sched_state;
2463

2464 2465 2466 2467 2468 2469 2470 2471
	/*
	 * If we are in danger of counter wrap, just do synchronize_sched().
	 * By allowing sync_sched_expedited_started to advance no more than
	 * ULONG_MAX/8 ahead of sync_sched_expedited_done, we are ensuring
	 * that more than 3.5 billion CPUs would be required to force a
	 * counter wrap on a 32-bit system.  Quite a few more CPUs would of
	 * course be required on a 64-bit system.
	 */
2472 2473
	if (ULONG_CMP_GE((ulong)atomic_long_read(&rsp->expedited_start),
			 (ulong)atomic_long_read(&rsp->expedited_done) +
2474 2475
			 ULONG_MAX / 8)) {
		synchronize_sched();
2476
		atomic_long_inc(&rsp->expedited_wrap);
2477 2478
		return;
	}
2479

2480 2481 2482 2483
	/*
	 * Take a ticket.  Note that atomic_inc_return() implies a
	 * full memory barrier.
	 */
2484
	snap = atomic_long_inc_return(&rsp->expedited_start);
2485
	firstsnap = snap;
2486
	get_online_cpus();
2487
	WARN_ON_ONCE(cpu_is_offline(raw_smp_processor_id()));
2488 2489 2490 2491 2492 2493 2494 2495 2496

	/*
	 * Each pass through the following loop attempts to force a
	 * context switch on each CPU.
	 */
	while (try_stop_cpus(cpu_online_mask,
			     synchronize_sched_expedited_cpu_stop,
			     NULL) == -EAGAIN) {
		put_online_cpus();
2497
		atomic_long_inc(&rsp->expedited_tryfail);
2498

2499
		/* Check to see if someone else did our work for us. */
2500
		s = atomic_long_read(&rsp->expedited_done);
2501
		if (ULONG_CMP_GE((ulong)s, (ulong)firstsnap)) {
2502 2503 2504
			/* ensure test happens before caller kfree */
			smp_mb__before_atomic_inc(); /* ^^^ */
			atomic_long_inc(&rsp->expedited_workdone1);
2505 2506
			return;
		}
2507 2508

		/* No joy, try again later.  Or just synchronize_sched(). */
2509
		if (trycount++ < 10) {
2510
			udelay(trycount * num_online_cpus());
2511
		} else {
2512
			wait_rcu_gp(call_rcu_sched);
2513
			atomic_long_inc(&rsp->expedited_normal);
2514 2515 2516
			return;
		}

2517
		/* Recheck to see if someone else did our work for us. */
2518
		s = atomic_long_read(&rsp->expedited_done);
2519
		if (ULONG_CMP_GE((ulong)s, (ulong)firstsnap)) {
2520 2521 2522
			/* ensure test happens before caller kfree */
			smp_mb__before_atomic_inc(); /* ^^^ */
			atomic_long_inc(&rsp->expedited_workdone2);
2523 2524 2525 2526 2527
			return;
		}

		/*
		 * Refetching sync_sched_expedited_started allows later
2528 2529 2530 2531
		 * callers to piggyback on our grace period.  We retry
		 * after they started, so our grace period works for them,
		 * and they started after our first try, so their grace
		 * period works for us.
2532 2533
		 */
		get_online_cpus();
2534
		snap = atomic_long_read(&rsp->expedited_start);
2535 2536
		smp_mb(); /* ensure read is before try_stop_cpus(). */
	}
2537
	atomic_long_inc(&rsp->expedited_stoppedcpus);
2538 2539 2540 2541 2542

	/*
	 * Everyone up to our most recent fetch is covered by our grace
	 * period.  Update the counter, but only if our work is still
	 * relevant -- which it won't be if someone who started later
2543
	 * than we did already did their update.
2544 2545
	 */
	do {
2546
		atomic_long_inc(&rsp->expedited_done_tries);
2547
		s = atomic_long_read(&rsp->expedited_done);
2548
		if (ULONG_CMP_GE((ulong)s, (ulong)snap)) {
2549 2550 2551
			/* ensure test happens before caller kfree */
			smp_mb__before_atomic_inc(); /* ^^^ */
			atomic_long_inc(&rsp->expedited_done_lost);
2552 2553
			break;
		}
2554
	} while (atomic_long_cmpxchg(&rsp->expedited_done, s, snap) != s);
2555
	atomic_long_inc(&rsp->expedited_done_exit);
2556 2557 2558 2559 2560

	put_online_cpus();
}
EXPORT_SYMBOL_GPL(synchronize_sched_expedited);

2561 2562 2563 2564 2565 2566 2567 2568 2569
/*
 * Check to see if there is any immediate RCU-related work to be done
 * by the current CPU, for the specified type of RCU, returning 1 if so.
 * The checks are in order of increasing expense: checks that can be
 * carried out against CPU-local state are performed first.  However,
 * we must check for CPU stalls first, else we might not get a chance.
 */
static int __rcu_pending(struct rcu_state *rsp, struct rcu_data *rdp)
{
2570 2571
	struct rcu_node *rnp = rdp->mynode;

2572 2573 2574 2575 2576 2577
	rdp->n_rcu_pending++;

	/* Check for CPU stalls, if enabled. */
	check_cpu_stall(rsp, rdp);

	/* Is the RCU core waiting for a quiescent state from this CPU? */
2578 2579
	if (rcu_scheduler_fully_active &&
	    rdp->qs_pending && !rdp->passed_quiesce) {
2580
		rdp->n_rp_qs_pending++;
2581
	} else if (rdp->qs_pending && rdp->passed_quiesce) {
2582
		rdp->n_rp_report_qs++;
2583
		return 1;
2584
	}
2585 2586

	/* Does this CPU have callbacks ready to invoke? */
2587 2588
	if (cpu_has_callbacks_ready_to_invoke(rdp)) {
		rdp->n_rp_cb_ready++;
2589
		return 1;
2590
	}
2591 2592

	/* Has RCU gone idle with this CPU needing another grace period? */
2593 2594
	if (cpu_needs_another_gp(rsp, rdp)) {
		rdp->n_rp_cpu_needs_gp++;
2595
		return 1;
2596
	}
2597 2598

	/* Has another RCU grace period completed?  */
2599
	if (ACCESS_ONCE(rnp->completed) != rdp->completed) { /* outside lock */
2600
		rdp->n_rp_gp_completed++;
2601
		return 1;
2602
	}
2603 2604

	/* Has a new RCU grace period started? */
2605
	if (ACCESS_ONCE(rnp->gpnum) != rdp->gpnum) { /* outside lock */
2606
		rdp->n_rp_gp_started++;
2607
		return 1;
2608
	}
2609 2610

	/* nothing to do */
2611
	rdp->n_rp_need_nothing++;
2612 2613 2614 2615 2616 2617 2618 2619
	return 0;
}

/*
 * Check to see if there is any immediate RCU-related work to be done
 * by the current CPU, returning 1 if so.  This function is part of the
 * RCU implementation; it is -not- an exported member of the RCU API.
 */
2620
static int rcu_pending(int cpu)
2621
{
2622 2623 2624 2625 2626 2627
	struct rcu_state *rsp;

	for_each_rcu_flavor(rsp)
		if (__rcu_pending(rsp, per_cpu_ptr(rsp->rda, cpu)))
			return 1;
	return 0;
2628 2629 2630 2631 2632
}

/*
 * Check to see if any future RCU-related work will need to be done
 * by the current CPU, even if none need be done immediately, returning
2633
 * 1 if so.
2634
 */
2635
static int rcu_cpu_has_callbacks(int cpu)
2636
{
2637 2638
	struct rcu_state *rsp;

2639
	/* RCU callbacks either ready or pending? */
2640 2641 2642 2643
	for_each_rcu_flavor(rsp)
		if (per_cpu_ptr(rsp->rda, cpu)->nxtlist)
			return 1;
	return 0;
2644 2645
}

2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656
/*
 * Helper function for _rcu_barrier() tracing.  If tracing is disabled,
 * the compiler is expected to optimize this away.
 */
static void _rcu_barrier_trace(struct rcu_state *rsp, char *s,
			       int cpu, unsigned long done)
{
	trace_rcu_barrier(rsp->name, s, cpu,
			  atomic_read(&rsp->barrier_cpu_count), done);
}

2657 2658 2659 2660
/*
 * RCU callback function for _rcu_barrier().  If we are last, wake
 * up the task executing _rcu_barrier().
 */
2661
static void rcu_barrier_callback(struct rcu_head *rhp)
2662
{
2663 2664 2665
	struct rcu_data *rdp = container_of(rhp, struct rcu_data, barrier_head);
	struct rcu_state *rsp = rdp->rsp;

2666 2667
	if (atomic_dec_and_test(&rsp->barrier_cpu_count)) {
		_rcu_barrier_trace(rsp, "LastCB", -1, rsp->n_barrier_done);
2668
		complete(&rsp->barrier_completion);
2669 2670 2671
	} else {
		_rcu_barrier_trace(rsp, "CB", -1, rsp->n_barrier_done);
	}
2672 2673 2674 2675 2676 2677 2678
}

/*
 * Called with preemption disabled, and from cross-cpu IRQ context.
 */
static void rcu_barrier_func(void *type)
{
2679
	struct rcu_state *rsp = type;
2680
	struct rcu_data *rdp = __this_cpu_ptr(rsp->rda);
2681

2682
	_rcu_barrier_trace(rsp, "IRQ", -1, rsp->n_barrier_done);
2683
	atomic_inc(&rsp->barrier_cpu_count);
2684
	rsp->call(&rdp->barrier_head, rcu_barrier_callback);
2685 2686 2687 2688 2689 2690
}

/*
 * Orchestrate the specified type of RCU barrier, waiting for all
 * RCU callbacks of the specified type to complete.
 */
2691
static void _rcu_barrier(struct rcu_state *rsp)
2692
{
2693 2694
	int cpu;
	struct rcu_data *rdp;
2695 2696
	unsigned long snap = ACCESS_ONCE(rsp->n_barrier_done);
	unsigned long snap_done;
2697

2698
	_rcu_barrier_trace(rsp, "Begin", -1, snap);
2699

2700
	/* Take mutex to serialize concurrent rcu_barrier() requests. */
2701
	mutex_lock(&rsp->barrier_mutex);
2702

2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715
	/*
	 * Ensure that all prior references, including to ->n_barrier_done,
	 * are ordered before the _rcu_barrier() machinery.
	 */
	smp_mb();  /* See above block comment. */

	/*
	 * Recheck ->n_barrier_done to see if others did our work for us.
	 * This means checking ->n_barrier_done for an even-to-odd-to-even
	 * transition.  The "if" expression below therefore rounds the old
	 * value up to the next even number and adds two before comparing.
	 */
	snap_done = ACCESS_ONCE(rsp->n_barrier_done);
2716
	_rcu_barrier_trace(rsp, "Check", -1, snap_done);
2717
	if (ULONG_CMP_GE(snap_done, ((snap + 1) & ~0x1) + 2)) {
2718
		_rcu_barrier_trace(rsp, "EarlyExit", -1, snap_done);
2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730
		smp_mb(); /* caller's subsequent code after above check. */
		mutex_unlock(&rsp->barrier_mutex);
		return;
	}

	/*
	 * Increment ->n_barrier_done to avoid duplicate work.  Use
	 * ACCESS_ONCE() to prevent the compiler from speculating
	 * the increment to precede the early-exit check.
	 */
	ACCESS_ONCE(rsp->n_barrier_done)++;
	WARN_ON_ONCE((rsp->n_barrier_done & 0x1) != 1);
2731
	_rcu_barrier_trace(rsp, "Inc1", -1, rsp->n_barrier_done);
2732
	smp_mb(); /* Order ->n_barrier_done increment with below mechanism. */
2733

2734
	/*
2735 2736
	 * Initialize the count to one rather than to zero in order to
	 * avoid a too-soon return to zero in case of a short grace period
2737 2738
	 * (or preemption of this task).  Exclude CPU-hotplug operations
	 * to ensure that no offline CPU has callbacks queued.
2739
	 */
2740
	init_completion(&rsp->barrier_completion);
2741
	atomic_set(&rsp->barrier_cpu_count, 1);
2742
	get_online_cpus();
2743 2744

	/*
2745 2746 2747
	 * Force each CPU with callbacks to register a new callback.
	 * When that callback is invoked, we will know that all of the
	 * corresponding CPU's preceding callbacks have been invoked.
2748
	 */
P
Paul E. McKenney 已提交
2749 2750 2751
	for_each_possible_cpu(cpu) {
		if (!cpu_online(cpu) && !is_nocb_cpu(cpu))
			continue;
2752
		rdp = per_cpu_ptr(rsp->rda, cpu);
P
Paul E. McKenney 已提交
2753 2754 2755 2756 2757 2758 2759
		if (is_nocb_cpu(cpu)) {
			_rcu_barrier_trace(rsp, "OnlineNoCB", cpu,
					   rsp->n_barrier_done);
			atomic_inc(&rsp->barrier_cpu_count);
			__call_rcu(&rdp->barrier_head, rcu_barrier_callback,
				   rsp, cpu, 0);
		} else if (ACCESS_ONCE(rdp->qlen)) {
2760 2761
			_rcu_barrier_trace(rsp, "OnlineQ", cpu,
					   rsp->n_barrier_done);
2762
			smp_call_function_single(cpu, rcu_barrier_func, rsp, 1);
2763
		} else {
2764 2765
			_rcu_barrier_trace(rsp, "OnlineNQ", cpu,
					   rsp->n_barrier_done);
2766 2767
		}
	}
2768
	put_online_cpus();
2769 2770 2771 2772 2773

	/*
	 * Now that we have an rcu_barrier_callback() callback on each
	 * CPU, and thus each counted, remove the initial count.
	 */
2774
	if (atomic_dec_and_test(&rsp->barrier_cpu_count))
2775
		complete(&rsp->barrier_completion);
2776

2777 2778 2779 2780
	/* Increment ->n_barrier_done to prevent duplicate work. */
	smp_mb(); /* Keep increment after above mechanism. */
	ACCESS_ONCE(rsp->n_barrier_done)++;
	WARN_ON_ONCE((rsp->n_barrier_done & 0x1) != 0);
2781
	_rcu_barrier_trace(rsp, "Inc2", -1, rsp->n_barrier_done);
2782 2783
	smp_mb(); /* Keep increment before caller's subsequent code. */

2784
	/* Wait for all rcu_barrier_callback() callbacks to be invoked. */
2785
	wait_for_completion(&rsp->barrier_completion);
2786 2787

	/* Other rcu_barrier() invocations can now safely proceed. */
2788
	mutex_unlock(&rsp->barrier_mutex);
2789 2790 2791 2792 2793 2794 2795
}

/**
 * rcu_barrier_bh - Wait until all in-flight call_rcu_bh() callbacks complete.
 */
void rcu_barrier_bh(void)
{
2796
	_rcu_barrier(&rcu_bh_state);
2797 2798 2799 2800 2801 2802 2803 2804
}
EXPORT_SYMBOL_GPL(rcu_barrier_bh);

/**
 * rcu_barrier_sched - Wait for in-flight call_rcu_sched() callbacks.
 */
void rcu_barrier_sched(void)
{
2805
	_rcu_barrier(&rcu_sched_state);
2806 2807 2808
}
EXPORT_SYMBOL_GPL(rcu_barrier_sched);

2809
/*
2810
 * Do boot-time initialization of a CPU's per-CPU RCU data.
2811
 */
2812 2813
static void __init
rcu_boot_init_percpu_data(int cpu, struct rcu_state *rsp)
2814 2815
{
	unsigned long flags;
2816
	struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
2817 2818 2819
	struct rcu_node *rnp = rcu_get_root(rsp);

	/* Set up local state, ensuring consistent view of global state. */
P
Paul E. McKenney 已提交
2820
	raw_spin_lock_irqsave(&rnp->lock, flags);
2821
	rdp->grpmask = 1UL << (cpu - rdp->mynode->grplo);
2822
	init_callback_list(rdp);
2823
	rdp->qlen_lazy = 0;
2824
	ACCESS_ONCE(rdp->qlen) = 0;
2825
	rdp->dynticks = &per_cpu(rcu_dynticks, cpu);
2826
	WARN_ON_ONCE(rdp->dynticks->dynticks_nesting != DYNTICK_TASK_EXIT_IDLE);
2827
	WARN_ON_ONCE(atomic_read(&rdp->dynticks->dynticks) != 1);
2828
	rdp->cpu = cpu;
2829
	rdp->rsp = rsp;
P
Paul E. McKenney 已提交
2830
	rcu_boot_init_nocb_percpu_data(rdp);
P
Paul E. McKenney 已提交
2831
	raw_spin_unlock_irqrestore(&rnp->lock, flags);
2832 2833 2834 2835 2836 2837 2838
}

/*
 * Initialize a CPU's per-CPU RCU data.  Note that only one online or
 * offline event can be happening at a given time.  Note also that we
 * can accept some slop in the rsp->completed access due to the fact
 * that this CPU cannot possibly have any RCU callbacks in flight yet.
2839
 */
2840
static void __cpuinit
P
Paul E. McKenney 已提交
2841
rcu_init_percpu_data(int cpu, struct rcu_state *rsp, int preemptible)
2842 2843 2844
{
	unsigned long flags;
	unsigned long mask;
2845
	struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
2846 2847
	struct rcu_node *rnp = rcu_get_root(rsp);

2848 2849 2850
	/* Exclude new grace periods. */
	mutex_lock(&rsp->onoff_mutex);

2851
	/* Set up local state, ensuring consistent view of global state. */
P
Paul E. McKenney 已提交
2852
	raw_spin_lock_irqsave(&rnp->lock, flags);
2853
	rdp->beenonline = 1;	 /* We have now been online. */
P
Paul E. McKenney 已提交
2854
	rdp->preemptible = preemptible;
2855 2856
	rdp->qlen_last_fqs_check = 0;
	rdp->n_force_qs_snap = rsp->n_force_qs;
2857
	rdp->blimit = blimit;
2858
	init_callback_list(rdp);  /* Re-enable callbacks on this CPU. */
2859
	rdp->dynticks->dynticks_nesting = DYNTICK_TASK_EXIT_IDLE;
2860 2861
	atomic_set(&rdp->dynticks->dynticks,
		   (atomic_read(&rdp->dynticks->dynticks) & ~0x1) + 1);
2862
	rcu_prepare_for_idle_init(cpu);
P
Paul E. McKenney 已提交
2863
	raw_spin_unlock(&rnp->lock);		/* irqs remain disabled. */
2864 2865 2866 2867 2868 2869

	/* Add CPU to rcu_node bitmasks. */
	rnp = rdp->mynode;
	mask = rdp->grpmask;
	do {
		/* Exclude any attempts to start a new GP on small systems. */
P
Paul E. McKenney 已提交
2870
		raw_spin_lock(&rnp->lock);	/* irqs already disabled. */
2871 2872
		rnp->qsmaskinit |= mask;
		mask = rnp->grpmask;
2873
		if (rnp == rdp->mynode) {
2874 2875 2876 2877 2878 2879
			/*
			 * If there is a grace period in progress, we will
			 * set up to wait for it next time we run the
			 * RCU core code.
			 */
			rdp->gpnum = rnp->completed;
2880
			rdp->completed = rnp->completed;
2881 2882
			rdp->passed_quiesce = 0;
			rdp->qs_pending = 0;
2883
			trace_rcu_grace_period(rsp->name, rdp->gpnum, "cpuonl");
2884
		}
P
Paul E. McKenney 已提交
2885
		raw_spin_unlock(&rnp->lock); /* irqs already disabled. */
2886 2887
		rnp = rnp->parent;
	} while (rnp != NULL && !(rnp->qsmaskinit & mask));
2888
	local_irq_restore(flags);
2889

2890
	mutex_unlock(&rsp->onoff_mutex);
2891 2892
}

P
Peter Zijlstra 已提交
2893
static void __cpuinit rcu_prepare_cpu(int cpu)
2894
{
2895 2896 2897 2898 2899
	struct rcu_state *rsp;

	for_each_rcu_flavor(rsp)
		rcu_init_percpu_data(cpu, rsp,
				     strcmp(rsp->name, "rcu_preempt") == 0);
2900 2901 2902
}

/*
2903
 * Handle CPU online/offline notification events.
2904
 */
2905 2906
static int __cpuinit rcu_cpu_notify(struct notifier_block *self,
				    unsigned long action, void *hcpu)
2907 2908
{
	long cpu = (long)hcpu;
2909
	struct rcu_data *rdp = per_cpu_ptr(rcu_state->rda, cpu);
2910
	struct rcu_node *rnp = rdp->mynode;
2911
	struct rcu_state *rsp;
P
Paul E. McKenney 已提交
2912
	int ret = NOTIFY_OK;
2913

2914
	trace_rcu_utilization("Start CPU hotplug");
2915 2916 2917
	switch (action) {
	case CPU_UP_PREPARE:
	case CPU_UP_PREPARE_FROZEN:
P
Peter Zijlstra 已提交
2918 2919
		rcu_prepare_cpu(cpu);
		rcu_prepare_kthreads(cpu);
2920 2921
		break;
	case CPU_ONLINE:
2922
	case CPU_DOWN_FAILED:
T
Thomas Gleixner 已提交
2923
		rcu_boost_kthread_setaffinity(rnp, -1);
2924 2925
		break;
	case CPU_DOWN_PREPARE:
P
Paul E. McKenney 已提交
2926 2927 2928 2929
		if (nocb_cpu_expendable(cpu))
			rcu_boost_kthread_setaffinity(rnp, cpu);
		else
			ret = NOTIFY_BAD;
2930
		break;
2931 2932 2933
	case CPU_DYING:
	case CPU_DYING_FROZEN:
		/*
2934 2935 2936
		 * The whole machine is "stopped" except this CPU, so we can
		 * touch any data without introducing corruption. We send the
		 * dying CPU's callbacks to an arbitrarily chosen online CPU.
2937
		 */
2938 2939
		for_each_rcu_flavor(rsp)
			rcu_cleanup_dying_cpu(rsp);
2940
		rcu_cleanup_after_idle(cpu);
2941
		break;
2942 2943 2944 2945
	case CPU_DEAD:
	case CPU_DEAD_FROZEN:
	case CPU_UP_CANCELED:
	case CPU_UP_CANCELED_FROZEN:
2946 2947
		for_each_rcu_flavor(rsp)
			rcu_cleanup_dead_cpu(cpu, rsp);
2948 2949 2950 2951
		break;
	default:
		break;
	}
2952
	trace_rcu_utilization("End CPU hotplug");
P
Paul E. McKenney 已提交
2953
	return ret;
2954 2955
}

2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972
/*
 * Spawn the kthread that handles this RCU flavor's grace periods.
 */
static int __init rcu_spawn_gp_kthread(void)
{
	unsigned long flags;
	struct rcu_node *rnp;
	struct rcu_state *rsp;
	struct task_struct *t;

	for_each_rcu_flavor(rsp) {
		t = kthread_run(rcu_gp_kthread, rsp, rsp->name);
		BUG_ON(IS_ERR(t));
		rnp = rcu_get_root(rsp);
		raw_spin_lock_irqsave(&rnp->lock, flags);
		rsp->gp_kthread = t;
		raw_spin_unlock_irqrestore(&rnp->lock, flags);
P
Paul E. McKenney 已提交
2973
		rcu_spawn_nocb_kthreads(rsp);
2974 2975 2976 2977 2978
	}
	return 0;
}
early_initcall(rcu_spawn_gp_kthread);

2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993
/*
 * This function is invoked towards the end of the scheduler's initialization
 * process.  Before this is called, the idle task might contain
 * RCU read-side critical sections (during which time, this idle
 * task is booting the system).  After this function is called, the
 * idle tasks are prohibited from containing RCU read-side critical
 * sections.  This function also enables RCU lockdep checking.
 */
void rcu_scheduler_starting(void)
{
	WARN_ON(num_online_cpus() != 1);
	WARN_ON(nr_context_switches() > 0);
	rcu_scheduler_active = 1;
}

2994 2995 2996 2997 2998 2999 3000 3001 3002
/*
 * Compute the per-level fanout, either using the exact fanout specified
 * or balancing the tree, depending on CONFIG_RCU_FANOUT_EXACT.
 */
#ifdef CONFIG_RCU_FANOUT_EXACT
static void __init rcu_init_levelspread(struct rcu_state *rsp)
{
	int i;

3003
	for (i = rcu_num_lvls - 1; i > 0; i--)
3004
		rsp->levelspread[i] = CONFIG_RCU_FANOUT;
3005
	rsp->levelspread[0] = rcu_fanout_leaf;
3006 3007 3008 3009 3010 3011 3012 3013
}
#else /* #ifdef CONFIG_RCU_FANOUT_EXACT */
static void __init rcu_init_levelspread(struct rcu_state *rsp)
{
	int ccur;
	int cprv;
	int i;

3014
	cprv = nr_cpu_ids;
3015
	for (i = rcu_num_lvls - 1; i >= 0; i--) {
3016 3017 3018 3019 3020 3021 3022 3023 3024 3025
		ccur = rsp->levelcnt[i];
		rsp->levelspread[i] = (cprv + ccur - 1) / ccur;
		cprv = ccur;
	}
}
#endif /* #else #ifdef CONFIG_RCU_FANOUT_EXACT */

/*
 * Helper function for rcu_init() that initializes one rcu_state structure.
 */
3026 3027
static void __init rcu_init_one(struct rcu_state *rsp,
		struct rcu_data __percpu *rda)
3028
{
3029 3030 3031 3032 3033 3034 3035 3036
	static char *buf[] = { "rcu_node_0",
			       "rcu_node_1",
			       "rcu_node_2",
			       "rcu_node_3" };  /* Match MAX_RCU_LVLS */
	static char *fqs[] = { "rcu_node_fqs_0",
			       "rcu_node_fqs_1",
			       "rcu_node_fqs_2",
			       "rcu_node_fqs_3" };  /* Match MAX_RCU_LVLS */
3037 3038 3039 3040 3041
	int cpustride = 1;
	int i;
	int j;
	struct rcu_node *rnp;

3042 3043
	BUILD_BUG_ON(MAX_RCU_LVLS > ARRAY_SIZE(buf));  /* Fix buf[] init! */

3044 3045 3046 3047
	/* Silence gcc 4.8 warning about array index out of range. */
	if (rcu_num_lvls > RCU_NUM_LVLS)
		panic("rcu_init_one: rcu_num_lvls overflow");

3048 3049
	/* Initialize the level-tracking arrays. */

3050 3051 3052
	for (i = 0; i < rcu_num_lvls; i++)
		rsp->levelcnt[i] = num_rcu_lvl[i];
	for (i = 1; i < rcu_num_lvls; i++)
3053 3054 3055 3056 3057
		rsp->level[i] = rsp->level[i - 1] + rsp->levelcnt[i - 1];
	rcu_init_levelspread(rsp);

	/* Initialize the elements themselves, starting from the leaves. */

3058
	for (i = rcu_num_lvls - 1; i >= 0; i--) {
3059 3060 3061
		cpustride *= rsp->levelspread[i];
		rnp = rsp->level[i];
		for (j = 0; j < rsp->levelcnt[i]; j++, rnp++) {
P
Paul E. McKenney 已提交
3062
			raw_spin_lock_init(&rnp->lock);
3063 3064
			lockdep_set_class_and_name(&rnp->lock,
						   &rcu_node_class[i], buf[i]);
3065 3066 3067
			raw_spin_lock_init(&rnp->fqslock);
			lockdep_set_class_and_name(&rnp->fqslock,
						   &rcu_fqs_class[i], fqs[i]);
3068 3069
			rnp->gpnum = rsp->gpnum;
			rnp->completed = rsp->completed;
3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086
			rnp->qsmask = 0;
			rnp->qsmaskinit = 0;
			rnp->grplo = j * cpustride;
			rnp->grphi = (j + 1) * cpustride - 1;
			if (rnp->grphi >= NR_CPUS)
				rnp->grphi = NR_CPUS - 1;
			if (i == 0) {
				rnp->grpnum = 0;
				rnp->grpmask = 0;
				rnp->parent = NULL;
			} else {
				rnp->grpnum = j % rsp->levelspread[i - 1];
				rnp->grpmask = 1UL << rnp->grpnum;
				rnp->parent = rsp->level[i - 1] +
					      j / rsp->levelspread[i - 1];
			}
			rnp->level = i;
3087
			INIT_LIST_HEAD(&rnp->blkd_tasks);
3088 3089
		}
	}
3090

3091
	rsp->rda = rda;
3092
	init_waitqueue_head(&rsp->gp_wq);
3093
	rnp = rsp->level[rcu_num_lvls - 1];
3094
	for_each_possible_cpu(i) {
3095
		while (i > rnp->grphi)
3096
			rnp++;
3097
		per_cpu_ptr(rsp->rda, i)->mynode = rnp;
3098 3099
		rcu_boot_init_percpu_data(i, rsp);
	}
3100
	list_add(&rsp->flavors, &rcu_struct_flavors);
3101 3102
}

3103 3104 3105 3106 3107 3108 3109 3110 3111
/*
 * Compute the rcu_node tree geometry from kernel parameters.  This cannot
 * replace the definitions in rcutree.h because those are needed to size
 * the ->node array in the rcu_state structure.
 */
static void __init rcu_init_geometry(void)
{
	int i;
	int j;
3112
	int n = nr_cpu_ids;
3113 3114 3115
	int rcu_capacity[MAX_RCU_LVLS + 1];

	/* If the compile-time values are accurate, just leave. */
3116 3117
	if (rcu_fanout_leaf == CONFIG_RCU_FANOUT_LEAF &&
	    nr_cpu_ids == NR_CPUS)
3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163
		return;

	/*
	 * Compute number of nodes that can be handled an rcu_node tree
	 * with the given number of levels.  Setting rcu_capacity[0] makes
	 * some of the arithmetic easier.
	 */
	rcu_capacity[0] = 1;
	rcu_capacity[1] = rcu_fanout_leaf;
	for (i = 2; i <= MAX_RCU_LVLS; i++)
		rcu_capacity[i] = rcu_capacity[i - 1] * CONFIG_RCU_FANOUT;

	/*
	 * The boot-time rcu_fanout_leaf parameter is only permitted
	 * to increase the leaf-level fanout, not decrease it.  Of course,
	 * the leaf-level fanout cannot exceed the number of bits in
	 * the rcu_node masks.  Finally, the tree must be able to accommodate
	 * the configured number of CPUs.  Complain and fall back to the
	 * compile-time values if these limits are exceeded.
	 */
	if (rcu_fanout_leaf < CONFIG_RCU_FANOUT_LEAF ||
	    rcu_fanout_leaf > sizeof(unsigned long) * 8 ||
	    n > rcu_capacity[MAX_RCU_LVLS]) {
		WARN_ON(1);
		return;
	}

	/* Calculate the number of rcu_nodes at each level of the tree. */
	for (i = 1; i <= MAX_RCU_LVLS; i++)
		if (n <= rcu_capacity[i]) {
			for (j = 0; j <= i; j++)
				num_rcu_lvl[j] =
					DIV_ROUND_UP(n, rcu_capacity[i - j]);
			rcu_num_lvls = i;
			for (j = i + 1; j <= MAX_RCU_LVLS; j++)
				num_rcu_lvl[j] = 0;
			break;
		}

	/* Calculate the total number of rcu_node structures. */
	rcu_num_nodes = 0;
	for (i = 0; i <= MAX_RCU_LVLS; i++)
		rcu_num_nodes += num_rcu_lvl[i];
	rcu_num_nodes -= n;
}

3164
void __init rcu_init(void)
3165
{
P
Paul E. McKenney 已提交
3166
	int cpu;
3167

3168
	rcu_bootup_announce();
3169
	rcu_init_geometry();
3170 3171
	rcu_init_one(&rcu_sched_state, &rcu_sched_data);
	rcu_init_one(&rcu_bh_state, &rcu_bh_data);
3172
	__rcu_init_preempt();
P
Paul E. McKenney 已提交
3173
	rcu_init_nocb();
3174
	 open_softirq(RCU_SOFTIRQ, rcu_process_callbacks);
3175 3176 3177 3178 3179 3180 3181

	/*
	 * We don't need protection against CPU-hotplug here because
	 * this is called early in boot, before either interrupts
	 * or the scheduler are operational.
	 */
	cpu_notifier(rcu_cpu_notify, 0);
P
Paul E. McKenney 已提交
3182 3183
	for_each_online_cpu(cpu)
		rcu_cpu_notify(NULL, CPU_UP_PREPARE, (void *)(long)cpu);
3184 3185
}

3186
#include "rcutree_plugin.h"