i915_perf.c 101.4 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26
/*
 * Copyright © 2015-2016 Intel Corporation
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice (including the next
 * paragraph) shall be included in all copies or substantial portions of the
 * Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
 * IN THE SOFTWARE.
 *
 * Authors:
 *   Robert Bragg <robert@sixbynine.org>
 */

27 28

/**
29
 * DOC: i915 Perf Overview
30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47
 *
 * Gen graphics supports a large number of performance counters that can help
 * driver and application developers understand and optimize their use of the
 * GPU.
 *
 * This i915 perf interface enables userspace to configure and open a file
 * descriptor representing a stream of GPU metrics which can then be read() as
 * a stream of sample records.
 *
 * The interface is particularly suited to exposing buffered metrics that are
 * captured by DMA from the GPU, unsynchronized with and unrelated to the CPU.
 *
 * Streams representing a single context are accessible to applications with a
 * corresponding drm file descriptor, such that OpenGL can use the interface
 * without special privileges. Access to system-wide metrics requires root
 * privileges by default, unless changed via the dev.i915.perf_event_paranoid
 * sysctl option.
 *
48 49 50 51
 */

/**
 * DOC: i915 Perf History and Comparison with Core Perf
52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81
 *
 * The interface was initially inspired by the core Perf infrastructure but
 * some notable differences are:
 *
 * i915 perf file descriptors represent a "stream" instead of an "event"; where
 * a perf event primarily corresponds to a single 64bit value, while a stream
 * might sample sets of tightly-coupled counters, depending on the
 * configuration.  For example the Gen OA unit isn't designed to support
 * orthogonal configurations of individual counters; it's configured for a set
 * of related counters. Samples for an i915 perf stream capturing OA metrics
 * will include a set of counter values packed in a compact HW specific format.
 * The OA unit supports a number of different packing formats which can be
 * selected by the user opening the stream. Perf has support for grouping
 * events, but each event in the group is configured, validated and
 * authenticated individually with separate system calls.
 *
 * i915 perf stream configurations are provided as an array of u64 (key,value)
 * pairs, instead of a fixed struct with multiple miscellaneous config members,
 * interleaved with event-type specific members.
 *
 * i915 perf doesn't support exposing metrics via an mmap'd circular buffer.
 * The supported metrics are being written to memory by the GPU unsynchronized
 * with the CPU, using HW specific packing formats for counter sets. Sometimes
 * the constraints on HW configuration require reports to be filtered before it
 * would be acceptable to expose them to unprivileged applications - to hide
 * the metrics of other processes/contexts. For these use cases a read() based
 * interface is a good fit, and provides an opportunity to filter data as it
 * gets copied from the GPU mapped buffers to userspace buffers.
 *
 *
82 83
 * Issues hit with first prototype based on Core Perf
 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141
 *
 * The first prototype of this driver was based on the core perf
 * infrastructure, and while we did make that mostly work, with some changes to
 * perf, we found we were breaking or working around too many assumptions baked
 * into perf's currently cpu centric design.
 *
 * In the end we didn't see a clear benefit to making perf's implementation and
 * interface more complex by changing design assumptions while we knew we still
 * wouldn't be able to use any existing perf based userspace tools.
 *
 * Also considering the Gen specific nature of the Observability hardware and
 * how userspace will sometimes need to combine i915 perf OA metrics with
 * side-band OA data captured via MI_REPORT_PERF_COUNT commands; we're
 * expecting the interface to be used by a platform specific userspace such as
 * OpenGL or tools. This is to say; we aren't inherently missing out on having
 * a standard vendor/architecture agnostic interface by not using perf.
 *
 *
 * For posterity, in case we might re-visit trying to adapt core perf to be
 * better suited to exposing i915 metrics these were the main pain points we
 * hit:
 *
 * - The perf based OA PMU driver broke some significant design assumptions:
 *
 *   Existing perf pmus are used for profiling work on a cpu and we were
 *   introducing the idea of _IS_DEVICE pmus with different security
 *   implications, the need to fake cpu-related data (such as user/kernel
 *   registers) to fit with perf's current design, and adding _DEVICE records
 *   as a way to forward device-specific status records.
 *
 *   The OA unit writes reports of counters into a circular buffer, without
 *   involvement from the CPU, making our PMU driver the first of a kind.
 *
 *   Given the way we were periodically forward data from the GPU-mapped, OA
 *   buffer to perf's buffer, those bursts of sample writes looked to perf like
 *   we were sampling too fast and so we had to subvert its throttling checks.
 *
 *   Perf supports groups of counters and allows those to be read via
 *   transactions internally but transactions currently seem designed to be
 *   explicitly initiated from the cpu (say in response to a userspace read())
 *   and while we could pull a report out of the OA buffer we can't
 *   trigger a report from the cpu on demand.
 *
 *   Related to being report based; the OA counters are configured in HW as a
 *   set while perf generally expects counter configurations to be orthogonal.
 *   Although counters can be associated with a group leader as they are
 *   opened, there's no clear precedent for being able to provide group-wide
 *   configuration attributes (for example we want to let userspace choose the
 *   OA unit report format used to capture all counters in a set, or specify a
 *   GPU context to filter metrics on). We avoided using perf's grouping
 *   feature and forwarded OA reports to userspace via perf's 'raw' sample
 *   field. This suited our userspace well considering how coupled the counters
 *   are when dealing with normalizing. It would be inconvenient to split
 *   counters up into separate events, only to require userspace to recombine
 *   them. For Mesa it's also convenient to be forwarded raw, periodic reports
 *   for combining with the side-band raw reports it captures using
 *   MI_REPORT_PERF_COUNT commands.
 *
142
 *   - As a side note on perf's grouping feature; there was also some concern
143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193
 *     that using PERF_FORMAT_GROUP as a way to pack together counter values
 *     would quite drastically inflate our sample sizes, which would likely
 *     lower the effective sampling resolutions we could use when the available
 *     memory bandwidth is limited.
 *
 *     With the OA unit's report formats, counters are packed together as 32
 *     or 40bit values, with the largest report size being 256 bytes.
 *
 *     PERF_FORMAT_GROUP values are 64bit, but there doesn't appear to be a
 *     documented ordering to the values, implying PERF_FORMAT_ID must also be
 *     used to add a 64bit ID before each value; giving 16 bytes per counter.
 *
 *   Related to counter orthogonality; we can't time share the OA unit, while
 *   event scheduling is a central design idea within perf for allowing
 *   userspace to open + enable more events than can be configured in HW at any
 *   one time.  The OA unit is not designed to allow re-configuration while in
 *   use. We can't reconfigure the OA unit without losing internal OA unit
 *   state which we can't access explicitly to save and restore. Reconfiguring
 *   the OA unit is also relatively slow, involving ~100 register writes. From
 *   userspace Mesa also depends on a stable OA configuration when emitting
 *   MI_REPORT_PERF_COUNT commands and importantly the OA unit can't be
 *   disabled while there are outstanding MI_RPC commands lest we hang the
 *   command streamer.
 *
 *   The contents of sample records aren't extensible by device drivers (i.e.
 *   the sample_type bits). As an example; Sourab Gupta had been looking to
 *   attach GPU timestamps to our OA samples. We were shoehorning OA reports
 *   into sample records by using the 'raw' field, but it's tricky to pack more
 *   than one thing into this field because events/core.c currently only lets a
 *   pmu give a single raw data pointer plus len which will be copied into the
 *   ring buffer. To include more than the OA report we'd have to copy the
 *   report into an intermediate larger buffer. I'd been considering allowing a
 *   vector of data+len values to be specified for copying the raw data, but
 *   it felt like a kludge to being using the raw field for this purpose.
 *
 * - It felt like our perf based PMU was making some technical compromises
 *   just for the sake of using perf:
 *
 *   perf_event_open() requires events to either relate to a pid or a specific
 *   cpu core, while our device pmu related to neither.  Events opened with a
 *   pid will be automatically enabled/disabled according to the scheduling of
 *   that process - so not appropriate for us. When an event is related to a
 *   cpu id, perf ensures pmu methods will be invoked via an inter process
 *   interrupt on that core. To avoid invasive changes our userspace opened OA
 *   perf events for a specific cpu. This was workable but it meant the
 *   majority of the OA driver ran in atomic context, including all OA report
 *   forwarding, which wasn't really necessary in our case and seems to make
 *   our locking requirements somewhat complex as we handled the interaction
 *   with the rest of the i915 driver.
 */

194
#include <linux/anon_inodes.h>
195
#include <linux/sizes.h>
196 197

#include "i915_drv.h"
198
#include "i915_oa_hsw.h"
199 200 201 202 203 204
#include "i915_oa_bdw.h"
#include "i915_oa_chv.h"
#include "i915_oa_sklgt2.h"
#include "i915_oa_sklgt3.h"
#include "i915_oa_sklgt4.h"
#include "i915_oa_bxt.h"
205 206
#include "i915_oa_kblgt2.h"
#include "i915_oa_kblgt3.h"
207 208 209 210 211 212 213 214 215

/* HW requires this to be a power of two, between 128k and 16M, though driver
 * is currently generally designed assuming the largest 16M size is used such
 * that the overflow cases are unlikely in normal operation.
 */
#define OA_BUFFER_SIZE		SZ_16M

#define OA_TAKEN(tail, head)	((tail - head) & (OA_BUFFER_SIZE - 1))

216 217 218 219
/**
 * DOC: OA Tail Pointer Race
 *
 * There's a HW race condition between OA unit tail pointer register updates and
220
 * writes to memory whereby the tail pointer can sometimes get ahead of what's
221 222 223 224 225
 * been written out to the OA buffer so far (in terms of what's visible to the
 * CPU).
 *
 * Although this can be observed explicitly while copying reports to userspace
 * by checking for a zeroed report-id field in tail reports, we want to account
226
 * for this earlier, as part of the oa_buffer_check to avoid lots of redundant
227 228 229 230 231 232 233 234 235 236 237
 * read() attempts.
 *
 * In effect we define a tail pointer for reading that lags the real tail
 * pointer by at least %OA_TAIL_MARGIN_NSEC nanoseconds, which gives enough
 * time for the corresponding reports to become visible to the CPU.
 *
 * To manage this we actually track two tail pointers:
 *  1) An 'aging' tail with an associated timestamp that is tracked until we
 *     can trust the corresponding data is visible to the CPU; at which point
 *     it is considered 'aged'.
 *  2) An 'aged' tail that can be used for read()ing.
238
 *
239
 * The two separate pointers let us decouple read()s from tail pointer aging.
240
 *
241 242
 * The tail pointers are checked and updated at a limited rate within a hrtimer
 * callback (the same callback that is used for delivering POLLIN events)
243
 *
244 245 246 247
 * Initially the tails are marked invalid with %INVALID_TAIL_PTR which
 * indicates that an updated tail pointer is needed.
 *
 * Most of the implementation details for this workaround are in
248
 * oa_buffer_check_unlocked() and _append_oa_reports()
249 250 251 252 253 254 255
 *
 * Note for posterity: previously the driver used to define an effective tail
 * pointer that lagged the real pointer by a 'tail margin' measured in bytes
 * derived from %OA_TAIL_MARGIN_NSEC and the configured sampling frequency.
 * This was flawed considering that the OA unit may also automatically generate
 * non-periodic reports (such as on context switch) or the OA unit may be
 * enabled without any periodic sampling.
256 257
 */
#define OA_TAIL_MARGIN_NSEC	100000ULL
258
#define INVALID_TAIL_PTR	0xffffffff
259 260 261 262 263 264 265

/* frequency for checking whether the OA unit has written new reports to the
 * circular OA buffer...
 */
#define POLL_FREQUENCY 200
#define POLL_PERIOD (NSEC_PER_SEC / POLL_FREQUENCY)

266 267 268 269 270
/* for sysctl proc_dointvec_minmax of dev.i915.perf_stream_paranoid */
static int zero;
static int one = 1;
static u32 i915_perf_stream_paranoid = true;

271 272 273 274 275 276 277 278 279 280 281 282
/* The maximum exponent the hardware accepts is 63 (essentially it selects one
 * of the 64bit timestamp bits to trigger reports from) but there's currently
 * no known use case for sampling as infrequently as once per 47 thousand years.
 *
 * Since the timestamps included in OA reports are only 32bits it seems
 * reasonable to limit the OA exponent where it's still possible to account for
 * overflow in OA report timestamps.
 */
#define OA_EXPONENT_MAX 31

#define INVALID_CTX_ID 0xffffffff

283 284 285 286 287 288 289
/* On Gen8+ automatically triggered OA reports include a 'reason' field... */
#define OAREPORT_REASON_MASK           0x3f
#define OAREPORT_REASON_SHIFT          19
#define OAREPORT_REASON_TIMER          (1<<0)
#define OAREPORT_REASON_CTX_SWITCH     (1<<3)
#define OAREPORT_REASON_CLK_RATIO      (1<<5)

290

291 292
/* For sysctl proc_dointvec_minmax of i915_oa_max_sample_rate
 *
293 294 295 296
 * The highest sampling frequency we can theoretically program the OA unit
 * with is always half the timestamp frequency: E.g. 6.25Mhz for Haswell.
 *
 * Initialized just before we register the sysctl parameter.
297
 */
298
static int oa_sample_rate_hard_limit;
299 300 301 302 303 304 305 306 307

/* Theoretically we can program the OA unit to sample every 160ns but don't
 * allow that by default unless root...
 *
 * The default threshold of 100000Hz is based on perf's similar
 * kernel.perf_event_max_sample_rate sysctl parameter.
 */
static u32 i915_oa_max_sample_rate = 100000;

308 309 310 311 312 313 314 315 316 317 318 319 320 321 322
/* XXX: beware if future OA HW adds new report formats that the current
 * code assumes all reports have a power-of-two size and ~(size - 1) can
 * be used as a mask to align the OA tail pointer.
 */
static struct i915_oa_format hsw_oa_formats[I915_OA_FORMAT_MAX] = {
	[I915_OA_FORMAT_A13]	    = { 0, 64 },
	[I915_OA_FORMAT_A29]	    = { 1, 128 },
	[I915_OA_FORMAT_A13_B8_C8]  = { 2, 128 },
	/* A29_B8_C8 Disallowed as 192 bytes doesn't factor into buffer size */
	[I915_OA_FORMAT_B4_C8]	    = { 4, 64 },
	[I915_OA_FORMAT_A45_B8_C8]  = { 5, 256 },
	[I915_OA_FORMAT_B4_C8_A16]  = { 6, 128 },
	[I915_OA_FORMAT_C4_B8]	    = { 7, 64 },
};

323 324 325 326 327 328 329
static struct i915_oa_format gen8_plus_oa_formats[I915_OA_FORMAT_MAX] = {
	[I915_OA_FORMAT_A12]		    = { 0, 64 },
	[I915_OA_FORMAT_A12_B8_C8]	    = { 2, 128 },
	[I915_OA_FORMAT_A32u40_A4u32_B8_C8] = { 5, 256 },
	[I915_OA_FORMAT_C4_B8]		    = { 7, 64 },
};

330
#define SAMPLE_OA_REPORT      (1<<0)
331

332 333 334 335 336 337 338 339 340 341 342 343 344 345
/**
 * struct perf_open_properties - for validated properties given to open a stream
 * @sample_flags: `DRM_I915_PERF_PROP_SAMPLE_*` properties are tracked as flags
 * @single_context: Whether a single or all gpu contexts should be monitored
 * @ctx_handle: A gem ctx handle for use with @single_context
 * @metrics_set: An ID for an OA unit metric set advertised via sysfs
 * @oa_format: An OA unit HW report format
 * @oa_periodic: Whether to enable periodic OA unit sampling
 * @oa_period_exponent: The OA unit sampling period is derived from this
 *
 * As read_properties_unlocked() enumerates and validates the properties given
 * to open a stream of metrics the configuration is built up in the structure
 * which starts out zero initialized.
 */
346 347 348 349 350
struct perf_open_properties {
	u32 sample_flags;

	u64 single_context:1;
	u64 ctx_handle;
351 352 353 354 355 356 357 358

	/* OA sampling state */
	int metrics_set;
	int oa_format;
	bool oa_periodic;
	int oa_period_exponent;
};

359 360 361 362 363 364 365 366 367 368 369 370
static u32 gen8_oa_hw_tail_read(struct drm_i915_private *dev_priv)
{
	return I915_READ(GEN8_OATAILPTR) & GEN8_OATAILPTR_MASK;
}

static u32 gen7_oa_hw_tail_read(struct drm_i915_private *dev_priv)
{
	u32 oastatus1 = I915_READ(GEN7_OASTATUS1);

	return oastatus1 & GEN7_OASTATUS1_TAIL_MASK;
}

371
/**
372
 * oa_buffer_check_unlocked - check for data and update tail ptr state
373
 * @dev_priv: i915 device instance
374
 *
375 376 377
 * This is either called via fops (for blocking reads in user ctx) or the poll
 * check hrtimer (atomic ctx) to check the OA buffer tail pointer and check
 * if there is data available for userspace to read.
378
 *
379 380 381 382 383 384 385 386 387 388 389 390 391 392 393
 * This function is central to providing a workaround for the OA unit tail
 * pointer having a race with respect to what data is visible to the CPU.
 * It is responsible for reading tail pointers from the hardware and giving
 * the pointers time to 'age' before they are made available for reading.
 * (See description of OA_TAIL_MARGIN_NSEC above for further details.)
 *
 * Besides returning true when there is data available to read() this function
 * also has the side effect of updating the oa_buffer.tails[], .aging_timestamp
 * and .aged_tail_idx state used for reading.
 *
 * Note: It's safe to read OA config state here unlocked, assuming that this is
 * only called while the stream is enabled, while the global OA configuration
 * can't be modified.
 *
 * Returns: %true if the OA buffer contains data, else %false
394
 */
395
static bool oa_buffer_check_unlocked(struct drm_i915_private *dev_priv)
396 397
{
	int report_size = dev_priv->perf.oa.oa_buffer.format_size;
398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418
	unsigned long flags;
	unsigned int aged_idx;
	u32 head, hw_tail, aged_tail, aging_tail;
	u64 now;

	/* We have to consider the (unlikely) possibility that read() errors
	 * could result in an OA buffer reset which might reset the head,
	 * tails[] and aged_tail state.
	 */
	spin_lock_irqsave(&dev_priv->perf.oa.oa_buffer.ptr_lock, flags);

	/* NB: The head we observe here might effectively be a little out of
	 * date (between head and tails[aged_idx].offset if there is currently
	 * a read() in progress.
	 */
	head = dev_priv->perf.oa.oa_buffer.head;

	aged_idx = dev_priv->perf.oa.oa_buffer.aged_tail_idx;
	aged_tail = dev_priv->perf.oa.oa_buffer.tails[aged_idx].offset;
	aging_tail = dev_priv->perf.oa.oa_buffer.tails[!aged_idx].offset;

419
	hw_tail = dev_priv->perf.oa.ops.oa_hw_tail_read(dev_priv);
420 421 422 423 424 425 426 427

	/* The tail pointer increases in 64 byte increments,
	 * not in report_size steps...
	 */
	hw_tail &= ~(report_size - 1);

	now = ktime_get_mono_fast_ns();

428 429 430 431 432 433 434 435 436 437 438 439 440
	/* Update the aged tail
	 *
	 * Flip the tail pointer available for read()s once the aging tail is
	 * old enough to trust that the corresponding data will be visible to
	 * the CPU...
	 *
	 * Do this before updating the aging pointer in case we may be able to
	 * immediately start aging a new pointer too (if new data has become
	 * available) without needing to wait for a later hrtimer callback.
	 */
	if (aging_tail != INVALID_TAIL_PTR &&
	    ((now - dev_priv->perf.oa.oa_buffer.aging_timestamp) >
	     OA_TAIL_MARGIN_NSEC)) {
441

442 443 444 445 446 447 448 449 450 451
		aged_idx ^= 1;
		dev_priv->perf.oa.oa_buffer.aged_tail_idx = aged_idx;

		aged_tail = aging_tail;

		/* Mark that we need a new pointer to start aging... */
		dev_priv->perf.oa.oa_buffer.tails[!aged_idx].offset = INVALID_TAIL_PTR;
		aging_tail = INVALID_TAIL_PTR;
	}

452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484
	/* Update the aging tail
	 *
	 * We throttle aging tail updates until we have a new tail that
	 * represents >= one report more data than is already available for
	 * reading. This ensures there will be enough data for a successful
	 * read once this new pointer has aged and ensures we will give the new
	 * pointer time to age.
	 */
	if (aging_tail == INVALID_TAIL_PTR &&
	    (aged_tail == INVALID_TAIL_PTR ||
	     OA_TAKEN(hw_tail, aged_tail) >= report_size)) {
		struct i915_vma *vma = dev_priv->perf.oa.oa_buffer.vma;
		u32 gtt_offset = i915_ggtt_offset(vma);

		/* Be paranoid and do a bounds check on the pointer read back
		 * from hardware, just in case some spurious hardware condition
		 * could put the tail out of bounds...
		 */
		if (hw_tail >= gtt_offset &&
		    hw_tail < (gtt_offset + OA_BUFFER_SIZE)) {
			dev_priv->perf.oa.oa_buffer.tails[!aged_idx].offset =
				aging_tail = hw_tail;
			dev_priv->perf.oa.oa_buffer.aging_timestamp = now;
		} else {
			DRM_ERROR("Ignoring spurious out of range OA buffer tail pointer = %u\n",
				  hw_tail);
		}
	}

	spin_unlock_irqrestore(&dev_priv->perf.oa.oa_buffer.ptr_lock, flags);

	return aged_tail == INVALID_TAIL_PTR ?
		false : OA_TAKEN(aged_tail, head) >= report_size;
485 486 487
}

/**
488 489 490 491 492 493 494 495 496 497 498 499 500
 * append_oa_status - Appends a status record to a userspace read() buffer.
 * @stream: An i915-perf stream opened for OA metrics
 * @buf: destination buffer given by userspace
 * @count: the number of bytes userspace wants to read
 * @offset: (inout): the current position for writing into @buf
 * @type: The kind of status to report to userspace
 *
 * Writes a status record (such as `DRM_I915_PERF_RECORD_OA_REPORT_LOST`)
 * into the userspace read() buffer.
 *
 * The @buf @offset will only be updated on success.
 *
 * Returns: 0 on success, negative error code on failure.
501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521
 */
static int append_oa_status(struct i915_perf_stream *stream,
			    char __user *buf,
			    size_t count,
			    size_t *offset,
			    enum drm_i915_perf_record_type type)
{
	struct drm_i915_perf_record_header header = { type, 0, sizeof(header) };

	if ((count - *offset) < header.size)
		return -ENOSPC;

	if (copy_to_user(buf + *offset, &header, sizeof(header)))
		return -EFAULT;

	(*offset) += header.size;

	return 0;
}

/**
522 523 524 525 526 527 528 529 530 531 532 533 534 535 536
 * append_oa_sample - Copies single OA report into userspace read() buffer.
 * @stream: An i915-perf stream opened for OA metrics
 * @buf: destination buffer given by userspace
 * @count: the number of bytes userspace wants to read
 * @offset: (inout): the current position for writing into @buf
 * @report: A single OA report to (optionally) include as part of the sample
 *
 * The contents of a sample are configured through `DRM_I915_PERF_PROP_SAMPLE_*`
 * properties when opening a stream, tracked as `stream->sample_flags`. This
 * function copies the requested components of a single sample to the given
 * read() @buf.
 *
 * The @buf @offset will only be updated on success.
 *
 * Returns: 0 on success, negative error code on failure.
537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570
 */
static int append_oa_sample(struct i915_perf_stream *stream,
			    char __user *buf,
			    size_t count,
			    size_t *offset,
			    const u8 *report)
{
	struct drm_i915_private *dev_priv = stream->dev_priv;
	int report_size = dev_priv->perf.oa.oa_buffer.format_size;
	struct drm_i915_perf_record_header header;
	u32 sample_flags = stream->sample_flags;

	header.type = DRM_I915_PERF_RECORD_SAMPLE;
	header.pad = 0;
	header.size = stream->sample_size;

	if ((count - *offset) < header.size)
		return -ENOSPC;

	buf += *offset;
	if (copy_to_user(buf, &header, sizeof(header)))
		return -EFAULT;
	buf += sizeof(header);

	if (sample_flags & SAMPLE_OA_REPORT) {
		if (copy_to_user(buf, report, report_size))
			return -EFAULT;
	}

	(*offset) += header.size;

	return 0;
}

571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864
/**
 * Copies all buffered OA reports into userspace read() buffer.
 * @stream: An i915-perf stream opened for OA metrics
 * @buf: destination buffer given by userspace
 * @count: the number of bytes userspace wants to read
 * @offset: (inout): the current position for writing into @buf
 *
 * Notably any error condition resulting in a short read (-%ENOSPC or
 * -%EFAULT) will be returned even though one or more records may
 * have been successfully copied. In this case it's up to the caller
 * to decide if the error should be squashed before returning to
 * userspace.
 *
 * Note: reports are consumed from the head, and appended to the
 * tail, so the tail chases the head?... If you think that's mad
 * and back-to-front you're not alone, but this follows the
 * Gen PRM naming convention.
 *
 * Returns: 0 on success, negative error code on failure.
 */
static int gen8_append_oa_reports(struct i915_perf_stream *stream,
				  char __user *buf,
				  size_t count,
				  size_t *offset)
{
	struct drm_i915_private *dev_priv = stream->dev_priv;
	int report_size = dev_priv->perf.oa.oa_buffer.format_size;
	u8 *oa_buf_base = dev_priv->perf.oa.oa_buffer.vaddr;
	u32 gtt_offset = i915_ggtt_offset(dev_priv->perf.oa.oa_buffer.vma);
	u32 mask = (OA_BUFFER_SIZE - 1);
	size_t start_offset = *offset;
	unsigned long flags;
	unsigned int aged_tail_idx;
	u32 head, tail;
	u32 taken;
	int ret = 0;

	if (WARN_ON(!stream->enabled))
		return -EIO;

	spin_lock_irqsave(&dev_priv->perf.oa.oa_buffer.ptr_lock, flags);

	head = dev_priv->perf.oa.oa_buffer.head;
	aged_tail_idx = dev_priv->perf.oa.oa_buffer.aged_tail_idx;
	tail = dev_priv->perf.oa.oa_buffer.tails[aged_tail_idx].offset;

	spin_unlock_irqrestore(&dev_priv->perf.oa.oa_buffer.ptr_lock, flags);

	/*
	 * An invalid tail pointer here means we're still waiting for the poll
	 * hrtimer callback to give us a pointer
	 */
	if (tail == INVALID_TAIL_PTR)
		return -EAGAIN;

	/*
	 * NB: oa_buffer.head/tail include the gtt_offset which we don't want
	 * while indexing relative to oa_buf_base.
	 */
	head -= gtt_offset;
	tail -= gtt_offset;

	/*
	 * An out of bounds or misaligned head or tail pointer implies a driver
	 * bug since we validate + align the tail pointers we read from the
	 * hardware and we are in full control of the head pointer which should
	 * only be incremented by multiples of the report size (notably also
	 * all a power of two).
	 */
	if (WARN_ONCE(head > OA_BUFFER_SIZE || head % report_size ||
		      tail > OA_BUFFER_SIZE || tail % report_size,
		      "Inconsistent OA buffer pointers: head = %u, tail = %u\n",
		      head, tail))
		return -EIO;


	for (/* none */;
	     (taken = OA_TAKEN(tail, head));
	     head = (head + report_size) & mask) {
		u8 *report = oa_buf_base + head;
		u32 *report32 = (void *)report;
		u32 ctx_id;
		u32 reason;

		/*
		 * All the report sizes factor neatly into the buffer
		 * size so we never expect to see a report split
		 * between the beginning and end of the buffer.
		 *
		 * Given the initial alignment check a misalignment
		 * here would imply a driver bug that would result
		 * in an overrun.
		 */
		if (WARN_ON((OA_BUFFER_SIZE - head) < report_size)) {
			DRM_ERROR("Spurious OA head ptr: non-integral report offset\n");
			break;
		}

		/*
		 * The reason field includes flags identifying what
		 * triggered this specific report (mostly timer
		 * triggered or e.g. due to a context switch).
		 *
		 * This field is never expected to be zero so we can
		 * check that the report isn't invalid before copying
		 * it to userspace...
		 */
		reason = ((report32[0] >> OAREPORT_REASON_SHIFT) &
			  OAREPORT_REASON_MASK);
		if (reason == 0) {
			if (__ratelimit(&dev_priv->perf.oa.spurious_report_rs))
				DRM_NOTE("Skipping spurious, invalid OA report\n");
			continue;
		}

		/*
		 * XXX: Just keep the lower 21 bits for now since I'm not
		 * entirely sure if the HW touches any of the higher bits in
		 * this field
		 */
		ctx_id = report32[2] & 0x1fffff;

		/*
		 * Squash whatever is in the CTX_ID field if it's marked as
		 * invalid to be sure we avoid false-positive, single-context
		 * filtering below...
		 *
		 * Note: that we don't clear the valid_ctx_bit so userspace can
		 * understand that the ID has been squashed by the kernel.
		 */
		if (!(report32[0] & dev_priv->perf.oa.gen8_valid_ctx_bit))
			ctx_id = report32[2] = INVALID_CTX_ID;

		/*
		 * NB: For Gen 8 the OA unit no longer supports clock gating
		 * off for a specific context and the kernel can't securely
		 * stop the counters from updating as system-wide / global
		 * values.
		 *
		 * Automatic reports now include a context ID so reports can be
		 * filtered on the cpu but it's not worth trying to
		 * automatically subtract/hide counter progress for other
		 * contexts while filtering since we can't stop userspace
		 * issuing MI_REPORT_PERF_COUNT commands which would still
		 * provide a side-band view of the real values.
		 *
		 * To allow userspace (such as Mesa/GL_INTEL_performance_query)
		 * to normalize counters for a single filtered context then it
		 * needs be forwarded bookend context-switch reports so that it
		 * can track switches in between MI_REPORT_PERF_COUNT commands
		 * and can itself subtract/ignore the progress of counters
		 * associated with other contexts. Note that the hardware
		 * automatically triggers reports when switching to a new
		 * context which are tagged with the ID of the newly active
		 * context. To avoid the complexity (and likely fragility) of
		 * reading ahead while parsing reports to try and minimize
		 * forwarding redundant context switch reports (i.e. between
		 * other, unrelated contexts) we simply elect to forward them
		 * all.
		 *
		 * We don't rely solely on the reason field to identify context
		 * switches since it's not-uncommon for periodic samples to
		 * identify a switch before any 'context switch' report.
		 */
		if (!dev_priv->perf.oa.exclusive_stream->ctx ||
		    dev_priv->perf.oa.specific_ctx_id == ctx_id ||
		    (dev_priv->perf.oa.oa_buffer.last_ctx_id ==
		     dev_priv->perf.oa.specific_ctx_id) ||
		    reason & OAREPORT_REASON_CTX_SWITCH) {

			/*
			 * While filtering for a single context we avoid
			 * leaking the IDs of other contexts.
			 */
			if (dev_priv->perf.oa.exclusive_stream->ctx &&
			    dev_priv->perf.oa.specific_ctx_id != ctx_id) {
				report32[2] = INVALID_CTX_ID;
			}

			ret = append_oa_sample(stream, buf, count, offset,
					       report);
			if (ret)
				break;

			dev_priv->perf.oa.oa_buffer.last_ctx_id = ctx_id;
		}

		/*
		 * The above reason field sanity check is based on
		 * the assumption that the OA buffer is initially
		 * zeroed and we reset the field after copying so the
		 * check is still meaningful once old reports start
		 * being overwritten.
		 */
		report32[0] = 0;
	}

	if (start_offset != *offset) {
		spin_lock_irqsave(&dev_priv->perf.oa.oa_buffer.ptr_lock, flags);

		/*
		 * We removed the gtt_offset for the copy loop above, indexing
		 * relative to oa_buf_base so put back here...
		 */
		head += gtt_offset;

		I915_WRITE(GEN8_OAHEADPTR, head & GEN8_OAHEADPTR_MASK);
		dev_priv->perf.oa.oa_buffer.head = head;

		spin_unlock_irqrestore(&dev_priv->perf.oa.oa_buffer.ptr_lock, flags);
	}

	return ret;
}

/**
 * gen8_oa_read - copy status records then buffered OA reports
 * @stream: An i915-perf stream opened for OA metrics
 * @buf: destination buffer given by userspace
 * @count: the number of bytes userspace wants to read
 * @offset: (inout): the current position for writing into @buf
 *
 * Checks OA unit status registers and if necessary appends corresponding
 * status records for userspace (such as for a buffer full condition) and then
 * initiate appending any buffered OA reports.
 *
 * Updates @offset according to the number of bytes successfully copied into
 * the userspace buffer.
 *
 * NB: some data may be successfully copied to the userspace buffer
 * even if an error is returned, and this is reflected in the
 * updated @offset.
 *
 * Returns: zero on success or a negative error code
 */
static int gen8_oa_read(struct i915_perf_stream *stream,
			char __user *buf,
			size_t count,
			size_t *offset)
{
	struct drm_i915_private *dev_priv = stream->dev_priv;
	u32 oastatus;
	int ret;

	if (WARN_ON(!dev_priv->perf.oa.oa_buffer.vaddr))
		return -EIO;

	oastatus = I915_READ(GEN8_OASTATUS);

	/*
	 * We treat OABUFFER_OVERFLOW as a significant error:
	 *
	 * Although theoretically we could handle this more gracefully
	 * sometimes, some Gens don't correctly suppress certain
	 * automatically triggered reports in this condition and so we
	 * have to assume that old reports are now being trampled
	 * over.
	 *
	 * Considering how we don't currently give userspace control
	 * over the OA buffer size and always configure a large 16MB
	 * buffer, then a buffer overflow does anyway likely indicate
	 * that something has gone quite badly wrong.
	 */
	if (oastatus & GEN8_OASTATUS_OABUFFER_OVERFLOW) {
		ret = append_oa_status(stream, buf, count, offset,
				       DRM_I915_PERF_RECORD_OA_BUFFER_LOST);
		if (ret)
			return ret;

		DRM_DEBUG("OA buffer overflow (exponent = %d): force restart\n",
			  dev_priv->perf.oa.period_exponent);

		dev_priv->perf.oa.ops.oa_disable(dev_priv);
		dev_priv->perf.oa.ops.oa_enable(dev_priv);

		/*
		 * Note: .oa_enable() is expected to re-init the oabuffer and
		 * reset GEN8_OASTATUS for us
		 */
		oastatus = I915_READ(GEN8_OASTATUS);
	}

	if (oastatus & GEN8_OASTATUS_REPORT_LOST) {
		ret = append_oa_status(stream, buf, count, offset,
				       DRM_I915_PERF_RECORD_OA_REPORT_LOST);
		if (ret)
			return ret;
		I915_WRITE(GEN8_OASTATUS,
			   oastatus & ~GEN8_OASTATUS_REPORT_LOST);
	}

	return gen8_append_oa_reports(stream, buf, count, offset);
}

865 866 867 868 869 870 871
/**
 * Copies all buffered OA reports into userspace read() buffer.
 * @stream: An i915-perf stream opened for OA metrics
 * @buf: destination buffer given by userspace
 * @count: the number of bytes userspace wants to read
 * @offset: (inout): the current position for writing into @buf
 *
872 873
 * Notably any error condition resulting in a short read (-%ENOSPC or
 * -%EFAULT) will be returned even though one or more records may
874 875 876 877 878
 * have been successfully copied. In this case it's up to the caller
 * to decide if the error should be squashed before returning to
 * userspace.
 *
 * Note: reports are consumed from the head, and appended to the
879
 * tail, so the tail chases the head?... If you think that's mad
880 881
 * and back-to-front you're not alone, but this follows the
 * Gen PRM naming convention.
882 883
 *
 * Returns: 0 on success, negative error code on failure.
884 885 886 887
 */
static int gen7_append_oa_reports(struct i915_perf_stream *stream,
				  char __user *buf,
				  size_t count,
888
				  size_t *offset)
889 890 891 892 893 894
{
	struct drm_i915_private *dev_priv = stream->dev_priv;
	int report_size = dev_priv->perf.oa.oa_buffer.format_size;
	u8 *oa_buf_base = dev_priv->perf.oa.oa_buffer.vaddr;
	u32 gtt_offset = i915_ggtt_offset(dev_priv->perf.oa.oa_buffer.vma);
	u32 mask = (OA_BUFFER_SIZE - 1);
895
	size_t start_offset = *offset;
896 897 898
	unsigned long flags;
	unsigned int aged_tail_idx;
	u32 head, tail;
899 900 901 902 903 904
	u32 taken;
	int ret = 0;

	if (WARN_ON(!stream->enabled))
		return -EIO;

905
	spin_lock_irqsave(&dev_priv->perf.oa.oa_buffer.ptr_lock, flags);
906

907 908 909
	head = dev_priv->perf.oa.oa_buffer.head;
	aged_tail_idx = dev_priv->perf.oa.oa_buffer.aged_tail_idx;
	tail = dev_priv->perf.oa.oa_buffer.tails[aged_tail_idx].offset;
910

911
	spin_unlock_irqrestore(&dev_priv->perf.oa.oa_buffer.ptr_lock, flags);
912

913 914
	/* An invalid tail pointer here means we're still waiting for the poll
	 * hrtimer callback to give us a pointer
915
	 */
916 917
	if (tail == INVALID_TAIL_PTR)
		return -EAGAIN;
918

919 920
	/* NB: oa_buffer.head/tail include the gtt_offset which we don't want
	 * while indexing relative to oa_buf_base.
921
	 */
922 923
	head -= gtt_offset;
	tail -= gtt_offset;
924

925 926 927 928 929
	/* An out of bounds or misaligned head or tail pointer implies a driver
	 * bug since we validate + align the tail pointers we read from the
	 * hardware and we are in full control of the head pointer which should
	 * only be incremented by multiples of the report size (notably also
	 * all a power of two).
930
	 */
931 932 933 934 935
	if (WARN_ONCE(head > OA_BUFFER_SIZE || head % report_size ||
		      tail > OA_BUFFER_SIZE || tail % report_size,
		      "Inconsistent OA buffer pointers: head = %u, tail = %u\n",
		      head, tail))
		return -EIO;
936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963


	for (/* none */;
	     (taken = OA_TAKEN(tail, head));
	     head = (head + report_size) & mask) {
		u8 *report = oa_buf_base + head;
		u32 *report32 = (void *)report;

		/* All the report sizes factor neatly into the buffer
		 * size so we never expect to see a report split
		 * between the beginning and end of the buffer.
		 *
		 * Given the initial alignment check a misalignment
		 * here would imply a driver bug that would result
		 * in an overrun.
		 */
		if (WARN_ON((OA_BUFFER_SIZE - head) < report_size)) {
			DRM_ERROR("Spurious OA head ptr: non-integral report offset\n");
			break;
		}

		/* The report-ID field for periodic samples includes
		 * some undocumented flags related to what triggered
		 * the report and is never expected to be zero so we
		 * can check that the report isn't invalid before
		 * copying it to userspace...
		 */
		if (report32[0] == 0) {
964 965
			if (__ratelimit(&dev_priv->perf.oa.spurious_report_rs))
				DRM_NOTE("Skipping spurious, invalid OA report\n");
966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981
			continue;
		}

		ret = append_oa_sample(stream, buf, count, offset, report);
		if (ret)
			break;

		/* The above report-id field sanity check is based on
		 * the assumption that the OA buffer is initially
		 * zeroed and we reset the field after copying so the
		 * check is still meaningful once old reports start
		 * being overwritten.
		 */
		report32[0] = 0;
	}

982
	if (start_offset != *offset) {
983 984
		spin_lock_irqsave(&dev_priv->perf.oa.oa_buffer.ptr_lock, flags);

985 986 987 988 989 990 991 992 993
		/* We removed the gtt_offset for the copy loop above, indexing
		 * relative to oa_buf_base so put back here...
		 */
		head += gtt_offset;

		I915_WRITE(GEN7_OASTATUS2,
			   ((head & GEN7_OASTATUS2_HEAD_MASK) |
			    OA_MEM_SELECT_GGTT));
		dev_priv->perf.oa.oa_buffer.head = head;
994 995

		spin_unlock_irqrestore(&dev_priv->perf.oa.oa_buffer.ptr_lock, flags);
996
	}
997 998 999 1000

	return ret;
}

1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016
/**
 * gen7_oa_read - copy status records then buffered OA reports
 * @stream: An i915-perf stream opened for OA metrics
 * @buf: destination buffer given by userspace
 * @count: the number of bytes userspace wants to read
 * @offset: (inout): the current position for writing into @buf
 *
 * Checks Gen 7 specific OA unit status registers and if necessary appends
 * corresponding status records for userspace (such as for a buffer full
 * condition) and then initiate appending any buffered OA reports.
 *
 * Updates @offset according to the number of bytes successfully copied into
 * the userspace buffer.
 *
 * Returns: zero on success or a negative error code
 */
1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063
static int gen7_oa_read(struct i915_perf_stream *stream,
			char __user *buf,
			size_t count,
			size_t *offset)
{
	struct drm_i915_private *dev_priv = stream->dev_priv;
	u32 oastatus1;
	int ret;

	if (WARN_ON(!dev_priv->perf.oa.oa_buffer.vaddr))
		return -EIO;

	oastatus1 = I915_READ(GEN7_OASTATUS1);

	/* XXX: On Haswell we don't have a safe way to clear oastatus1
	 * bits while the OA unit is enabled (while the tail pointer
	 * may be updated asynchronously) so we ignore status bits
	 * that have already been reported to userspace.
	 */
	oastatus1 &= ~dev_priv->perf.oa.gen7_latched_oastatus1;

	/* We treat OABUFFER_OVERFLOW as a significant error:
	 *
	 * - The status can be interpreted to mean that the buffer is
	 *   currently full (with a higher precedence than OA_TAKEN()
	 *   which will start to report a near-empty buffer after an
	 *   overflow) but it's awkward that we can't clear the status
	 *   on Haswell, so without a reset we won't be able to catch
	 *   the state again.
	 *
	 * - Since it also implies the HW has started overwriting old
	 *   reports it may also affect our sanity checks for invalid
	 *   reports when copying to userspace that assume new reports
	 *   are being written to cleared memory.
	 *
	 * - In the future we may want to introduce a flight recorder
	 *   mode where the driver will automatically maintain a safe
	 *   guard band between head/tail, avoiding this overflow
	 *   condition, but we avoid the added driver complexity for
	 *   now.
	 */
	if (unlikely(oastatus1 & GEN7_OASTATUS1_OABUFFER_OVERFLOW)) {
		ret = append_oa_status(stream, buf, count, offset,
				       DRM_I915_PERF_RECORD_OA_BUFFER_LOST);
		if (ret)
			return ret;

1064 1065
		DRM_DEBUG("OA buffer overflow (exponent = %d): force restart\n",
			  dev_priv->perf.oa.period_exponent);
1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081

		dev_priv->perf.oa.ops.oa_disable(dev_priv);
		dev_priv->perf.oa.ops.oa_enable(dev_priv);

		oastatus1 = I915_READ(GEN7_OASTATUS1);
	}

	if (unlikely(oastatus1 & GEN7_OASTATUS1_REPORT_LOST)) {
		ret = append_oa_status(stream, buf, count, offset,
				       DRM_I915_PERF_RECORD_OA_REPORT_LOST);
		if (ret)
			return ret;
		dev_priv->perf.oa.gen7_latched_oastatus1 |=
			GEN7_OASTATUS1_REPORT_LOST;
	}

1082
	return gen7_append_oa_reports(stream, buf, count, offset);
1083 1084
}

1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098
/**
 * i915_oa_wait_unlocked - handles blocking IO until OA data available
 * @stream: An i915-perf stream opened for OA metrics
 *
 * Called when userspace tries to read() from a blocking stream FD opened
 * for OA metrics. It waits until the hrtimer callback finds a non-empty
 * OA buffer and wakes us.
 *
 * Note: it's acceptable to have this return with some false positives
 * since any subsequent read handling will return -EAGAIN if there isn't
 * really data ready for userspace yet.
 *
 * Returns: zero on success or a negative error code
 */
1099 1100 1101 1102 1103 1104 1105 1106 1107
static int i915_oa_wait_unlocked(struct i915_perf_stream *stream)
{
	struct drm_i915_private *dev_priv = stream->dev_priv;

	/* We would wait indefinitely if periodic sampling is not enabled */
	if (!dev_priv->perf.oa.periodic)
		return -EIO;

	return wait_event_interruptible(dev_priv->perf.oa.poll_wq,
1108
					oa_buffer_check_unlocked(dev_priv));
1109 1110
}

1111 1112 1113 1114 1115 1116 1117 1118 1119 1120
/**
 * i915_oa_poll_wait - call poll_wait() for an OA stream poll()
 * @stream: An i915-perf stream opened for OA metrics
 * @file: An i915 perf stream file
 * @wait: poll() state table
 *
 * For handling userspace polling on an i915 perf stream opened for OA metrics,
 * this starts a poll_wait with the wait queue that our hrtimer callback wakes
 * when it sees data ready to read in the circular OA buffer.
 */
1121 1122 1123 1124 1125 1126 1127 1128 1129
static void i915_oa_poll_wait(struct i915_perf_stream *stream,
			      struct file *file,
			      poll_table *wait)
{
	struct drm_i915_private *dev_priv = stream->dev_priv;

	poll_wait(file, &dev_priv->perf.oa.poll_wq, wait);
}

1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141
/**
 * i915_oa_read - just calls through to &i915_oa_ops->read
 * @stream: An i915-perf stream opened for OA metrics
 * @buf: destination buffer given by userspace
 * @count: the number of bytes userspace wants to read
 * @offset: (inout): the current position for writing into @buf
 *
 * Updates @offset according to the number of bytes successfully copied into
 * the userspace buffer.
 *
 * Returns: zero on success or a negative error code
 */
1142 1143 1144 1145 1146 1147 1148 1149 1150 1151
static int i915_oa_read(struct i915_perf_stream *stream,
			char __user *buf,
			size_t count,
			size_t *offset)
{
	struct drm_i915_private *dev_priv = stream->dev_priv;

	return dev_priv->perf.oa.ops.read(stream, buf, count, offset);
}

1152 1153 1154 1155 1156
/**
 * oa_get_render_ctx_id - determine and hold ctx hw id
 * @stream: An i915-perf stream opened for OA metrics
 *
 * Determine the render context hw id, and ensure it remains fixed for the
1157 1158
 * lifetime of the stream. This ensures that we don't have to worry about
 * updating the context ID in OACONTROL on the fly.
1159 1160
 *
 * Returns: zero on success or a negative error code
1161 1162 1163 1164 1165
 */
static int oa_get_render_ctx_id(struct i915_perf_stream *stream)
{
	struct drm_i915_private *dev_priv = stream->dev_priv;

1166 1167 1168 1169 1170 1171
	if (i915.enable_execlists)
		dev_priv->perf.oa.specific_ctx_id = stream->ctx->hw_id;
	else {
		struct intel_engine_cs *engine = dev_priv->engine[RCS];
		struct intel_ring *ring;
		int ret;
1172

1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186
		ret = i915_mutex_lock_interruptible(&dev_priv->drm);
		if (ret)
			return ret;

		/*
		 * As the ID is the gtt offset of the context's vma we
		 * pin the vma to ensure the ID remains fixed.
		 *
		 * NB: implied RCS engine...
		 */
		ring = engine->context_pin(engine, stream->ctx);
		mutex_unlock(&dev_priv->drm.struct_mutex);
		if (IS_ERR(ring))
			return PTR_ERR(ring);
1187

1188 1189 1190 1191 1192 1193 1194 1195 1196

		/*
		 * Explicitly track the ID (instead of calling
		 * i915_ggtt_offset() on the fly) considering the difference
		 * with gen8+ and execlists
		 */
		dev_priv->perf.oa.specific_ctx_id =
			i915_ggtt_offset(stream->ctx->engine[engine->id].state);
	}
1197

1198
	return 0;
1199 1200
}

1201 1202 1203 1204 1205 1206 1207
/**
 * oa_put_render_ctx_id - counterpart to oa_get_render_ctx_id releases hold
 * @stream: An i915-perf stream opened for OA metrics
 *
 * In case anything needed doing to ensure the context HW ID would remain valid
 * for the lifetime of the stream, then that can be undone here.
 */
1208 1209 1210 1211
static void oa_put_render_ctx_id(struct i915_perf_stream *stream)
{
	struct drm_i915_private *dev_priv = stream->dev_priv;

1212 1213 1214 1215
	if (i915.enable_execlists) {
		dev_priv->perf.oa.specific_ctx_id = INVALID_CTX_ID;
	} else {
		struct intel_engine_cs *engine = dev_priv->engine[RCS];
1216

1217
		mutex_lock(&dev_priv->drm.struct_mutex);
1218

1219 1220 1221 1222 1223
		dev_priv->perf.oa.specific_ctx_id = INVALID_CTX_ID;
		engine->context_unpin(engine, stream->ctx);

		mutex_unlock(&dev_priv->drm.struct_mutex);
	}
1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246
}

static void
free_oa_buffer(struct drm_i915_private *i915)
{
	mutex_lock(&i915->drm.struct_mutex);

	i915_gem_object_unpin_map(i915->perf.oa.oa_buffer.vma->obj);
	i915_vma_unpin(i915->perf.oa.oa_buffer.vma);
	i915_gem_object_put(i915->perf.oa.oa_buffer.vma->obj);

	i915->perf.oa.oa_buffer.vma = NULL;
	i915->perf.oa.oa_buffer.vaddr = NULL;

	mutex_unlock(&i915->drm.struct_mutex);
}

static void i915_oa_stream_destroy(struct i915_perf_stream *stream)
{
	struct drm_i915_private *dev_priv = stream->dev_priv;

	BUG_ON(stream != dev_priv->perf.oa.exclusive_stream);

1247 1248 1249 1250 1251 1252
	/*
	 * Unset exclusive_stream first, it might be checked while
	 * disabling the metric set on gen8+.
	 */
	dev_priv->perf.oa.exclusive_stream = NULL;

1253 1254 1255 1256 1257 1258 1259 1260 1261 1262
	dev_priv->perf.oa.ops.disable_metric_set(dev_priv);

	free_oa_buffer(dev_priv);

	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
	intel_runtime_pm_put(dev_priv);

	if (stream->ctx)
		oa_put_render_ctx_id(stream);

1263 1264 1265 1266
	if (dev_priv->perf.oa.spurious_report_rs.missed) {
		DRM_NOTE("%d spurious OA report notices suppressed due to ratelimiting\n",
			 dev_priv->perf.oa.spurious_report_rs.missed);
	}
1267 1268 1269 1270 1271
}

static void gen7_init_oa_buffer(struct drm_i915_private *dev_priv)
{
	u32 gtt_offset = i915_ggtt_offset(dev_priv->perf.oa.oa_buffer.vma);
1272 1273 1274
	unsigned long flags;

	spin_lock_irqsave(&dev_priv->perf.oa.oa_buffer.ptr_lock, flags);
1275 1276 1277 1278 1279

	/* Pre-DevBDW: OABUFFER must be set with counters off,
	 * before OASTATUS1, but after OASTATUS2
	 */
	I915_WRITE(GEN7_OASTATUS2, gtt_offset | OA_MEM_SELECT_GGTT); /* head */
1280 1281
	dev_priv->perf.oa.oa_buffer.head = gtt_offset;

1282
	I915_WRITE(GEN7_OABUFFER, gtt_offset);
1283

1284 1285
	I915_WRITE(GEN7_OASTATUS1, gtt_offset | OABUFFER_SIZE_16M); /* tail */

1286 1287 1288 1289 1290 1291
	/* Mark that we need updated tail pointers to read from... */
	dev_priv->perf.oa.oa_buffer.tails[0].offset = INVALID_TAIL_PTR;
	dev_priv->perf.oa.oa_buffer.tails[1].offset = INVALID_TAIL_PTR;

	spin_unlock_irqrestore(&dev_priv->perf.oa.oa_buffer.ptr_lock, flags);

1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316
	/* On Haswell we have to track which OASTATUS1 flags we've
	 * already seen since they can't be cleared while periodic
	 * sampling is enabled.
	 */
	dev_priv->perf.oa.gen7_latched_oastatus1 = 0;

	/* NB: although the OA buffer will initially be allocated
	 * zeroed via shmfs (and so this memset is redundant when
	 * first allocating), we may re-init the OA buffer, either
	 * when re-enabling a stream or in error/reset paths.
	 *
	 * The reason we clear the buffer for each re-init is for the
	 * sanity check in gen7_append_oa_reports() that looks at the
	 * report-id field to make sure it's non-zero which relies on
	 * the assumption that new reports are being written to zeroed
	 * memory...
	 */
	memset(dev_priv->perf.oa.oa_buffer.vaddr, 0, OA_BUFFER_SIZE);

	/* Maybe make ->pollin per-stream state if we support multiple
	 * concurrent streams in the future.
	 */
	dev_priv->perf.oa.pollin = false;
}

1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375
static void gen8_init_oa_buffer(struct drm_i915_private *dev_priv)
{
	u32 gtt_offset = i915_ggtt_offset(dev_priv->perf.oa.oa_buffer.vma);
	unsigned long flags;

	spin_lock_irqsave(&dev_priv->perf.oa.oa_buffer.ptr_lock, flags);

	I915_WRITE(GEN8_OASTATUS, 0);
	I915_WRITE(GEN8_OAHEADPTR, gtt_offset);
	dev_priv->perf.oa.oa_buffer.head = gtt_offset;

	I915_WRITE(GEN8_OABUFFER_UDW, 0);

	/*
	 * PRM says:
	 *
	 *  "This MMIO must be set before the OATAILPTR
	 *  register and after the OAHEADPTR register. This is
	 *  to enable proper functionality of the overflow
	 *  bit."
	 */
	I915_WRITE(GEN8_OABUFFER, gtt_offset |
		   OABUFFER_SIZE_16M | OA_MEM_SELECT_GGTT);
	I915_WRITE(GEN8_OATAILPTR, gtt_offset & GEN8_OATAILPTR_MASK);

	/* Mark that we need updated tail pointers to read from... */
	dev_priv->perf.oa.oa_buffer.tails[0].offset = INVALID_TAIL_PTR;
	dev_priv->perf.oa.oa_buffer.tails[1].offset = INVALID_TAIL_PTR;

	/*
	 * Reset state used to recognise context switches, affecting which
	 * reports we will forward to userspace while filtering for a single
	 * context.
	 */
	dev_priv->perf.oa.oa_buffer.last_ctx_id = INVALID_CTX_ID;

	spin_unlock_irqrestore(&dev_priv->perf.oa.oa_buffer.ptr_lock, flags);

	/*
	 * NB: although the OA buffer will initially be allocated
	 * zeroed via shmfs (and so this memset is redundant when
	 * first allocating), we may re-init the OA buffer, either
	 * when re-enabling a stream or in error/reset paths.
	 *
	 * The reason we clear the buffer for each re-init is for the
	 * sanity check in gen8_append_oa_reports() that looks at the
	 * reason field to make sure it's non-zero which relies on
	 * the assumption that new reports are being written to zeroed
	 * memory...
	 */
	memset(dev_priv->perf.oa.oa_buffer.vaddr, 0, OA_BUFFER_SIZE);

	/*
	 * Maybe make ->pollin per-stream state if we support multiple
	 * concurrent streams in the future.
	 */
	dev_priv->perf.oa.pollin = false;
}

1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391
static int alloc_oa_buffer(struct drm_i915_private *dev_priv)
{
	struct drm_i915_gem_object *bo;
	struct i915_vma *vma;
	int ret;

	if (WARN_ON(dev_priv->perf.oa.oa_buffer.vma))
		return -ENODEV;

	ret = i915_mutex_lock_interruptible(&dev_priv->drm);
	if (ret)
		return ret;

	BUILD_BUG_ON_NOT_POWER_OF_2(OA_BUFFER_SIZE);
	BUILD_BUG_ON(OA_BUFFER_SIZE < SZ_128K || OA_BUFFER_SIZE > SZ_16M);

1392
	bo = i915_gem_object_create(dev_priv, OA_BUFFER_SIZE);
1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455
	if (IS_ERR(bo)) {
		DRM_ERROR("Failed to allocate OA buffer\n");
		ret = PTR_ERR(bo);
		goto unlock;
	}

	ret = i915_gem_object_set_cache_level(bo, I915_CACHE_LLC);
	if (ret)
		goto err_unref;

	/* PreHSW required 512K alignment, HSW requires 16M */
	vma = i915_gem_object_ggtt_pin(bo, NULL, 0, SZ_16M, 0);
	if (IS_ERR(vma)) {
		ret = PTR_ERR(vma);
		goto err_unref;
	}
	dev_priv->perf.oa.oa_buffer.vma = vma;

	dev_priv->perf.oa.oa_buffer.vaddr =
		i915_gem_object_pin_map(bo, I915_MAP_WB);
	if (IS_ERR(dev_priv->perf.oa.oa_buffer.vaddr)) {
		ret = PTR_ERR(dev_priv->perf.oa.oa_buffer.vaddr);
		goto err_unpin;
	}

	dev_priv->perf.oa.ops.init_oa_buffer(dev_priv);

	DRM_DEBUG_DRIVER("OA Buffer initialized, gtt offset = 0x%x, vaddr = %p\n",
			 i915_ggtt_offset(dev_priv->perf.oa.oa_buffer.vma),
			 dev_priv->perf.oa.oa_buffer.vaddr);

	goto unlock;

err_unpin:
	__i915_vma_unpin(vma);

err_unref:
	i915_gem_object_put(bo);

	dev_priv->perf.oa.oa_buffer.vaddr = NULL;
	dev_priv->perf.oa.oa_buffer.vma = NULL;

unlock:
	mutex_unlock(&dev_priv->drm.struct_mutex);
	return ret;
}

static void config_oa_regs(struct drm_i915_private *dev_priv,
			   const struct i915_oa_reg *regs,
			   int n_regs)
{
	int i;

	for (i = 0; i < n_regs; i++) {
		const struct i915_oa_reg *reg = regs + i;

		I915_WRITE(reg->addr, reg->value);
	}
}

static int hsw_enable_metric_set(struct drm_i915_private *dev_priv)
{
	int ret = i915_oa_select_metric_set_hsw(dev_priv);
1456
	int i;
1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477

	if (ret)
		return ret;

	I915_WRITE(GDT_CHICKEN_BITS, (I915_READ(GDT_CHICKEN_BITS) |
				      GT_NOA_ENABLE));

	/* PRM:
	 *
	 * OA unit is using “crclk” for its functionality. When trunk
	 * level clock gating takes place, OA clock would be gated,
	 * unable to count the events from non-render clock domain.
	 * Render clock gating must be disabled when OA is enabled to
	 * count the events from non-render domain. Unit level clock
	 * gating for RCS should also be disabled.
	 */
	I915_WRITE(GEN7_MISCCPCTL, (I915_READ(GEN7_MISCCPCTL) &
				    ~GEN7_DOP_CLOCK_GATE_ENABLE));
	I915_WRITE(GEN6_UCGCTL1, (I915_READ(GEN6_UCGCTL1) |
				  GEN6_CSUNIT_CLOCK_GATE_DISABLE));

1478 1479 1480 1481
	for (i = 0; i < dev_priv->perf.oa.n_mux_configs; i++) {
		config_oa_regs(dev_priv, dev_priv->perf.oa.mux_regs[i],
			       dev_priv->perf.oa.mux_regs_lens[i]);
	}
1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522

	/* It apparently takes a fairly long time for a new MUX
	 * configuration to be be applied after these register writes.
	 * This delay duration was derived empirically based on the
	 * render_basic config but hopefully it covers the maximum
	 * configuration latency.
	 *
	 * As a fallback, the checks in _append_oa_reports() to skip
	 * invalid OA reports do also seem to work to discard reports
	 * generated before this config has completed - albeit not
	 * silently.
	 *
	 * Unfortunately this is essentially a magic number, since we
	 * don't currently know of a reliable mechanism for predicting
	 * how long the MUX config will take to apply and besides
	 * seeing invalid reports we don't know of a reliable way to
	 * explicitly check that the MUX config has landed.
	 *
	 * It's even possible we've miss characterized the underlying
	 * problem - it just seems like the simplest explanation why
	 * a delay at this location would mitigate any invalid reports.
	 */
	usleep_range(15000, 20000);

	config_oa_regs(dev_priv, dev_priv->perf.oa.b_counter_regs,
		       dev_priv->perf.oa.b_counter_regs_len);

	return 0;
}

static void hsw_disable_metric_set(struct drm_i915_private *dev_priv)
{
	I915_WRITE(GEN6_UCGCTL1, (I915_READ(GEN6_UCGCTL1) &
				  ~GEN6_CSUNIT_CLOCK_GATE_DISABLE));
	I915_WRITE(GEN7_MISCCPCTL, (I915_READ(GEN7_MISCCPCTL) |
				    GEN7_DOP_CLOCK_GATE_ENABLE));

	I915_WRITE(GDT_CHICKEN_BITS, (I915_READ(GDT_CHICKEN_BITS) &
				      ~GT_NOA_ENABLE));
}

1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806
/*
 * NB: It must always remain pointer safe to run this even if the OA unit
 * has been disabled.
 *
 * It's fine to put out-of-date values into these per-context registers
 * in the case that the OA unit has been disabled.
 */
static void gen8_update_reg_state_unlocked(struct i915_gem_context *ctx,
					   u32 *reg_state)
{
	struct drm_i915_private *dev_priv = ctx->i915;
	const struct i915_oa_reg *flex_regs = dev_priv->perf.oa.flex_regs;
	int n_flex_regs = dev_priv->perf.oa.flex_regs_len;
	u32 ctx_oactxctrl = dev_priv->perf.oa.ctx_oactxctrl_offset;
	u32 ctx_flexeu0 = dev_priv->perf.oa.ctx_flexeu0_offset;
	/* The MMIO offsets for Flex EU registers aren't contiguous */
	u32 flex_mmio[] = {
		i915_mmio_reg_offset(EU_PERF_CNTL0),
		i915_mmio_reg_offset(EU_PERF_CNTL1),
		i915_mmio_reg_offset(EU_PERF_CNTL2),
		i915_mmio_reg_offset(EU_PERF_CNTL3),
		i915_mmio_reg_offset(EU_PERF_CNTL4),
		i915_mmio_reg_offset(EU_PERF_CNTL5),
		i915_mmio_reg_offset(EU_PERF_CNTL6),
	};
	int i;

	reg_state[ctx_oactxctrl] = i915_mmio_reg_offset(GEN8_OACTXCONTROL);
	reg_state[ctx_oactxctrl+1] = (dev_priv->perf.oa.period_exponent <<
				      GEN8_OA_TIMER_PERIOD_SHIFT) |
				     (dev_priv->perf.oa.periodic ?
				      GEN8_OA_TIMER_ENABLE : 0) |
				     GEN8_OA_COUNTER_RESUME;

	for (i = 0; i < ARRAY_SIZE(flex_mmio); i++) {
		u32 state_offset = ctx_flexeu0 + i * 2;
		u32 mmio = flex_mmio[i];

		/*
		 * This arbitrary default will select the 'EU FPU0 Pipeline
		 * Active' event. In the future it's anticipated that there
		 * will be an explicit 'No Event' we can select, but not yet...
		 */
		u32 value = 0;
		int j;

		for (j = 0; j < n_flex_regs; j++) {
			if (i915_mmio_reg_offset(flex_regs[j].addr) == mmio) {
				value = flex_regs[j].value;
				break;
			}
		}

		reg_state[state_offset] = mmio;
		reg_state[state_offset+1] = value;
	}
}

/*
 * Same as gen8_update_reg_state_unlocked only through the batchbuffer. This
 * is only used by the kernel context.
 */
static int gen8_emit_oa_config(struct drm_i915_gem_request *req)
{
	struct drm_i915_private *dev_priv = req->i915;
	const struct i915_oa_reg *flex_regs = dev_priv->perf.oa.flex_regs;
	int n_flex_regs = dev_priv->perf.oa.flex_regs_len;
	/* The MMIO offsets for Flex EU registers aren't contiguous */
	u32 flex_mmio[] = {
		i915_mmio_reg_offset(EU_PERF_CNTL0),
		i915_mmio_reg_offset(EU_PERF_CNTL1),
		i915_mmio_reg_offset(EU_PERF_CNTL2),
		i915_mmio_reg_offset(EU_PERF_CNTL3),
		i915_mmio_reg_offset(EU_PERF_CNTL4),
		i915_mmio_reg_offset(EU_PERF_CNTL5),
		i915_mmio_reg_offset(EU_PERF_CNTL6),
	};
	u32 *cs;
	int i;

	cs = intel_ring_begin(req, n_flex_regs * 2 + 4);
	if (IS_ERR(cs))
		return PTR_ERR(cs);

	*cs++ = MI_LOAD_REGISTER_IMM(n_flex_regs + 1);

	*cs++ = i915_mmio_reg_offset(GEN8_OACTXCONTROL);
	*cs++ = (dev_priv->perf.oa.period_exponent << GEN8_OA_TIMER_PERIOD_SHIFT) |
		(dev_priv->perf.oa.periodic ? GEN8_OA_TIMER_ENABLE : 0) |
		GEN8_OA_COUNTER_RESUME;

	for (i = 0; i < ARRAY_SIZE(flex_mmio); i++) {
		u32 mmio = flex_mmio[i];

		/*
		 * This arbitrary default will select the 'EU FPU0 Pipeline
		 * Active' event. In the future it's anticipated that there
		 * will be an explicit 'No Event' we can select, but not
		 * yet...
		 */
		u32 value = 0;
		int j;

		for (j = 0; j < n_flex_regs; j++) {
			if (i915_mmio_reg_offset(flex_regs[j].addr) == mmio) {
				value = flex_regs[j].value;
				break;
			}
		}

		*cs++ = mmio;
		*cs++ = value;
	}

	*cs++ = MI_NOOP;
	intel_ring_advance(req, cs);

	return 0;
}

static int gen8_switch_to_updated_kernel_context(struct drm_i915_private *dev_priv)
{
	struct intel_engine_cs *engine = dev_priv->engine[RCS];
	struct i915_gem_timeline *timeline;
	struct drm_i915_gem_request *req;
	int ret;

	lockdep_assert_held(&dev_priv->drm.struct_mutex);

	i915_gem_retire_requests(dev_priv);

	req = i915_gem_request_alloc(engine, dev_priv->kernel_context);
	if (IS_ERR(req))
		return PTR_ERR(req);

	ret = gen8_emit_oa_config(req);
	if (ret) {
		i915_add_request(req);
		return ret;
	}

	/* Queue this switch after all other activity */
	list_for_each_entry(timeline, &dev_priv->gt.timelines, link) {
		struct drm_i915_gem_request *prev;
		struct intel_timeline *tl;

		tl = &timeline->engine[engine->id];
		prev = i915_gem_active_raw(&tl->last_request,
					   &dev_priv->drm.struct_mutex);
		if (prev)
			i915_sw_fence_await_sw_fence_gfp(&req->submit,
							 &prev->submit,
							 GFP_KERNEL);
	}

	ret = i915_switch_context(req);
	i915_add_request(req);

	return ret;
}

/*
 * Manages updating the per-context aspects of the OA stream
 * configuration across all contexts.
 *
 * The awkward consideration here is that OACTXCONTROL controls the
 * exponent for periodic sampling which is primarily used for system
 * wide profiling where we'd like a consistent sampling period even in
 * the face of context switches.
 *
 * Our approach of updating the register state context (as opposed to
 * say using a workaround batch buffer) ensures that the hardware
 * won't automatically reload an out-of-date timer exponent even
 * transiently before a WA BB could be parsed.
 *
 * This function needs to:
 * - Ensure the currently running context's per-context OA state is
 *   updated
 * - Ensure that all existing contexts will have the correct per-context
 *   OA state if they are scheduled for use.
 * - Ensure any new contexts will be initialized with the correct
 *   per-context OA state.
 *
 * Note: it's only the RCS/Render context that has any OA state.
 */
static int gen8_configure_all_contexts(struct drm_i915_private *dev_priv,
				       bool interruptible)
{
	struct i915_gem_context *ctx;
	int ret;
	unsigned int wait_flags = I915_WAIT_LOCKED;

	if (interruptible) {
		ret = i915_mutex_lock_interruptible(&dev_priv->drm);
		if (ret)
			return ret;

		wait_flags |= I915_WAIT_INTERRUPTIBLE;
	} else {
		mutex_lock(&dev_priv->drm.struct_mutex);
	}

	/* Switch away from any user context. */
	ret = gen8_switch_to_updated_kernel_context(dev_priv);
	if (ret)
		goto out;

	/*
	 * The OA register config is setup through the context image. This image
	 * might be written to by the GPU on context switch (in particular on
	 * lite-restore). This means we can't safely update a context's image,
	 * if this context is scheduled/submitted to run on the GPU.
	 *
	 * We could emit the OA register config through the batch buffer but
	 * this might leave small interval of time where the OA unit is
	 * configured at an invalid sampling period.
	 *
	 * So far the best way to work around this issue seems to be draining
	 * the GPU from any submitted work.
	 */
	ret = i915_gem_wait_for_idle(dev_priv, wait_flags);
	if (ret)
		goto out;

	/* Update all contexts now that we've stalled the submission. */
	list_for_each_entry(ctx, &dev_priv->context_list, link) {
		struct intel_context *ce = &ctx->engine[RCS];
		u32 *regs;

		/* OA settings will be set upon first use */
		if (!ce->state)
			continue;

		regs = i915_gem_object_pin_map(ce->state->obj, I915_MAP_WB);
		if (IS_ERR(regs)) {
			ret = PTR_ERR(regs);
			goto out;
		}

		ce->state->obj->mm.dirty = true;
		regs += LRC_STATE_PN * PAGE_SIZE / sizeof(*regs);

		gen8_update_reg_state_unlocked(ctx, regs);

		i915_gem_object_unpin_map(ce->state->obj);
	}

 out:
	mutex_unlock(&dev_priv->drm.struct_mutex);

	return ret;
}

static int gen8_enable_metric_set(struct drm_i915_private *dev_priv)
{
	int ret = dev_priv->perf.oa.ops.select_metric_set(dev_priv);
	int i;

	if (ret)
		return ret;

	/*
	 * We disable slice/unslice clock ratio change reports on SKL since
	 * they are too noisy. The HW generates a lot of redundant reports
	 * where the ratio hasn't really changed causing a lot of redundant
	 * work to processes and increasing the chances we'll hit buffer
	 * overruns.
	 *
	 * Although we don't currently use the 'disable overrun' OABUFFER
	 * feature it's worth noting that clock ratio reports have to be
	 * disabled before considering to use that feature since the HW doesn't
	 * correctly block these reports.
	 *
	 * Currently none of the high-level metrics we have depend on knowing
	 * this ratio to normalize.
	 *
	 * Note: This register is not power context saved and restored, but
	 * that's OK considering that we disable RC6 while the OA unit is
	 * enabled.
	 *
	 * The _INCLUDE_CLK_RATIO bit allows the slice/unslice frequency to
	 * be read back from automatically triggered reports, as part of the
	 * RPT_ID field.
	 */
1807 1808
	if (IS_SKYLAKE(dev_priv) || IS_BROXTON(dev_priv) ||
	    IS_KABYLAKE(dev_priv)) {
1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841
		I915_WRITE(GEN8_OA_DEBUG,
			   _MASKED_BIT_ENABLE(GEN9_OA_DEBUG_DISABLE_CLK_RATIO_REPORTS |
					      GEN9_OA_DEBUG_INCLUDE_CLK_RATIO));
	}

	/*
	 * Update all contexts prior writing the mux configurations as we need
	 * to make sure all slices/subslices are ON before writing to NOA
	 * registers.
	 */
	ret = gen8_configure_all_contexts(dev_priv, true);
	if (ret)
		return ret;

	I915_WRITE(GDT_CHICKEN_BITS, 0xA0);
	for (i = 0; i < dev_priv->perf.oa.n_mux_configs; i++) {
		config_oa_regs(dev_priv, dev_priv->perf.oa.mux_regs[i],
			       dev_priv->perf.oa.mux_regs_lens[i]);
	}
	I915_WRITE(GDT_CHICKEN_BITS, 0x80);

	config_oa_regs(dev_priv, dev_priv->perf.oa.b_counter_regs,
		       dev_priv->perf.oa.b_counter_regs_len);

	return 0;
}

static void gen8_disable_metric_set(struct drm_i915_private *dev_priv)
{
	/* Reset all contexts' slices/subslices configurations. */
	gen8_configure_all_contexts(dev_priv, false);
}

1842
static void gen7_oa_enable(struct drm_i915_private *dev_priv)
1843
{
1844 1845 1846 1847 1848 1849 1850 1851 1852 1853
	/*
	 * Reset buf pointers so we don't forward reports from before now.
	 *
	 * Think carefully if considering trying to avoid this, since it
	 * also ensures status flags and the buffer itself are cleared
	 * in error paths, and we have checks for invalid reports based
	 * on the assumption that certain fields are written to zeroed
	 * memory which this helps maintains.
	 */
	gen7_init_oa_buffer(dev_priv);
1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875

	if (dev_priv->perf.oa.exclusive_stream->enabled) {
		struct i915_gem_context *ctx =
			dev_priv->perf.oa.exclusive_stream->ctx;
		u32 ctx_id = dev_priv->perf.oa.specific_ctx_id;

		bool periodic = dev_priv->perf.oa.periodic;
		u32 period_exponent = dev_priv->perf.oa.period_exponent;
		u32 report_format = dev_priv->perf.oa.oa_buffer.format;

		I915_WRITE(GEN7_OACONTROL,
			   (ctx_id & GEN7_OACONTROL_CTX_MASK) |
			   (period_exponent <<
			    GEN7_OACONTROL_TIMER_PERIOD_SHIFT) |
			   (periodic ? GEN7_OACONTROL_TIMER_ENABLE : 0) |
			   (report_format << GEN7_OACONTROL_FORMAT_SHIFT) |
			   (ctx ? GEN7_OACONTROL_PER_CTX_ENABLE : 0) |
			   GEN7_OACONTROL_ENABLE);
	} else
		I915_WRITE(GEN7_OACONTROL, 0);
}

1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900
static void gen8_oa_enable(struct drm_i915_private *dev_priv)
{
	u32 report_format = dev_priv->perf.oa.oa_buffer.format;

	/*
	 * Reset buf pointers so we don't forward reports from before now.
	 *
	 * Think carefully if considering trying to avoid this, since it
	 * also ensures status flags and the buffer itself are cleared
	 * in error paths, and we have checks for invalid reports based
	 * on the assumption that certain fields are written to zeroed
	 * memory which this helps maintains.
	 */
	gen8_init_oa_buffer(dev_priv);

	/*
	 * Note: we don't rely on the hardware to perform single context
	 * filtering and instead filter on the cpu based on the context-id
	 * field of reports
	 */
	I915_WRITE(GEN8_OACONTROL, (report_format <<
				    GEN8_OA_REPORT_FORMAT_SHIFT) |
				   GEN8_OA_COUNTER_ENABLE);
}

1901 1902 1903 1904 1905 1906 1907 1908 1909
/**
 * i915_oa_stream_enable - handle `I915_PERF_IOCTL_ENABLE` for OA stream
 * @stream: An i915 perf stream opened for OA metrics
 *
 * [Re]enables hardware periodic sampling according to the period configured
 * when opening the stream. This also starts a hrtimer that will periodically
 * check for data in the circular OA buffer for notifying userspace (e.g.
 * during a read() or poll()).
 */
1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926
static void i915_oa_stream_enable(struct i915_perf_stream *stream)
{
	struct drm_i915_private *dev_priv = stream->dev_priv;

	dev_priv->perf.oa.ops.oa_enable(dev_priv);

	if (dev_priv->perf.oa.periodic)
		hrtimer_start(&dev_priv->perf.oa.poll_check_timer,
			      ns_to_ktime(POLL_PERIOD),
			      HRTIMER_MODE_REL_PINNED);
}

static void gen7_oa_disable(struct drm_i915_private *dev_priv)
{
	I915_WRITE(GEN7_OACONTROL, 0);
}

1927 1928 1929 1930 1931
static void gen8_oa_disable(struct drm_i915_private *dev_priv)
{
	I915_WRITE(GEN8_OACONTROL, 0);
}

1932 1933 1934 1935 1936 1937 1938 1939
/**
 * i915_oa_stream_disable - handle `I915_PERF_IOCTL_DISABLE` for OA stream
 * @stream: An i915 perf stream opened for OA metrics
 *
 * Stops the OA unit from periodically writing counter reports into the
 * circular OA buffer. This also stops the hrtimer that periodically checks for
 * data in the circular OA buffer, for notifying userspace.
 */
1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956
static void i915_oa_stream_disable(struct i915_perf_stream *stream)
{
	struct drm_i915_private *dev_priv = stream->dev_priv;

	dev_priv->perf.oa.ops.oa_disable(dev_priv);

	if (dev_priv->perf.oa.periodic)
		hrtimer_cancel(&dev_priv->perf.oa.poll_check_timer);
}

static const struct i915_perf_stream_ops i915_oa_stream_ops = {
	.destroy = i915_oa_stream_destroy,
	.enable = i915_oa_stream_enable,
	.disable = i915_oa_stream_disable,
	.wait_unlocked = i915_oa_wait_unlocked,
	.poll_wait = i915_oa_poll_wait,
	.read = i915_oa_read,
1957 1958
};

1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976
/**
 * i915_oa_stream_init - validate combined props for OA stream and init
 * @stream: An i915 perf stream
 * @param: The open parameters passed to `DRM_I915_PERF_OPEN`
 * @props: The property state that configures stream (individually validated)
 *
 * While read_properties_unlocked() validates properties in isolation it
 * doesn't ensure that the combination necessarily makes sense.
 *
 * At this point it has been determined that userspace wants a stream of
 * OA metrics, but still we need to further validate the combined
 * properties are OK.
 *
 * If the configuration makes sense then we can allocate memory for
 * a circular OA buffer and apply the requested metric set configuration.
 *
 * Returns: zero on success or a negative error code.
 */
1977 1978 1979 1980 1981 1982 1983 1984
static int i915_oa_stream_init(struct i915_perf_stream *stream,
			       struct drm_i915_perf_open_param *param,
			       struct perf_open_properties *props)
{
	struct drm_i915_private *dev_priv = stream->dev_priv;
	int format_size;
	int ret;

1985 1986 1987 1988 1989
	/* If the sysfs metrics/ directory wasn't registered for some
	 * reason then don't let userspace try their luck with config
	 * IDs
	 */
	if (!dev_priv->perf.metrics_kobj) {
1990
		DRM_DEBUG("OA metrics weren't advertised via sysfs\n");
1991 1992 1993
		return -EINVAL;
	}

1994
	if (!(props->sample_flags & SAMPLE_OA_REPORT)) {
1995
		DRM_DEBUG("Only OA report sampling supported\n");
1996 1997 1998 1999
		return -EINVAL;
	}

	if (!dev_priv->perf.oa.ops.init_oa_buffer) {
2000
		DRM_DEBUG("OA unit not supported\n");
2001 2002 2003 2004 2005 2006 2007 2008
		return -ENODEV;
	}

	/* To avoid the complexity of having to accurately filter
	 * counter reports and marshal to the appropriate client
	 * we currently only allow exclusive access
	 */
	if (dev_priv->perf.oa.exclusive_stream) {
2009
		DRM_DEBUG("OA unit already in use\n");
2010 2011 2012 2013
		return -EBUSY;
	}

	if (!props->metrics_set) {
2014
		DRM_DEBUG("OA metric set not specified\n");
2015 2016 2017 2018
		return -EINVAL;
	}

	if (!props->oa_format) {
2019
		DRM_DEBUG("OA report format not specified\n");
2020 2021 2022
		return -EINVAL;
	}

2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042
	/* We set up some ratelimit state to potentially throttle any _NOTES
	 * about spurious, invalid OA reports which we don't forward to
	 * userspace.
	 *
	 * The initialization is associated with opening the stream (not driver
	 * init) considering we print a _NOTE about any throttling when closing
	 * the stream instead of waiting until driver _fini which no one would
	 * ever see.
	 *
	 * Using the same limiting factors as printk_ratelimit()
	 */
	ratelimit_state_init(&dev_priv->perf.oa.spurious_report_rs,
			     5 * HZ, 10);
	/* Since we use a DRM_NOTE for spurious reports it would be
	 * inconsistent to let __ratelimit() automatically print a warning for
	 * throttling.
	 */
	ratelimit_set_flags(&dev_priv->perf.oa.spurious_report_rs,
			    RATELIMIT_MSG_ON_RELEASE);

2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059
	stream->sample_size = sizeof(struct drm_i915_perf_record_header);

	format_size = dev_priv->perf.oa.oa_formats[props->oa_format].size;

	stream->sample_flags |= SAMPLE_OA_REPORT;
	stream->sample_size += format_size;

	dev_priv->perf.oa.oa_buffer.format_size = format_size;
	if (WARN_ON(dev_priv->perf.oa.oa_buffer.format_size == 0))
		return -EINVAL;

	dev_priv->perf.oa.oa_buffer.format =
		dev_priv->perf.oa.oa_formats[props->oa_format].format;

	dev_priv->perf.oa.metrics_set = props->metrics_set;

	dev_priv->perf.oa.periodic = props->oa_periodic;
2060
	if (dev_priv->perf.oa.periodic)
2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109
		dev_priv->perf.oa.period_exponent = props->oa_period_exponent;

	if (stream->ctx) {
		ret = oa_get_render_ctx_id(stream);
		if (ret)
			return ret;
	}

	ret = alloc_oa_buffer(dev_priv);
	if (ret)
		goto err_oa_buf_alloc;

	/* PRM - observability performance counters:
	 *
	 *   OACONTROL, performance counter enable, note:
	 *
	 *   "When this bit is set, in order to have coherent counts,
	 *   RC6 power state and trunk clock gating must be disabled.
	 *   This can be achieved by programming MMIO registers as
	 *   0xA094=0 and 0xA090[31]=1"
	 *
	 *   In our case we are expecting that taking pm + FORCEWAKE
	 *   references will effectively disable RC6.
	 */
	intel_runtime_pm_get(dev_priv);
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);

	ret = dev_priv->perf.oa.ops.enable_metric_set(dev_priv);
	if (ret)
		goto err_enable;

	stream->ops = &i915_oa_stream_ops;

	dev_priv->perf.oa.exclusive_stream = stream;

	return 0;

err_enable:
	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
	intel_runtime_pm_put(dev_priv);
	free_oa_buffer(dev_priv);

err_oa_buf_alloc:
	if (stream->ctx)
		oa_put_render_ctx_id(stream);

	return ret;
}

2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124
void i915_oa_init_reg_state(struct intel_engine_cs *engine,
			    struct i915_gem_context *ctx,
			    u32 *reg_state)
{
	struct drm_i915_private *dev_priv = engine->i915;

	if (engine->id != RCS)
		return;

	if (!dev_priv->perf.initialized)
		return;

	gen8_update_reg_state_unlocked(ctx, reg_state);
}

2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149
/**
 * i915_perf_read_locked - &i915_perf_stream_ops->read with error normalisation
 * @stream: An i915 perf stream
 * @file: An i915 perf stream file
 * @buf: destination buffer given by userspace
 * @count: the number of bytes userspace wants to read
 * @ppos: (inout) file seek position (unused)
 *
 * Besides wrapping &i915_perf_stream_ops->read this provides a common place to
 * ensure that if we've successfully copied any data then reporting that takes
 * precedence over any internal error status, so the data isn't lost.
 *
 * For example ret will be -ENOSPC whenever there is more buffered data than
 * can be copied to userspace, but that's only interesting if we weren't able
 * to copy some data because it implies the userspace buffer is too small to
 * receive a single record (and we never split records).
 *
 * Another case with ret == -EFAULT is more of a grey area since it would seem
 * like bad form for userspace to ask us to overrun its buffer, but the user
 * knows best:
 *
 *   http://yarchive.net/comp/linux/partial_reads_writes.html
 *
 * Returns: The number of bytes copied or a negative error code on failure.
 */
2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167
static ssize_t i915_perf_read_locked(struct i915_perf_stream *stream,
				     struct file *file,
				     char __user *buf,
				     size_t count,
				     loff_t *ppos)
{
	/* Note we keep the offset (aka bytes read) separate from any
	 * error status so that the final check for whether we return
	 * the bytes read with a higher precedence than any error (see
	 * comment below) doesn't need to be handled/duplicated in
	 * stream->ops->read() implementations.
	 */
	size_t offset = 0;
	int ret = stream->ops->read(stream, buf, count, &offset);

	return offset ?: (ret ?: -EAGAIN);
}

2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185
/**
 * i915_perf_read - handles read() FOP for i915 perf stream FDs
 * @file: An i915 perf stream file
 * @buf: destination buffer given by userspace
 * @count: the number of bytes userspace wants to read
 * @ppos: (inout) file seek position (unused)
 *
 * The entry point for handling a read() on a stream file descriptor from
 * userspace. Most of the work is left to the i915_perf_read_locked() and
 * &i915_perf_stream_ops->read but to save having stream implementations (of
 * which we might have multiple later) we handle blocking read here.
 *
 * We can also consistently treat trying to read from a disabled stream
 * as an IO error so implementations can assume the stream is enabled
 * while reading.
 *
 * Returns: The number of bytes copied or a negative error code on failure.
 */
2186 2187 2188 2189 2190 2191 2192 2193 2194
static ssize_t i915_perf_read(struct file *file,
			      char __user *buf,
			      size_t count,
			      loff_t *ppos)
{
	struct i915_perf_stream *stream = file->private_data;
	struct drm_i915_private *dev_priv = stream->dev_priv;
	ssize_t ret;

2195 2196 2197 2198 2199 2200 2201
	/* To ensure it's handled consistently we simply treat all reads of a
	 * disabled stream as an error. In particular it might otherwise lead
	 * to a deadlock for blocking file descriptors...
	 */
	if (!stream->enabled)
		return -EIO;

2202
	if (!(file->f_flags & O_NONBLOCK)) {
2203 2204 2205 2206 2207 2208
		/* There's the small chance of false positives from
		 * stream->ops->wait_unlocked.
		 *
		 * E.g. with single context filtering since we only wait until
		 * oabuffer has >= 1 report we don't immediately know whether
		 * any reports really belong to the current context
2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225
		 */
		do {
			ret = stream->ops->wait_unlocked(stream);
			if (ret)
				return ret;

			mutex_lock(&dev_priv->perf.lock);
			ret = i915_perf_read_locked(stream, file,
						    buf, count, ppos);
			mutex_unlock(&dev_priv->perf.lock);
		} while (ret == -EAGAIN);
	} else {
		mutex_lock(&dev_priv->perf.lock);
		ret = i915_perf_read_locked(stream, file, buf, count, ppos);
		mutex_unlock(&dev_priv->perf.lock);
	}

2226 2227 2228 2229 2230 2231 2232 2233 2234
	/* We allow the poll checking to sometimes report false positive POLLIN
	 * events where we might actually report EAGAIN on read() if there's
	 * not really any data available. In this situation though we don't
	 * want to enter a busy loop between poll() reporting a POLLIN event
	 * and read() returning -EAGAIN. Clearing the oa.pollin state here
	 * effectively ensures we back off until the next hrtimer callback
	 * before reporting another POLLIN event.
	 */
	if (ret >= 0 || ret == -EAGAIN) {
2235 2236 2237 2238 2239 2240
		/* Maybe make ->pollin per-stream state if we support multiple
		 * concurrent streams in the future.
		 */
		dev_priv->perf.oa.pollin = false;
	}

2241 2242 2243
	return ret;
}

2244 2245 2246 2247 2248 2249
static enum hrtimer_restart oa_poll_check_timer_cb(struct hrtimer *hrtimer)
{
	struct drm_i915_private *dev_priv =
		container_of(hrtimer, typeof(*dev_priv),
			     perf.oa.poll_check_timer);

2250
	if (oa_buffer_check_unlocked(dev_priv)) {
2251 2252 2253 2254 2255 2256 2257 2258 2259
		dev_priv->perf.oa.pollin = true;
		wake_up(&dev_priv->perf.oa.poll_wq);
	}

	hrtimer_forward_now(hrtimer, ns_to_ktime(POLL_PERIOD));

	return HRTIMER_RESTART;
}

2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275
/**
 * i915_perf_poll_locked - poll_wait() with a suitable wait queue for stream
 * @dev_priv: i915 device instance
 * @stream: An i915 perf stream
 * @file: An i915 perf stream file
 * @wait: poll() state table
 *
 * For handling userspace polling on an i915 perf stream, this calls through to
 * &i915_perf_stream_ops->poll_wait to call poll_wait() with a wait queue that
 * will be woken for new stream data.
 *
 * Note: The &drm_i915_private->perf.lock mutex has been taken to serialize
 * with any non-file-operation driver hooks.
 *
 * Returns: any poll events that are ready without sleeping
 */
2276 2277
static unsigned int i915_perf_poll_locked(struct drm_i915_private *dev_priv,
					  struct i915_perf_stream *stream,
2278 2279 2280
					  struct file *file,
					  poll_table *wait)
{
2281
	unsigned int events = 0;
2282 2283 2284

	stream->ops->poll_wait(stream, file, wait);

2285 2286 2287 2288 2289 2290 2291 2292
	/* Note: we don't explicitly check whether there's something to read
	 * here since this path may be very hot depending on what else
	 * userspace is polling, or on the timeout in use. We rely solely on
	 * the hrtimer/oa_poll_check_timer_cb to notify us when there are
	 * samples to read.
	 */
	if (dev_priv->perf.oa.pollin)
		events |= POLLIN;
2293

2294
	return events;
2295 2296
}

2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309
/**
 * i915_perf_poll - call poll_wait() with a suitable wait queue for stream
 * @file: An i915 perf stream file
 * @wait: poll() state table
 *
 * For handling userspace polling on an i915 perf stream, this ensures
 * poll_wait() gets called with a wait queue that will be woken for new stream
 * data.
 *
 * Note: Implementation deferred to i915_perf_poll_locked()
 *
 * Returns: any poll events that are ready without sleeping
 */
2310 2311 2312 2313 2314 2315 2316
static unsigned int i915_perf_poll(struct file *file, poll_table *wait)
{
	struct i915_perf_stream *stream = file->private_data;
	struct drm_i915_private *dev_priv = stream->dev_priv;
	int ret;

	mutex_lock(&dev_priv->perf.lock);
2317
	ret = i915_perf_poll_locked(dev_priv, stream, file, wait);
2318 2319 2320 2321 2322
	mutex_unlock(&dev_priv->perf.lock);

	return ret;
}

2323 2324 2325 2326 2327 2328 2329 2330 2331 2332
/**
 * i915_perf_enable_locked - handle `I915_PERF_IOCTL_ENABLE` ioctl
 * @stream: A disabled i915 perf stream
 *
 * [Re]enables the associated capture of data for this stream.
 *
 * If a stream was previously enabled then there's currently no intention
 * to provide userspace any guarantee about the preservation of previously
 * buffered data.
 */
2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344
static void i915_perf_enable_locked(struct i915_perf_stream *stream)
{
	if (stream->enabled)
		return;

	/* Allow stream->ops->enable() to refer to this */
	stream->enabled = true;

	if (stream->ops->enable)
		stream->ops->enable(stream);
}

2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358
/**
 * i915_perf_disable_locked - handle `I915_PERF_IOCTL_DISABLE` ioctl
 * @stream: An enabled i915 perf stream
 *
 * Disables the associated capture of data for this stream.
 *
 * The intention is that disabling an re-enabling a stream will ideally be
 * cheaper than destroying and re-opening a stream with the same configuration,
 * though there are no formal guarantees about what state or buffered data
 * must be retained between disabling and re-enabling a stream.
 *
 * Note: while a stream is disabled it's considered an error for userspace
 * to attempt to read from the stream (-EIO).
 */
2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370
static void i915_perf_disable_locked(struct i915_perf_stream *stream)
{
	if (!stream->enabled)
		return;

	/* Allow stream->ops->disable() to refer to this */
	stream->enabled = false;

	if (stream->ops->disable)
		stream->ops->disable(stream);
}

2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382
/**
 * i915_perf_ioctl - support ioctl() usage with i915 perf stream FDs
 * @stream: An i915 perf stream
 * @cmd: the ioctl request
 * @arg: the ioctl data
 *
 * Note: The &drm_i915_private->perf.lock mutex has been taken to serialize
 * with any non-file-operation driver hooks.
 *
 * Returns: zero on success or a negative error code. Returns -EINVAL for
 * an unknown ioctl request.
 */
2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398
static long i915_perf_ioctl_locked(struct i915_perf_stream *stream,
				   unsigned int cmd,
				   unsigned long arg)
{
	switch (cmd) {
	case I915_PERF_IOCTL_ENABLE:
		i915_perf_enable_locked(stream);
		return 0;
	case I915_PERF_IOCTL_DISABLE:
		i915_perf_disable_locked(stream);
		return 0;
	}

	return -EINVAL;
}

2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409
/**
 * i915_perf_ioctl - support ioctl() usage with i915 perf stream FDs
 * @file: An i915 perf stream file
 * @cmd: the ioctl request
 * @arg: the ioctl data
 *
 * Implementation deferred to i915_perf_ioctl_locked().
 *
 * Returns: zero on success or a negative error code. Returns -EINVAL for
 * an unknown ioctl request.
 */
2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424
static long i915_perf_ioctl(struct file *file,
			    unsigned int cmd,
			    unsigned long arg)
{
	struct i915_perf_stream *stream = file->private_data;
	struct drm_i915_private *dev_priv = stream->dev_priv;
	long ret;

	mutex_lock(&dev_priv->perf.lock);
	ret = i915_perf_ioctl_locked(stream, cmd, arg);
	mutex_unlock(&dev_priv->perf.lock);

	return ret;
}

2425 2426 2427 2428 2429 2430 2431 2432 2433 2434
/**
 * i915_perf_destroy_locked - destroy an i915 perf stream
 * @stream: An i915 perf stream
 *
 * Frees all resources associated with the given i915 perf @stream, disabling
 * any associated data capture in the process.
 *
 * Note: The &drm_i915_private->perf.lock mutex has been taken to serialize
 * with any non-file-operation driver hooks.
 */
2435 2436 2437 2438 2439 2440 2441 2442 2443 2444
static void i915_perf_destroy_locked(struct i915_perf_stream *stream)
{
	if (stream->enabled)
		i915_perf_disable_locked(stream);

	if (stream->ops->destroy)
		stream->ops->destroy(stream);

	list_del(&stream->link);

2445 2446
	if (stream->ctx)
		i915_gem_context_put_unlocked(stream->ctx);
2447 2448 2449 2450

	kfree(stream);
}

2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461
/**
 * i915_perf_release - handles userspace close() of a stream file
 * @inode: anonymous inode associated with file
 * @file: An i915 perf stream file
 *
 * Cleans up any resources associated with an open i915 perf stream file.
 *
 * NB: close() can't really fail from the userspace point of view.
 *
 * Returns: zero on success or a negative error code.
 */
2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505
static int i915_perf_release(struct inode *inode, struct file *file)
{
	struct i915_perf_stream *stream = file->private_data;
	struct drm_i915_private *dev_priv = stream->dev_priv;

	mutex_lock(&dev_priv->perf.lock);
	i915_perf_destroy_locked(stream);
	mutex_unlock(&dev_priv->perf.lock);

	return 0;
}


static const struct file_operations fops = {
	.owner		= THIS_MODULE,
	.llseek		= no_llseek,
	.release	= i915_perf_release,
	.poll		= i915_perf_poll,
	.read		= i915_perf_read,
	.unlocked_ioctl	= i915_perf_ioctl,
};


static struct i915_gem_context *
lookup_context(struct drm_i915_private *dev_priv,
	       struct drm_i915_file_private *file_priv,
	       u32 ctx_user_handle)
{
	struct i915_gem_context *ctx;
	int ret;

	ret = i915_mutex_lock_interruptible(&dev_priv->drm);
	if (ret)
		return ERR_PTR(ret);

	ctx = i915_gem_context_lookup(file_priv, ctx_user_handle);
	if (!IS_ERR(ctx))
		i915_gem_context_get(ctx);

	mutex_unlock(&dev_priv->drm.struct_mutex);

	return ctx;
}

2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529
/**
 * i915_perf_open_ioctl_locked - DRM ioctl() for userspace to open a stream FD
 * @dev_priv: i915 device instance
 * @param: The open parameters passed to 'DRM_I915_PERF_OPEN`
 * @props: individually validated u64 property value pairs
 * @file: drm file
 *
 * See i915_perf_ioctl_open() for interface details.
 *
 * Implements further stream config validation and stream initialization on
 * behalf of i915_perf_open_ioctl() with the &drm_i915_private->perf.lock mutex
 * taken to serialize with any non-file-operation driver hooks.
 *
 * Note: at this point the @props have only been validated in isolation and
 * it's still necessary to validate that the combination of properties makes
 * sense.
 *
 * In the case where userspace is interested in OA unit metrics then further
 * config validation and stream initialization details will be handled by
 * i915_oa_stream_init(). The code here should only validate config state that
 * will be relevant to all stream types / backends.
 *
 * Returns: zero on success or a negative error code.
 */
2530 2531 2532 2533 2534 2535 2536 2537 2538
static int
i915_perf_open_ioctl_locked(struct drm_i915_private *dev_priv,
			    struct drm_i915_perf_open_param *param,
			    struct perf_open_properties *props,
			    struct drm_file *file)
{
	struct i915_gem_context *specific_ctx = NULL;
	struct i915_perf_stream *stream = NULL;
	unsigned long f_flags = 0;
2539
	bool privileged_op = true;
2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550
	int stream_fd;
	int ret;

	if (props->single_context) {
		u32 ctx_handle = props->ctx_handle;
		struct drm_i915_file_private *file_priv = file->driver_priv;

		specific_ctx = lookup_context(dev_priv, file_priv, ctx_handle);
		if (IS_ERR(specific_ctx)) {
			ret = PTR_ERR(specific_ctx);
			if (ret != -EINTR)
2551
				DRM_DEBUG("Failed to look up context with ID %u for opening perf stream\n",
2552 2553 2554 2555 2556
					  ctx_handle);
			goto err;
		}
	}

2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573
	/*
	 * On Haswell the OA unit supports clock gating off for a specific
	 * context and in this mode there's no visibility of metrics for the
	 * rest of the system, which we consider acceptable for a
	 * non-privileged client.
	 *
	 * For Gen8+ the OA unit no longer supports clock gating off for a
	 * specific context and the kernel can't securely stop the counters
	 * from updating as system-wide / global values. Even though we can
	 * filter reports based on the included context ID we can't block
	 * clients from seeing the raw / global counter values via
	 * MI_REPORT_PERF_COUNT commands and so consider it a privileged op to
	 * enable the OA unit by default.
	 */
	if (IS_HASWELL(dev_priv) && specific_ctx)
		privileged_op = false;

2574 2575 2576 2577 2578
	/* Similar to perf's kernel.perf_paranoid_cpu sysctl option
	 * we check a dev.i915.perf_stream_paranoid sysctl option
	 * to determine if it's ok to access system wide OA counters
	 * without CAP_SYS_ADMIN privileges.
	 */
2579
	if (privileged_op &&
2580
	    i915_perf_stream_paranoid && !capable(CAP_SYS_ADMIN)) {
2581
		DRM_DEBUG("Insufficient privileges to open system-wide i915 perf stream\n");
2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594
		ret = -EACCES;
		goto err_ctx;
	}

	stream = kzalloc(sizeof(*stream), GFP_KERNEL);
	if (!stream) {
		ret = -ENOMEM;
		goto err_ctx;
	}

	stream->dev_priv = dev_priv;
	stream->ctx = specific_ctx;

2595 2596 2597 2598 2599 2600 2601
	ret = i915_oa_stream_init(stream, param, props);
	if (ret)
		goto err_alloc;

	/* we avoid simply assigning stream->sample_flags = props->sample_flags
	 * to have _stream_init check the combination of sample flags more
	 * thoroughly, but still this is the expected result at this point.
2602
	 */
2603 2604
	if (WARN_ON(stream->sample_flags != props->sample_flags)) {
		ret = -ENODEV;
2605
		goto err_flags;
2606
	}
2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627

	list_add(&stream->link, &dev_priv->perf.streams);

	if (param->flags & I915_PERF_FLAG_FD_CLOEXEC)
		f_flags |= O_CLOEXEC;
	if (param->flags & I915_PERF_FLAG_FD_NONBLOCK)
		f_flags |= O_NONBLOCK;

	stream_fd = anon_inode_getfd("[i915_perf]", &fops, stream, f_flags);
	if (stream_fd < 0) {
		ret = stream_fd;
		goto err_open;
	}

	if (!(param->flags & I915_PERF_FLAG_DISABLED))
		i915_perf_enable_locked(stream);

	return stream_fd;

err_open:
	list_del(&stream->link);
2628
err_flags:
2629 2630 2631 2632 2633
	if (stream->ops->destroy)
		stream->ops->destroy(stream);
err_alloc:
	kfree(stream);
err_ctx:
2634 2635
	if (specific_ctx)
		i915_gem_context_put_unlocked(specific_ctx);
2636 2637 2638 2639
err:
	return ret;
}

2640 2641 2642 2643 2644 2645
static u64 oa_exponent_to_ns(struct drm_i915_private *dev_priv, int exponent)
{
	return div_u64(1000000000ULL * (2ULL << exponent),
		       dev_priv->perf.oa.timestamp_frequency);
}

2646 2647 2648 2649 2650 2651
/**
 * read_properties_unlocked - validate + copy userspace stream open properties
 * @dev_priv: i915 device instance
 * @uprops: The array of u64 key value pairs given by userspace
 * @n_props: The number of key value pairs expected in @uprops
 * @props: The stream configuration built up while validating properties
2652 2653 2654 2655
 *
 * Note this function only validates properties in isolation it doesn't
 * validate that the combination of properties makes sense or that all
 * properties necessary for a particular kind of stream have been set.
2656 2657 2658 2659
 *
 * Note that there currently aren't any ordering requirements for properties so
 * we shouldn't validate or assume anything about ordering here. This doesn't
 * rule out defining new properties with ordering requirements in the future.
2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671
 */
static int read_properties_unlocked(struct drm_i915_private *dev_priv,
				    u64 __user *uprops,
				    u32 n_props,
				    struct perf_open_properties *props)
{
	u64 __user *uprop = uprops;
	int i;

	memset(props, 0, sizeof(struct perf_open_properties));

	if (!n_props) {
2672
		DRM_DEBUG("No i915 perf properties given\n");
2673 2674 2675 2676 2677 2678 2679 2680 2681 2682
		return -EINVAL;
	}

	/* Considering that ID = 0 is reserved and assuming that we don't
	 * (currently) expect any configurations to ever specify duplicate
	 * values for a particular property ID then the last _PROP_MAX value is
	 * one greater than the maximum number of properties we expect to get
	 * from userspace.
	 */
	if (n_props >= DRM_I915_PERF_PROP_MAX) {
2683
		DRM_DEBUG("More i915 perf properties specified than exist\n");
2684 2685 2686 2687
		return -EINVAL;
	}

	for (i = 0; i < n_props; i++) {
2688
		u64 oa_period, oa_freq_hz;
2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699
		u64 id, value;
		int ret;

		ret = get_user(id, uprop);
		if (ret)
			return ret;

		ret = get_user(value, uprop + 1);
		if (ret)
			return ret;

2700 2701 2702 2703 2704
		if (id == 0 || id >= DRM_I915_PERF_PROP_MAX) {
			DRM_DEBUG("Unknown i915 perf property ID\n");
			return -EINVAL;
		}

2705 2706 2707 2708 2709
		switch ((enum drm_i915_perf_property_id)id) {
		case DRM_I915_PERF_PROP_CTX_HANDLE:
			props->single_context = 1;
			props->ctx_handle = value;
			break;
2710 2711 2712 2713 2714 2715
		case DRM_I915_PERF_PROP_SAMPLE_OA:
			props->sample_flags |= SAMPLE_OA_REPORT;
			break;
		case DRM_I915_PERF_PROP_OA_METRICS_SET:
			if (value == 0 ||
			    value > dev_priv->perf.oa.n_builtin_sets) {
2716
				DRM_DEBUG("Unknown OA metric set ID\n");
2717 2718 2719 2720 2721 2722
				return -EINVAL;
			}
			props->metrics_set = value;
			break;
		case DRM_I915_PERF_PROP_OA_FORMAT:
			if (value == 0 || value >= I915_OA_FORMAT_MAX) {
2723 2724
				DRM_DEBUG("Out-of-range OA report format %llu\n",
					  value);
2725 2726 2727
				return -EINVAL;
			}
			if (!dev_priv->perf.oa.oa_formats[value].size) {
2728 2729
				DRM_DEBUG("Unsupported OA report format %llu\n",
					  value);
2730 2731 2732 2733 2734 2735
				return -EINVAL;
			}
			props->oa_format = value;
			break;
		case DRM_I915_PERF_PROP_OA_EXPONENT:
			if (value > OA_EXPONENT_MAX) {
2736 2737
				DRM_DEBUG("OA timer exponent too high (> %u)\n",
					 OA_EXPONENT_MAX);
2738 2739 2740
				return -EINVAL;
			}

2741
			/* Theoretically we can program the OA unit to sample
2742 2743 2744
			 * e.g. every 160ns for HSW, 167ns for BDW/SKL or 104ns
			 * for BXT. We don't allow such high sampling
			 * frequencies by default unless root.
2745
			 */
2746

2747
			BUILD_BUG_ON(sizeof(oa_period) != 8);
2748
			oa_period = oa_exponent_to_ns(dev_priv, value);
2749 2750 2751 2752 2753 2754

			/* This check is primarily to ensure that oa_period <=
			 * UINT32_MAX (before passing to do_div which only
			 * accepts a u32 denominator), but we can also skip
			 * checking anything < 1Hz which implicitly can't be
			 * limited via an integer oa_max_sample_rate.
2755
			 */
2756 2757 2758 2759 2760 2761 2762 2763 2764
			if (oa_period <= NSEC_PER_SEC) {
				u64 tmp = NSEC_PER_SEC;
				do_div(tmp, oa_period);
				oa_freq_hz = tmp;
			} else
				oa_freq_hz = 0;

			if (oa_freq_hz > i915_oa_max_sample_rate &&
			    !capable(CAP_SYS_ADMIN)) {
2765
				DRM_DEBUG("OA exponent would exceed the max sampling frequency (sysctl dev.i915.oa_max_sample_rate) %uHz without root privileges\n",
2766
					  i915_oa_max_sample_rate);
2767 2768 2769 2770 2771 2772
				return -EACCES;
			}

			props->oa_periodic = true;
			props->oa_period_exponent = value;
			break;
2773
		case DRM_I915_PERF_PROP_MAX:
2774 2775 2776 2777 2778 2779 2780 2781 2782 2783
			MISSING_CASE(id);
			return -EINVAL;
		}

		uprop += 2;
	}

	return 0;
}

2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807
/**
 * i915_perf_open_ioctl - DRM ioctl() for userspace to open a stream FD
 * @dev: drm device
 * @data: ioctl data copied from userspace (unvalidated)
 * @file: drm file
 *
 * Validates the stream open parameters given by userspace including flags
 * and an array of u64 key, value pair properties.
 *
 * Very little is assumed up front about the nature of the stream being
 * opened (for instance we don't assume it's for periodic OA unit metrics). An
 * i915-perf stream is expected to be a suitable interface for other forms of
 * buffered data written by the GPU besides periodic OA metrics.
 *
 * Note we copy the properties from userspace outside of the i915 perf
 * mutex to avoid an awkward lockdep with mmap_sem.
 *
 * Most of the implementation details are handled by
 * i915_perf_open_ioctl_locked() after taking the &drm_i915_private->perf.lock
 * mutex for serializing with any non-file-operation driver hooks.
 *
 * Return: A newly opened i915 Perf stream file descriptor or negative
 * error code on failure.
 */
2808 2809 2810 2811 2812 2813 2814 2815 2816 2817
int i915_perf_open_ioctl(struct drm_device *dev, void *data,
			 struct drm_file *file)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	struct drm_i915_perf_open_param *param = data;
	struct perf_open_properties props;
	u32 known_open_flags;
	int ret;

	if (!dev_priv->perf.initialized) {
2818
		DRM_DEBUG("i915 perf interface not available for this system\n");
2819 2820 2821 2822 2823 2824 2825
		return -ENOTSUPP;
	}

	known_open_flags = I915_PERF_FLAG_FD_CLOEXEC |
			   I915_PERF_FLAG_FD_NONBLOCK |
			   I915_PERF_FLAG_DISABLED;
	if (param->flags & ~known_open_flags) {
2826
		DRM_DEBUG("Unknown drm_i915_perf_open_param flag\n");
2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843
		return -EINVAL;
	}

	ret = read_properties_unlocked(dev_priv,
				       u64_to_user_ptr(param->properties_ptr),
				       param->num_properties,
				       &props);
	if (ret)
		return ret;

	mutex_lock(&dev_priv->perf.lock);
	ret = i915_perf_open_ioctl_locked(dev_priv, param, &props, file);
	mutex_unlock(&dev_priv->perf.lock);

	return ret;
}

2844 2845 2846 2847 2848 2849 2850 2851
/**
 * i915_perf_register - exposes i915-perf to userspace
 * @dev_priv: i915 device instance
 *
 * In particular OA metric sets are advertised under a sysfs metrics/
 * directory allowing userspace to enumerate valid IDs that can be
 * used to open an i915-perf stream.
 */
2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868
void i915_perf_register(struct drm_i915_private *dev_priv)
{
	if (!dev_priv->perf.initialized)
		return;

	/* To be sure we're synchronized with an attempted
	 * i915_perf_open_ioctl(); considering that we register after
	 * being exposed to userspace.
	 */
	mutex_lock(&dev_priv->perf.lock);

	dev_priv->perf.metrics_kobj =
		kobject_create_and_add("metrics",
				       &dev_priv->drm.primary->kdev->kobj);
	if (!dev_priv->perf.metrics_kobj)
		goto exit;

2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892
	if (IS_HASWELL(dev_priv)) {
		if (i915_perf_register_sysfs_hsw(dev_priv))
			goto sysfs_error;
	} else if (IS_BROADWELL(dev_priv)) {
		if (i915_perf_register_sysfs_bdw(dev_priv))
			goto sysfs_error;
	} else if (IS_CHERRYVIEW(dev_priv)) {
		if (i915_perf_register_sysfs_chv(dev_priv))
			goto sysfs_error;
	} else if (IS_SKYLAKE(dev_priv)) {
		if (IS_SKL_GT2(dev_priv)) {
			if (i915_perf_register_sysfs_sklgt2(dev_priv))
				goto sysfs_error;
		} else if (IS_SKL_GT3(dev_priv)) {
			if (i915_perf_register_sysfs_sklgt3(dev_priv))
				goto sysfs_error;
		} else if (IS_SKL_GT4(dev_priv)) {
			if (i915_perf_register_sysfs_sklgt4(dev_priv))
				goto sysfs_error;
		} else
			goto sysfs_error;
	} else if (IS_BROXTON(dev_priv)) {
		if (i915_perf_register_sysfs_bxt(dev_priv))
			goto sysfs_error;
2893 2894 2895 2896 2897 2898 2899 2900 2901
	} else if (IS_KABYLAKE(dev_priv)) {
		if (IS_KBL_GT2(dev_priv)) {
			if (i915_perf_register_sysfs_kblgt2(dev_priv))
				goto sysfs_error;
		} else if (IS_KBL_GT3(dev_priv)) {
			if (i915_perf_register_sysfs_kblgt3(dev_priv))
				goto sysfs_error;
		} else
			goto sysfs_error;
2902 2903
	}

2904 2905 2906 2907 2908 2909
	goto exit;

sysfs_error:
	kobject_put(dev_priv->perf.metrics_kobj);
	dev_priv->perf.metrics_kobj = NULL;

2910 2911 2912 2913
exit:
	mutex_unlock(&dev_priv->perf.lock);
}

2914 2915 2916 2917 2918 2919 2920 2921 2922
/**
 * i915_perf_unregister - hide i915-perf from userspace
 * @dev_priv: i915 device instance
 *
 * i915-perf state cleanup is split up into an 'unregister' and
 * 'deinit' phase where the interface is first hidden from
 * userspace by i915_perf_unregister() before cleaning up
 * remaining state in i915_perf_fini().
 */
2923 2924 2925 2926 2927
void i915_perf_unregister(struct drm_i915_private *dev_priv)
{
	if (!dev_priv->perf.metrics_kobj)
		return;

2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942
	if (IS_HASWELL(dev_priv))
		i915_perf_unregister_sysfs_hsw(dev_priv);
	else if (IS_BROADWELL(dev_priv))
		i915_perf_unregister_sysfs_bdw(dev_priv);
	else if (IS_CHERRYVIEW(dev_priv))
		i915_perf_unregister_sysfs_chv(dev_priv);
	else if (IS_SKYLAKE(dev_priv)) {
		if (IS_SKL_GT2(dev_priv))
			i915_perf_unregister_sysfs_sklgt2(dev_priv);
		else if (IS_SKL_GT3(dev_priv))
			i915_perf_unregister_sysfs_sklgt3(dev_priv);
		else if (IS_SKL_GT4(dev_priv))
			i915_perf_unregister_sysfs_sklgt4(dev_priv);
	} else if (IS_BROXTON(dev_priv))
		i915_perf_unregister_sysfs_bxt(dev_priv);
2943 2944 2945 2946 2947 2948
	else if (IS_KABYLAKE(dev_priv)) {
		if (IS_KBL_GT2(dev_priv))
			i915_perf_unregister_sysfs_kblgt2(dev_priv);
		else if (IS_KBL_GT3(dev_priv))
			i915_perf_unregister_sysfs_kblgt3(dev_priv);
	}
2949 2950 2951 2952 2953

	kobject_put(dev_priv->perf.metrics_kobj);
	dev_priv->perf.metrics_kobj = NULL;
}

2954 2955 2956 2957 2958 2959 2960 2961 2962 2963
static struct ctl_table oa_table[] = {
	{
	 .procname = "perf_stream_paranoid",
	 .data = &i915_perf_stream_paranoid,
	 .maxlen = sizeof(i915_perf_stream_paranoid),
	 .mode = 0644,
	 .proc_handler = proc_dointvec_minmax,
	 .extra1 = &zero,
	 .extra2 = &one,
	 },
2964 2965 2966 2967 2968 2969 2970 2971 2972
	{
	 .procname = "oa_max_sample_rate",
	 .data = &i915_oa_max_sample_rate,
	 .maxlen = sizeof(i915_oa_max_sample_rate),
	 .mode = 0644,
	 .proc_handler = proc_dointvec_minmax,
	 .extra1 = &zero,
	 .extra2 = &oa_sample_rate_hard_limit,
	 },
2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995
	{}
};

static struct ctl_table i915_root[] = {
	{
	 .procname = "i915",
	 .maxlen = 0,
	 .mode = 0555,
	 .child = oa_table,
	 },
	{}
};

static struct ctl_table dev_root[] = {
	{
	 .procname = "dev",
	 .maxlen = 0,
	 .mode = 0555,
	 .child = i915_root,
	 },
	{}
};

2996 2997 2998 2999 3000 3001 3002 3003 3004
/**
 * i915_perf_init - initialize i915-perf state on module load
 * @dev_priv: i915 device instance
 *
 * Initializes i915-perf state without exposing anything to userspace.
 *
 * Note: i915-perf initialization is split into an 'init' and 'register'
 * phase with the i915_perf_register() exposing state to userspace.
 */
3005 3006
void i915_perf_init(struct drm_i915_private *dev_priv)
{
3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018
	dev_priv->perf.oa.n_builtin_sets = 0;

	if (IS_HASWELL(dev_priv)) {
		dev_priv->perf.oa.ops.init_oa_buffer = gen7_init_oa_buffer;
		dev_priv->perf.oa.ops.enable_metric_set = hsw_enable_metric_set;
		dev_priv->perf.oa.ops.disable_metric_set = hsw_disable_metric_set;
		dev_priv->perf.oa.ops.oa_enable = gen7_oa_enable;
		dev_priv->perf.oa.ops.oa_disable = gen7_oa_disable;
		dev_priv->perf.oa.ops.read = gen7_oa_read;
		dev_priv->perf.oa.ops.oa_hw_tail_read =
			gen7_oa_hw_tail_read;

3019 3020
		dev_priv->perf.oa.timestamp_frequency = 12500000;

3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031
		dev_priv->perf.oa.oa_formats = hsw_oa_formats;

		dev_priv->perf.oa.n_builtin_sets =
			i915_oa_n_builtin_metric_sets_hsw;
	} else if (i915.enable_execlists) {
		/* Note: that although we could theoretically also support the
		 * legacy ringbuffer mode on BDW (and earlier iterations of
		 * this driver, before upstreaming did this) it didn't seem
		 * worth the complexity to maintain now that BDW+ enable
		 * execlist mode by default.
		 */
3032

3033 3034 3035
		if (IS_GEN8(dev_priv)) {
			dev_priv->perf.oa.ctx_oactxctrl_offset = 0x120;
			dev_priv->perf.oa.ctx_flexeu0_offset = 0x2ce;
3036 3037 3038

			dev_priv->perf.oa.timestamp_frequency = 12500000;

3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054
			dev_priv->perf.oa.gen8_valid_ctx_bit = (1<<25);

			if (IS_BROADWELL(dev_priv)) {
				dev_priv->perf.oa.n_builtin_sets =
					i915_oa_n_builtin_metric_sets_bdw;
				dev_priv->perf.oa.ops.select_metric_set =
					i915_oa_select_metric_set_bdw;
			} else if (IS_CHERRYVIEW(dev_priv)) {
				dev_priv->perf.oa.n_builtin_sets =
					i915_oa_n_builtin_metric_sets_chv;
				dev_priv->perf.oa.ops.select_metric_set =
					i915_oa_select_metric_set_chv;
			}
		} else if (IS_GEN9(dev_priv)) {
			dev_priv->perf.oa.ctx_oactxctrl_offset = 0x128;
			dev_priv->perf.oa.ctx_flexeu0_offset = 0x3de;
3055 3056 3057

			dev_priv->perf.oa.timestamp_frequency = 12000000;

3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075
			dev_priv->perf.oa.gen8_valid_ctx_bit = (1<<16);

			if (IS_SKL_GT2(dev_priv)) {
				dev_priv->perf.oa.n_builtin_sets =
					i915_oa_n_builtin_metric_sets_sklgt2;
				dev_priv->perf.oa.ops.select_metric_set =
					i915_oa_select_metric_set_sklgt2;
			} else if (IS_SKL_GT3(dev_priv)) {
				dev_priv->perf.oa.n_builtin_sets =
					i915_oa_n_builtin_metric_sets_sklgt3;
				dev_priv->perf.oa.ops.select_metric_set =
					i915_oa_select_metric_set_sklgt3;
			} else if (IS_SKL_GT4(dev_priv)) {
				dev_priv->perf.oa.n_builtin_sets =
					i915_oa_n_builtin_metric_sets_sklgt4;
				dev_priv->perf.oa.ops.select_metric_set =
					i915_oa_select_metric_set_sklgt4;
			} else if (IS_BROXTON(dev_priv)) {
3076 3077
				dev_priv->perf.oa.timestamp_frequency = 19200000;

3078 3079 3080 3081
				dev_priv->perf.oa.n_builtin_sets =
					i915_oa_n_builtin_metric_sets_bxt;
				dev_priv->perf.oa.ops.select_metric_set =
					i915_oa_select_metric_set_bxt;
3082 3083 3084 3085 3086 3087 3088 3089 3090 3091
			} else if (IS_KBL_GT2(dev_priv)) {
				dev_priv->perf.oa.n_builtin_sets =
					i915_oa_n_builtin_metric_sets_kblgt2;
				dev_priv->perf.oa.ops.select_metric_set =
					i915_oa_select_metric_set_kblgt2;
			} else if (IS_KBL_GT3(dev_priv)) {
				dev_priv->perf.oa.n_builtin_sets =
					i915_oa_n_builtin_metric_sets_kblgt3;
				dev_priv->perf.oa.ops.select_metric_set =
					i915_oa_select_metric_set_kblgt3;
3092 3093
			}
		}
3094

3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109
		if (dev_priv->perf.oa.n_builtin_sets) {
			dev_priv->perf.oa.ops.init_oa_buffer = gen8_init_oa_buffer;
			dev_priv->perf.oa.ops.enable_metric_set =
				gen8_enable_metric_set;
			dev_priv->perf.oa.ops.disable_metric_set =
				gen8_disable_metric_set;
			dev_priv->perf.oa.ops.oa_enable = gen8_oa_enable;
			dev_priv->perf.oa.ops.oa_disable = gen8_oa_disable;
			dev_priv->perf.oa.ops.read = gen8_oa_read;
			dev_priv->perf.oa.ops.oa_hw_tail_read =
				gen8_oa_hw_tail_read;

			dev_priv->perf.oa.oa_formats = gen8_plus_oa_formats;
		}
	}
3110

3111 3112 3113 3114 3115
	if (dev_priv->perf.oa.n_builtin_sets) {
		hrtimer_init(&dev_priv->perf.oa.poll_check_timer,
				CLOCK_MONOTONIC, HRTIMER_MODE_REL);
		dev_priv->perf.oa.poll_check_timer.function = oa_poll_check_timer_cb;
		init_waitqueue_head(&dev_priv->perf.oa.poll_wq);
3116

3117 3118 3119
		INIT_LIST_HEAD(&dev_priv->perf.streams);
		mutex_init(&dev_priv->perf.lock);
		spin_lock_init(&dev_priv->perf.oa.oa_buffer.ptr_lock);
3120

3121 3122
		oa_sample_rate_hard_limit =
			dev_priv->perf.oa.timestamp_frequency / 2;
3123
		dev_priv->perf.sysctl_header = register_sysctl_table(dev_root);
3124

3125 3126
		dev_priv->perf.initialized = true;
	}
3127 3128
}

3129 3130 3131 3132
/**
 * i915_perf_fini - Counter part to i915_perf_init()
 * @dev_priv: i915 device instance
 */
3133 3134 3135 3136 3137
void i915_perf_fini(struct drm_i915_private *dev_priv)
{
	if (!dev_priv->perf.initialized)
		return;

3138 3139
	unregister_sysctl_table(dev_priv->perf.sysctl_header);

3140
	memset(&dev_priv->perf.oa.ops, 0, sizeof(dev_priv->perf.oa.ops));
3141

3142 3143
	dev_priv->perf.initialized = false;
}