slab.h 14.6 KB
Newer Older
1
/* SPDX-License-Identifier: GPL-2.0 */
2 3 4 5 6 7
#ifndef MM_SLAB_H
#define MM_SLAB_H
/*
 * Internal slab definitions
 */

8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
#ifdef CONFIG_SLOB
/*
 * Common fields provided in kmem_cache by all slab allocators
 * This struct is either used directly by the allocator (SLOB)
 * or the allocator must include definitions for all fields
 * provided in kmem_cache_common in their definition of kmem_cache.
 *
 * Once we can do anonymous structs (C11 standard) we could put a
 * anonymous struct definition in these allocators so that the
 * separate allocations in the kmem_cache structure of SLAB and
 * SLUB is no longer needed.
 */
struct kmem_cache {
	unsigned int object_size;/* The original size of the object */
	unsigned int size;	/* The aligned/padded/added on size  */
	unsigned int align;	/* Alignment as calculated */
24
	slab_flags_t flags;	/* Active flags on the slab */
25 26
	size_t useroffset;	/* Usercopy region offset */
	size_t usersize;	/* Usercopy region size */
27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43
	const char *name;	/* Slab name for sysfs */
	int refcount;		/* Use counter */
	void (*ctor)(void *);	/* Called on object slot creation */
	struct list_head list;	/* List of all slab caches on the system */
};

#endif /* CONFIG_SLOB */

#ifdef CONFIG_SLAB
#include <linux/slab_def.h>
#endif

#ifdef CONFIG_SLUB
#include <linux/slub_def.h>
#endif

#include <linux/memcontrol.h>
44 45 46
#include <linux/fault-inject.h>
#include <linux/kasan.h>
#include <linux/kmemleak.h>
47
#include <linux/random.h>
48
#include <linux/sched/mm.h>
49

50 51 52 53 54 55 56 57 58 59 60
/*
 * State of the slab allocator.
 *
 * This is used to describe the states of the allocator during bootup.
 * Allocators use this to gradually bootstrap themselves. Most allocators
 * have the problem that the structures used for managing slab caches are
 * allocated from slab caches themselves.
 */
enum slab_state {
	DOWN,			/* No slab functionality yet */
	PARTIAL,		/* SLUB: kmem_cache_node available */
61
	PARTIAL_NODE,		/* SLAB: kmalloc size for node struct available */
62 63 64 65 66 67
	UP,			/* Slab caches usable but not all extras yet */
	FULL			/* Everything is working */
};

extern enum slab_state slab_state;

68 69
/* The slab cache mutex protects the management structures during changes */
extern struct mutex slab_mutex;
70 71

/* The list of all slab caches on the system */
72 73
extern struct list_head slab_caches;

74 75 76
/* The slab cache that manages slab cache information */
extern struct kmem_cache *kmem_cache;

77 78 79 80 81 82
/* A table of kmalloc cache names and sizes */
extern const struct kmalloc_info_struct {
	const char *name;
	unsigned long size;
} kmalloc_info[];

83
unsigned long calculate_alignment(slab_flags_t flags,
84 85
		unsigned long align, unsigned long size);

86 87
#ifndef CONFIG_SLOB
/* Kmalloc array related functions */
88
void setup_kmalloc_cache_index_table(void);
89
void create_kmalloc_caches(slab_flags_t);
90 91 92

/* Find the kmalloc slab corresponding for a certain size */
struct kmem_cache *kmalloc_slab(size_t, gfp_t);
93 94 95
#endif


96
/* Functions provided by the slab allocators */
97
int __kmem_cache_create(struct kmem_cache *, slab_flags_t flags);
98

99
extern struct kmem_cache *create_kmalloc_cache(const char *name, size_t size,
100 101
			slab_flags_t flags, size_t useroffset,
			size_t usersize);
102
extern void create_boot_cache(struct kmem_cache *, const char *name,
103 104
			size_t size, slab_flags_t flags, size_t useroffset,
			size_t usersize);
105

106 107
int slab_unmergeable(struct kmem_cache *s);
struct kmem_cache *find_mergeable(size_t size, size_t align,
108
		slab_flags_t flags, const char *name, void (*ctor)(void *));
J
Joonsoo Kim 已提交
109
#ifndef CONFIG_SLOB
110
struct kmem_cache *
111
__kmem_cache_alias(const char *name, size_t size, size_t align,
112
		   slab_flags_t flags, void (*ctor)(void *));
113

114 115
slab_flags_t kmem_cache_flags(unsigned long object_size,
	slab_flags_t flags, const char *name,
116
	void (*ctor)(void *));
117
#else
118
static inline struct kmem_cache *
119
__kmem_cache_alias(const char *name, size_t size, size_t align,
120
		   slab_flags_t flags, void (*ctor)(void *))
121
{ return NULL; }
122

123 124
static inline slab_flags_t kmem_cache_flags(unsigned long object_size,
	slab_flags_t flags, const char *name,
125 126 127 128
	void (*ctor)(void *))
{
	return flags;
}
129 130 131
#endif


132 133
/* Legal flag mask for kmem_cache_create(), for various configurations */
#define SLAB_CORE_FLAGS (SLAB_HWCACHE_ALIGN | SLAB_CACHE_DMA | SLAB_PANIC | \
134
			 SLAB_TYPESAFE_BY_RCU | SLAB_DEBUG_OBJECTS )
135 136 137 138 139

#if defined(CONFIG_DEBUG_SLAB)
#define SLAB_DEBUG_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER)
#elif defined(CONFIG_SLUB_DEBUG)
#define SLAB_DEBUG_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \
140
			  SLAB_TRACE | SLAB_CONSISTENCY_CHECKS)
141 142 143 144 145 146
#else
#define SLAB_DEBUG_FLAGS (0)
#endif

#if defined(CONFIG_SLAB)
#define SLAB_CACHE_FLAGS (SLAB_MEM_SPREAD | SLAB_NOLEAKTRACE | \
V
Vladimir Davydov 已提交
147
			  SLAB_RECLAIM_ACCOUNT | SLAB_TEMPORARY | \
148
			  SLAB_ACCOUNT)
149 150
#elif defined(CONFIG_SLUB)
#define SLAB_CACHE_FLAGS (SLAB_NOLEAKTRACE | SLAB_RECLAIM_ACCOUNT | \
151
			  SLAB_TEMPORARY | SLAB_ACCOUNT)
152 153 154 155
#else
#define SLAB_CACHE_FLAGS (0)
#endif

156
/* Common flags available with current configuration */
157 158
#define CACHE_CREATE_MASK (SLAB_CORE_FLAGS | SLAB_DEBUG_FLAGS | SLAB_CACHE_FLAGS)

159 160 161 162 163 164 165 166 167 168 169 170 171
/* Common flags permitted for kmem_cache_create */
#define SLAB_FLAGS_PERMITTED (SLAB_CORE_FLAGS | \
			      SLAB_RED_ZONE | \
			      SLAB_POISON | \
			      SLAB_STORE_USER | \
			      SLAB_TRACE | \
			      SLAB_CONSISTENCY_CHECKS | \
			      SLAB_MEM_SPREAD | \
			      SLAB_NOLEAKTRACE | \
			      SLAB_RECLAIM_ACCOUNT | \
			      SLAB_TEMPORARY | \
			      SLAB_ACCOUNT)

172
int __kmem_cache_shutdown(struct kmem_cache *);
173
void __kmem_cache_release(struct kmem_cache *);
174 175
int __kmem_cache_shrink(struct kmem_cache *);
void __kmemcg_cache_deactivate(struct kmem_cache *s);
176
void slab_kmem_cache_release(struct kmem_cache *);
177

178 179 180
struct seq_file;
struct file;

181 182 183 184 185 186 187 188 189 190 191 192 193 194 195
struct slabinfo {
	unsigned long active_objs;
	unsigned long num_objs;
	unsigned long active_slabs;
	unsigned long num_slabs;
	unsigned long shared_avail;
	unsigned int limit;
	unsigned int batchcount;
	unsigned int shared;
	unsigned int objects_per_slab;
	unsigned int cache_order;
};

void get_slabinfo(struct kmem_cache *s, struct slabinfo *sinfo);
void slabinfo_show_stats(struct seq_file *m, struct kmem_cache *s);
196 197
ssize_t slabinfo_write(struct file *file, const char __user *buffer,
		       size_t count, loff_t *ppos);
G
Glauber Costa 已提交
198

199 200 201
/*
 * Generic implementation of bulk operations
 * These are useful for situations in which the allocator cannot
J
Jesper Dangaard Brouer 已提交
202
 * perform optimizations. In that case segments of the object listed
203 204 205
 * may be allocated or freed using these operations.
 */
void __kmem_cache_free_bulk(struct kmem_cache *, size_t, void **);
206
int __kmem_cache_alloc_bulk(struct kmem_cache *, gfp_t, size_t, void **);
207

208
#if defined(CONFIG_MEMCG) && !defined(CONFIG_SLOB)
209 210 211 212 213

/* List of all root caches. */
extern struct list_head		slab_root_caches;
#define root_caches_node	memcg_params.__root_caches_node

214 215 216 217 218
/*
 * Iterate over all memcg caches of the given root cache. The caller must hold
 * slab_mutex.
 */
#define for_each_memcg_cache(iter, root) \
T
Tejun Heo 已提交
219 220
	list_for_each_entry(iter, &(root)->memcg_params.children, \
			    memcg_params.children_node)
221

G
Glauber Costa 已提交
222 223
static inline bool is_root_cache(struct kmem_cache *s)
{
T
Tejun Heo 已提交
224
	return !s->memcg_params.root_cache;
G
Glauber Costa 已提交
225
}
226

227
static inline bool slab_equal_or_root(struct kmem_cache *s,
228
				      struct kmem_cache *p)
229
{
230
	return p == s || p == s->memcg_params.root_cache;
231
}
232 233 234 235 236 237 238 239 240

/*
 * We use suffixes to the name in memcg because we can't have caches
 * created in the system with the same name. But when we print them
 * locally, better refer to them with the base name
 */
static inline const char *cache_name(struct kmem_cache *s)
{
	if (!is_root_cache(s))
241
		s = s->memcg_params.root_cache;
242 243 244
	return s->name;
}

245 246
/*
 * Note, we protect with RCU only the memcg_caches array, not per-memcg caches.
247 248
 * That said the caller must assure the memcg's cache won't go away by either
 * taking a css reference to the owner cgroup, or holding the slab_mutex.
249
 */
250 251
static inline struct kmem_cache *
cache_from_memcg_idx(struct kmem_cache *s, int idx)
252
{
253
	struct kmem_cache *cachep;
254
	struct memcg_cache_array *arr;
255 256

	rcu_read_lock();
257
	arr = rcu_dereference(s->memcg_params.memcg_caches);
258 259 260 261

	/*
	 * Make sure we will access the up-to-date value. The code updating
	 * memcg_caches issues a write barrier to match this (see
262
	 * memcg_create_kmem_cache()).
263
	 */
264
	cachep = READ_ONCE(arr->entries[idx]);
265 266
	rcu_read_unlock();

267
	return cachep;
268
}
G
Glauber Costa 已提交
269 270 271 272 273

static inline struct kmem_cache *memcg_root_cache(struct kmem_cache *s)
{
	if (is_root_cache(s))
		return s;
274
	return s->memcg_params.root_cache;
G
Glauber Costa 已提交
275
}
276

277 278 279
static __always_inline int memcg_charge_slab(struct page *page,
					     gfp_t gfp, int order,
					     struct kmem_cache *s)
280 281 282 283 284
{
	if (!memcg_kmem_enabled())
		return 0;
	if (is_root_cache(s))
		return 0;
285
	return memcg_kmem_charge_memcg(page, gfp, order, s->memcg_params.memcg);
286 287 288 289 290
}

static __always_inline void memcg_uncharge_slab(struct page *page, int order,
						struct kmem_cache *s)
{
291 292
	if (!memcg_kmem_enabled())
		return;
293
	memcg_kmem_uncharge(page, order);
294
}
295 296

extern void slab_init_memcg_params(struct kmem_cache *);
297
extern void memcg_link_cache(struct kmem_cache *s);
298 299
extern void slab_deactivate_memcg_cache_rcu_sched(struct kmem_cache *s,
				void (*deact_fn)(struct kmem_cache *));
300

301
#else /* CONFIG_MEMCG && !CONFIG_SLOB */
302

303 304 305 306
/* If !memcg, all caches are root. */
#define slab_root_caches	slab_caches
#define root_caches_node	list

307 308 309
#define for_each_memcg_cache(iter, root) \
	for ((void)(iter), (void)(root); 0; )

G
Glauber Costa 已提交
310 311 312 313 314
static inline bool is_root_cache(struct kmem_cache *s)
{
	return true;
}

315 316 317 318 319
static inline bool slab_equal_or_root(struct kmem_cache *s,
				      struct kmem_cache *p)
{
	return true;
}
320 321 322 323 324 325

static inline const char *cache_name(struct kmem_cache *s)
{
	return s->name;
}

326 327
static inline struct kmem_cache *
cache_from_memcg_idx(struct kmem_cache *s, int idx)
328 329 330
{
	return NULL;
}
G
Glauber Costa 已提交
331 332 333 334 335

static inline struct kmem_cache *memcg_root_cache(struct kmem_cache *s)
{
	return s;
}
336

337 338
static inline int memcg_charge_slab(struct page *page, gfp_t gfp, int order,
				    struct kmem_cache *s)
339 340 341 342
{
	return 0;
}

343 344 345 346 347
static inline void memcg_uncharge_slab(struct page *page, int order,
				       struct kmem_cache *s)
{
}

348 349 350
static inline void slab_init_memcg_params(struct kmem_cache *s)
{
}
351 352 353 354 355

static inline void memcg_link_cache(struct kmem_cache *s)
{
}

356
#endif /* CONFIG_MEMCG && !CONFIG_SLOB */
357 358 359 360 361 362 363 364 365 366 367 368 369

static inline struct kmem_cache *cache_from_obj(struct kmem_cache *s, void *x)
{
	struct kmem_cache *cachep;
	struct page *page;

	/*
	 * When kmemcg is not being used, both assignments should return the
	 * same value. but we don't want to pay the assignment price in that
	 * case. If it is not compiled in, the compiler should be smart enough
	 * to not do even the assignment. In that case, slab_equal_or_root
	 * will also be a constant.
	 */
370 371
	if (!memcg_kmem_enabled() &&
	    !unlikely(s->flags & SLAB_CONSISTENCY_CHECKS))
372 373 374 375 376 377 378 379
		return s;

	page = virt_to_head_page(x);
	cachep = page->slab_cache;
	if (slab_equal_or_root(cachep, s))
		return cachep;

	pr_err("%s: Wrong slab cache. %s but object is from %s\n",
380
	       __func__, s->name, cachep->name);
381 382 383
	WARN_ON_ONCE(1);
	return s;
}
384

385 386 387 388 389 390 391 392 393 394 395 396 397 398
static inline size_t slab_ksize(const struct kmem_cache *s)
{
#ifndef CONFIG_SLUB
	return s->object_size;

#else /* CONFIG_SLUB */
# ifdef CONFIG_SLUB_DEBUG
	/*
	 * Debugging requires use of the padding between object
	 * and whatever may come after it.
	 */
	if (s->flags & (SLAB_RED_ZONE | SLAB_POISON))
		return s->object_size;
# endif
399 400
	if (s->flags & SLAB_KASAN)
		return s->object_size;
401 402 403 404 405
	/*
	 * If we have the need to store the freelist pointer
	 * back there or track user information then we can
	 * only use the space before that information.
	 */
406
	if (s->flags & (SLAB_TYPESAFE_BY_RCU | SLAB_STORE_USER))
407 408 409 410 411 412 413 414 415 416 417 418
		return s->inuse;
	/*
	 * Else we can use all the padding etc for the allocation
	 */
	return s->size;
#endif
}

static inline struct kmem_cache *slab_pre_alloc_hook(struct kmem_cache *s,
						     gfp_t flags)
{
	flags &= gfp_allowed_mask;
419 420 421 422

	fs_reclaim_acquire(flags);
	fs_reclaim_release(flags);

423 424
	might_sleep_if(gfpflags_allow_blocking(flags));

425
	if (should_failslab(s, flags))
426 427
		return NULL;

428 429 430 431 432
	if (memcg_kmem_enabled() &&
	    ((flags & __GFP_ACCOUNT) || (s->flags & SLAB_ACCOUNT)))
		return memcg_kmem_get_cache(s);

	return s;
433 434 435 436 437 438 439 440 441 442 443 444 445
}

static inline void slab_post_alloc_hook(struct kmem_cache *s, gfp_t flags,
					size_t size, void **p)
{
	size_t i;

	flags &= gfp_allowed_mask;
	for (i = 0; i < size; i++) {
		void *object = p[i];

		kmemleak_alloc_recursive(object, s->object_size, 1,
					 s->flags, flags);
446
		kasan_slab_alloc(s, object, flags);
447
	}
448 449 450

	if (memcg_kmem_enabled())
		memcg_kmem_put_cache(s);
451 452
}

453
#ifndef CONFIG_SLOB
454 455 456 457 458 459 460 461 462 463
/*
 * The slab lists for all objects.
 */
struct kmem_cache_node {
	spinlock_t list_lock;

#ifdef CONFIG_SLAB
	struct list_head slabs_partial;	/* partial list first, better asm code */
	struct list_head slabs_full;
	struct list_head slabs_free;
464 465
	unsigned long total_slabs;	/* length of all slab lists */
	unsigned long free_slabs;	/* length of free slab list only */
466 467 468 469
	unsigned long free_objects;
	unsigned int free_limit;
	unsigned int colour_next;	/* Per-node cache coloring */
	struct array_cache *shared;	/* shared per node */
J
Joonsoo Kim 已提交
470
	struct alien_cache **alien;	/* on other nodes */
471 472 473 474 475 476 477 478 479 480 481 482 483 484 485
	unsigned long next_reap;	/* updated without locking */
	int free_touched;		/* updated without locking */
#endif

#ifdef CONFIG_SLUB
	unsigned long nr_partial;
	struct list_head partial;
#ifdef CONFIG_SLUB_DEBUG
	atomic_long_t nr_slabs;
	atomic_long_t total_objects;
	struct list_head full;
#endif
#endif

};
486

487 488 489 490 491 492 493 494 495 496
static inline struct kmem_cache_node *get_node(struct kmem_cache *s, int node)
{
	return s->node[node];
}

/*
 * Iterator over all nodes. The body will be executed for each node that has
 * a kmem_cache_node structure allocated (which is true for all online nodes)
 */
#define for_each_kmem_cache_node(__s, __node, __n) \
497 498
	for (__node = 0; __node < nr_node_ids; __node++) \
		 if ((__n = get_node(__s, __node)))
499 500 501

#endif

502
void *slab_start(struct seq_file *m, loff_t *pos);
503 504
void *slab_next(struct seq_file *m, void *p, loff_t *pos);
void slab_stop(struct seq_file *m, void *p);
505 506 507
void *memcg_slab_start(struct seq_file *m, loff_t *pos);
void *memcg_slab_next(struct seq_file *m, void *p, loff_t *pos);
void memcg_slab_stop(struct seq_file *m, void *p);
508
int memcg_slab_show(struct seq_file *m, void *p);
509

510 511 512 513 514 515 516 517
#if defined(CONFIG_SLAB) || defined(CONFIG_SLUB_DEBUG)
void dump_unreclaimable_slab(void);
#else
static inline void dump_unreclaimable_slab(void)
{
}
#endif

518 519
void ___cache_free(struct kmem_cache *cache, void *x, unsigned long addr);

520 521 522 523 524 525 526 527 528 529 530 531 532
#ifdef CONFIG_SLAB_FREELIST_RANDOM
int cache_random_seq_create(struct kmem_cache *cachep, unsigned int count,
			gfp_t gfp);
void cache_random_seq_destroy(struct kmem_cache *cachep);
#else
static inline int cache_random_seq_create(struct kmem_cache *cachep,
					unsigned int count, gfp_t gfp)
{
	return 0;
}
static inline void cache_random_seq_destroy(struct kmem_cache *cachep) { }
#endif /* CONFIG_SLAB_FREELIST_RANDOM */

533
#endif /* MM_SLAB_H */