i2c-pnx.c 18.8 KB
Newer Older
V
Vitaly Wool 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307
/*
 * Provides I2C support for Philips PNX010x/PNX4008 boards.
 *
 * Authors: Dennis Kovalev <dkovalev@ru.mvista.com>
 *	    Vitaly Wool <vwool@ru.mvista.com>
 *
 * 2004-2006 (c) MontaVista Software, Inc. This file is licensed under
 * the terms of the GNU General Public License version 2. This program
 * is licensed "as is" without any warranty of any kind, whether express
 * or implied.
 */

#include <linux/module.h>
#include <linux/interrupt.h>
#include <linux/ioport.h>
#include <linux/delay.h>
#include <linux/i2c.h>
#include <linux/timer.h>
#include <linux/completion.h>
#include <linux/platform_device.h>
#include <linux/i2c-pnx.h>
#include <asm/hardware.h>
#include <asm/irq.h>
#include <asm/uaccess.h>

#define I2C_PNX_TIMEOUT		10 /* msec */
#define I2C_PNX_SPEED_KHZ	100
#define I2C_PNX_REGION_SIZE	0x100
#define PNX_DEFAULT_FREQ	13 /* MHz */

static inline int wait_timeout(long timeout, struct i2c_pnx_algo_data *data)
{
	while (timeout > 0 &&
			(ioread32(I2C_REG_STS(data)) & mstatus_active)) {
		mdelay(1);
		timeout--;
	}
	return (timeout <= 0);
}

static inline int wait_reset(long timeout, struct i2c_pnx_algo_data *data)
{
	while (timeout > 0 &&
			(ioread32(I2C_REG_CTL(data)) & mcntrl_reset)) {
		mdelay(1);
		timeout--;
	}
	return (timeout <= 0);
}

static inline void i2c_pnx_arm_timer(struct i2c_adapter *adap)
{
	struct i2c_pnx_algo_data *data = adap->algo_data;
	struct timer_list *timer = &data->mif.timer;
	int expires = I2C_PNX_TIMEOUT / (1000 / HZ);

	del_timer_sync(timer);

	dev_dbg(&adap->dev, "Timer armed at %lu plus %u jiffies.\n",
		jiffies, expires);

	timer->expires = jiffies + expires;
	timer->data = (unsigned long)adap;

	add_timer(timer);
}

/**
 * i2c_pnx_start - start a device
 * @slave_addr:		slave address
 * @adap:		pointer to adapter structure
 *
 * Generate a START signal in the desired mode.
 */
static int i2c_pnx_start(unsigned char slave_addr, struct i2c_adapter *adap)
{
	struct i2c_pnx_algo_data *alg_data = adap->algo_data;

	dev_dbg(&adap->dev, "%s(): addr 0x%x mode %d\n", __FUNCTION__,
		slave_addr, alg_data->mif.mode);

	/* Check for 7 bit slave addresses only */
	if (slave_addr & ~0x7f) {
		dev_err(&adap->dev, "%s: Invalid slave address %x. "
		       "Only 7-bit addresses are supported\n",
		       adap->name, slave_addr);
		return -EINVAL;
	}

	/* First, make sure bus is idle */
	if (wait_timeout(I2C_PNX_TIMEOUT, alg_data)) {
		/* Somebody else is monopolizing the bus */
		dev_err(&adap->dev, "%s: Bus busy. Slave addr = %02x, "
		       "cntrl = %x, stat = %x\n",
		       adap->name, slave_addr,
		       ioread32(I2C_REG_CTL(alg_data)),
		       ioread32(I2C_REG_STS(alg_data)));
		return -EBUSY;
	} else if (ioread32(I2C_REG_STS(alg_data)) & mstatus_afi) {
		/* Sorry, we lost the bus */
		dev_err(&adap->dev, "%s: Arbitration failure. "
		       "Slave addr = %02x\n", adap->name, slave_addr);
		return -EIO;
	}

	/*
	 * OK, I2C is enabled and we have the bus.
	 * Clear the current TDI and AFI status flags.
	 */
	iowrite32(ioread32(I2C_REG_STS(alg_data)) | mstatus_tdi | mstatus_afi,
		  I2C_REG_STS(alg_data));

	dev_dbg(&adap->dev, "%s(): sending %#x\n", __FUNCTION__,
		(slave_addr << 1) | start_bit | alg_data->mif.mode);

	/* Write the slave address, START bit and R/W bit */
	iowrite32((slave_addr << 1) | start_bit | alg_data->mif.mode,
		  I2C_REG_TX(alg_data));

	dev_dbg(&adap->dev, "%s(): exit\n", __FUNCTION__);

	return 0;
}

/**
 * i2c_pnx_stop - stop a device
 * @adap:		pointer to I2C adapter structure
 *
 * Generate a STOP signal to terminate the master transaction.
 */
static void i2c_pnx_stop(struct i2c_adapter *adap)
{
	struct i2c_pnx_algo_data *alg_data = adap->algo_data;
	/* Only 1 msec max timeout due to interrupt context */
	long timeout = 1000;

	dev_dbg(&adap->dev, "%s(): entering: stat = %04x.\n",
		__FUNCTION__, ioread32(I2C_REG_STS(alg_data)));

	/* Write a STOP bit to TX FIFO */
	iowrite32(0xff | stop_bit, I2C_REG_TX(alg_data));

	/* Wait until the STOP is seen. */
	while (timeout > 0 &&
	       (ioread32(I2C_REG_STS(alg_data)) & mstatus_active)) {
		/* may be called from interrupt context */
		udelay(1);
		timeout--;
	}

	dev_dbg(&adap->dev, "%s(): exiting: stat = %04x.\n",
		__FUNCTION__, ioread32(I2C_REG_STS(alg_data)));
}

/**
 * i2c_pnx_master_xmit - transmit data to slave
 * @adap:		pointer to I2C adapter structure
 *
 * Sends one byte of data to the slave
 */
static int i2c_pnx_master_xmit(struct i2c_adapter *adap)
{
	struct i2c_pnx_algo_data *alg_data = adap->algo_data;
	u32 val;

	dev_dbg(&adap->dev, "%s(): entering: stat = %04x.\n",
		__FUNCTION__, ioread32(I2C_REG_STS(alg_data)));

	if (alg_data->mif.len > 0) {
		/* We still have something to talk about... */
		val = *alg_data->mif.buf++;

		if (alg_data->mif.len == 1) {
			val |= stop_bit;
			if (!alg_data->last)
				val |= start_bit;
		}

		alg_data->mif.len--;
		iowrite32(val, I2C_REG_TX(alg_data));

		dev_dbg(&adap->dev, "%s(): xmit %#x [%d]\n", __FUNCTION__,
			val, alg_data->mif.len + 1);

		if (alg_data->mif.len == 0) {
			if (alg_data->last) {
				/* Wait until the STOP is seen. */
				if (wait_timeout(I2C_PNX_TIMEOUT, alg_data))
					dev_err(&adap->dev, "The bus is still "
						"active after timeout\n");
			}
			/* Disable master interrupts */
			iowrite32(ioread32(I2C_REG_CTL(alg_data)) &
				~(mcntrl_afie | mcntrl_naie | mcntrl_drmie),
				  I2C_REG_CTL(alg_data));

			del_timer_sync(&alg_data->mif.timer);

			dev_dbg(&adap->dev, "%s(): Waking up xfer routine.\n",
				__FUNCTION__);

			complete(&alg_data->mif.complete);
		}
	} else if (alg_data->mif.len == 0) {
		/* zero-sized transfer */
		i2c_pnx_stop(adap);

		/* Disable master interrupts. */
		iowrite32(ioread32(I2C_REG_CTL(alg_data)) &
			~(mcntrl_afie | mcntrl_naie | mcntrl_drmie),
			  I2C_REG_CTL(alg_data));

		/* Stop timer. */
		del_timer_sync(&alg_data->mif.timer);
		dev_dbg(&adap->dev, "%s(): Waking up xfer routine after "
			"zero-xfer.\n", __FUNCTION__);

		complete(&alg_data->mif.complete);
	}

	dev_dbg(&adap->dev, "%s(): exiting: stat = %04x.\n",
		__FUNCTION__, ioread32(I2C_REG_STS(alg_data)));

	return 0;
}

/**
 * i2c_pnx_master_rcv - receive data from slave
 * @adap:		pointer to I2C adapter structure
 *
 * Reads one byte data from the slave
 */
static int i2c_pnx_master_rcv(struct i2c_adapter *adap)
{
	struct i2c_pnx_algo_data *alg_data = adap->algo_data;
	unsigned int val = 0;
	u32 ctl = 0;

	dev_dbg(&adap->dev, "%s(): entering: stat = %04x.\n",
		__FUNCTION__, ioread32(I2C_REG_STS(alg_data)));

	/* Check, whether there is already data,
	 * or we didn't 'ask' for it yet.
	 */
	if (ioread32(I2C_REG_STS(alg_data)) & mstatus_rfe) {
		dev_dbg(&adap->dev, "%s(): Write dummy data to fill "
			"Rx-fifo...\n", __FUNCTION__);

		if (alg_data->mif.len == 1) {
			/* Last byte, do not acknowledge next rcv. */
			val |= stop_bit;
			if (!alg_data->last)
				val |= start_bit;

			/*
			 * Enable interrupt RFDAIE (data in Rx fifo),
			 * and disable DRMIE (need data for Tx)
			 */
			ctl = ioread32(I2C_REG_CTL(alg_data));
			ctl |= mcntrl_rffie | mcntrl_daie;
			ctl &= ~mcntrl_drmie;
			iowrite32(ctl, I2C_REG_CTL(alg_data));
		}

		/*
		 * Now we'll 'ask' for data:
		 * For each byte we want to receive, we must
		 * write a (dummy) byte to the Tx-FIFO.
		 */
		iowrite32(val, I2C_REG_TX(alg_data));

		return 0;
	}

	/* Handle data. */
	if (alg_data->mif.len > 0) {
		val = ioread32(I2C_REG_RX(alg_data));
		*alg_data->mif.buf++ = (u8) (val & 0xff);
		dev_dbg(&adap->dev, "%s(): rcv 0x%x [%d]\n", __FUNCTION__, val,
			alg_data->mif.len);

		alg_data->mif.len--;
		if (alg_data->mif.len == 0) {
			if (alg_data->last)
				/* Wait until the STOP is seen. */
				if (wait_timeout(I2C_PNX_TIMEOUT, alg_data))
					dev_err(&adap->dev, "The bus is still "
						"active after timeout\n");

			/* Disable master interrupts */
			ctl = ioread32(I2C_REG_CTL(alg_data));
			ctl &= ~(mcntrl_afie | mcntrl_naie | mcntrl_rffie |
				 mcntrl_drmie | mcntrl_daie);
			iowrite32(ctl, I2C_REG_CTL(alg_data));

			/* Kill timer. */
			del_timer_sync(&alg_data->mif.timer);
			complete(&alg_data->mif.complete);
		}
	}

	dev_dbg(&adap->dev, "%s(): exiting: stat = %04x.\n",
		__FUNCTION__, ioread32(I2C_REG_STS(alg_data)));

	return 0;
}

308
static irqreturn_t i2c_pnx_interrupt(int irq, void *dev_id)
V
Vitaly Wool 已提交
309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703
{
	u32 stat, ctl;
	struct i2c_adapter *adap = dev_id;
	struct i2c_pnx_algo_data *alg_data = adap->algo_data;

	dev_dbg(&adap->dev, "%s(): mstat = %x mctrl = %x, mode = %d\n",
		__FUNCTION__,
		ioread32(I2C_REG_STS(alg_data)),
		ioread32(I2C_REG_CTL(alg_data)),
		alg_data->mif.mode);
	stat = ioread32(I2C_REG_STS(alg_data));

	/* let's see what kind of event this is */
	if (stat & mstatus_afi) {
		/* We lost arbitration in the midst of a transfer */
		alg_data->mif.ret = -EIO;

		/* Disable master interrupts. */
		ctl = ioread32(I2C_REG_CTL(alg_data));
		ctl &= ~(mcntrl_afie | mcntrl_naie | mcntrl_rffie |
			 mcntrl_drmie);
		iowrite32(ctl, I2C_REG_CTL(alg_data));

		/* Stop timer, to prevent timeout. */
		del_timer_sync(&alg_data->mif.timer);
		complete(&alg_data->mif.complete);
	} else if (stat & mstatus_nai) {
		/* Slave did not acknowledge, generate a STOP */
		dev_dbg(&adap->dev, "%s(): "
			"Slave did not acknowledge, generating a STOP.\n",
			__FUNCTION__);
		i2c_pnx_stop(adap);

		/* Disable master interrupts. */
		ctl = ioread32(I2C_REG_CTL(alg_data));
		ctl &= ~(mcntrl_afie | mcntrl_naie | mcntrl_rffie |
			 mcntrl_drmie);
		iowrite32(ctl, I2C_REG_CTL(alg_data));

		/* Our return value. */
		alg_data->mif.ret = -EIO;

		/* Stop timer, to prevent timeout. */
		del_timer_sync(&alg_data->mif.timer);
		complete(&alg_data->mif.complete);
	} else {
		/*
		 * Two options:
		 * - Master Tx needs data.
		 * - There is data in the Rx-fifo
		 * The latter is only the case if we have requested for data,
		 * via a dummy write. (See 'i2c_pnx_master_rcv'.)
		 * We therefore check, as a sanity check, whether that interrupt
		 * has been enabled.
		 */
		if ((stat & mstatus_drmi) || !(stat & mstatus_rfe)) {
			if (alg_data->mif.mode == I2C_SMBUS_WRITE) {
				i2c_pnx_master_xmit(adap);
			} else if (alg_data->mif.mode == I2C_SMBUS_READ) {
				i2c_pnx_master_rcv(adap);
			}
		}
	}

	/* Clear TDI and AFI bits */
	stat = ioread32(I2C_REG_STS(alg_data));
	iowrite32(stat | mstatus_tdi | mstatus_afi, I2C_REG_STS(alg_data));

	dev_dbg(&adap->dev, "%s(): exiting, stat = %x ctrl = %x.\n",
		 __FUNCTION__, ioread32(I2C_REG_STS(alg_data)),
		 ioread32(I2C_REG_CTL(alg_data)));

	return IRQ_HANDLED;
}

static void i2c_pnx_timeout(unsigned long data)
{
	struct i2c_adapter *adap = (struct i2c_adapter *)data;
	struct i2c_pnx_algo_data *alg_data = adap->algo_data;
	u32 ctl;

	dev_err(&adap->dev, "Master timed out. stat = %04x, cntrl = %04x. "
	       "Resetting master...\n",
	       ioread32(I2C_REG_STS(alg_data)),
	       ioread32(I2C_REG_CTL(alg_data)));

	/* Reset master and disable interrupts */
	ctl = ioread32(I2C_REG_CTL(alg_data));
	ctl &= ~(mcntrl_afie | mcntrl_naie | mcntrl_rffie | mcntrl_drmie);
	iowrite32(ctl, I2C_REG_CTL(alg_data));

	ctl |= mcntrl_reset;
	iowrite32(ctl, I2C_REG_CTL(alg_data));
	wait_reset(I2C_PNX_TIMEOUT, alg_data);
	alg_data->mif.ret = -EIO;
	complete(&alg_data->mif.complete);
}

static inline void bus_reset_if_active(struct i2c_adapter *adap)
{
	struct i2c_pnx_algo_data *alg_data = adap->algo_data;
	u32 stat;

	if ((stat = ioread32(I2C_REG_STS(alg_data))) & mstatus_active) {
		dev_err(&adap->dev,
			"%s: Bus is still active after xfer. Reset it...\n",
		       adap->name);
		iowrite32(ioread32(I2C_REG_CTL(alg_data)) | mcntrl_reset,
			  I2C_REG_CTL(alg_data));
		wait_reset(I2C_PNX_TIMEOUT, alg_data);
	} else if (!(stat & mstatus_rfe) || !(stat & mstatus_tfe)) {
		/* If there is data in the fifo's after transfer,
		 * flush fifo's by reset.
		 */
		iowrite32(ioread32(I2C_REG_CTL(alg_data)) | mcntrl_reset,
			  I2C_REG_CTL(alg_data));
		wait_reset(I2C_PNX_TIMEOUT, alg_data);
	} else if (stat & mstatus_nai) {
		iowrite32(ioread32(I2C_REG_CTL(alg_data)) | mcntrl_reset,
			  I2C_REG_CTL(alg_data));
		wait_reset(I2C_PNX_TIMEOUT, alg_data);
	}
}

/**
 * i2c_pnx_xfer - generic transfer entry point
 * @adap:		pointer to I2C adapter structure
 * @msgs:		array of messages
 * @num:		number of messages
 *
 * Initiates the transfer
 */
static int
i2c_pnx_xfer(struct i2c_adapter *adap, struct i2c_msg *msgs, int num)
{
	struct i2c_msg *pmsg;
	int rc = 0, completed = 0, i;
	struct i2c_pnx_algo_data *alg_data = adap->algo_data;
	u32 stat = ioread32(I2C_REG_STS(alg_data));

	dev_dbg(&adap->dev, "%s(): entering: %d messages, stat = %04x.\n",
		__FUNCTION__, num, ioread32(I2C_REG_STS(alg_data)));

	bus_reset_if_active(adap);

	/* Process transactions in a loop. */
	for (i = 0; rc >= 0 && i < num; i++) {
		u8 addr;

		pmsg = &msgs[i];
		addr = pmsg->addr;

		if (pmsg->flags & I2C_M_TEN) {
			dev_err(&adap->dev,
				"%s: 10 bits addr not supported!\n",
				adap->name);
			rc = -EINVAL;
			break;
		}

		alg_data->mif.buf = pmsg->buf;
		alg_data->mif.len = pmsg->len;
		alg_data->mif.mode = (pmsg->flags & I2C_M_RD) ?
			I2C_SMBUS_READ : I2C_SMBUS_WRITE;
		alg_data->mif.ret = 0;
		alg_data->last = (i == num - 1);

		dev_dbg(&adap->dev, "%s(): mode %d, %d bytes\n", __FUNCTION__,
			alg_data->mif.mode,
			alg_data->mif.len);

		i2c_pnx_arm_timer(adap);

		/* initialize the completion var */
		init_completion(&alg_data->mif.complete);

		/* Enable master interrupt */
		iowrite32(ioread32(I2C_REG_CTL(alg_data)) | mcntrl_afie |
				mcntrl_naie | mcntrl_drmie,
			  I2C_REG_CTL(alg_data));

		/* Put start-code and slave-address on the bus. */
		rc = i2c_pnx_start(addr, adap);
		if (rc < 0)
			break;

		/* Wait for completion */
		wait_for_completion(&alg_data->mif.complete);

		if (!(rc = alg_data->mif.ret))
			completed++;
		dev_dbg(&adap->dev, "%s(): Complete, return code = %d.\n",
			__FUNCTION__, rc);

		/* Clear TDI and AFI bits in case they are set. */
		if ((stat = ioread32(I2C_REG_STS(alg_data))) & mstatus_tdi) {
			dev_dbg(&adap->dev,
				"%s: TDI still set... clearing now.\n",
			       adap->name);
			iowrite32(stat, I2C_REG_STS(alg_data));
		}
		if ((stat = ioread32(I2C_REG_STS(alg_data))) & mstatus_afi) {
			dev_dbg(&adap->dev,
				"%s: AFI still set... clearing now.\n",
			       adap->name);
			iowrite32(stat, I2C_REG_STS(alg_data));
		}
	}

	bus_reset_if_active(adap);

	/* Cleanup to be sure... */
	alg_data->mif.buf = NULL;
	alg_data->mif.len = 0;

	dev_dbg(&adap->dev, "%s(): exiting, stat = %x\n",
		__FUNCTION__, ioread32(I2C_REG_STS(alg_data)));

	if (completed != num)
		return ((rc < 0) ? rc : -EREMOTEIO);

	return num;
}

static u32 i2c_pnx_func(struct i2c_adapter *adapter)
{
	return I2C_FUNC_I2C | I2C_FUNC_SMBUS_EMUL;
}

static struct i2c_algorithm pnx_algorithm = {
	.master_xfer = i2c_pnx_xfer,
	.functionality = i2c_pnx_func,
};

static int i2c_pnx_controller_suspend(struct platform_device *pdev,
				      pm_message_t state)
{
	struct i2c_pnx_data *i2c_pnx = platform_get_drvdata(pdev);
	return i2c_pnx->suspend(pdev, state);
}

static int i2c_pnx_controller_resume(struct platform_device *pdev)
{
	struct i2c_pnx_data *i2c_pnx = platform_get_drvdata(pdev);
	return i2c_pnx->resume(pdev);
}

static int __devinit i2c_pnx_probe(struct platform_device *pdev)
{
	unsigned long tmp;
	int ret = 0;
	struct i2c_pnx_algo_data *alg_data;
	int freq_mhz;
	struct i2c_pnx_data *i2c_pnx = pdev->dev.platform_data;

	if (!i2c_pnx || !i2c_pnx->adapter) {
		dev_err(&pdev->dev, "%s: no platform data supplied\n",
		       __FUNCTION__);
		ret = -EINVAL;
		goto out;
	}

	platform_set_drvdata(pdev, i2c_pnx);

	if (i2c_pnx->calculate_input_freq)
		freq_mhz = i2c_pnx->calculate_input_freq(pdev);
	else {
		freq_mhz = PNX_DEFAULT_FREQ;
		dev_info(&pdev->dev, "Setting bus frequency to default value: "
		       "%d MHz", freq_mhz);
	}

	i2c_pnx->adapter->algo = &pnx_algorithm;

	alg_data = i2c_pnx->adapter->algo_data;
	init_timer(&alg_data->mif.timer);
	alg_data->mif.timer.function = i2c_pnx_timeout;
	alg_data->mif.timer.data = (unsigned long)i2c_pnx->adapter;

	/* Register I/O resource */
	if (!request_region(alg_data->base, I2C_PNX_REGION_SIZE, pdev->name)) {
		dev_err(&pdev->dev,
		       "I/O region 0x%08x for I2C already in use.\n",
		       alg_data->base);
		ret = -ENODEV;
		goto out_drvdata;
	}

	if (!(alg_data->ioaddr =
			(u32)ioremap(alg_data->base, I2C_PNX_REGION_SIZE))) {
		dev_err(&pdev->dev, "Couldn't ioremap I2C I/O region\n");
		ret = -ENOMEM;
		goto out_release;
	}

	i2c_pnx->set_clock_run(pdev);

	/*
	 * Clock Divisor High This value is the number of system clocks
	 * the serial clock (SCL) will be high.
	 * For example, if the system clock period is 50 ns and the maximum
	 * desired serial period is 10000 ns (100 kHz), then CLKHI would be
	 * set to 0.5*(f_sys/f_i2c)-2=0.5*(20e6/100e3)-2=98. The actual value
	 * programmed into CLKHI will vary from this slightly due to
	 * variations in the output pad's rise and fall times as well as
	 * the deglitching filter length.
	 */

	tmp = ((freq_mhz * 1000) / I2C_PNX_SPEED_KHZ) / 2 - 2;
	iowrite32(tmp, I2C_REG_CKH(alg_data));
	iowrite32(tmp, I2C_REG_CKL(alg_data));

	iowrite32(mcntrl_reset, I2C_REG_CTL(alg_data));
	if (wait_reset(I2C_PNX_TIMEOUT, alg_data)) {
		ret = -ENODEV;
		goto out_unmap;
	}
	init_completion(&alg_data->mif.complete);

	ret = request_irq(alg_data->irq, i2c_pnx_interrupt,
			0, pdev->name, i2c_pnx->adapter);
	if (ret)
		goto out_clock;

	/* Register this adapter with the I2C subsystem */
	i2c_pnx->adapter->dev.parent = &pdev->dev;
	ret = i2c_add_adapter(i2c_pnx->adapter);
	if (ret < 0) {
		dev_err(&pdev->dev, "I2C: Failed to add bus\n");
		goto out_irq;
	}

	dev_dbg(&pdev->dev, "%s: Master at %#8x, irq %d.\n",
	       i2c_pnx->adapter->name, alg_data->base, alg_data->irq);

	return 0;

out_irq:
	free_irq(alg_data->irq, alg_data);
out_clock:
	i2c_pnx->set_clock_stop(pdev);
out_unmap:
	iounmap((void *)alg_data->ioaddr);
out_release:
	release_region(alg_data->base, I2C_PNX_REGION_SIZE);
out_drvdata:
	platform_set_drvdata(pdev, NULL);
out:
	return ret;
}

static int __devexit i2c_pnx_remove(struct platform_device *pdev)
{
	struct i2c_pnx_data *i2c_pnx = platform_get_drvdata(pdev);
	struct i2c_adapter *adap = i2c_pnx->adapter;
	struct i2c_pnx_algo_data *alg_data = adap->algo_data;

	free_irq(alg_data->irq, alg_data);
	i2c_del_adapter(adap);
	i2c_pnx->set_clock_stop(pdev);
	iounmap((void *)alg_data->ioaddr);
	release_region(alg_data->base, I2C_PNX_REGION_SIZE);
	platform_set_drvdata(pdev, NULL);

	return 0;
}

static struct platform_driver i2c_pnx_driver = {
	.driver = {
		.name = "pnx-i2c",
		.owner = THIS_MODULE,
	},
	.probe = i2c_pnx_probe,
	.remove = __devexit_p(i2c_pnx_remove),
	.suspend = i2c_pnx_controller_suspend,
	.resume = i2c_pnx_controller_resume,
};

static int __init i2c_adap_pnx_init(void)
{
	return platform_driver_register(&i2c_pnx_driver);
}

static void __exit i2c_adap_pnx_exit(void)
{
	platform_driver_unregister(&i2c_pnx_driver);
}

MODULE_AUTHOR("Vitaly Wool, Dennis Kovalev <source@mvista.com>");
MODULE_DESCRIPTION("I2C driver for Philips IP3204-based I2C busses");
MODULE_LICENSE("GPL");

/* We need to make sure I2C is initialized before USB */
subsys_initcall(i2c_adap_pnx_init);
module_exit(i2c_adap_pnx_exit);