bio.c 47.1 KB
Newer Older
L
Linus Torvalds 已提交
1
/*
2
 * Copyright (C) 2001 Jens Axboe <axboe@kernel.dk>
L
Linus Torvalds 已提交
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License version 2 as
 * published by the Free Software Foundation.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public Licens
 * along with this program; if not, write to the Free Software
 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-
 *
 */
#include <linux/mm.h>
#include <linux/swap.h>
#include <linux/bio.h>
#include <linux/blkdev.h>
22
#include <linux/iocontext.h>
L
Linus Torvalds 已提交
23 24 25
#include <linux/slab.h>
#include <linux/init.h>
#include <linux/kernel.h>
26
#include <linux/export.h>
L
Linus Torvalds 已提交
27 28
#include <linux/mempool.h>
#include <linux/workqueue.h>
29
#include <linux/cgroup.h>
30
#include <scsi/sg.h>		/* for struct sg_iovec */
L
Linus Torvalds 已提交
31

32
#include <trace/events/block.h>
33

34 35 36 37 38 39
/*
 * Test patch to inline a certain number of bi_io_vec's inside the bio
 * itself, to shrink a bio data allocation from two mempool calls to one
 */
#define BIO_INLINE_VECS		4

D
Denis ChengRq 已提交
40
static mempool_t *bio_split_pool __read_mostly;
L
Linus Torvalds 已提交
41 42 43 44 45 46 47

/*
 * if you change this list, also change bvec_alloc or things will
 * break badly! cannot be bigger than what you can fit into an
 * unsigned short
 */
#define BV(x) { .nr_vecs = x, .name = "biovec-"__stringify(x) }
48
static struct biovec_slab bvec_slabs[BIOVEC_NR_POOLS] __read_mostly = {
L
Linus Torvalds 已提交
49 50 51 52 53 54 55 56
	BV(1), BV(4), BV(16), BV(64), BV(128), BV(BIO_MAX_PAGES),
};
#undef BV

/*
 * fs_bio_set is the bio_set containing bio and iovec memory pools used by
 * IO code that does not need private memory pools.
 */
57
struct bio_set *fs_bio_set;
58
EXPORT_SYMBOL(fs_bio_set);
L
Linus Torvalds 已提交
59

60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76
/*
 * Our slab pool management
 */
struct bio_slab {
	struct kmem_cache *slab;
	unsigned int slab_ref;
	unsigned int slab_size;
	char name[8];
};
static DEFINE_MUTEX(bio_slab_lock);
static struct bio_slab *bio_slabs;
static unsigned int bio_slab_nr, bio_slab_max;

static struct kmem_cache *bio_find_or_create_slab(unsigned int extra_size)
{
	unsigned int sz = sizeof(struct bio) + extra_size;
	struct kmem_cache *slab = NULL;
77
	struct bio_slab *bslab, *new_bio_slabs;
78
	unsigned int new_bio_slab_max;
79 80 81 82 83 84
	unsigned int i, entry = -1;

	mutex_lock(&bio_slab_lock);

	i = 0;
	while (i < bio_slab_nr) {
85
		bslab = &bio_slabs[i];
86 87 88 89 90 91 92 93 94 95 96 97 98 99 100

		if (!bslab->slab && entry == -1)
			entry = i;
		else if (bslab->slab_size == sz) {
			slab = bslab->slab;
			bslab->slab_ref++;
			break;
		}
		i++;
	}

	if (slab)
		goto out_unlock;

	if (bio_slab_nr == bio_slab_max && entry == -1) {
101
		new_bio_slab_max = bio_slab_max << 1;
102
		new_bio_slabs = krealloc(bio_slabs,
103
					 new_bio_slab_max * sizeof(struct bio_slab),
104 105
					 GFP_KERNEL);
		if (!new_bio_slabs)
106
			goto out_unlock;
107
		bio_slab_max = new_bio_slab_max;
108
		bio_slabs = new_bio_slabs;
109 110 111 112 113 114 115 116 117 118 119
	}
	if (entry == -1)
		entry = bio_slab_nr++;

	bslab = &bio_slabs[entry];

	snprintf(bslab->name, sizeof(bslab->name), "bio-%d", entry);
	slab = kmem_cache_create(bslab->name, sz, 0, SLAB_HWCACHE_ALIGN, NULL);
	if (!slab)
		goto out_unlock;

120
	printk(KERN_INFO "bio: create slab <%s> at %d\n", bslab->name, entry);
121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157
	bslab->slab = slab;
	bslab->slab_ref = 1;
	bslab->slab_size = sz;
out_unlock:
	mutex_unlock(&bio_slab_lock);
	return slab;
}

static void bio_put_slab(struct bio_set *bs)
{
	struct bio_slab *bslab = NULL;
	unsigned int i;

	mutex_lock(&bio_slab_lock);

	for (i = 0; i < bio_slab_nr; i++) {
		if (bs->bio_slab == bio_slabs[i].slab) {
			bslab = &bio_slabs[i];
			break;
		}
	}

	if (WARN(!bslab, KERN_ERR "bio: unable to find slab!\n"))
		goto out;

	WARN_ON(!bslab->slab_ref);

	if (--bslab->slab_ref)
		goto out;

	kmem_cache_destroy(bslab->slab);
	bslab->slab = NULL;

out:
	mutex_unlock(&bio_slab_lock);
}

158 159 160 161 162
unsigned int bvec_nr_vecs(unsigned short idx)
{
	return bvec_slabs[idx].nr_vecs;
}

163
void bvec_free(mempool_t *pool, struct bio_vec *bv, unsigned int idx)
164 165 166 167
{
	BIO_BUG_ON(idx >= BIOVEC_NR_POOLS);

	if (idx == BIOVEC_MAX_IDX)
168
		mempool_free(bv, pool);
169 170 171 172 173 174 175
	else {
		struct biovec_slab *bvs = bvec_slabs + idx;

		kmem_cache_free(bvs->slab, bv);
	}
}

176 177
struct bio_vec *bvec_alloc(gfp_t gfp_mask, int nr, unsigned long *idx,
			   mempool_t *pool)
L
Linus Torvalds 已提交
178 179 180
{
	struct bio_vec *bvl;

181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212
	/*
	 * see comment near bvec_array define!
	 */
	switch (nr) {
	case 1:
		*idx = 0;
		break;
	case 2 ... 4:
		*idx = 1;
		break;
	case 5 ... 16:
		*idx = 2;
		break;
	case 17 ... 64:
		*idx = 3;
		break;
	case 65 ... 128:
		*idx = 4;
		break;
	case 129 ... BIO_MAX_PAGES:
		*idx = 5;
		break;
	default:
		return NULL;
	}

	/*
	 * idx now points to the pool we want to allocate from. only the
	 * 1-vec entry pool is mempool backed.
	 */
	if (*idx == BIOVEC_MAX_IDX) {
fallback:
213
		bvl = mempool_alloc(pool, gfp_mask);
214 215 216 217
	} else {
		struct biovec_slab *bvs = bvec_slabs + *idx;
		gfp_t __gfp_mask = gfp_mask & ~(__GFP_WAIT | __GFP_IO);

J
Jens Axboe 已提交
218
		/*
219 220 221
		 * Make this allocation restricted and don't dump info on
		 * allocation failures, since we'll fallback to the mempool
		 * in case of failure.
J
Jens Axboe 已提交
222
		 */
223
		__gfp_mask |= __GFP_NOMEMALLOC | __GFP_NORETRY | __GFP_NOWARN;
L
Linus Torvalds 已提交
224

J
Jens Axboe 已提交
225
		/*
226 227
		 * Try a slab allocation. If this fails and __GFP_WAIT
		 * is set, retry with the 1-entry mempool
J
Jens Axboe 已提交
228
		 */
229 230 231 232 233 234 235
		bvl = kmem_cache_alloc(bvs->slab, __gfp_mask);
		if (unlikely(!bvl && (gfp_mask & __GFP_WAIT))) {
			*idx = BIOVEC_MAX_IDX;
			goto fallback;
		}
	}

L
Linus Torvalds 已提交
236 237 238
	return bvl;
}

K
Kent Overstreet 已提交
239
static void __bio_free(struct bio *bio)
L
Linus Torvalds 已提交
240
{
K
Kent Overstreet 已提交
241
	bio_disassociate_task(bio);
L
Linus Torvalds 已提交
242

243
	if (bio_integrity(bio))
244
		bio_integrity_free(bio);
K
Kent Overstreet 已提交
245
}
246

K
Kent Overstreet 已提交
247 248 249 250 251 252 253 254 255
static void bio_free(struct bio *bio)
{
	struct bio_set *bs = bio->bi_pool;
	void *p;

	__bio_free(bio);

	if (bs) {
		if (bio_has_allocated_vec(bio))
256
			bvec_free(bs->bvec_pool, bio->bi_io_vec, BIO_POOL_IDX(bio));
K
Kent Overstreet 已提交
257 258 259 260 261

		/*
		 * If we have front padding, adjust the bio pointer before freeing
		 */
		p = bio;
262 263
		p -= bs->front_pad;

K
Kent Overstreet 已提交
264 265 266 267 268
		mempool_free(p, bs->bio_pool);
	} else {
		/* Bio was allocated by bio_kmalloc() */
		kfree(bio);
	}
P
Peter Osterlund 已提交
269 270
}

271
void bio_init(struct bio *bio)
L
Linus Torvalds 已提交
272
{
J
Jens Axboe 已提交
273
	memset(bio, 0, sizeof(*bio));
L
Linus Torvalds 已提交
274 275 276
	bio->bi_flags = 1 << BIO_UPTODATE;
	atomic_set(&bio->bi_cnt, 1);
}
277
EXPORT_SYMBOL(bio_init);
L
Linus Torvalds 已提交
278

K
Kent Overstreet 已提交
279 280 281 282 283 284 285 286 287 288 289 290 291 292
/**
 * bio_reset - reinitialize a bio
 * @bio:	bio to reset
 *
 * Description:
 *   After calling bio_reset(), @bio will be in the same state as a freshly
 *   allocated bio returned bio bio_alloc_bioset() - the only fields that are
 *   preserved are the ones that are initialized by bio_alloc_bioset(). See
 *   comment in struct bio.
 */
void bio_reset(struct bio *bio)
{
	unsigned long flags = bio->bi_flags & (~0UL << BIO_RESET_BITS);

K
Kent Overstreet 已提交
293
	__bio_free(bio);
K
Kent Overstreet 已提交
294 295 296 297 298 299

	memset(bio, 0, BIO_RESET_BYTES);
	bio->bi_flags = flags|(1 << BIO_UPTODATE);
}
EXPORT_SYMBOL(bio_reset);

300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347
static void bio_alloc_rescue(struct work_struct *work)
{
	struct bio_set *bs = container_of(work, struct bio_set, rescue_work);
	struct bio *bio;

	while (1) {
		spin_lock(&bs->rescue_lock);
		bio = bio_list_pop(&bs->rescue_list);
		spin_unlock(&bs->rescue_lock);

		if (!bio)
			break;

		generic_make_request(bio);
	}
}

static void punt_bios_to_rescuer(struct bio_set *bs)
{
	struct bio_list punt, nopunt;
	struct bio *bio;

	/*
	 * In order to guarantee forward progress we must punt only bios that
	 * were allocated from this bio_set; otherwise, if there was a bio on
	 * there for a stacking driver higher up in the stack, processing it
	 * could require allocating bios from this bio_set, and doing that from
	 * our own rescuer would be bad.
	 *
	 * Since bio lists are singly linked, pop them all instead of trying to
	 * remove from the middle of the list:
	 */

	bio_list_init(&punt);
	bio_list_init(&nopunt);

	while ((bio = bio_list_pop(current->bio_list)))
		bio_list_add(bio->bi_pool == bs ? &punt : &nopunt, bio);

	*current->bio_list = nopunt;

	spin_lock(&bs->rescue_lock);
	bio_list_merge(&bs->rescue_list, &punt);
	spin_unlock(&bs->rescue_lock);

	queue_work(bs->rescue_workqueue, &bs->rescue_work);
}

L
Linus Torvalds 已提交
348 349 350 351
/**
 * bio_alloc_bioset - allocate a bio for I/O
 * @gfp_mask:   the GFP_ mask given to the slab allocator
 * @nr_iovecs:	number of iovecs to pre-allocate
352
 * @bs:		the bio_set to allocate from.
L
Linus Torvalds 已提交
353 354
 *
 * Description:
355 356 357 358 359 360 361 362 363 364
 *   If @bs is NULL, uses kmalloc() to allocate the bio; else the allocation is
 *   backed by the @bs's mempool.
 *
 *   When @bs is not NULL, if %__GFP_WAIT is set then bio_alloc will always be
 *   able to allocate a bio. This is due to the mempool guarantees. To make this
 *   work, callers must never allocate more than 1 bio at a time from this pool.
 *   Callers that need to allocate more than 1 bio must always submit the
 *   previously allocated bio for IO before attempting to allocate a new one.
 *   Failure to do so can cause deadlocks under memory pressure.
 *
365 366 367 368 369 370 371 372 373 374 375 376 377 378 379
 *   Note that when running under generic_make_request() (i.e. any block
 *   driver), bios are not submitted until after you return - see the code in
 *   generic_make_request() that converts recursion into iteration, to prevent
 *   stack overflows.
 *
 *   This would normally mean allocating multiple bios under
 *   generic_make_request() would be susceptible to deadlocks, but we have
 *   deadlock avoidance code that resubmits any blocked bios from a rescuer
 *   thread.
 *
 *   However, we do not guarantee forward progress for allocations from other
 *   mempools. Doing multiple allocations from the same mempool under
 *   generic_make_request() should be avoided - instead, use bio_set's front_pad
 *   for per bio allocations.
 *
380 381 382
 *   RETURNS:
 *   Pointer to new bio on success, NULL on failure.
 */
A
Al Viro 已提交
383
struct bio *bio_alloc_bioset(gfp_t gfp_mask, int nr_iovecs, struct bio_set *bs)
L
Linus Torvalds 已提交
384
{
385
	gfp_t saved_gfp = gfp_mask;
386 387
	unsigned front_pad;
	unsigned inline_vecs;
T
Tejun Heo 已提交
388
	unsigned long idx = BIO_POOL_NONE;
I
Ingo Molnar 已提交
389
	struct bio_vec *bvl = NULL;
T
Tejun Heo 已提交
390 391 392
	struct bio *bio;
	void *p;

393 394 395 396 397 398 399 400 401 402
	if (!bs) {
		if (nr_iovecs > UIO_MAXIOV)
			return NULL;

		p = kmalloc(sizeof(struct bio) +
			    nr_iovecs * sizeof(struct bio_vec),
			    gfp_mask);
		front_pad = 0;
		inline_vecs = nr_iovecs;
	} else {
403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426
		/*
		 * generic_make_request() converts recursion to iteration; this
		 * means if we're running beneath it, any bios we allocate and
		 * submit will not be submitted (and thus freed) until after we
		 * return.
		 *
		 * This exposes us to a potential deadlock if we allocate
		 * multiple bios from the same bio_set() while running
		 * underneath generic_make_request(). If we were to allocate
		 * multiple bios (say a stacking block driver that was splitting
		 * bios), we would deadlock if we exhausted the mempool's
		 * reserve.
		 *
		 * We solve this, and guarantee forward progress, with a rescuer
		 * workqueue per bio_set. If we go to allocate and there are
		 * bios on current->bio_list, we first try the allocation
		 * without __GFP_WAIT; if that fails, we punt those bios we
		 * would be blocking to the rescuer workqueue before we retry
		 * with the original gfp_flags.
		 */

		if (current->bio_list && !bio_list_empty(current->bio_list))
			gfp_mask &= ~__GFP_WAIT;

427
		p = mempool_alloc(bs->bio_pool, gfp_mask);
428 429 430 431 432 433
		if (!p && gfp_mask != saved_gfp) {
			punt_bios_to_rescuer(bs);
			gfp_mask = saved_gfp;
			p = mempool_alloc(bs->bio_pool, gfp_mask);
		}

434 435 436 437
		front_pad = bs->front_pad;
		inline_vecs = BIO_INLINE_VECS;
	}

T
Tejun Heo 已提交
438 439
	if (unlikely(!p))
		return NULL;
L
Linus Torvalds 已提交
440

441
	bio = p + front_pad;
I
Ingo Molnar 已提交
442 443
	bio_init(bio);

444
	if (nr_iovecs > inline_vecs) {
445
		bvl = bvec_alloc(gfp_mask, nr_iovecs, &idx, bs->bvec_pool);
446 447 448
		if (!bvl && gfp_mask != saved_gfp) {
			punt_bios_to_rescuer(bs);
			gfp_mask = saved_gfp;
449
			bvl = bvec_alloc(gfp_mask, nr_iovecs, &idx, bs->bvec_pool);
450 451
		}

I
Ingo Molnar 已提交
452 453
		if (unlikely(!bvl))
			goto err_free;
454 455
	} else if (nr_iovecs) {
		bvl = bio->bi_inline_vecs;
L
Linus Torvalds 已提交
456
	}
457 458

	bio->bi_pool = bs;
I
Ingo Molnar 已提交
459 460 461
	bio->bi_flags |= idx << BIO_POOL_OFFSET;
	bio->bi_max_vecs = nr_iovecs;
	bio->bi_io_vec = bvl;
L
Linus Torvalds 已提交
462
	return bio;
I
Ingo Molnar 已提交
463 464

err_free:
T
Tejun Heo 已提交
465
	mempool_free(p, bs->bio_pool);
I
Ingo Molnar 已提交
466
	return NULL;
L
Linus Torvalds 已提交
467
}
468
EXPORT_SYMBOL(bio_alloc_bioset);
L
Linus Torvalds 已提交
469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490

void zero_fill_bio(struct bio *bio)
{
	unsigned long flags;
	struct bio_vec *bv;
	int i;

	bio_for_each_segment(bv, bio, i) {
		char *data = bvec_kmap_irq(bv, &flags);
		memset(data, 0, bv->bv_len);
		flush_dcache_page(bv->bv_page);
		bvec_kunmap_irq(data, &flags);
	}
}
EXPORT_SYMBOL(zero_fill_bio);

/**
 * bio_put - release a reference to a bio
 * @bio:   bio to release reference to
 *
 * Description:
 *   Put a reference to a &struct bio, either one you have gotten with
491
 *   bio_alloc, bio_get or bio_clone. The last put of a bio will free it.
L
Linus Torvalds 已提交
492 493 494 495 496 497 498 499
 **/
void bio_put(struct bio *bio)
{
	BIO_BUG_ON(!atomic_read(&bio->bi_cnt));

	/*
	 * last put frees it
	 */
K
Kent Overstreet 已提交
500 501
	if (atomic_dec_and_test(&bio->bi_cnt))
		bio_free(bio);
L
Linus Torvalds 已提交
502
}
503
EXPORT_SYMBOL(bio_put);
L
Linus Torvalds 已提交
504

505
inline int bio_phys_segments(struct request_queue *q, struct bio *bio)
L
Linus Torvalds 已提交
506 507 508 509 510 511
{
	if (unlikely(!bio_flagged(bio, BIO_SEG_VALID)))
		blk_recount_segments(q, bio);

	return bio->bi_phys_segments;
}
512
EXPORT_SYMBOL(bio_phys_segments);
L
Linus Torvalds 已提交
513 514 515 516 517 518 519 520 521 522

/**
 * 	__bio_clone	-	clone a bio
 * 	@bio: destination bio
 * 	@bio_src: bio to clone
 *
 *	Clone a &bio. Caller will own the returned bio, but not
 *	the actual data it points to. Reference count of returned
 * 	bio will be one.
 */
523
void __bio_clone(struct bio *bio, struct bio *bio_src)
L
Linus Torvalds 已提交
524
{
525 526
	memcpy(bio->bi_io_vec, bio_src->bi_io_vec,
		bio_src->bi_max_vecs * sizeof(struct bio_vec));
L
Linus Torvalds 已提交
527

528 529 530 531
	/*
	 * most users will be overriding ->bi_bdev with a new target,
	 * so we don't set nor calculate new physical/hw segment counts here
	 */
L
Linus Torvalds 已提交
532 533 534 535 536 537
	bio->bi_sector = bio_src->bi_sector;
	bio->bi_bdev = bio_src->bi_bdev;
	bio->bi_flags |= 1 << BIO_CLONED;
	bio->bi_rw = bio_src->bi_rw;
	bio->bi_vcnt = bio_src->bi_vcnt;
	bio->bi_size = bio_src->bi_size;
A
Andrew Morton 已提交
538
	bio->bi_idx = bio_src->bi_idx;
L
Linus Torvalds 已提交
539
}
540
EXPORT_SYMBOL(__bio_clone);
L
Linus Torvalds 已提交
541 542

/**
543
 *	bio_clone_bioset -	clone a bio
L
Linus Torvalds 已提交
544 545
 *	@bio: bio to clone
 *	@gfp_mask: allocation priority
546
 *	@bs: bio_set to allocate from
L
Linus Torvalds 已提交
547 548 549
 *
 * 	Like __bio_clone, only also allocates the returned bio
 */
550 551
struct bio *bio_clone_bioset(struct bio *bio, gfp_t gfp_mask,
			     struct bio_set *bs)
L
Linus Torvalds 已提交
552
{
553
	struct bio *b;
L
Linus Torvalds 已提交
554

555
	b = bio_alloc_bioset(gfp_mask, bio->bi_max_vecs, bs);
556 557 558 559 560 561 562 563
	if (!b)
		return NULL;

	__bio_clone(b, bio);

	if (bio_integrity(bio)) {
		int ret;

564
		ret = bio_integrity_clone(b, bio, gfp_mask);
565

L
Li Zefan 已提交
566 567
		if (ret < 0) {
			bio_put(b);
568
			return NULL;
L
Li Zefan 已提交
569
		}
P
Peter Osterlund 已提交
570
	}
L
Linus Torvalds 已提交
571 572 573

	return b;
}
574
EXPORT_SYMBOL(bio_clone_bioset);
L
Linus Torvalds 已提交
575 576 577 578 579 580 581 582 583 584 585 586

/**
 *	bio_get_nr_vecs		- return approx number of vecs
 *	@bdev:  I/O target
 *
 *	Return the approximate number of pages we can send to this target.
 *	There's no guarantee that you will be able to fit this number of pages
 *	into a bio, it does not account for dynamic restrictions that vary
 *	on offset.
 */
int bio_get_nr_vecs(struct block_device *bdev)
{
587
	struct request_queue *q = bdev_get_queue(bdev);
588 589 590
	int nr_pages;

	nr_pages = min_t(unsigned,
591 592
		     queue_max_segments(q),
		     queue_max_sectors(q) / (PAGE_SIZE >> 9) + 1);
593 594 595

	return min_t(unsigned, nr_pages, BIO_MAX_PAGES);

L
Linus Torvalds 已提交
596
}
597
EXPORT_SYMBOL(bio_get_nr_vecs);
L
Linus Torvalds 已提交
598

599
static int __bio_add_page(struct request_queue *q, struct bio *bio, struct page
600 601
			  *page, unsigned int len, unsigned int offset,
			  unsigned short max_sectors)
L
Linus Torvalds 已提交
602 603 604 605 606 607 608 609 610 611
{
	int retried_segments = 0;
	struct bio_vec *bvec;

	/*
	 * cloned bio must not modify vec list
	 */
	if (unlikely(bio_flagged(bio, BIO_CLONED)))
		return 0;

612
	if (((bio->bi_size + len) >> 9) > max_sectors)
L
Linus Torvalds 已提交
613 614
		return 0;

615 616 617 618 619 620 621 622 623 624
	/*
	 * For filesystems with a blocksize smaller than the pagesize
	 * we will often be called with the same page as last time and
	 * a consecutive offset.  Optimize this special case.
	 */
	if (bio->bi_vcnt > 0) {
		struct bio_vec *prev = &bio->bi_io_vec[bio->bi_vcnt - 1];

		if (page == prev->bv_page &&
		    offset == prev->bv_offset + prev->bv_len) {
625
			unsigned int prev_bv_len = prev->bv_len;
626
			prev->bv_len += len;
627 628 629

			if (q->merge_bvec_fn) {
				struct bvec_merge_data bvm = {
630 631 632 633
					/* prev_bvec is already charged in
					   bi_size, discharge it in order to
					   simulate merging updated prev_bvec
					   as new bvec. */
634 635
					.bi_bdev = bio->bi_bdev,
					.bi_sector = bio->bi_sector,
636
					.bi_size = bio->bi_size - prev_bv_len,
637 638 639
					.bi_rw = bio->bi_rw,
				};

640
				if (q->merge_bvec_fn(q, &bvm, prev) < prev->bv_len) {
641 642 643
					prev->bv_len -= len;
					return 0;
				}
644 645 646 647 648 649 650
			}

			goto done;
		}
	}

	if (bio->bi_vcnt >= bio->bi_max_vecs)
L
Linus Torvalds 已提交
651 652 653 654 655 656 657
		return 0;

	/*
	 * we might lose a segment or two here, but rather that than
	 * make this too complex.
	 */

658
	while (bio->bi_phys_segments >= queue_max_segments(q)) {
L
Linus Torvalds 已提交
659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681

		if (retried_segments)
			return 0;

		retried_segments = 1;
		blk_recount_segments(q, bio);
	}

	/*
	 * setup the new entry, we might clear it again later if we
	 * cannot add the page
	 */
	bvec = &bio->bi_io_vec[bio->bi_vcnt];
	bvec->bv_page = page;
	bvec->bv_len = len;
	bvec->bv_offset = offset;

	/*
	 * if queue has other restrictions (eg varying max sector size
	 * depending on offset), it can specify a merge_bvec_fn in the
	 * queue to get further control
	 */
	if (q->merge_bvec_fn) {
682 683 684 685 686 687 688
		struct bvec_merge_data bvm = {
			.bi_bdev = bio->bi_bdev,
			.bi_sector = bio->bi_sector,
			.bi_size = bio->bi_size,
			.bi_rw = bio->bi_rw,
		};

L
Linus Torvalds 已提交
689 690 691 692
		/*
		 * merge_bvec_fn() returns number of bytes it can accept
		 * at this offset
		 */
693
		if (q->merge_bvec_fn(q, &bvm, bvec) < bvec->bv_len) {
L
Linus Torvalds 已提交
694 695 696 697 698 699 700 701
			bvec->bv_page = NULL;
			bvec->bv_len = 0;
			bvec->bv_offset = 0;
			return 0;
		}
	}

	/* If we may be able to merge these biovecs, force a recount */
702
	if (bio->bi_vcnt && (BIOVEC_PHYS_MERGEABLE(bvec-1, bvec)))
L
Linus Torvalds 已提交
703 704 705 706
		bio->bi_flags &= ~(1 << BIO_SEG_VALID);

	bio->bi_vcnt++;
	bio->bi_phys_segments++;
707
 done:
L
Linus Torvalds 已提交
708 709 710 711
	bio->bi_size += len;
	return len;
}

712 713
/**
 *	bio_add_pc_page	-	attempt to add page to bio
J
Jens Axboe 已提交
714
 *	@q: the target queue
715 716 717 718 719 720
 *	@bio: destination bio
 *	@page: page to add
 *	@len: vec entry length
 *	@offset: vec entry offset
 *
 *	Attempt to add a page to the bio_vec maplist. This can fail for a
721 722 723 724 725
 *	number of reasons, such as the bio being full or target block device
 *	limitations. The target block device must allow bio's up to PAGE_SIZE,
 *	so it is always possible to add a single page to an empty bio.
 *
 *	This should only be used by REQ_PC bios.
726
 */
727
int bio_add_pc_page(struct request_queue *q, struct bio *bio, struct page *page,
728 729
		    unsigned int len, unsigned int offset)
{
730 731
	return __bio_add_page(q, bio, page, len, offset,
			      queue_max_hw_sectors(q));
732
}
733
EXPORT_SYMBOL(bio_add_pc_page);
734

L
Linus Torvalds 已提交
735 736 737 738 739 740 741 742
/**
 *	bio_add_page	-	attempt to add page to bio
 *	@bio: destination bio
 *	@page: page to add
 *	@len: vec entry length
 *	@offset: vec entry offset
 *
 *	Attempt to add a page to the bio_vec maplist. This can fail for a
743 744 745
 *	number of reasons, such as the bio being full or target block device
 *	limitations. The target block device must allow bio's up to PAGE_SIZE,
 *	so it is always possible to add a single page to an empty bio.
L
Linus Torvalds 已提交
746 747 748 749
 */
int bio_add_page(struct bio *bio, struct page *page, unsigned int len,
		 unsigned int offset)
{
750
	struct request_queue *q = bdev_get_queue(bio->bi_bdev);
751
	return __bio_add_page(q, bio, page, len, offset, queue_max_sectors(q));
L
Linus Torvalds 已提交
752
}
753
EXPORT_SYMBOL(bio_add_page);
L
Linus Torvalds 已提交
754

755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790
struct submit_bio_ret {
	struct completion event;
	int error;
};

static void submit_bio_wait_endio(struct bio *bio, int error)
{
	struct submit_bio_ret *ret = bio->bi_private;

	ret->error = error;
	complete(&ret->event);
}

/**
 * submit_bio_wait - submit a bio, and wait until it completes
 * @rw: whether to %READ or %WRITE, or maybe to %READA (read ahead)
 * @bio: The &struct bio which describes the I/O
 *
 * Simple wrapper around submit_bio(). Returns 0 on success, or the error from
 * bio_endio() on failure.
 */
int submit_bio_wait(int rw, struct bio *bio)
{
	struct submit_bio_ret ret;

	rw |= REQ_SYNC;
	init_completion(&ret.event);
	bio->bi_private = &ret;
	bio->bi_end_io = submit_bio_wait_endio;
	submit_bio(rw, bio);
	wait_for_completion(&ret.event);

	return ret.error;
}
EXPORT_SYMBOL(submit_bio_wait);

K
Kent Overstreet 已提交
791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831
/**
 * bio_advance - increment/complete a bio by some number of bytes
 * @bio:	bio to advance
 * @bytes:	number of bytes to complete
 *
 * This updates bi_sector, bi_size and bi_idx; if the number of bytes to
 * complete doesn't align with a bvec boundary, then bv_len and bv_offset will
 * be updated on the last bvec as well.
 *
 * @bio will then represent the remaining, uncompleted portion of the io.
 */
void bio_advance(struct bio *bio, unsigned bytes)
{
	if (bio_integrity(bio))
		bio_integrity_advance(bio, bytes);

	bio->bi_sector += bytes >> 9;
	bio->bi_size -= bytes;

	if (bio->bi_rw & BIO_NO_ADVANCE_ITER_MASK)
		return;

	while (bytes) {
		if (unlikely(bio->bi_idx >= bio->bi_vcnt)) {
			WARN_ONCE(1, "bio idx %d >= vcnt %d\n",
				  bio->bi_idx, bio->bi_vcnt);
			break;
		}

		if (bytes >= bio_iovec(bio)->bv_len) {
			bytes -= bio_iovec(bio)->bv_len;
			bio->bi_idx++;
		} else {
			bio_iovec(bio)->bv_len -= bytes;
			bio_iovec(bio)->bv_offset += bytes;
			bytes = 0;
		}
	}
}
EXPORT_SYMBOL(bio_advance);

K
Kent Overstreet 已提交
832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901
/**
 * bio_copy_data - copy contents of data buffers from one chain of bios to
 * another
 * @src: source bio list
 * @dst: destination bio list
 *
 * If @src and @dst are single bios, bi_next must be NULL - otherwise, treats
 * @src and @dst as linked lists of bios.
 *
 * Stops when it reaches the end of either @src or @dst - that is, copies
 * min(src->bi_size, dst->bi_size) bytes (or the equivalent for lists of bios).
 */
void bio_copy_data(struct bio *dst, struct bio *src)
{
	struct bio_vec *src_bv, *dst_bv;
	unsigned src_offset, dst_offset, bytes;
	void *src_p, *dst_p;

	src_bv = bio_iovec(src);
	dst_bv = bio_iovec(dst);

	src_offset = src_bv->bv_offset;
	dst_offset = dst_bv->bv_offset;

	while (1) {
		if (src_offset == src_bv->bv_offset + src_bv->bv_len) {
			src_bv++;
			if (src_bv == bio_iovec_idx(src, src->bi_vcnt)) {
				src = src->bi_next;
				if (!src)
					break;

				src_bv = bio_iovec(src);
			}

			src_offset = src_bv->bv_offset;
		}

		if (dst_offset == dst_bv->bv_offset + dst_bv->bv_len) {
			dst_bv++;
			if (dst_bv == bio_iovec_idx(dst, dst->bi_vcnt)) {
				dst = dst->bi_next;
				if (!dst)
					break;

				dst_bv = bio_iovec(dst);
			}

			dst_offset = dst_bv->bv_offset;
		}

		bytes = min(dst_bv->bv_offset + dst_bv->bv_len - dst_offset,
			    src_bv->bv_offset + src_bv->bv_len - src_offset);

		src_p = kmap_atomic(src_bv->bv_page);
		dst_p = kmap_atomic(dst_bv->bv_page);

		memcpy(dst_p + dst_bv->bv_offset,
		       src_p + src_bv->bv_offset,
		       bytes);

		kunmap_atomic(dst_p);
		kunmap_atomic(src_p);

		src_offset += bytes;
		dst_offset += bytes;
	}
}
EXPORT_SYMBOL(bio_copy_data);

L
Linus Torvalds 已提交
902 903
struct bio_map_data {
	struct bio_vec *iovecs;
904
	struct sg_iovec *sgvecs;
905 906
	int nr_sgvecs;
	int is_our_pages;
L
Linus Torvalds 已提交
907 908
};

909
static void bio_set_map_data(struct bio_map_data *bmd, struct bio *bio,
910 911
			     struct sg_iovec *iov, int iov_count,
			     int is_our_pages)
L
Linus Torvalds 已提交
912 913
{
	memcpy(bmd->iovecs, bio->bi_io_vec, sizeof(struct bio_vec) * bio->bi_vcnt);
914 915
	memcpy(bmd->sgvecs, iov, sizeof(struct sg_iovec) * iov_count);
	bmd->nr_sgvecs = iov_count;
916
	bmd->is_our_pages = is_our_pages;
L
Linus Torvalds 已提交
917 918 919 920 921 922
	bio->bi_private = bmd;
}

static void bio_free_map_data(struct bio_map_data *bmd)
{
	kfree(bmd->iovecs);
923
	kfree(bmd->sgvecs);
L
Linus Torvalds 已提交
924 925 926
	kfree(bmd);
}

927 928
static struct bio_map_data *bio_alloc_map_data(int nr_segs,
					       unsigned int iov_count,
929
					       gfp_t gfp_mask)
L
Linus Torvalds 已提交
930
{
931 932 933 934
	struct bio_map_data *bmd;

	if (iov_count > UIO_MAXIOV)
		return NULL;
L
Linus Torvalds 已提交
935

936
	bmd = kmalloc(sizeof(*bmd), gfp_mask);
L
Linus Torvalds 已提交
937 938 939
	if (!bmd)
		return NULL;

940
	bmd->iovecs = kmalloc(sizeof(struct bio_vec) * nr_segs, gfp_mask);
941 942 943 944 945
	if (!bmd->iovecs) {
		kfree(bmd);
		return NULL;
	}

946
	bmd->sgvecs = kmalloc(sizeof(struct sg_iovec) * iov_count, gfp_mask);
947
	if (bmd->sgvecs)
L
Linus Torvalds 已提交
948 949
		return bmd;

950
	kfree(bmd->iovecs);
L
Linus Torvalds 已提交
951 952 953 954
	kfree(bmd);
	return NULL;
}

955
static int __bio_copy_iov(struct bio *bio, struct bio_vec *iovecs,
956 957
			  struct sg_iovec *iov, int iov_count,
			  int to_user, int from_user, int do_free_page)
958 959 960 961 962 963 964 965
{
	int ret = 0, i;
	struct bio_vec *bvec;
	int iov_idx = 0;
	unsigned int iov_off = 0;

	__bio_for_each_segment(bvec, bio, i, 0) {
		char *bv_addr = page_address(bvec->bv_page);
966
		unsigned int bv_len = iovecs[i].bv_len;
967 968 969

		while (bv_len && iov_idx < iov_count) {
			unsigned int bytes;
970
			char __user *iov_addr;
971 972 973 974 975 976

			bytes = min_t(unsigned int,
				      iov[iov_idx].iov_len - iov_off, bv_len);
			iov_addr = iov[iov_idx].iov_base + iov_off;

			if (!ret) {
977
				if (to_user)
978 979 980
					ret = copy_to_user(iov_addr, bv_addr,
							   bytes);

981 982 983 984
				if (from_user)
					ret = copy_from_user(bv_addr, iov_addr,
							     bytes);

985 986 987 988 989 990 991 992 993 994 995 996 997 998 999
				if (ret)
					ret = -EFAULT;
			}

			bv_len -= bytes;
			bv_addr += bytes;
			iov_addr += bytes;
			iov_off += bytes;

			if (iov[iov_idx].iov_len == iov_off) {
				iov_idx++;
				iov_off = 0;
			}
		}

1000
		if (do_free_page)
1001 1002 1003 1004 1005 1006
			__free_page(bvec->bv_page);
	}

	return ret;
}

L
Linus Torvalds 已提交
1007 1008 1009 1010 1011 1012 1013 1014 1015 1016
/**
 *	bio_uncopy_user	-	finish previously mapped bio
 *	@bio: bio being terminated
 *
 *	Free pages allocated from bio_copy_user() and write back data
 *	to user space in case of a read.
 */
int bio_uncopy_user(struct bio *bio)
{
	struct bio_map_data *bmd = bio->bi_private;
1017
	int ret = 0;
L
Linus Torvalds 已提交
1018

1019 1020
	if (!bio_flagged(bio, BIO_NULL_MAPPED))
		ret = __bio_copy_iov(bio, bmd->iovecs, bmd->sgvecs,
1021 1022
				     bmd->nr_sgvecs, bio_data_dir(bio) == READ,
				     0, bmd->is_our_pages);
L
Linus Torvalds 已提交
1023 1024 1025 1026
	bio_free_map_data(bmd);
	bio_put(bio);
	return ret;
}
1027
EXPORT_SYMBOL(bio_uncopy_user);
L
Linus Torvalds 已提交
1028 1029

/**
1030
 *	bio_copy_user_iov	-	copy user data to bio
L
Linus Torvalds 已提交
1031
 *	@q: destination block queue
1032
 *	@map_data: pointer to the rq_map_data holding pages (if necessary)
1033 1034
 *	@iov:	the iovec.
 *	@iov_count: number of elements in the iovec
L
Linus Torvalds 已提交
1035
 *	@write_to_vm: bool indicating writing to pages or not
1036
 *	@gfp_mask: memory allocation flags
L
Linus Torvalds 已提交
1037 1038 1039 1040 1041
 *
 *	Prepares and returns a bio for indirect user io, bouncing data
 *	to/from kernel pages as necessary. Must be paired with
 *	call bio_uncopy_user() on io completion.
 */
1042 1043 1044 1045
struct bio *bio_copy_user_iov(struct request_queue *q,
			      struct rq_map_data *map_data,
			      struct sg_iovec *iov, int iov_count,
			      int write_to_vm, gfp_t gfp_mask)
L
Linus Torvalds 已提交
1046 1047 1048 1049 1050 1051
{
	struct bio_map_data *bmd;
	struct bio_vec *bvec;
	struct page *page;
	struct bio *bio;
	int i, ret;
1052 1053
	int nr_pages = 0;
	unsigned int len = 0;
1054
	unsigned int offset = map_data ? map_data->offset & ~PAGE_MASK : 0;
L
Linus Torvalds 已提交
1055

1056 1057 1058 1059 1060 1061 1062 1063 1064
	for (i = 0; i < iov_count; i++) {
		unsigned long uaddr;
		unsigned long end;
		unsigned long start;

		uaddr = (unsigned long)iov[i].iov_base;
		end = (uaddr + iov[i].iov_len + PAGE_SIZE - 1) >> PAGE_SHIFT;
		start = uaddr >> PAGE_SHIFT;

1065 1066 1067 1068 1069 1070
		/*
		 * Overflow, abort
		 */
		if (end < start)
			return ERR_PTR(-EINVAL);

1071 1072 1073 1074
		nr_pages += end - start;
		len += iov[i].iov_len;
	}

1075 1076 1077
	if (offset)
		nr_pages++;

1078
	bmd = bio_alloc_map_data(nr_pages, iov_count, gfp_mask);
L
Linus Torvalds 已提交
1079 1080 1081 1082
	if (!bmd)
		return ERR_PTR(-ENOMEM);

	ret = -ENOMEM;
1083
	bio = bio_kmalloc(gfp_mask, nr_pages);
L
Linus Torvalds 已提交
1084 1085 1086
	if (!bio)
		goto out_bmd;

1087 1088
	if (!write_to_vm)
		bio->bi_rw |= REQ_WRITE;
L
Linus Torvalds 已提交
1089 1090

	ret = 0;
1091 1092

	if (map_data) {
1093
		nr_pages = 1 << map_data->page_order;
1094 1095
		i = map_data->offset / PAGE_SIZE;
	}
L
Linus Torvalds 已提交
1096
	while (len) {
1097
		unsigned int bytes = PAGE_SIZE;
L
Linus Torvalds 已提交
1098

1099 1100
		bytes -= offset;

L
Linus Torvalds 已提交
1101 1102 1103
		if (bytes > len)
			bytes = len;

1104
		if (map_data) {
1105
			if (i == map_data->nr_entries * nr_pages) {
1106 1107 1108
				ret = -ENOMEM;
				break;
			}
1109 1110 1111 1112 1113 1114

			page = map_data->pages[i / nr_pages];
			page += (i % nr_pages);

			i++;
		} else {
1115
			page = alloc_page(q->bounce_gfp | gfp_mask);
1116 1117 1118 1119
			if (!page) {
				ret = -ENOMEM;
				break;
			}
L
Linus Torvalds 已提交
1120 1121
		}

1122
		if (bio_add_pc_page(q, bio, page, bytes, offset) < bytes)
L
Linus Torvalds 已提交
1123 1124 1125
			break;

		len -= bytes;
1126
		offset = 0;
L
Linus Torvalds 已提交
1127 1128 1129 1130 1131 1132 1133 1134
	}

	if (ret)
		goto cleanup;

	/*
	 * success
	 */
1135 1136 1137
	if ((!write_to_vm && (!map_data || !map_data->null_mapped)) ||
	    (map_data && map_data->from_user)) {
		ret = __bio_copy_iov(bio, bio->bi_io_vec, iov, iov_count, 0, 1, 0);
1138 1139
		if (ret)
			goto cleanup;
L
Linus Torvalds 已提交
1140 1141
	}

1142
	bio_set_map_data(bmd, bio, iov, iov_count, map_data ? 0 : 1);
L
Linus Torvalds 已提交
1143 1144
	return bio;
cleanup:
1145 1146 1147
	if (!map_data)
		bio_for_each_segment(bvec, bio, i)
			__free_page(bvec->bv_page);
L
Linus Torvalds 已提交
1148 1149 1150 1151 1152 1153 1154

	bio_put(bio);
out_bmd:
	bio_free_map_data(bmd);
	return ERR_PTR(ret);
}

1155 1156 1157
/**
 *	bio_copy_user	-	copy user data to bio
 *	@q: destination block queue
1158
 *	@map_data: pointer to the rq_map_data holding pages (if necessary)
1159 1160 1161
 *	@uaddr: start of user address
 *	@len: length in bytes
 *	@write_to_vm: bool indicating writing to pages or not
1162
 *	@gfp_mask: memory allocation flags
1163 1164 1165 1166 1167
 *
 *	Prepares and returns a bio for indirect user io, bouncing data
 *	to/from kernel pages as necessary. Must be paired with
 *	call bio_uncopy_user() on io completion.
 */
1168 1169 1170
struct bio *bio_copy_user(struct request_queue *q, struct rq_map_data *map_data,
			  unsigned long uaddr, unsigned int len,
			  int write_to_vm, gfp_t gfp_mask)
1171 1172 1173 1174 1175 1176
{
	struct sg_iovec iov;

	iov.iov_base = (void __user *)uaddr;
	iov.iov_len = len;

1177
	return bio_copy_user_iov(q, map_data, &iov, 1, write_to_vm, gfp_mask);
1178
}
1179
EXPORT_SYMBOL(bio_copy_user);
1180

1181
static struct bio *__bio_map_user_iov(struct request_queue *q,
1182 1183
				      struct block_device *bdev,
				      struct sg_iovec *iov, int iov_count,
1184
				      int write_to_vm, gfp_t gfp_mask)
L
Linus Torvalds 已提交
1185
{
1186 1187
	int i, j;
	int nr_pages = 0;
L
Linus Torvalds 已提交
1188 1189
	struct page **pages;
	struct bio *bio;
1190 1191
	int cur_page = 0;
	int ret, offset;
L
Linus Torvalds 已提交
1192

1193 1194 1195 1196 1197 1198
	for (i = 0; i < iov_count; i++) {
		unsigned long uaddr = (unsigned long)iov[i].iov_base;
		unsigned long len = iov[i].iov_len;
		unsigned long end = (uaddr + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
		unsigned long start = uaddr >> PAGE_SHIFT;

1199 1200 1201 1202 1203 1204
		/*
		 * Overflow, abort
		 */
		if (end < start)
			return ERR_PTR(-EINVAL);

1205 1206
		nr_pages += end - start;
		/*
1207
		 * buffer must be aligned to at least hardsector size for now
1208
		 */
1209
		if (uaddr & queue_dma_alignment(q))
1210 1211 1212 1213
			return ERR_PTR(-EINVAL);
	}

	if (!nr_pages)
L
Linus Torvalds 已提交
1214 1215
		return ERR_PTR(-EINVAL);

1216
	bio = bio_kmalloc(gfp_mask, nr_pages);
L
Linus Torvalds 已提交
1217 1218 1219 1220
	if (!bio)
		return ERR_PTR(-ENOMEM);

	ret = -ENOMEM;
1221
	pages = kcalloc(nr_pages, sizeof(struct page *), gfp_mask);
L
Linus Torvalds 已提交
1222 1223 1224
	if (!pages)
		goto out;

1225 1226 1227 1228 1229 1230 1231
	for (i = 0; i < iov_count; i++) {
		unsigned long uaddr = (unsigned long)iov[i].iov_base;
		unsigned long len = iov[i].iov_len;
		unsigned long end = (uaddr + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
		unsigned long start = uaddr >> PAGE_SHIFT;
		const int local_nr_pages = end - start;
		const int page_limit = cur_page + local_nr_pages;
1232

N
Nick Piggin 已提交
1233 1234
		ret = get_user_pages_fast(uaddr, local_nr_pages,
				write_to_vm, &pages[cur_page]);
1235 1236
		if (ret < local_nr_pages) {
			ret = -EFAULT;
1237
			goto out_unmap;
1238
		}
1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252

		offset = uaddr & ~PAGE_MASK;
		for (j = cur_page; j < page_limit; j++) {
			unsigned int bytes = PAGE_SIZE - offset;

			if (len <= 0)
				break;
			
			if (bytes > len)
				bytes = len;

			/*
			 * sorry...
			 */
1253 1254
			if (bio_add_pc_page(q, bio, pages[j], bytes, offset) <
					    bytes)
1255 1256 1257 1258 1259
				break;

			len -= bytes;
			offset = 0;
		}
L
Linus Torvalds 已提交
1260

1261
		cur_page = j;
L
Linus Torvalds 已提交
1262
		/*
1263
		 * release the pages we didn't map into the bio, if any
L
Linus Torvalds 已提交
1264
		 */
1265 1266
		while (j < page_limit)
			page_cache_release(pages[j++]);
L
Linus Torvalds 已提交
1267 1268 1269 1270 1271 1272 1273 1274
	}

	kfree(pages);

	/*
	 * set data direction, and check if mapped pages need bouncing
	 */
	if (!write_to_vm)
1275
		bio->bi_rw |= REQ_WRITE;
L
Linus Torvalds 已提交
1276

1277
	bio->bi_bdev = bdev;
L
Linus Torvalds 已提交
1278 1279
	bio->bi_flags |= (1 << BIO_USER_MAPPED);
	return bio;
1280 1281 1282 1283 1284 1285 1286 1287

 out_unmap:
	for (i = 0; i < nr_pages; i++) {
		if(!pages[i])
			break;
		page_cache_release(pages[i]);
	}
 out:
L
Linus Torvalds 已提交
1288 1289 1290 1291 1292 1293 1294
	kfree(pages);
	bio_put(bio);
	return ERR_PTR(ret);
}

/**
 *	bio_map_user	-	map user address into bio
1295
 *	@q: the struct request_queue for the bio
L
Linus Torvalds 已提交
1296 1297 1298 1299
 *	@bdev: destination block device
 *	@uaddr: start of user address
 *	@len: length in bytes
 *	@write_to_vm: bool indicating writing to pages or not
1300
 *	@gfp_mask: memory allocation flags
L
Linus Torvalds 已提交
1301 1302 1303 1304
 *
 *	Map the user space address into a bio suitable for io to a block
 *	device. Returns an error pointer in case of error.
 */
1305
struct bio *bio_map_user(struct request_queue *q, struct block_device *bdev,
1306 1307
			 unsigned long uaddr, unsigned int len, int write_to_vm,
			 gfp_t gfp_mask)
1308 1309 1310
{
	struct sg_iovec iov;

1311
	iov.iov_base = (void __user *)uaddr;
1312 1313
	iov.iov_len = len;

1314
	return bio_map_user_iov(q, bdev, &iov, 1, write_to_vm, gfp_mask);
1315
}
1316
EXPORT_SYMBOL(bio_map_user);
1317 1318 1319

/**
 *	bio_map_user_iov - map user sg_iovec table into bio
1320
 *	@q: the struct request_queue for the bio
1321 1322 1323 1324
 *	@bdev: destination block device
 *	@iov:	the iovec.
 *	@iov_count: number of elements in the iovec
 *	@write_to_vm: bool indicating writing to pages or not
1325
 *	@gfp_mask: memory allocation flags
1326 1327 1328 1329
 *
 *	Map the user space address into a bio suitable for io to a block
 *	device. Returns an error pointer in case of error.
 */
1330
struct bio *bio_map_user_iov(struct request_queue *q, struct block_device *bdev,
1331
			     struct sg_iovec *iov, int iov_count,
1332
			     int write_to_vm, gfp_t gfp_mask)
L
Linus Torvalds 已提交
1333 1334 1335
{
	struct bio *bio;

1336 1337
	bio = __bio_map_user_iov(q, bdev, iov, iov_count, write_to_vm,
				 gfp_mask);
L
Linus Torvalds 已提交
1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348
	if (IS_ERR(bio))
		return bio;

	/*
	 * subtle -- if __bio_map_user() ended up bouncing a bio,
	 * it would normally disappear when its bi_end_io is run.
	 * however, we need it for the unmap, so grab an extra
	 * reference to it
	 */
	bio_get(bio);

1349
	return bio;
L
Linus Torvalds 已提交
1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383
}

static void __bio_unmap_user(struct bio *bio)
{
	struct bio_vec *bvec;
	int i;

	/*
	 * make sure we dirty pages we wrote to
	 */
	__bio_for_each_segment(bvec, bio, i, 0) {
		if (bio_data_dir(bio) == READ)
			set_page_dirty_lock(bvec->bv_page);

		page_cache_release(bvec->bv_page);
	}

	bio_put(bio);
}

/**
 *	bio_unmap_user	-	unmap a bio
 *	@bio:		the bio being unmapped
 *
 *	Unmap a bio previously mapped by bio_map_user(). Must be called with
 *	a process context.
 *
 *	bio_unmap_user() may sleep.
 */
void bio_unmap_user(struct bio *bio)
{
	__bio_unmap_user(bio);
	bio_put(bio);
}
1384
EXPORT_SYMBOL(bio_unmap_user);
L
Linus Torvalds 已提交
1385

1386
static void bio_map_kern_endio(struct bio *bio, int err)
1387 1388 1389 1390
{
	bio_put(bio);
}

1391
static struct bio *__bio_map_kern(struct request_queue *q, void *data,
A
Al Viro 已提交
1392
				  unsigned int len, gfp_t gfp_mask)
M
Mike Christie 已提交
1393 1394 1395 1396 1397 1398 1399 1400
{
	unsigned long kaddr = (unsigned long)data;
	unsigned long end = (kaddr + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
	unsigned long start = kaddr >> PAGE_SHIFT;
	const int nr_pages = end - start;
	int offset, i;
	struct bio *bio;

1401
	bio = bio_kmalloc(gfp_mask, nr_pages);
M
Mike Christie 已提交
1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414
	if (!bio)
		return ERR_PTR(-ENOMEM);

	offset = offset_in_page(kaddr);
	for (i = 0; i < nr_pages; i++) {
		unsigned int bytes = PAGE_SIZE - offset;

		if (len <= 0)
			break;

		if (bytes > len)
			bytes = len;

1415 1416
		if (bio_add_pc_page(q, bio, virt_to_page(data), bytes,
				    offset) < bytes)
M
Mike Christie 已提交
1417 1418 1419 1420 1421 1422 1423
			break;

		data += bytes;
		len -= bytes;
		offset = 0;
	}

1424
	bio->bi_end_io = bio_map_kern_endio;
M
Mike Christie 已提交
1425 1426 1427 1428 1429
	return bio;
}

/**
 *	bio_map_kern	-	map kernel address into bio
1430
 *	@q: the struct request_queue for the bio
M
Mike Christie 已提交
1431 1432 1433 1434 1435 1436 1437
 *	@data: pointer to buffer to map
 *	@len: length in bytes
 *	@gfp_mask: allocation flags for bio allocation
 *
 *	Map the kernel address into a bio suitable for io to a block
 *	device. Returns an error pointer in case of error.
 */
1438
struct bio *bio_map_kern(struct request_queue *q, void *data, unsigned int len,
A
Al Viro 已提交
1439
			 gfp_t gfp_mask)
M
Mike Christie 已提交
1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455
{
	struct bio *bio;

	bio = __bio_map_kern(q, data, len, gfp_mask);
	if (IS_ERR(bio))
		return bio;

	if (bio->bi_size == len)
		return bio;

	/*
	 * Don't support partial mappings.
	 */
	bio_put(bio);
	return ERR_PTR(-EINVAL);
}
1456
EXPORT_SYMBOL(bio_map_kern);
M
Mike Christie 已提交
1457

1458 1459 1460 1461
static void bio_copy_kern_endio(struct bio *bio, int err)
{
	struct bio_vec *bvec;
	const int read = bio_data_dir(bio) == READ;
1462
	struct bio_map_data *bmd = bio->bi_private;
1463
	int i;
1464
	char *p = bmd->sgvecs[0].iov_base;
1465 1466 1467

	__bio_for_each_segment(bvec, bio, i, 0) {
		char *addr = page_address(bvec->bv_page);
1468
		int len = bmd->iovecs[i].bv_len;
1469

1470
		if (read)
1471
			memcpy(p, addr, len);
1472 1473

		__free_page(bvec->bv_page);
1474
		p += len;
1475 1476
	}

1477
	bio_free_map_data(bmd);
1478 1479 1480 1481 1482 1483 1484 1485 1486
	bio_put(bio);
}

/**
 *	bio_copy_kern	-	copy kernel address into bio
 *	@q: the struct request_queue for the bio
 *	@data: pointer to buffer to copy
 *	@len: length in bytes
 *	@gfp_mask: allocation flags for bio and page allocation
1487
 *	@reading: data direction is READ
1488 1489 1490 1491 1492 1493 1494 1495 1496
 *
 *	copy the kernel address into a bio suitable for io to a block
 *	device. Returns an error pointer in case of error.
 */
struct bio *bio_copy_kern(struct request_queue *q, void *data, unsigned int len,
			  gfp_t gfp_mask, int reading)
{
	struct bio *bio;
	struct bio_vec *bvec;
1497
	int i;
1498

1499 1500 1501
	bio = bio_copy_user(q, NULL, (unsigned long)data, len, 1, gfp_mask);
	if (IS_ERR(bio))
		return bio;
1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514

	if (!reading) {
		void *p = data;

		bio_for_each_segment(bvec, bio, i) {
			char *addr = page_address(bvec->bv_page);

			memcpy(addr, p, bvec->bv_len);
			p += bvec->bv_len;
		}
	}

	bio->bi_end_io = bio_copy_kern_endio;
1515

1516 1517
	return bio;
}
1518
EXPORT_SYMBOL(bio_copy_kern);
1519

L
Linus Torvalds 已提交
1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538
/*
 * bio_set_pages_dirty() and bio_check_pages_dirty() are support functions
 * for performing direct-IO in BIOs.
 *
 * The problem is that we cannot run set_page_dirty() from interrupt context
 * because the required locks are not interrupt-safe.  So what we can do is to
 * mark the pages dirty _before_ performing IO.  And in interrupt context,
 * check that the pages are still dirty.   If so, fine.  If not, redirty them
 * in process context.
 *
 * We special-case compound pages here: normally this means reads into hugetlb
 * pages.  The logic in here doesn't really work right for compound pages
 * because the VM does not uniformly chase down the head page in all cases.
 * But dirtiness of compound pages is pretty meaningless anyway: the VM doesn't
 * handle them at all.  So we skip compound pages here at an early stage.
 *
 * Note that this code is very hard to test under normal circumstances because
 * direct-io pins the pages with get_user_pages().  This makes
 * is_page_cache_freeable return false, and the VM will not clean the pages.
1539
 * But other code (eg, flusher threads) could clean the pages if they are mapped
L
Linus Torvalds 已提交
1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561
 * pagecache.
 *
 * Simply disabling the call to bio_set_pages_dirty() is a good way to test the
 * deferred bio dirtying paths.
 */

/*
 * bio_set_pages_dirty() will mark all the bio's pages as dirty.
 */
void bio_set_pages_dirty(struct bio *bio)
{
	struct bio_vec *bvec = bio->bi_io_vec;
	int i;

	for (i = 0; i < bio->bi_vcnt; i++) {
		struct page *page = bvec[i].bv_page;

		if (page && !PageCompound(page))
			set_page_dirty_lock(page);
	}
}

1562
static void bio_release_pages(struct bio *bio)
L
Linus Torvalds 已提交
1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585
{
	struct bio_vec *bvec = bio->bi_io_vec;
	int i;

	for (i = 0; i < bio->bi_vcnt; i++) {
		struct page *page = bvec[i].bv_page;

		if (page)
			put_page(page);
	}
}

/*
 * bio_check_pages_dirty() will check that all the BIO's pages are still dirty.
 * If they are, then fine.  If, however, some pages are clean then they must
 * have been written out during the direct-IO read.  So we take another ref on
 * the BIO and the offending pages and re-dirty the pages in process context.
 *
 * It is expected that bio_check_pages_dirty() will wholly own the BIO from
 * here on.  It will run one page_cache_release() against each page and will
 * run one bio_put() against the BIO.
 */

1586
static void bio_dirty_fn(struct work_struct *work);
L
Linus Torvalds 已提交
1587

1588
static DECLARE_WORK(bio_dirty_work, bio_dirty_fn);
L
Linus Torvalds 已提交
1589 1590 1591 1592 1593 1594
static DEFINE_SPINLOCK(bio_dirty_lock);
static struct bio *bio_dirty_list;

/*
 * This runs in process context
 */
1595
static void bio_dirty_fn(struct work_struct *work)
L
Linus Torvalds 已提交
1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644
{
	unsigned long flags;
	struct bio *bio;

	spin_lock_irqsave(&bio_dirty_lock, flags);
	bio = bio_dirty_list;
	bio_dirty_list = NULL;
	spin_unlock_irqrestore(&bio_dirty_lock, flags);

	while (bio) {
		struct bio *next = bio->bi_private;

		bio_set_pages_dirty(bio);
		bio_release_pages(bio);
		bio_put(bio);
		bio = next;
	}
}

void bio_check_pages_dirty(struct bio *bio)
{
	struct bio_vec *bvec = bio->bi_io_vec;
	int nr_clean_pages = 0;
	int i;

	for (i = 0; i < bio->bi_vcnt; i++) {
		struct page *page = bvec[i].bv_page;

		if (PageDirty(page) || PageCompound(page)) {
			page_cache_release(page);
			bvec[i].bv_page = NULL;
		} else {
			nr_clean_pages++;
		}
	}

	if (nr_clean_pages) {
		unsigned long flags;

		spin_lock_irqsave(&bio_dirty_lock, flags);
		bio->bi_private = bio_dirty_list;
		bio_dirty_list = bio;
		spin_unlock_irqrestore(&bio_dirty_lock, flags);
		schedule_work(&bio_dirty_work);
	} else {
		bio_put(bio);
	}
}

1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656
#if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE
void bio_flush_dcache_pages(struct bio *bi)
{
	int i;
	struct bio_vec *bvec;

	bio_for_each_segment(bvec, bi, i)
		flush_dcache_page(bvec->bv_page);
}
EXPORT_SYMBOL(bio_flush_dcache_pages);
#endif

L
Linus Torvalds 已提交
1657 1658 1659 1660 1661 1662
/**
 * bio_endio - end I/O on a bio
 * @bio:	bio
 * @error:	error, if any
 *
 * Description:
1663
 *   bio_endio() will end I/O on the whole bio. bio_endio() is the
N
NeilBrown 已提交
1664 1665 1666
 *   preferred way to end I/O on a bio, it takes care of clearing
 *   BIO_UPTODATE on error. @error is 0 on success, and and one of the
 *   established -Exxxx (-EIO, for instance) error values in case
L
Lucas De Marchi 已提交
1667
 *   something went wrong. No one should call bi_end_io() directly on a
N
NeilBrown 已提交
1668 1669
 *   bio unless they own it and thus know that it has an end_io
 *   function.
L
Linus Torvalds 已提交
1670
 **/
1671
void bio_endio(struct bio *bio, int error)
L
Linus Torvalds 已提交
1672 1673 1674
{
	if (error)
		clear_bit(BIO_UPTODATE, &bio->bi_flags);
N
NeilBrown 已提交
1675 1676
	else if (!test_bit(BIO_UPTODATE, &bio->bi_flags))
		error = -EIO;
L
Linus Torvalds 已提交
1677

1678 1679
	trace_block_bio_complete(bio, error);

N
NeilBrown 已提交
1680
	if (bio->bi_end_io)
1681
		bio->bi_end_io(bio, error);
L
Linus Torvalds 已提交
1682
}
1683
EXPORT_SYMBOL(bio_endio);
L
Linus Torvalds 已提交
1684 1685 1686 1687 1688 1689

void bio_pair_release(struct bio_pair *bp)
{
	if (atomic_dec_and_test(&bp->cnt)) {
		struct bio *master = bp->bio1.bi_private;

1690
		bio_endio(master, bp->error);
L
Linus Torvalds 已提交
1691 1692 1693
		mempool_free(bp, bp->bio2.bi_private);
	}
}
1694
EXPORT_SYMBOL(bio_pair_release);
L
Linus Torvalds 已提交
1695

1696
static void bio_pair_end_1(struct bio *bi, int err)
L
Linus Torvalds 已提交
1697 1698 1699 1700 1701 1702 1703 1704 1705
{
	struct bio_pair *bp = container_of(bi, struct bio_pair, bio1);

	if (err)
		bp->error = err;

	bio_pair_release(bp);
}

1706
static void bio_pair_end_2(struct bio *bi, int err)
L
Linus Torvalds 已提交
1707 1708 1709 1710 1711 1712 1713 1714 1715 1716
{
	struct bio_pair *bp = container_of(bi, struct bio_pair, bio2);

	if (err)
		bp->error = err;

	bio_pair_release(bp);
}

/*
1717
 * split a bio - only worry about a bio with a single page in its iovec
L
Linus Torvalds 已提交
1718
 */
D
Denis ChengRq 已提交
1719
struct bio_pair *bio_split(struct bio *bi, int first_sectors)
L
Linus Torvalds 已提交
1720
{
D
Denis ChengRq 已提交
1721
	struct bio_pair *bp = mempool_alloc(bio_split_pool, GFP_NOIO);
L
Linus Torvalds 已提交
1722 1723 1724 1725

	if (!bp)
		return bp;

1726
	trace_block_split(bdev_get_queue(bi->bi_bdev), bi,
1727 1728
				bi->bi_sector + first_sectors);

1729
	BUG_ON(bio_segments(bi) > 1);
L
Linus Torvalds 已提交
1730 1731 1732 1733 1734 1735 1736 1737
	atomic_set(&bp->cnt, 3);
	bp->error = 0;
	bp->bio1 = *bi;
	bp->bio2 = *bi;
	bp->bio2.bi_sector += first_sectors;
	bp->bio2.bi_size -= first_sectors << 9;
	bp->bio1.bi_size = first_sectors << 9;

1738
	if (bi->bi_vcnt != 0) {
1739 1740
		bp->bv1 = *bio_iovec(bi);
		bp->bv2 = *bio_iovec(bi);
1741

1742 1743 1744 1745 1746
		if (bio_is_rw(bi)) {
			bp->bv2.bv_offset += first_sectors << 9;
			bp->bv2.bv_len -= first_sectors << 9;
			bp->bv1.bv_len = first_sectors << 9;
		}
L
Linus Torvalds 已提交
1747

1748 1749
		bp->bio1.bi_io_vec = &bp->bv1;
		bp->bio2.bi_io_vec = &bp->bv2;
L
Linus Torvalds 已提交
1750

1751 1752 1753
		bp->bio1.bi_max_vecs = 1;
		bp->bio2.bi_max_vecs = 1;
	}
1754

L
Linus Torvalds 已提交
1755 1756 1757 1758
	bp->bio1.bi_end_io = bio_pair_end_1;
	bp->bio2.bi_end_io = bio_pair_end_2;

	bp->bio1.bi_private = bi;
D
Denis ChengRq 已提交
1759
	bp->bio2.bi_private = bio_split_pool;
L
Linus Torvalds 已提交
1760

1761 1762 1763
	if (bio_integrity(bi))
		bio_integrity_split(bi, bp, first_sectors);

L
Linus Torvalds 已提交
1764 1765
	return bp;
}
1766
EXPORT_SYMBOL(bio_split);
L
Linus Torvalds 已提交
1767

1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780
/**
 *      bio_sector_offset - Find hardware sector offset in bio
 *      @bio:           bio to inspect
 *      @index:         bio_vec index
 *      @offset:        offset in bv_page
 *
 *      Return the number of hardware sectors between beginning of bio
 *      and an end point indicated by a bio_vec index and an offset
 *      within that vector's page.
 */
sector_t bio_sector_offset(struct bio *bio, unsigned short index,
			   unsigned int offset)
{
1781
	unsigned int sector_sz;
1782 1783 1784 1785
	struct bio_vec *bv;
	sector_t sectors;
	int i;

1786
	sector_sz = queue_logical_block_size(bio->bi_bdev->bd_disk->queue);
1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804
	sectors = 0;

	if (index >= bio->bi_idx)
		index = bio->bi_vcnt - 1;

	__bio_for_each_segment(bv, bio, i, 0) {
		if (i == index) {
			if (offset > bv->bv_offset)
				sectors += (offset - bv->bv_offset) / sector_sz;
			break;
		}

		sectors += bv->bv_len / sector_sz;
	}

	return sectors;
}
EXPORT_SYMBOL(bio_sector_offset);
L
Linus Torvalds 已提交
1805 1806 1807 1808 1809

/*
 * create memory pools for biovec's in a bio_set.
 * use the global biovec slabs created for general use.
 */
1810
mempool_t *biovec_create_pool(struct bio_set *bs, int pool_entries)
L
Linus Torvalds 已提交
1811
{
1812
	struct biovec_slab *bp = bvec_slabs + BIOVEC_MAX_IDX;
L
Linus Torvalds 已提交
1813

1814
	return mempool_create_slab_pool(pool_entries, bp->slab);
L
Linus Torvalds 已提交
1815 1816 1817 1818
}

void bioset_free(struct bio_set *bs)
{
1819 1820 1821
	if (bs->rescue_workqueue)
		destroy_workqueue(bs->rescue_workqueue);

L
Linus Torvalds 已提交
1822 1823 1824
	if (bs->bio_pool)
		mempool_destroy(bs->bio_pool);

1825 1826 1827
	if (bs->bvec_pool)
		mempool_destroy(bs->bvec_pool);

1828
	bioset_integrity_free(bs);
1829
	bio_put_slab(bs);
L
Linus Torvalds 已提交
1830 1831 1832

	kfree(bs);
}
1833
EXPORT_SYMBOL(bioset_free);
L
Linus Torvalds 已提交
1834

1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848
/**
 * bioset_create  - Create a bio_set
 * @pool_size:	Number of bio and bio_vecs to cache in the mempool
 * @front_pad:	Number of bytes to allocate in front of the returned bio
 *
 * Description:
 *    Set up a bio_set to be used with @bio_alloc_bioset. Allows the caller
 *    to ask for a number of bytes to be allocated in front of the bio.
 *    Front pad allocation is useful for embedding the bio inside
 *    another structure, to avoid allocating extra data to go with the bio.
 *    Note that the bio must be embedded at the END of that structure always,
 *    or things will break badly.
 */
struct bio_set *bioset_create(unsigned int pool_size, unsigned int front_pad)
L
Linus Torvalds 已提交
1849
{
1850
	unsigned int back_pad = BIO_INLINE_VECS * sizeof(struct bio_vec);
1851
	struct bio_set *bs;
L
Linus Torvalds 已提交
1852

1853
	bs = kzalloc(sizeof(*bs), GFP_KERNEL);
L
Linus Torvalds 已提交
1854 1855 1856
	if (!bs)
		return NULL;

1857
	bs->front_pad = front_pad;
1858

1859 1860 1861 1862
	spin_lock_init(&bs->rescue_lock);
	bio_list_init(&bs->rescue_list);
	INIT_WORK(&bs->rescue_work, bio_alloc_rescue);

1863
	bs->bio_slab = bio_find_or_create_slab(front_pad + back_pad);
1864 1865 1866 1867 1868 1869
	if (!bs->bio_slab) {
		kfree(bs);
		return NULL;
	}

	bs->bio_pool = mempool_create_slab_pool(pool_size, bs->bio_slab);
L
Linus Torvalds 已提交
1870 1871 1872
	if (!bs->bio_pool)
		goto bad;

1873 1874
	bs->bvec_pool = biovec_create_pool(bs, pool_size);
	if (!bs->bvec_pool)
1875 1876 1877 1878 1879
		goto bad;

	bs->rescue_workqueue = alloc_workqueue("bioset", WQ_MEM_RECLAIM, 0);
	if (!bs->rescue_workqueue)
		goto bad;
L
Linus Torvalds 已提交
1880

1881
	return bs;
L
Linus Torvalds 已提交
1882 1883 1884 1885
bad:
	bioset_free(bs);
	return NULL;
}
1886
EXPORT_SYMBOL(bioset_create);
L
Linus Torvalds 已提交
1887

1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945
#ifdef CONFIG_BLK_CGROUP
/**
 * bio_associate_current - associate a bio with %current
 * @bio: target bio
 *
 * Associate @bio with %current if it hasn't been associated yet.  Block
 * layer will treat @bio as if it were issued by %current no matter which
 * task actually issues it.
 *
 * This function takes an extra reference of @task's io_context and blkcg
 * which will be put when @bio is released.  The caller must own @bio,
 * ensure %current->io_context exists, and is responsible for synchronizing
 * calls to this function.
 */
int bio_associate_current(struct bio *bio)
{
	struct io_context *ioc;
	struct cgroup_subsys_state *css;

	if (bio->bi_ioc)
		return -EBUSY;

	ioc = current->io_context;
	if (!ioc)
		return -ENOENT;

	/* acquire active ref on @ioc and associate */
	get_io_context_active(ioc);
	bio->bi_ioc = ioc;

	/* associate blkcg if exists */
	rcu_read_lock();
	css = task_subsys_state(current, blkio_subsys_id);
	if (css && css_tryget(css))
		bio->bi_css = css;
	rcu_read_unlock();

	return 0;
}

/**
 * bio_disassociate_task - undo bio_associate_current()
 * @bio: target bio
 */
void bio_disassociate_task(struct bio *bio)
{
	if (bio->bi_ioc) {
		put_io_context(bio->bi_ioc);
		bio->bi_ioc = NULL;
	}
	if (bio->bi_css) {
		css_put(bio->bi_css);
		bio->bi_css = NULL;
	}
}

#endif /* CONFIG_BLK_CGROUP */

L
Linus Torvalds 已提交
1946 1947 1948 1949 1950 1951 1952 1953
static void __init biovec_init_slabs(void)
{
	int i;

	for (i = 0; i < BIOVEC_NR_POOLS; i++) {
		int size;
		struct biovec_slab *bvs = bvec_slabs + i;

1954 1955 1956 1957 1958
		if (bvs->nr_vecs <= BIO_INLINE_VECS) {
			bvs->slab = NULL;
			continue;
		}

L
Linus Torvalds 已提交
1959 1960
		size = bvs->nr_vecs * sizeof(struct bio_vec);
		bvs->slab = kmem_cache_create(bvs->name, size, 0,
1961
                                SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
L
Linus Torvalds 已提交
1962 1963 1964 1965 1966
	}
}

static int __init init_bio(void)
{
1967 1968 1969 1970 1971
	bio_slab_max = 2;
	bio_slab_nr = 0;
	bio_slabs = kzalloc(bio_slab_max * sizeof(struct bio_slab), GFP_KERNEL);
	if (!bio_slabs)
		panic("bio: can't allocate bios\n");
L
Linus Torvalds 已提交
1972

1973
	bio_integrity_init();
L
Linus Torvalds 已提交
1974 1975
	biovec_init_slabs();

1976
	fs_bio_set = bioset_create(BIO_POOL_SIZE, 0);
L
Linus Torvalds 已提交
1977 1978 1979
	if (!fs_bio_set)
		panic("bio: can't allocate bios\n");

1980 1981 1982
	if (bioset_integrity_create(fs_bio_set, BIO_POOL_SIZE))
		panic("bio: can't create integrity pool\n");

1983 1984
	bio_split_pool = mempool_create_kmalloc_pool(BIO_SPLIT_ENTRIES,
						     sizeof(struct bio_pair));
L
Linus Torvalds 已提交
1985 1986 1987 1988 1989 1990
	if (!bio_split_pool)
		panic("bio: can't create split pool\n");

	return 0;
}
subsys_initcall(init_bio);