core.c 31.7 KB
Newer Older
L
Linus Torvalds 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
/*
 *  Kernel Probes (KProbes)
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
 *
 * Copyright (C) IBM Corporation, 2002, 2004
 *
 * 2002-Oct	Created by Vamsi Krishna S <vamsi_krishna@in.ibm.com> Kernel
 *		Probes initial implementation ( includes contributions from
 *		Rusty Russell).
 * 2004-July	Suparna Bhattacharya <suparna@in.ibm.com> added jumper probes
 *		interface to access function arguments.
25 26
 * 2004-Oct	Jim Keniston <jkenisto@us.ibm.com> and Prasanna S Panchamukhi
 *		<prasanna@in.ibm.com> adapted for x86_64 from i386.
L
Linus Torvalds 已提交
27 28
 * 2005-Mar	Roland McGrath <roland@redhat.com>
 *		Fixed to handle %rip-relative addressing mode correctly.
29 30 31 32
 * 2005-May	Hien Nguyen <hien@us.ibm.com>, Jim Keniston
 *		<jkenisto@us.ibm.com> and Prasanna S Panchamukhi
 *		<prasanna@in.ibm.com> added function-return probes.
 * 2005-May	Rusty Lynch <rusty.lynch@intel.com>
33
 *		Added function return probes functionality
34
 * 2006-Feb	Masami Hiramatsu <hiramatu@sdl.hitachi.co.jp> added
35
 *		kprobe-booster and kretprobe-booster for i386.
36
 * 2007-Dec	Masami Hiramatsu <mhiramat@redhat.com> added kprobe-booster
37
 *		and kretprobe-booster for x86-64
38
 * 2007-Dec	Masami Hiramatsu <mhiramat@redhat.com>, Arjan van de Ven
39 40
 *		<arjan@infradead.org> and Jim Keniston <jkenisto@us.ibm.com>
 *		unified x86 kprobes code.
L
Linus Torvalds 已提交
41 42 43 44 45
 */
#include <linux/kprobes.h>
#include <linux/ptrace.h>
#include <linux/string.h>
#include <linux/slab.h>
46
#include <linux/hardirq.h>
L
Linus Torvalds 已提交
47
#include <linux/preempt.h>
48
#include <linux/module.h>
49
#include <linux/kdebug.h>
50
#include <linux/kallsyms.h>
51
#include <linux/ftrace.h>
52

53 54
#include <asm/cacheflush.h>
#include <asm/desc.h>
L
Linus Torvalds 已提交
55
#include <asm/pgtable.h>
56
#include <asm/uaccess.h>
57
#include <asm/alternative.h>
58
#include <asm/insn.h>
59
#include <asm/debugreg.h>
L
Linus Torvalds 已提交
60

61
#include "common.h"
62

L
Linus Torvalds 已提交
63 64
void jprobe_return_end(void);

65 66
DEFINE_PER_CPU(struct kprobe *, current_kprobe) = NULL;
DEFINE_PER_CPU(struct kprobe_ctlblk, kprobe_ctlblk);
L
Linus Torvalds 已提交
67

68
#define stack_addr(regs) ((unsigned long *)kernel_stack_pointer(regs))
69 70 71 72 73 74 75 76 77 78

#define W(row, b0, b1, b2, b3, b4, b5, b6, b7, b8, b9, ba, bb, bc, bd, be, bf)\
	(((b0##UL << 0x0)|(b1##UL << 0x1)|(b2##UL << 0x2)|(b3##UL << 0x3) |   \
	  (b4##UL << 0x4)|(b5##UL << 0x5)|(b6##UL << 0x6)|(b7##UL << 0x7) |   \
	  (b8##UL << 0x8)|(b9##UL << 0x9)|(ba##UL << 0xa)|(bb##UL << 0xb) |   \
	  (bc##UL << 0xc)|(bd##UL << 0xd)|(be##UL << 0xe)|(bf##UL << 0xf))    \
	 << (row % 32))
	/*
	 * Undefined/reserved opcodes, conditional jump, Opcode Extension
	 * Groups, and some special opcodes can not boost.
79 80
	 * This is non-const and volatile to keep gcc from statically
	 * optimizing it out, as variable_test_bit makes gcc think only
81
	 * *(unsigned long*) is used.
82
	 */
83
static volatile u32 twobyte_is_boostable[256 / 32] = {
84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106
	/*      0  1  2  3  4  5  6  7  8  9  a  b  c  d  e  f          */
	/*      ----------------------------------------------          */
	W(0x00, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0, 0, 0, 0, 0, 0) | /* 00 */
	W(0x10, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) , /* 10 */
	W(0x20, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) | /* 20 */
	W(0x30, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) , /* 30 */
	W(0x40, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* 40 */
	W(0x50, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) , /* 50 */
	W(0x60, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1) | /* 60 */
	W(0x70, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1) , /* 70 */
	W(0x80, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) | /* 80 */
	W(0x90, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* 90 */
	W(0xa0, 1, 1, 0, 1, 1, 1, 0, 0, 1, 1, 0, 1, 1, 1, 0, 1) | /* a0 */
	W(0xb0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 1, 1, 1, 1, 1) , /* b0 */
	W(0xc0, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1) | /* c0 */
	W(0xd0, 0, 1, 1, 1, 0, 1, 0, 0, 1, 1, 0, 1, 1, 1, 0, 1) , /* d0 */
	W(0xe0, 0, 1, 1, 0, 0, 1, 0, 0, 1, 1, 0, 1, 1, 1, 0, 1) | /* e0 */
	W(0xf0, 0, 1, 1, 1, 0, 1, 0, 0, 1, 1, 1, 0, 1, 1, 1, 0)   /* f0 */
	/*      -----------------------------------------------         */
	/*      0  1  2  3  4  5  6  7  8  9  a  b  c  d  e  f          */
};
#undef W

107 108 109 110 111
struct kretprobe_blackpoint kretprobe_blacklist[] = {
	{"__switch_to", }, /* This function switches only current task, but
			      doesn't switch kernel stack.*/
	{NULL, NULL}	/* Terminator */
};
112

113 114
const int kretprobe_blacklist_size = ARRAY_SIZE(kretprobe_blacklist);

115 116
static nokprobe_inline void
__synthesize_relative_insn(void *from, void *to, u8 op)
117
{
118 119
	struct __arch_relative_insn {
		u8 op;
120
		s32 raddr;
121
	} __packed *insn;
122 123 124 125 126 127 128

	insn = (struct __arch_relative_insn *)from;
	insn->raddr = (s32)((long)(to) - ((long)(from) + 5));
	insn->op = op;
}

/* Insert a jump instruction at address 'from', which jumps to address 'to'.*/
129
void synthesize_reljump(void *from, void *to)
130 131
{
	__synthesize_relative_insn(from, to, RELATIVEJUMP_OPCODE);
132
}
133
NOKPROBE_SYMBOL(synthesize_reljump);
134

135
/* Insert a call instruction at address 'from', which calls address 'to'.*/
136
void synthesize_relcall(void *from, void *to)
137 138 139
{
	__synthesize_relative_insn(from, to, RELATIVECALL_OPCODE);
}
140
NOKPROBE_SYMBOL(synthesize_relcall);
141

142
/*
143
 * Skip the prefixes of the instruction.
144
 */
145
static kprobe_opcode_t *skip_prefixes(kprobe_opcode_t *insn)
146
{
147 148 149 150 151 152 153
	insn_attr_t attr;

	attr = inat_get_opcode_attribute((insn_byte_t)*insn);
	while (inat_is_legacy_prefix(attr)) {
		insn++;
		attr = inat_get_opcode_attribute((insn_byte_t)*insn);
	}
154
#ifdef CONFIG_X86_64
155 156
	if (inat_is_rex_prefix(attr))
		insn++;
157
#endif
158
	return insn;
159
}
160
NOKPROBE_SYMBOL(skip_prefixes);
161

162
/*
163 164
 * Returns non-zero if opcode is boostable.
 * RIP relative instructions are adjusted at copying time in 64 bits mode
165
 */
166
int can_boost(kprobe_opcode_t *opcodes)
167 168 169 170
{
	kprobe_opcode_t opcode;
	kprobe_opcode_t *orig_opcodes = opcodes;

171
	if (search_exception_tables((unsigned long)opcodes))
172 173
		return 0;	/* Page fault may occur on this address. */

174 175 176 177 178 179 180 181 182
retry:
	if (opcodes - orig_opcodes > MAX_INSN_SIZE - 1)
		return 0;
	opcode = *(opcodes++);

	/* 2nd-byte opcode */
	if (opcode == 0x0f) {
		if (opcodes - orig_opcodes > MAX_INSN_SIZE - 1)
			return 0;
183 184
		return test_bit(*opcodes,
				(unsigned long *)twobyte_is_boostable);
185 186 187
	}

	switch (opcode & 0xf0) {
188
#ifdef CONFIG_X86_64
189 190
	case 0x40:
		goto retry; /* REX prefix is boostable */
191
#endif
192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221
	case 0x60:
		if (0x63 < opcode && opcode < 0x67)
			goto retry; /* prefixes */
		/* can't boost Address-size override and bound */
		return (opcode != 0x62 && opcode != 0x67);
	case 0x70:
		return 0; /* can't boost conditional jump */
	case 0xc0:
		/* can't boost software-interruptions */
		return (0xc1 < opcode && opcode < 0xcc) || opcode == 0xcf;
	case 0xd0:
		/* can boost AA* and XLAT */
		return (opcode == 0xd4 || opcode == 0xd5 || opcode == 0xd7);
	case 0xe0:
		/* can boost in/out and absolute jmps */
		return ((opcode & 0x04) || opcode == 0xea);
	case 0xf0:
		if ((opcode & 0x0c) == 0 && opcode != 0xf1)
			goto retry; /* lock/rep(ne) prefix */
		/* clear and set flags are boostable */
		return (opcode == 0xf5 || (0xf7 < opcode && opcode < 0xfe));
	default:
		/* segment override prefixes are boostable */
		if (opcode == 0x26 || opcode == 0x36 || opcode == 0x3e)
			goto retry; /* prefixes */
		/* CS override prefix and call are not boostable */
		return (opcode != 0x2e && opcode != 0x9a);
	}
}

222 223
static unsigned long
__recover_probed_insn(kprobe_opcode_t *buf, unsigned long addr)
224 225
{
	struct kprobe *kp;
226

227
	kp = get_kprobe((void *)addr);
228
	/* There is no probe, return original address */
229
	if (!kp)
230
		return addr;
231 232 233 234

	/*
	 *  Basically, kp->ainsn.insn has an original instruction.
	 *  However, RIP-relative instruction can not do single-stepping
235
	 *  at different place, __copy_instruction() tweaks the displacement of
236 237 238 239 240 241 242 243 244 245 246
	 *  that instruction. In that case, we can't recover the instruction
	 *  from the kp->ainsn.insn.
	 *
	 *  On the other hand, kp->opcode has a copy of the first byte of
	 *  the probed instruction, which is overwritten by int3. And
	 *  the instruction at kp->addr is not modified by kprobes except
	 *  for the first byte, we can recover the original instruction
	 *  from it and kp->opcode.
	 */
	memcpy(buf, kp->addr, MAX_INSN_SIZE * sizeof(kprobe_opcode_t));
	buf[0] = kp->opcode;
247 248 249 250 251 252 253 254
	return (unsigned long)buf;
}

/*
 * Recover the probed instruction at addr for further analysis.
 * Caller must lock kprobes by kprobe_mutex, or disable preemption
 * for preventing to release referencing kprobes.
 */
255
unsigned long recover_probed_instruction(kprobe_opcode_t *buf, unsigned long addr)
256 257 258 259 260 261 262 263
{
	unsigned long __addr;

	__addr = __recover_optprobed_insn(buf, addr);
	if (__addr != addr)
		return __addr;

	return __recover_probed_insn(buf, addr);
264 265 266
}

/* Check if paddr is at an instruction boundary */
267
static int can_probe(unsigned long paddr)
268
{
269
	unsigned long addr, __addr, offset = 0;
270 271 272
	struct insn insn;
	kprobe_opcode_t buf[MAX_INSN_SIZE];

N
Namhyung Kim 已提交
273
	if (!kallsyms_lookup_size_offset(paddr, NULL, &offset))
274 275 276 277 278 279 280 281 282
		return 0;

	/* Decode instructions */
	addr = paddr - offset;
	while (addr < paddr) {
		/*
		 * Check if the instruction has been modified by another
		 * kprobe, in which case we replace the breakpoint by the
		 * original instruction in our buffer.
283 284 285
		 * Also, jump optimization will change the breakpoint to
		 * relative-jump. Since the relative-jump itself is
		 * normally used, we just go through if there is no kprobe.
286
		 */
287
		__addr = recover_probed_instruction(buf, addr);
288
		kernel_insn_init(&insn, (void *)__addr, MAX_INSN_SIZE);
289
		insn_get_length(&insn);
290 291 292 293 294 295 296

		/*
		 * Another debugging subsystem might insert this breakpoint.
		 * In that case, we can't recover it.
		 */
		if (insn.opcode.bytes[0] == BREAKPOINT_INSTRUCTION)
			return 0;
297 298 299 300 301 302
		addr += insn.length;
	}

	return (addr == paddr);
}

L
Linus Torvalds 已提交
303
/*
304
 * Returns non-zero if opcode modifies the interrupt flag.
L
Linus Torvalds 已提交
305
 */
306
static int is_IF_modifier(kprobe_opcode_t *insn)
L
Linus Torvalds 已提交
307
{
308 309 310
	/* Skip prefixes */
	insn = skip_prefixes(insn);

L
Linus Torvalds 已提交
311 312 313 314 315 316 317
	switch (*insn) {
	case 0xfa:		/* cli */
	case 0xfb:		/* sti */
	case 0xcf:		/* iret/iretd */
	case 0x9d:		/* popf/popfd */
		return 1;
	}
318

L
Linus Torvalds 已提交
319 320 321 322
	return 0;
}

/*
323 324
 * Copy an instruction and adjust the displacement if the instruction
 * uses the %rip-relative addressing mode.
325
 * If it does, Return the address of the 32-bit displacement word.
L
Linus Torvalds 已提交
326
 * If not, return null.
327
 * Only applicable to 64-bit x86.
L
Linus Torvalds 已提交
328
 */
329
int __copy_instruction(u8 *dest, u8 *src)
L
Linus Torvalds 已提交
330
{
331
	struct insn insn;
332
	kprobe_opcode_t buf[MAX_INSN_SIZE];
333 334
	unsigned long recovered_insn =
		recover_probed_instruction(buf, (unsigned long)src);
335

336
	kernel_insn_init(&insn, (void *)recovered_insn, MAX_INSN_SIZE);
337
	insn_get_length(&insn);
338
	/* Another subsystem puts a breakpoint, failed to recover */
339
	if (insn.opcode.bytes[0] == BREAKPOINT_INSTRUCTION)
340
		return 0;
341 342 343
	memcpy(dest, insn.kaddr, insn.length);

#ifdef CONFIG_X86_64
344 345 346
	if (insn_rip_relative(&insn)) {
		s64 newdisp;
		u8 *disp;
347
		kernel_insn_init(&insn, dest, insn.length);
348 349 350 351 352 353 354 355 356 357 358 359 360
		insn_get_displacement(&insn);
		/*
		 * The copied instruction uses the %rip-relative addressing
		 * mode.  Adjust the displacement for the difference between
		 * the original location of this instruction and the location
		 * of the copy that will actually be run.  The tricky bit here
		 * is making sure that the sign extension happens correctly in
		 * this calculation, since we need a signed 32-bit result to
		 * be sign-extended to 64 bits when it's added to the %rip
		 * value and yield the same 64-bit result that the sign-
		 * extension of the original signed 32-bit displacement would
		 * have given.
		 */
361
		newdisp = (u8 *) src + (s64) insn.displacement.value - (u8 *) dest;
362 363 364 365 366
		if ((s64) (s32) newdisp != newdisp) {
			pr_err("Kprobes error: new displacement does not fit into s32 (%llx)\n", newdisp);
			pr_err("\tSrc: %p, Dest: %p, old disp: %x\n", src, dest, insn.displacement.value);
			return 0;
		}
367
		disp = (u8 *) dest + insn_offset_displacement(&insn);
368
		*(s32 *) disp = (s32) newdisp;
L
Linus Torvalds 已提交
369
	}
370
#endif
371
	return insn.length;
372
}
L
Linus Torvalds 已提交
373

374
static int arch_copy_kprobe(struct kprobe *p)
L
Linus Torvalds 已提交
375
{
376 377
	int ret;

378
	/* Copy an instruction with recovering if other optprobe modifies it.*/
379 380 381
	ret = __copy_instruction(p->ainsn.insn, p->addr);
	if (!ret)
		return -EINVAL;
382

383
	/*
384 385
	 * __copy_instruction can modify the displacement of the instruction,
	 * but it doesn't affect boostable check.
386
	 */
387
	if (can_boost(p->ainsn.insn))
388
		p->ainsn.boostable = 0;
389
	else
390
		p->ainsn.boostable = -1;
391

392 393 394
	/* Check whether the instruction modifies Interrupt Flag or not */
	p->ainsn.if_modifier = is_IF_modifier(p->ainsn.insn);

395 396
	/* Also, displacement change doesn't affect the first byte */
	p->opcode = p->ainsn.insn[0];
397 398

	return 0;
L
Linus Torvalds 已提交
399 400
}

401
int arch_prepare_kprobe(struct kprobe *p)
402
{
403 404 405
	if (alternatives_text_reserved(p->addr, p->addr))
		return -EINVAL;

406 407
	if (!can_probe((unsigned long)p->addr))
		return -EILSEQ;
408 409 410 411
	/* insn: must be on special executable page on x86. */
	p->ainsn.insn = get_insn_slot();
	if (!p->ainsn.insn)
		return -ENOMEM;
412 413

	return arch_copy_kprobe(p);
414 415
}

416
void arch_arm_kprobe(struct kprobe *p)
L
Linus Torvalds 已提交
417
{
418
	text_poke(p->addr, ((unsigned char []){BREAKPOINT_INSTRUCTION}), 1);
L
Linus Torvalds 已提交
419 420
}

421
void arch_disarm_kprobe(struct kprobe *p)
L
Linus Torvalds 已提交
422
{
423
	text_poke(p->addr, &p->opcode, 1);
424 425
}

426
void arch_remove_kprobe(struct kprobe *p)
427
{
428 429 430 431
	if (p->ainsn.insn) {
		free_insn_slot(p->ainsn.insn, (p->ainsn.boostable == 1));
		p->ainsn.insn = NULL;
	}
L
Linus Torvalds 已提交
432 433
}

434 435
static nokprobe_inline void
save_previous_kprobe(struct kprobe_ctlblk *kcb)
436
{
437 438
	kcb->prev_kprobe.kp = kprobe_running();
	kcb->prev_kprobe.status = kcb->kprobe_status;
439 440
	kcb->prev_kprobe.old_flags = kcb->kprobe_old_flags;
	kcb->prev_kprobe.saved_flags = kcb->kprobe_saved_flags;
441 442
}

443 444
static nokprobe_inline void
restore_previous_kprobe(struct kprobe_ctlblk *kcb)
445
{
C
Christoph Lameter 已提交
446
	__this_cpu_write(current_kprobe, kcb->prev_kprobe.kp);
447
	kcb->kprobe_status = kcb->prev_kprobe.status;
448 449
	kcb->kprobe_old_flags = kcb->prev_kprobe.old_flags;
	kcb->kprobe_saved_flags = kcb->prev_kprobe.saved_flags;
450 451
}

452 453 454
static nokprobe_inline void
set_current_kprobe(struct kprobe *p, struct pt_regs *regs,
		   struct kprobe_ctlblk *kcb)
455
{
C
Christoph Lameter 已提交
456
	__this_cpu_write(current_kprobe, p);
457
	kcb->kprobe_saved_flags = kcb->kprobe_old_flags
458
		= (regs->flags & (X86_EFLAGS_TF | X86_EFLAGS_IF));
459
	if (p->ainsn.if_modifier)
460
		kcb->kprobe_saved_flags &= ~X86_EFLAGS_IF;
461 462
}

463
static nokprobe_inline void clear_btf(void)
R
Roland McGrath 已提交
464
{
P
Peter Zijlstra 已提交
465 466 467 468 469 470
	if (test_thread_flag(TIF_BLOCKSTEP)) {
		unsigned long debugctl = get_debugctlmsr();

		debugctl &= ~DEBUGCTLMSR_BTF;
		update_debugctlmsr(debugctl);
	}
R
Roland McGrath 已提交
471 472
}

473
static nokprobe_inline void restore_btf(void)
R
Roland McGrath 已提交
474
{
P
Peter Zijlstra 已提交
475 476 477 478 479 480
	if (test_thread_flag(TIF_BLOCKSTEP)) {
		unsigned long debugctl = get_debugctlmsr();

		debugctl |= DEBUGCTLMSR_BTF;
		update_debugctlmsr(debugctl);
	}
R
Roland McGrath 已提交
481 482
}

483
void arch_prepare_kretprobe(struct kretprobe_instance *ri, struct pt_regs *regs)
484
{
485
	unsigned long *sara = stack_addr(regs);
486

487
	ri->ret_addr = (kprobe_opcode_t *) *sara;
488

489 490
	/* Replace the return addr with trampoline addr */
	*sara = (unsigned long) &kretprobe_trampoline;
491
}
492
NOKPROBE_SYMBOL(arch_prepare_kretprobe);
493

494 495
static void setup_singlestep(struct kprobe *p, struct pt_regs *regs,
			     struct kprobe_ctlblk *kcb, int reenter)
496
{
497 498 499
	if (setup_detour_execution(p, regs, reenter))
		return;

500
#if !defined(CONFIG_PREEMPT)
501 502
	if (p->ainsn.boostable == 1 && !p->post_handler) {
		/* Boost up -- we can execute copied instructions directly */
503 504 505 506 507 508 509
		if (!reenter)
			reset_current_kprobe();
		/*
		 * Reentering boosted probe doesn't reset current_kprobe,
		 * nor set current_kprobe, because it doesn't use single
		 * stepping.
		 */
510 511 512 513 514
		regs->ip = (unsigned long)p->ainsn.insn;
		preempt_enable_no_resched();
		return;
	}
#endif
515 516 517 518 519 520 521 522 523 524 525 526 527 528 529
	if (reenter) {
		save_previous_kprobe(kcb);
		set_current_kprobe(p, regs, kcb);
		kcb->kprobe_status = KPROBE_REENTER;
	} else
		kcb->kprobe_status = KPROBE_HIT_SS;
	/* Prepare real single stepping */
	clear_btf();
	regs->flags |= X86_EFLAGS_TF;
	regs->flags &= ~X86_EFLAGS_IF;
	/* single step inline if the instruction is an int3 */
	if (p->opcode == BREAKPOINT_INSTRUCTION)
		regs->ip = (unsigned long)p->addr;
	else
		regs->ip = (unsigned long)p->ainsn.insn;
530
}
531
NOKPROBE_SYMBOL(setup_singlestep);
532

H
Harvey Harrison 已提交
533 534 535 536 537
/*
 * We have reentered the kprobe_handler(), since another probe was hit while
 * within the handler. We save the original kprobes variables and just single
 * step on the instruction of the new probe without calling any user handlers.
 */
538 539
static int reenter_kprobe(struct kprobe *p, struct pt_regs *regs,
			  struct kprobe_ctlblk *kcb)
H
Harvey Harrison 已提交
540
{
541 542 543
	switch (kcb->kprobe_status) {
	case KPROBE_HIT_SSDONE:
	case KPROBE_HIT_ACTIVE:
544
	case KPROBE_HIT_SS:
545
		kprobes_inc_nmissed_count(p);
546
		setup_singlestep(p, regs, kcb, 1);
547
		break;
548
	case KPROBE_REENTER:
549 550 551 552 553 554 555 556 557 558
		/* A probe has been hit in the codepath leading up to, or just
		 * after, single-stepping of a probed instruction. This entire
		 * codepath should strictly reside in .kprobes.text section.
		 * Raise a BUG or we'll continue in an endless reentering loop
		 * and eventually a stack overflow.
		 */
		printk(KERN_WARNING "Unrecoverable kprobe detected at %p.\n",
		       p->addr);
		dump_kprobe(p);
		BUG();
559 560 561
	default:
		/* impossible cases */
		WARN_ON(1);
562
		return 0;
563
	}
564

565
	return 1;
H
Harvey Harrison 已提交
566
}
567
NOKPROBE_SYMBOL(reenter_kprobe);
568

569 570
/*
 * Interrupts are disabled on entry as trap3 is an interrupt gate and they
571
 * remain disabled throughout this function.
572
 */
573
int kprobe_int3_handler(struct pt_regs *regs)
L
Linus Torvalds 已提交
574
{
575
	kprobe_opcode_t *addr;
576
	struct kprobe *p;
577 578
	struct kprobe_ctlblk *kcb;

579 580 581
	if (user_mode_vm(regs))
		return 0;

582
	addr = (kprobe_opcode_t *)(regs->ip - sizeof(kprobe_opcode_t));
583 584
	/*
	 * We don't want to be preempted for the entire
585 586 587
	 * duration of kprobe processing. We conditionally
	 * re-enable preemption at the end of this function,
	 * and also in reenter_kprobe() and setup_singlestep().
588 589
	 */
	preempt_disable();
L
Linus Torvalds 已提交
590

591
	kcb = get_kprobe_ctlblk();
592
	p = get_kprobe(addr);
593

594 595
	if (p) {
		if (kprobe_running()) {
596 597
			if (reenter_kprobe(p, regs, kcb))
				return 1;
L
Linus Torvalds 已提交
598
		} else {
599 600
			set_current_kprobe(p, regs, kcb);
			kcb->kprobe_status = KPROBE_HIT_ACTIVE;
601

L
Linus Torvalds 已提交
602
			/*
603 604 605 606 607 608
			 * If we have no pre-handler or it returned 0, we
			 * continue with normal processing.  If we have a
			 * pre-handler and it returned non-zero, it prepped
			 * for calling the break_handler below on re-entry
			 * for jprobe processing, so get out doing nothing
			 * more here.
L
Linus Torvalds 已提交
609
			 */
610
			if (!p->pre_handler || !p->pre_handler(p, regs))
611
				setup_singlestep(p, regs, kcb, 0);
612
			return 1;
613
		}
614 615 616 617 618 619 620 621 622 623 624 625 626
	} else if (*addr != BREAKPOINT_INSTRUCTION) {
		/*
		 * The breakpoint instruction was removed right
		 * after we hit it.  Another cpu has removed
		 * either a probepoint or a debugger breakpoint
		 * at this address.  In either case, no further
		 * handling of this interrupt is appropriate.
		 * Back up over the (now missing) int3 and run
		 * the original instruction.
		 */
		regs->ip = (unsigned long)addr;
		preempt_enable_no_resched();
		return 1;
627
	} else if (kprobe_running()) {
C
Christoph Lameter 已提交
628
		p = __this_cpu_read(current_kprobe);
629
		if (p->break_handler && p->break_handler(p, regs)) {
630 631
			if (!skip_singlestep(p, regs, kcb))
				setup_singlestep(p, regs, kcb, 0);
632
			return 1;
L
Linus Torvalds 已提交
633
		}
634
	} /* else: not a kprobe fault; let the kernel handle it */
L
Linus Torvalds 已提交
635

636
	preempt_enable_no_resched();
637
	return 0;
L
Linus Torvalds 已提交
638
}
639
NOKPROBE_SYMBOL(kprobe_int3_handler);
L
Linus Torvalds 已提交
640

641
/*
642 643
 * When a retprobed function returns, this code saves registers and
 * calls trampoline_handler() runs, which calls the kretprobe's handler.
644
 */
645
static void __used kretprobe_trampoline_holder(void)
646
{
647 648
	asm volatile (
			".global kretprobe_trampoline\n"
649
			"kretprobe_trampoline: \n"
650
#ifdef CONFIG_X86_64
651 652 653
			/* We don't bother saving the ss register */
			"	pushq %rsp\n"
			"	pushfq\n"
654
			SAVE_REGS_STRING
655 656 657 658
			"	movq %rsp, %rdi\n"
			"	call trampoline_handler\n"
			/* Replace saved sp with true return address. */
			"	movq %rax, 152(%rsp)\n"
659
			RESTORE_REGS_STRING
660
			"	popfq\n"
661 662
#else
			"	pushf\n"
663
			SAVE_REGS_STRING
664 665 666
			"	movl %esp, %eax\n"
			"	call trampoline_handler\n"
			/* Move flags to cs */
667 668
			"	movl 56(%esp), %edx\n"
			"	movl %edx, 52(%esp)\n"
669
			/* Replace saved flags with true return address. */
670
			"	movl %eax, 56(%esp)\n"
671
			RESTORE_REGS_STRING
672 673
			"	popf\n"
#endif
674
			"	ret\n");
675
}
676 677
NOKPROBE_SYMBOL(kretprobe_trampoline_holder);
NOKPROBE_SYMBOL(kretprobe_trampoline);
678 679

/*
680
 * Called from kretprobe_trampoline
681
 */
682
__visible __used void *trampoline_handler(struct pt_regs *regs)
683
{
B
bibo,mao 已提交
684
	struct kretprobe_instance *ri = NULL;
685
	struct hlist_head *head, empty_rp;
686
	struct hlist_node *tmp;
687
	unsigned long flags, orig_ret_address = 0;
688
	unsigned long trampoline_address = (unsigned long)&kretprobe_trampoline;
689
	kprobe_opcode_t *correct_ret_addr = NULL;
690

691
	INIT_HLIST_HEAD(&empty_rp);
692
	kretprobe_hash_lock(current, &head, &flags);
693
	/* fixup registers */
694
#ifdef CONFIG_X86_64
695
	regs->cs = __KERNEL_CS;
696 697
#else
	regs->cs = __KERNEL_CS | get_kernel_rpl();
698
	regs->gs = 0;
699
#endif
700
	regs->ip = trampoline_address;
701
	regs->orig_ax = ~0UL;
702

703 704
	/*
	 * It is possible to have multiple instances associated with a given
705
	 * task either because multiple functions in the call path have
706
	 * return probes installed on them, and/or more than one
707 708 709
	 * return probe was registered for a target function.
	 *
	 * We can handle this because:
710
	 *     - instances are always pushed into the head of the list
711
	 *     - when multiple return probes are registered for the same
712 713 714
	 *	 function, the (chronologically) first instance's ret_addr
	 *	 will be the real return address, and all the rest will
	 *	 point to kretprobe_trampoline.
715
	 */
716
	hlist_for_each_entry_safe(ri, tmp, head, hlist) {
B
bibo,mao 已提交
717
		if (ri->task != current)
718
			/* another task is sharing our hash bucket */
B
bibo,mao 已提交
719
			continue;
720

721 722 723 724 725 726 727 728 729 730 731 732 733 734
		orig_ret_address = (unsigned long)ri->ret_addr;

		if (orig_ret_address != trampoline_address)
			/*
			 * This is the real return address. Any other
			 * instances associated with this task are for
			 * other calls deeper on the call stack
			 */
			break;
	}

	kretprobe_assert(ri, orig_ret_address, trampoline_address);

	correct_ret_addr = ri->ret_addr;
735
	hlist_for_each_entry_safe(ri, tmp, head, hlist) {
736 737 738 739 740
		if (ri->task != current)
			/* another task is sharing our hash bucket */
			continue;

		orig_ret_address = (unsigned long)ri->ret_addr;
741
		if (ri->rp && ri->rp->handler) {
C
Christoph Lameter 已提交
742
			__this_cpu_write(current_kprobe, &ri->rp->kp);
743
			get_kprobe_ctlblk()->kprobe_status = KPROBE_HIT_ACTIVE;
744
			ri->ret_addr = correct_ret_addr;
745
			ri->rp->handler(ri, regs);
C
Christoph Lameter 已提交
746
			__this_cpu_write(current_kprobe, NULL);
747
		}
748

749
		recycle_rp_inst(ri, &empty_rp);
750 751 752 753 754 755 756 757

		if (orig_ret_address != trampoline_address)
			/*
			 * This is the real return address. Any other
			 * instances associated with this task are for
			 * other calls deeper on the call stack
			 */
			break;
758
	}
759

760
	kretprobe_hash_unlock(current, &flags);
761

762
	hlist_for_each_entry_safe(ri, tmp, &empty_rp, hlist) {
763 764 765
		hlist_del(&ri->hlist);
		kfree(ri);
	}
766
	return (void *)orig_ret_address;
767
}
768
NOKPROBE_SYMBOL(trampoline_handler);
769

L
Linus Torvalds 已提交
770 771 772 773 774 775 776 777 778 779 780 781
/*
 * Called after single-stepping.  p->addr is the address of the
 * instruction whose first byte has been replaced by the "int 3"
 * instruction.  To avoid the SMP problems that can occur when we
 * temporarily put back the original opcode to single-step, we
 * single-stepped a copy of the instruction.  The address of this
 * copy is p->ainsn.insn.
 *
 * This function prepares to return from the post-single-step
 * interrupt.  We have to fix up the stack as follows:
 *
 * 0) Except in the case of absolute or indirect jump or call instructions,
782
 * the new ip is relative to the copied instruction.  We need to make
L
Linus Torvalds 已提交
783 784 785
 * it relative to the original instruction.
 *
 * 1) If the single-stepped instruction was pushfl, then the TF and IF
786
 * flags are set in the just-pushed flags, and may need to be cleared.
L
Linus Torvalds 已提交
787 788 789 790
 *
 * 2) If the single-stepped instruction was a call, the return address
 * that is atop the stack is the address following the copied instruction.
 * We need to make it the address following the original instruction.
791 792 793 794 795
 *
 * If this is the first time we've single-stepped the instruction at
 * this probepoint, and the instruction is boostable, boost it: add a
 * jump instruction after the copied instruction, that jumps to the next
 * instruction after the probepoint.
L
Linus Torvalds 已提交
796
 */
797 798
static void resume_execution(struct kprobe *p, struct pt_regs *regs,
			     struct kprobe_ctlblk *kcb)
L
Linus Torvalds 已提交
799
{
800 801 802
	unsigned long *tos = stack_addr(regs);
	unsigned long copy_ip = (unsigned long)p->ainsn.insn;
	unsigned long orig_ip = (unsigned long)p->addr;
L
Linus Torvalds 已提交
803 804
	kprobe_opcode_t *insn = p->ainsn.insn;

805 806
	/* Skip prefixes */
	insn = skip_prefixes(insn);
L
Linus Torvalds 已提交
807

808
	regs->flags &= ~X86_EFLAGS_TF;
L
Linus Torvalds 已提交
809
	switch (*insn) {
M
Masami Hiramatsu 已提交
810
	case 0x9c:	/* pushfl */
811
		*tos &= ~(X86_EFLAGS_TF | X86_EFLAGS_IF);
812
		*tos |= kcb->kprobe_old_flags;
L
Linus Torvalds 已提交
813
		break;
M
Masami Hiramatsu 已提交
814 815
	case 0xc2:	/* iret/ret/lret */
	case 0xc3:
816
	case 0xca:
M
Masami Hiramatsu 已提交
817 818 819 820
	case 0xcb:
	case 0xcf:
	case 0xea:	/* jmp absolute -- ip is correct */
		/* ip is already adjusted, no more changes required */
821
		p->ainsn.boostable = 1;
M
Masami Hiramatsu 已提交
822 823
		goto no_change;
	case 0xe8:	/* call relative - Fix return addr */
824
		*tos = orig_ip + (*tos - copy_ip);
L
Linus Torvalds 已提交
825
		break;
H
Harvey Harrison 已提交
826
#ifdef CONFIG_X86_32
827 828 829 830
	case 0x9a:	/* call absolute -- same as call absolute, indirect */
		*tos = orig_ip + (*tos - copy_ip);
		goto no_change;
#endif
L
Linus Torvalds 已提交
831
	case 0xff:
832
		if ((insn[1] & 0x30) == 0x10) {
833 834 835 836 837 838
			/*
			 * call absolute, indirect
			 * Fix return addr; ip is correct.
			 * But this is not boostable
			 */
			*tos = orig_ip + (*tos - copy_ip);
M
Masami Hiramatsu 已提交
839
			goto no_change;
840 841 842 843 844 845
		} else if (((insn[1] & 0x31) == 0x20) ||
			   ((insn[1] & 0x31) == 0x21)) {
			/*
			 * jmp near and far, absolute indirect
			 * ip is correct. And this is boostable
			 */
846
			p->ainsn.boostable = 1;
M
Masami Hiramatsu 已提交
847
			goto no_change;
L
Linus Torvalds 已提交
848 849 850 851 852
		}
	default:
		break;
	}

853
	if (p->ainsn.boostable == 0) {
854 855
		if ((regs->ip > copy_ip) &&
		    (regs->ip - copy_ip) + 5 < MAX_INSN_SIZE) {
856 857 858 859
			/*
			 * These instructions can be executed directly if it
			 * jumps back to correct address.
			 */
860 861
			synthesize_reljump((void *)regs->ip,
				(void *)orig_ip + (regs->ip - copy_ip));
862 863 864 865 866 867
			p->ainsn.boostable = 1;
		} else {
			p->ainsn.boostable = -1;
		}
	}

868
	regs->ip += orig_ip - copy_ip;
869

M
Masami Hiramatsu 已提交
870
no_change:
R
Roland McGrath 已提交
871
	restore_btf();
L
Linus Torvalds 已提交
872
}
873
NOKPROBE_SYMBOL(resume_execution);
L
Linus Torvalds 已提交
874

875 876
/*
 * Interrupts are disabled on entry as trap1 is an interrupt gate and they
877
 * remain disabled throughout this function.
878
 */
879
int kprobe_debug_handler(struct pt_regs *regs)
L
Linus Torvalds 已提交
880
{
881 882 883 884
	struct kprobe *cur = kprobe_running();
	struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();

	if (!cur)
L
Linus Torvalds 已提交
885 886
		return 0;

887 888 889
	resume_execution(cur, regs, kcb);
	regs->flags |= kcb->kprobe_saved_flags;

890 891 892
	if ((kcb->kprobe_status != KPROBE_REENTER) && cur->post_handler) {
		kcb->kprobe_status = KPROBE_HIT_SSDONE;
		cur->post_handler(cur, regs, 0);
893
	}
L
Linus Torvalds 已提交
894

895
	/* Restore back the original saved kprobes variables and continue. */
896 897
	if (kcb->kprobe_status == KPROBE_REENTER) {
		restore_previous_kprobe(kcb);
898 899
		goto out;
	}
900
	reset_current_kprobe();
901
out:
L
Linus Torvalds 已提交
902 903 904
	preempt_enable_no_resched();

	/*
905
	 * if somebody else is singlestepping across a probe point, flags
L
Linus Torvalds 已提交
906 907 908
	 * will have TF set, in which case, continue the remaining processing
	 * of do_debug, as if this is not a probe hit.
	 */
909
	if (regs->flags & X86_EFLAGS_TF)
L
Linus Torvalds 已提交
910 911 912 913
		return 0;

	return 1;
}
914
NOKPROBE_SYMBOL(kprobe_debug_handler);
L
Linus Torvalds 已提交
915

916
int kprobe_fault_handler(struct pt_regs *regs, int trapnr)
L
Linus Torvalds 已提交
917
{
918 919 920
	struct kprobe *cur = kprobe_running();
	struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();

921 922 923 924
	if (unlikely(regs->ip == (unsigned long)cur->ainsn.insn)) {
		/* This must happen on single-stepping */
		WARN_ON(kcb->kprobe_status != KPROBE_HIT_SS &&
			kcb->kprobe_status != KPROBE_REENTER);
925 926 927
		/*
		 * We are here because the instruction being single
		 * stepped caused a page fault. We reset the current
928
		 * kprobe and the ip points back to the probe address
929 930 931
		 * and allow the page fault handler to continue as a
		 * normal page fault.
		 */
932
		regs->ip = (unsigned long)cur->addr;
933
		regs->flags |= kcb->kprobe_old_flags;
934 935 936 937
		if (kcb->kprobe_status == KPROBE_REENTER)
			restore_previous_kprobe(kcb);
		else
			reset_current_kprobe();
L
Linus Torvalds 已提交
938
		preempt_enable_no_resched();
939 940
	} else if (kcb->kprobe_status == KPROBE_HIT_ACTIVE ||
		   kcb->kprobe_status == KPROBE_HIT_SSDONE) {
941 942
		/*
		 * We increment the nmissed count for accounting,
943
		 * we can also use npre/npostfault count for accounting
944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961
		 * these specific fault cases.
		 */
		kprobes_inc_nmissed_count(cur);

		/*
		 * We come here because instructions in the pre/post
		 * handler caused the page_fault, this could happen
		 * if handler tries to access user space by
		 * copy_from_user(), get_user() etc. Let the
		 * user-specified handler try to fix it first.
		 */
		if (cur->fault_handler && cur->fault_handler(cur, regs, trapnr))
			return 1;

		/*
		 * In case the user-specified fault handler returned
		 * zero, try to fix up.
		 */
962 963
		if (fixup_exception(regs))
			return 1;
H
Harvey Harrison 已提交
964

965
		/*
966
		 * fixup routine could not handle it,
967 968
		 * Let do_page_fault() fix it.
		 */
L
Linus Torvalds 已提交
969
	}
970

L
Linus Torvalds 已提交
971 972
	return 0;
}
973
NOKPROBE_SYMBOL(kprobe_fault_handler);
L
Linus Torvalds 已提交
974 975 976 977

/*
 * Wrapper routine for handling exceptions.
 */
978 979
int kprobe_exceptions_notify(struct notifier_block *self, unsigned long val,
			     void *data)
L
Linus Torvalds 已提交
980
{
J
Jan Engelhardt 已提交
981
	struct die_args *args = data;
982 983
	int ret = NOTIFY_DONE;

984
	if (args->regs && user_mode_vm(args->regs))
985 986
		return ret;

987
	if (val == DIE_GPF) {
988 989 990 991 992 993
		/*
		 * To be potentially processing a kprobe fault and to
		 * trust the result from kprobe_running(), we have
		 * be non-preemptible.
		 */
		if (!preemptible() && kprobe_running() &&
L
Linus Torvalds 已提交
994
		    kprobe_fault_handler(args->regs, args->trapnr))
995
			ret = NOTIFY_STOP;
L
Linus Torvalds 已提交
996
	}
997
	return ret;
L
Linus Torvalds 已提交
998
}
999
NOKPROBE_SYMBOL(kprobe_exceptions_notify);
L
Linus Torvalds 已提交
1000

1001
int setjmp_pre_handler(struct kprobe *p, struct pt_regs *regs)
L
Linus Torvalds 已提交
1002 1003 1004
{
	struct jprobe *jp = container_of(p, struct jprobe, kp);
	unsigned long addr;
1005
	struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
L
Linus Torvalds 已提交
1006

1007
	kcb->jprobe_saved_regs = *regs;
1008 1009 1010
	kcb->jprobe_saved_sp = stack_addr(regs);
	addr = (unsigned long)(kcb->jprobe_saved_sp);

L
Linus Torvalds 已提交
1011 1012 1013 1014 1015 1016 1017
	/*
	 * As Linus pointed out, gcc assumes that the callee
	 * owns the argument space and could overwrite it, e.g.
	 * tailcall optimization. So, to be absolutely safe
	 * we also save and restore enough stack bytes to cover
	 * the argument area.
	 */
1018
	memcpy(kcb->jprobes_stack, (kprobe_opcode_t *)addr,
1019
	       MIN_STACK_SIZE(addr));
1020
	regs->flags &= ~X86_EFLAGS_IF;
1021
	trace_hardirqs_off();
1022
	regs->ip = (unsigned long)(jp->entry);
L
Linus Torvalds 已提交
1023 1024
	return 1;
}
1025
NOKPROBE_SYMBOL(setjmp_pre_handler);
L
Linus Torvalds 已提交
1026

1027
void jprobe_return(void)
L
Linus Torvalds 已提交
1028
{
1029 1030
	struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();

1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041
	asm volatile (
#ifdef CONFIG_X86_64
			"       xchg   %%rbx,%%rsp	\n"
#else
			"       xchgl   %%ebx,%%esp	\n"
#endif
			"       int3			\n"
			"       .globl jprobe_return_end\n"
			"       jprobe_return_end:	\n"
			"       nop			\n"::"b"
			(kcb->jprobe_saved_sp):"memory");
L
Linus Torvalds 已提交
1042
}
1043 1044
NOKPROBE_SYMBOL(jprobe_return);
NOKPROBE_SYMBOL(jprobe_return_end);
L
Linus Torvalds 已提交
1045

1046
int longjmp_break_handler(struct kprobe *p, struct pt_regs *regs)
L
Linus Torvalds 已提交
1047
{
1048
	struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
1049
	u8 *addr = (u8 *) (regs->ip - 1);
L
Linus Torvalds 已提交
1050 1051
	struct jprobe *jp = container_of(p, struct jprobe, kp);

1052 1053
	if ((addr > (u8 *) jprobe_return) &&
	    (addr < (u8 *) jprobe_return_end)) {
1054
		if (stack_addr(regs) != kcb->jprobe_saved_sp) {
M
Masami Hiramatsu 已提交
1055
			struct pt_regs *saved_regs = &kcb->jprobe_saved_regs;
1056 1057
			printk(KERN_ERR
			       "current sp %p does not match saved sp %p\n",
1058
			       stack_addr(regs), kcb->jprobe_saved_sp);
1059
			printk(KERN_ERR "Saved registers for jprobe %p\n", jp);
1060
			show_regs(saved_regs);
1061
			printk(KERN_ERR "Current registers\n");
1062
			show_regs(regs);
L
Linus Torvalds 已提交
1063 1064
			BUG();
		}
1065
		*regs = kcb->jprobe_saved_regs;
1066 1067 1068
		memcpy((kprobe_opcode_t *)(kcb->jprobe_saved_sp),
		       kcb->jprobes_stack,
		       MIN_STACK_SIZE(kcb->jprobe_saved_sp));
1069
		preempt_enable_no_resched();
L
Linus Torvalds 已提交
1070 1071 1072 1073
		return 1;
	}
	return 0;
}
1074
NOKPROBE_SYMBOL(longjmp_break_handler);
1075

1076 1077 1078 1079 1080 1081 1082 1083
bool arch_within_kprobe_blacklist(unsigned long addr)
{
	return  (addr >= (unsigned long)__kprobes_text_start &&
		 addr < (unsigned long)__kprobes_text_end) ||
		(addr >= (unsigned long)__entry_text_start &&
		 addr < (unsigned long)__entry_text_end);
}

1084
int __init arch_init_kprobes(void)
1085
{
1086
	return 0;
1087
}
1088

1089
int arch_trampoline_kprobe(struct kprobe *p)
1090 1091 1092
{
	return 0;
}