mmu.c 122.1 KB
Newer Older
A
Avi Kivity 已提交
1 2 3 4 5 6 7 8 9
/*
 * Kernel-based Virtual Machine driver for Linux
 *
 * This module enables machines with Intel VT-x extensions to run virtual
 * machines without emulation or binary translation.
 *
 * MMU support
 *
 * Copyright (C) 2006 Qumranet, Inc.
N
Nicolas Kaiser 已提交
10
 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
A
Avi Kivity 已提交
11 12 13 14 15 16 17 18 19
 *
 * Authors:
 *   Yaniv Kamay  <yaniv@qumranet.com>
 *   Avi Kivity   <avi@qumranet.com>
 *
 * This work is licensed under the terms of the GNU GPL, version 2.  See
 * the COPYING file in the top-level directory.
 *
 */
A
Avi Kivity 已提交
20

21
#include "irq.h"
22
#include "mmu.h"
23
#include "x86.h"
A
Avi Kivity 已提交
24
#include "kvm_cache_regs.h"
25
#include "cpuid.h"
A
Avi Kivity 已提交
26

27
#include <linux/kvm_host.h>
A
Avi Kivity 已提交
28 29 30 31 32
#include <linux/types.h>
#include <linux/string.h>
#include <linux/mm.h>
#include <linux/highmem.h>
#include <linux/module.h>
33
#include <linux/swap.h>
M
Marcelo Tosatti 已提交
34
#include <linux/hugetlb.h>
35
#include <linux/compiler.h>
36
#include <linux/srcu.h>
37
#include <linux/slab.h>
38
#include <linux/uaccess.h>
A
Avi Kivity 已提交
39

A
Avi Kivity 已提交
40 41
#include <asm/page.h>
#include <asm/cmpxchg.h>
42
#include <asm/io.h>
43
#include <asm/vmx.h>
A
Avi Kivity 已提交
44

45 46 47 48 49 50 51
/*
 * When setting this variable to true it enables Two-Dimensional-Paging
 * where the hardware walks 2 page tables:
 * 1. the guest-virtual to guest-physical
 * 2. while doing 1. it walks guest-physical to host-physical
 * If the hardware supports that we don't need to do shadow paging.
 */
52
bool tdp_enabled = false;
53

54 55 56 57
enum {
	AUDIT_PRE_PAGE_FAULT,
	AUDIT_POST_PAGE_FAULT,
	AUDIT_PRE_PTE_WRITE,
58 59 60
	AUDIT_POST_PTE_WRITE,
	AUDIT_PRE_SYNC,
	AUDIT_POST_SYNC
61
};
62

63
#undef MMU_DEBUG
64 65

#ifdef MMU_DEBUG
66 67
static bool dbg = 0;
module_param(dbg, bool, 0644);
68 69 70

#define pgprintk(x...) do { if (dbg) printk(x); } while (0)
#define rmap_printk(x...) do { if (dbg) printk(x); } while (0)
71
#define MMU_WARN_ON(x) WARN_ON(x)
72 73 74
#else
#define pgprintk(x...) do { } while (0)
#define rmap_printk(x...) do { } while (0)
75
#define MMU_WARN_ON(x) do { } while (0)
76
#endif
A
Avi Kivity 已提交
77

78 79
#define PTE_PREFETCH_NUM		8

80
#define PT_FIRST_AVAIL_BITS_SHIFT 10
A
Avi Kivity 已提交
81 82 83 84 85
#define PT64_SECOND_AVAIL_BITS_SHIFT 52

#define PT64_LEVEL_BITS 9

#define PT64_LEVEL_SHIFT(level) \
M
Mike Day 已提交
86
		(PAGE_SHIFT + (level - 1) * PT64_LEVEL_BITS)
A
Avi Kivity 已提交
87 88 89 90 91 92 93 94

#define PT64_INDEX(address, level)\
	(((address) >> PT64_LEVEL_SHIFT(level)) & ((1 << PT64_LEVEL_BITS) - 1))


#define PT32_LEVEL_BITS 10

#define PT32_LEVEL_SHIFT(level) \
M
Mike Day 已提交
95
		(PAGE_SHIFT + (level - 1) * PT32_LEVEL_BITS)
A
Avi Kivity 已提交
96

97 98 99
#define PT32_LVL_OFFSET_MASK(level) \
	(PT32_BASE_ADDR_MASK & ((1ULL << (PAGE_SHIFT + (((level) - 1) \
						* PT32_LEVEL_BITS))) - 1))
A
Avi Kivity 已提交
100 101 102 103 104

#define PT32_INDEX(address, level)\
	(((address) >> PT32_LEVEL_SHIFT(level)) & ((1 << PT32_LEVEL_BITS) - 1))


105
#define PT64_BASE_ADDR_MASK (((1ULL << 52) - 1) & ~(u64)(PAGE_SIZE-1))
A
Avi Kivity 已提交
106 107
#define PT64_DIR_BASE_ADDR_MASK \
	(PT64_BASE_ADDR_MASK & ~((1ULL << (PAGE_SHIFT + PT64_LEVEL_BITS)) - 1))
108 109 110 111 112 113
#define PT64_LVL_ADDR_MASK(level) \
	(PT64_BASE_ADDR_MASK & ~((1ULL << (PAGE_SHIFT + (((level) - 1) \
						* PT64_LEVEL_BITS))) - 1))
#define PT64_LVL_OFFSET_MASK(level) \
	(PT64_BASE_ADDR_MASK & ((1ULL << (PAGE_SHIFT + (((level) - 1) \
						* PT64_LEVEL_BITS))) - 1))
A
Avi Kivity 已提交
114 115 116 117

#define PT32_BASE_ADDR_MASK PAGE_MASK
#define PT32_DIR_BASE_ADDR_MASK \
	(PAGE_MASK & ~((1ULL << (PAGE_SHIFT + PT32_LEVEL_BITS)) - 1))
118 119 120
#define PT32_LVL_ADDR_MASK(level) \
	(PAGE_MASK & ~((1ULL << (PAGE_SHIFT + (((level) - 1) \
					    * PT32_LEVEL_BITS))) - 1))
A
Avi Kivity 已提交
121

122 123
#define PT64_PERM_MASK (PT_PRESENT_MASK | PT_WRITABLE_MASK | shadow_user_mask \
			| shadow_x_mask | shadow_nx_mask)
A
Avi Kivity 已提交
124

125 126 127 128 129
#define ACC_EXEC_MASK    1
#define ACC_WRITE_MASK   PT_WRITABLE_MASK
#define ACC_USER_MASK    PT_USER_MASK
#define ACC_ALL          (ACC_EXEC_MASK | ACC_WRITE_MASK | ACC_USER_MASK)

130 131
#include <trace/events/kvm.h>

132 133 134
#define CREATE_TRACE_POINTS
#include "mmutrace.h"

135 136
#define SPTE_HOST_WRITEABLE	(1ULL << PT_FIRST_AVAIL_BITS_SHIFT)
#define SPTE_MMU_WRITEABLE	(1ULL << (PT_FIRST_AVAIL_BITS_SHIFT + 1))
137

138 139
#define SHADOW_PT_INDEX(addr, level) PT64_INDEX(addr, level)

140 141 142
/* make pte_list_desc fit well in cache line */
#define PTE_LIST_EXT 3

143 144 145
struct pte_list_desc {
	u64 *sptes[PTE_LIST_EXT];
	struct pte_list_desc *more;
146 147
};

148 149 150 151
struct kvm_shadow_walk_iterator {
	u64 addr;
	hpa_t shadow_addr;
	u64 *sptep;
152
	int level;
153 154 155 156 157 158 159 160
	unsigned index;
};

#define for_each_shadow_entry(_vcpu, _addr, _walker)    \
	for (shadow_walk_init(&(_walker), _vcpu, _addr);	\
	     shadow_walk_okay(&(_walker));			\
	     shadow_walk_next(&(_walker)))

161 162 163 164 165 166
#define for_each_shadow_entry_lockless(_vcpu, _addr, _walker, spte)	\
	for (shadow_walk_init(&(_walker), _vcpu, _addr);		\
	     shadow_walk_okay(&(_walker)) &&				\
		({ spte = mmu_spte_get_lockless(_walker.sptep); 1; });	\
	     __shadow_walk_next(&(_walker), spte))

167
static struct kmem_cache *pte_list_desc_cache;
168
static struct kmem_cache *mmu_page_header_cache;
169
static struct percpu_counter kvm_total_used_mmu_pages;
170

S
Sheng Yang 已提交
171 172 173 174 175
static u64 __read_mostly shadow_nx_mask;
static u64 __read_mostly shadow_x_mask;	/* mutual exclusive with nx_mask */
static u64 __read_mostly shadow_user_mask;
static u64 __read_mostly shadow_accessed_mask;
static u64 __read_mostly shadow_dirty_mask;
176 177 178
static u64 __read_mostly shadow_mmio_mask;

static void mmu_spte_set(u64 *sptep, u64 spte);
179
static void mmu_free_roots(struct kvm_vcpu *vcpu);
180 181 182 183 184 185 186

void kvm_mmu_set_mmio_spte_mask(u64 mmio_mask)
{
	shadow_mmio_mask = mmio_mask;
}
EXPORT_SYMBOL_GPL(kvm_mmu_set_mmio_spte_mask);

187
/*
188 189 190 191 192 193 194
 * the low bit of the generation number is always presumed to be zero.
 * This disables mmio caching during memslot updates.  The concept is
 * similar to a seqcount but instead of retrying the access we just punt
 * and ignore the cache.
 *
 * spte bits 3-11 are used as bits 1-9 of the generation number,
 * the bits 52-61 are used as bits 10-19 of the generation number.
195
 */
196
#define MMIO_SPTE_GEN_LOW_SHIFT		2
197 198
#define MMIO_SPTE_GEN_HIGH_SHIFT	52

199 200 201
#define MMIO_GEN_SHIFT			20
#define MMIO_GEN_LOW_SHIFT		10
#define MMIO_GEN_LOW_MASK		((1 << MMIO_GEN_LOW_SHIFT) - 2)
202
#define MMIO_GEN_MASK			((1 << MMIO_GEN_SHIFT) - 1)
203 204 205 206 207

static u64 generation_mmio_spte_mask(unsigned int gen)
{
	u64 mask;

T
Tiejun Chen 已提交
208
	WARN_ON(gen & ~MMIO_GEN_MASK);
209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225

	mask = (gen & MMIO_GEN_LOW_MASK) << MMIO_SPTE_GEN_LOW_SHIFT;
	mask |= ((u64)gen >> MMIO_GEN_LOW_SHIFT) << MMIO_SPTE_GEN_HIGH_SHIFT;
	return mask;
}

static unsigned int get_mmio_spte_generation(u64 spte)
{
	unsigned int gen;

	spte &= ~shadow_mmio_mask;

	gen = (spte >> MMIO_SPTE_GEN_LOW_SHIFT) & MMIO_GEN_LOW_MASK;
	gen |= (spte >> MMIO_SPTE_GEN_HIGH_SHIFT) << MMIO_GEN_LOW_SHIFT;
	return gen;
}

226 227
static unsigned int kvm_current_mmio_generation(struct kvm *kvm)
{
228
	return kvm_memslots(kvm)->generation & MMIO_GEN_MASK;
229 230
}

231 232
static void mark_mmio_spte(struct kvm *kvm, u64 *sptep, u64 gfn,
			   unsigned access)
233
{
234 235
	unsigned int gen = kvm_current_mmio_generation(kvm);
	u64 mask = generation_mmio_spte_mask(gen);
236

237
	access &= ACC_WRITE_MASK | ACC_USER_MASK;
238 239
	mask |= shadow_mmio_mask | access | gfn << PAGE_SHIFT;

240
	trace_mark_mmio_spte(sptep, gfn, access, gen);
241
	mmu_spte_set(sptep, mask);
242 243 244 245 246 247 248 249 250
}

static bool is_mmio_spte(u64 spte)
{
	return (spte & shadow_mmio_mask) == shadow_mmio_mask;
}

static gfn_t get_mmio_spte_gfn(u64 spte)
{
T
Tiejun Chen 已提交
251
	u64 mask = generation_mmio_spte_mask(MMIO_GEN_MASK) | shadow_mmio_mask;
252
	return (spte & ~mask) >> PAGE_SHIFT;
253 254 255 256
}

static unsigned get_mmio_spte_access(u64 spte)
{
T
Tiejun Chen 已提交
257
	u64 mask = generation_mmio_spte_mask(MMIO_GEN_MASK) | shadow_mmio_mask;
258
	return (spte & ~mask) & ~PAGE_MASK;
259 260
}

261 262
static bool set_mmio_spte(struct kvm *kvm, u64 *sptep, gfn_t gfn,
			  pfn_t pfn, unsigned access)
263 264
{
	if (unlikely(is_noslot_pfn(pfn))) {
265
		mark_mmio_spte(kvm, sptep, gfn, access);
266 267 268 269 270
		return true;
	}

	return false;
}
271

272 273
static bool check_mmio_spte(struct kvm *kvm, u64 spte)
{
274 275 276 277 278 279 280
	unsigned int kvm_gen, spte_gen;

	kvm_gen = kvm_current_mmio_generation(kvm);
	spte_gen = get_mmio_spte_generation(spte);

	trace_check_mmio_spte(spte, kvm_gen, spte_gen);
	return likely(kvm_gen == spte_gen);
281 282
}

S
Sheng Yang 已提交
283
void kvm_mmu_set_mask_ptes(u64 user_mask, u64 accessed_mask,
284
		u64 dirty_mask, u64 nx_mask, u64 x_mask)
S
Sheng Yang 已提交
285 286 287 288 289 290 291 292 293
{
	shadow_user_mask = user_mask;
	shadow_accessed_mask = accessed_mask;
	shadow_dirty_mask = dirty_mask;
	shadow_nx_mask = nx_mask;
	shadow_x_mask = x_mask;
}
EXPORT_SYMBOL_GPL(kvm_mmu_set_mask_ptes);

A
Avi Kivity 已提交
294 295 296 297 298
static int is_cpuid_PSE36(void)
{
	return 1;
}

299 300
static int is_nx(struct kvm_vcpu *vcpu)
{
301
	return vcpu->arch.efer & EFER_NX;
302 303
}

304 305
static int is_shadow_present_pte(u64 pte)
{
306
	return pte & PT_PRESENT_MASK && !is_mmio_spte(pte);
307 308
}

M
Marcelo Tosatti 已提交
309 310 311 312 313
static int is_large_pte(u64 pte)
{
	return pte & PT_PAGE_SIZE_MASK;
}

314
static int is_rmap_spte(u64 pte)
315
{
316
	return is_shadow_present_pte(pte);
317 318
}

319 320 321 322
static int is_last_spte(u64 pte, int level)
{
	if (level == PT_PAGE_TABLE_LEVEL)
		return 1;
323
	if (is_large_pte(pte))
324 325 326 327
		return 1;
	return 0;
}

328
static pfn_t spte_to_pfn(u64 pte)
329
{
330
	return (pte & PT64_BASE_ADDR_MASK) >> PAGE_SHIFT;
331 332
}

333 334 335 336 337 338 339
static gfn_t pse36_gfn_delta(u32 gpte)
{
	int shift = 32 - PT32_DIR_PSE36_SHIFT - PAGE_SHIFT;

	return (gpte & PT32_DIR_PSE36_MASK) << shift;
}

340
#ifdef CONFIG_X86_64
A
Avi Kivity 已提交
341
static void __set_spte(u64 *sptep, u64 spte)
342
{
343
	*sptep = spte;
344 345
}

346
static void __update_clear_spte_fast(u64 *sptep, u64 spte)
347
{
348 349 350 351 352 353 354
	*sptep = spte;
}

static u64 __update_clear_spte_slow(u64 *sptep, u64 spte)
{
	return xchg(sptep, spte);
}
355 356 357 358 359

static u64 __get_spte_lockless(u64 *sptep)
{
	return ACCESS_ONCE(*sptep);
}
360 361 362 363 364 365

static bool __check_direct_spte_mmio_pf(u64 spte)
{
	/* It is valid if the spte is zapped. */
	return spte == 0ull;
}
366
#else
367 368 369 370 371 372 373
union split_spte {
	struct {
		u32 spte_low;
		u32 spte_high;
	};
	u64 spte;
};
374

375 376 377 378 379 380 381 382 383 384 385 386
static void count_spte_clear(u64 *sptep, u64 spte)
{
	struct kvm_mmu_page *sp =  page_header(__pa(sptep));

	if (is_shadow_present_pte(spte))
		return;

	/* Ensure the spte is completely set before we increase the count */
	smp_wmb();
	sp->clear_spte_count++;
}

387 388 389
static void __set_spte(u64 *sptep, u64 spte)
{
	union split_spte *ssptep, sspte;
390

391 392 393 394 395 396 397 398 399 400 401 402 403
	ssptep = (union split_spte *)sptep;
	sspte = (union split_spte)spte;

	ssptep->spte_high = sspte.spte_high;

	/*
	 * If we map the spte from nonpresent to present, We should store
	 * the high bits firstly, then set present bit, so cpu can not
	 * fetch this spte while we are setting the spte.
	 */
	smp_wmb();

	ssptep->spte_low = sspte.spte_low;
404 405
}

406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421
static void __update_clear_spte_fast(u64 *sptep, u64 spte)
{
	union split_spte *ssptep, sspte;

	ssptep = (union split_spte *)sptep;
	sspte = (union split_spte)spte;

	ssptep->spte_low = sspte.spte_low;

	/*
	 * If we map the spte from present to nonpresent, we should clear
	 * present bit firstly to avoid vcpu fetch the old high bits.
	 */
	smp_wmb();

	ssptep->spte_high = sspte.spte_high;
422
	count_spte_clear(sptep, spte);
423 424 425 426 427 428 429 430 431 432 433
}

static u64 __update_clear_spte_slow(u64 *sptep, u64 spte)
{
	union split_spte *ssptep, sspte, orig;

	ssptep = (union split_spte *)sptep;
	sspte = (union split_spte)spte;

	/* xchg acts as a barrier before the setting of the high bits */
	orig.spte_low = xchg(&ssptep->spte_low, sspte.spte_low);
434 435
	orig.spte_high = ssptep->spte_high;
	ssptep->spte_high = sspte.spte_high;
436
	count_spte_clear(sptep, spte);
437 438 439

	return orig.spte;
}
440 441 442 443

/*
 * The idea using the light way get the spte on x86_32 guest is from
 * gup_get_pte(arch/x86/mm/gup.c).
444 445 446 447 448 449 450 451 452 453 454 455 456 457
 *
 * An spte tlb flush may be pending, because kvm_set_pte_rmapp
 * coalesces them and we are running out of the MMU lock.  Therefore
 * we need to protect against in-progress updates of the spte.
 *
 * Reading the spte while an update is in progress may get the old value
 * for the high part of the spte.  The race is fine for a present->non-present
 * change (because the high part of the spte is ignored for non-present spte),
 * but for a present->present change we must reread the spte.
 *
 * All such changes are done in two steps (present->non-present and
 * non-present->present), hence it is enough to count the number of
 * present->non-present updates: if it changed while reading the spte,
 * we might have hit the race.  This is done using clear_spte_count.
458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480
 */
static u64 __get_spte_lockless(u64 *sptep)
{
	struct kvm_mmu_page *sp =  page_header(__pa(sptep));
	union split_spte spte, *orig = (union split_spte *)sptep;
	int count;

retry:
	count = sp->clear_spte_count;
	smp_rmb();

	spte.spte_low = orig->spte_low;
	smp_rmb();

	spte.spte_high = orig->spte_high;
	smp_rmb();

	if (unlikely(spte.spte_low != orig->spte_low ||
	      count != sp->clear_spte_count))
		goto retry;

	return spte.spte;
}
481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497

static bool __check_direct_spte_mmio_pf(u64 spte)
{
	union split_spte sspte = (union split_spte)spte;
	u32 high_mmio_mask = shadow_mmio_mask >> 32;

	/* It is valid if the spte is zapped. */
	if (spte == 0ull)
		return true;

	/* It is valid if the spte is being zapped. */
	if (sspte.spte_low == 0ull &&
	    (sspte.spte_high & high_mmio_mask) == high_mmio_mask)
		return true;

	return false;
}
498 499
#endif

500 501
static bool spte_is_locklessly_modifiable(u64 spte)
{
502 503
	return (spte & (SPTE_HOST_WRITEABLE | SPTE_MMU_WRITEABLE)) ==
		(SPTE_HOST_WRITEABLE | SPTE_MMU_WRITEABLE);
504 505
}

506 507
static bool spte_has_volatile_bits(u64 spte)
{
508 509 510 511 512 513 514 515 516
	/*
	 * Always atomicly update spte if it can be updated
	 * out of mmu-lock, it can ensure dirty bit is not lost,
	 * also, it can help us to get a stable is_writable_pte()
	 * to ensure tlb flush is not missed.
	 */
	if (spte_is_locklessly_modifiable(spte))
		return true;

517 518 519 520 521 522
	if (!shadow_accessed_mask)
		return false;

	if (!is_shadow_present_pte(spte))
		return false;

523 524
	if ((spte & shadow_accessed_mask) &&
	      (!is_writable_pte(spte) || (spte & shadow_dirty_mask)))
525 526 527 528 529
		return false;

	return true;
}

530 531 532 533 534
static bool spte_is_bit_cleared(u64 old_spte, u64 new_spte, u64 bit_mask)
{
	return (old_spte & bit_mask) && !(new_spte & bit_mask);
}

535 536 537 538 539
static bool spte_is_bit_changed(u64 old_spte, u64 new_spte, u64 bit_mask)
{
	return (old_spte & bit_mask) != (new_spte & bit_mask);
}

540 541 542 543 544 545 546 547 548 549 550 551 552 553
/* Rules for using mmu_spte_set:
 * Set the sptep from nonpresent to present.
 * Note: the sptep being assigned *must* be either not present
 * or in a state where the hardware will not attempt to update
 * the spte.
 */
static void mmu_spte_set(u64 *sptep, u64 new_spte)
{
	WARN_ON(is_shadow_present_pte(*sptep));
	__set_spte(sptep, new_spte);
}

/* Rules for using mmu_spte_update:
 * Update the state bits, it means the mapped pfn is not changged.
554 555 556 557 558 559
 *
 * Whenever we overwrite a writable spte with a read-only one we
 * should flush remote TLBs. Otherwise rmap_write_protect
 * will find a read-only spte, even though the writable spte
 * might be cached on a CPU's TLB, the return value indicates this
 * case.
560
 */
561
static bool mmu_spte_update(u64 *sptep, u64 new_spte)
562
{
563
	u64 old_spte = *sptep;
564
	bool ret = false;
565 566

	WARN_ON(!is_rmap_spte(new_spte));
567

568 569 570 571
	if (!is_shadow_present_pte(old_spte)) {
		mmu_spte_set(sptep, new_spte);
		return ret;
	}
572

573
	if (!spte_has_volatile_bits(old_spte))
574
		__update_clear_spte_fast(sptep, new_spte);
575
	else
576
		old_spte = __update_clear_spte_slow(sptep, new_spte);
577

578 579 580 581 582
	/*
	 * For the spte updated out of mmu-lock is safe, since
	 * we always atomicly update it, see the comments in
	 * spte_has_volatile_bits().
	 */
583 584
	if (spte_is_locklessly_modifiable(old_spte) &&
	      !is_writable_pte(new_spte))
585 586
		ret = true;

587
	if (!shadow_accessed_mask)
588
		return ret;
589

590 591 592 593 594 595 596 597
	/*
	 * Flush TLB when accessed/dirty bits are changed in the page tables,
	 * to guarantee consistency between TLB and page tables.
	 */
	if (spte_is_bit_changed(old_spte, new_spte,
                                shadow_accessed_mask | shadow_dirty_mask))
		ret = true;

598 599 600 601
	if (spte_is_bit_cleared(old_spte, new_spte, shadow_accessed_mask))
		kvm_set_pfn_accessed(spte_to_pfn(old_spte));
	if (spte_is_bit_cleared(old_spte, new_spte, shadow_dirty_mask))
		kvm_set_pfn_dirty(spte_to_pfn(old_spte));
602 603

	return ret;
604 605
}

606 607 608 609 610 611 612 613 614 615 616
/*
 * Rules for using mmu_spte_clear_track_bits:
 * It sets the sptep from present to nonpresent, and track the
 * state bits, it is used to clear the last level sptep.
 */
static int mmu_spte_clear_track_bits(u64 *sptep)
{
	pfn_t pfn;
	u64 old_spte = *sptep;

	if (!spte_has_volatile_bits(old_spte))
617
		__update_clear_spte_fast(sptep, 0ull);
618
	else
619
		old_spte = __update_clear_spte_slow(sptep, 0ull);
620 621 622 623 624

	if (!is_rmap_spte(old_spte))
		return 0;

	pfn = spte_to_pfn(old_spte);
625 626 627 628 629 630

	/*
	 * KVM does not hold the refcount of the page used by
	 * kvm mmu, before reclaiming the page, we should
	 * unmap it from mmu first.
	 */
631
	WARN_ON(!kvm_is_reserved_pfn(pfn) && !page_count(pfn_to_page(pfn)));
632

633 634 635 636 637 638 639 640 641 642 643 644 645 646
	if (!shadow_accessed_mask || old_spte & shadow_accessed_mask)
		kvm_set_pfn_accessed(pfn);
	if (!shadow_dirty_mask || (old_spte & shadow_dirty_mask))
		kvm_set_pfn_dirty(pfn);
	return 1;
}

/*
 * Rules for using mmu_spte_clear_no_track:
 * Directly clear spte without caring the state bits of sptep,
 * it is used to set the upper level spte.
 */
static void mmu_spte_clear_no_track(u64 *sptep)
{
647
	__update_clear_spte_fast(sptep, 0ull);
648 649
}

650 651 652 653 654 655 656
static u64 mmu_spte_get_lockless(u64 *sptep)
{
	return __get_spte_lockless(sptep);
}

static void walk_shadow_page_lockless_begin(struct kvm_vcpu *vcpu)
{
657 658 659 660 661 662 663 664 665 666 667
	/*
	 * Prevent page table teardown by making any free-er wait during
	 * kvm_flush_remote_tlbs() IPI to all active vcpus.
	 */
	local_irq_disable();
	vcpu->mode = READING_SHADOW_PAGE_TABLES;
	/*
	 * Make sure a following spte read is not reordered ahead of the write
	 * to vcpu->mode.
	 */
	smp_mb();
668 669 670 671
}

static void walk_shadow_page_lockless_end(struct kvm_vcpu *vcpu)
{
672 673 674 675 676 677 678 679
	/*
	 * Make sure the write to vcpu->mode is not reordered in front of
	 * reads to sptes.  If it does, kvm_commit_zap_page() can see us
	 * OUTSIDE_GUEST_MODE and proceed to free the shadow page table.
	 */
	smp_mb();
	vcpu->mode = OUTSIDE_GUEST_MODE;
	local_irq_enable();
680 681
}

682
static int mmu_topup_memory_cache(struct kvm_mmu_memory_cache *cache,
683
				  struct kmem_cache *base_cache, int min)
684 685 686 687
{
	void *obj;

	if (cache->nobjs >= min)
688
		return 0;
689
	while (cache->nobjs < ARRAY_SIZE(cache->objects)) {
690
		obj = kmem_cache_zalloc(base_cache, GFP_KERNEL);
691
		if (!obj)
692
			return -ENOMEM;
693 694
		cache->objects[cache->nobjs++] = obj;
	}
695
	return 0;
696 697
}

698 699 700 701 702
static int mmu_memory_cache_free_objects(struct kvm_mmu_memory_cache *cache)
{
	return cache->nobjs;
}

703 704
static void mmu_free_memory_cache(struct kvm_mmu_memory_cache *mc,
				  struct kmem_cache *cache)
705 706
{
	while (mc->nobjs)
707
		kmem_cache_free(cache, mc->objects[--mc->nobjs]);
708 709
}

A
Avi Kivity 已提交
710
static int mmu_topup_memory_cache_page(struct kvm_mmu_memory_cache *cache,
711
				       int min)
A
Avi Kivity 已提交
712
{
713
	void *page;
A
Avi Kivity 已提交
714 715 716 717

	if (cache->nobjs >= min)
		return 0;
	while (cache->nobjs < ARRAY_SIZE(cache->objects)) {
718
		page = (void *)__get_free_page(GFP_KERNEL);
A
Avi Kivity 已提交
719 720
		if (!page)
			return -ENOMEM;
721
		cache->objects[cache->nobjs++] = page;
A
Avi Kivity 已提交
722 723 724 725 726 727 728
	}
	return 0;
}

static void mmu_free_memory_cache_page(struct kvm_mmu_memory_cache *mc)
{
	while (mc->nobjs)
729
		free_page((unsigned long)mc->objects[--mc->nobjs]);
A
Avi Kivity 已提交
730 731
}

732
static int mmu_topup_memory_caches(struct kvm_vcpu *vcpu)
733
{
734 735
	int r;

736
	r = mmu_topup_memory_cache(&vcpu->arch.mmu_pte_list_desc_cache,
737
				   pte_list_desc_cache, 8 + PTE_PREFETCH_NUM);
738 739
	if (r)
		goto out;
740
	r = mmu_topup_memory_cache_page(&vcpu->arch.mmu_page_cache, 8);
741 742
	if (r)
		goto out;
743
	r = mmu_topup_memory_cache(&vcpu->arch.mmu_page_header_cache,
744
				   mmu_page_header_cache, 4);
745 746
out:
	return r;
747 748 749 750
}

static void mmu_free_memory_caches(struct kvm_vcpu *vcpu)
{
751 752
	mmu_free_memory_cache(&vcpu->arch.mmu_pte_list_desc_cache,
				pte_list_desc_cache);
753
	mmu_free_memory_cache_page(&vcpu->arch.mmu_page_cache);
754 755
	mmu_free_memory_cache(&vcpu->arch.mmu_page_header_cache,
				mmu_page_header_cache);
756 757
}

758
static void *mmu_memory_cache_alloc(struct kvm_mmu_memory_cache *mc)
759 760 761 762 763 764 765 766
{
	void *p;

	BUG_ON(!mc->nobjs);
	p = mc->objects[--mc->nobjs];
	return p;
}

767
static struct pte_list_desc *mmu_alloc_pte_list_desc(struct kvm_vcpu *vcpu)
768
{
769
	return mmu_memory_cache_alloc(&vcpu->arch.mmu_pte_list_desc_cache);
770 771
}

772
static void mmu_free_pte_list_desc(struct pte_list_desc *pte_list_desc)
773
{
774
	kmem_cache_free(pte_list_desc_cache, pte_list_desc);
775 776
}

777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792
static gfn_t kvm_mmu_page_get_gfn(struct kvm_mmu_page *sp, int index)
{
	if (!sp->role.direct)
		return sp->gfns[index];

	return sp->gfn + (index << ((sp->role.level - 1) * PT64_LEVEL_BITS));
}

static void kvm_mmu_page_set_gfn(struct kvm_mmu_page *sp, int index, gfn_t gfn)
{
	if (sp->role.direct)
		BUG_ON(gfn != kvm_mmu_page_get_gfn(sp, index));
	else
		sp->gfns[index] = gfn;
}

M
Marcelo Tosatti 已提交
793
/*
794 795
 * Return the pointer to the large page information for a given gfn,
 * handling slots that are not large page aligned.
M
Marcelo Tosatti 已提交
796
 */
797 798 799
static struct kvm_lpage_info *lpage_info_slot(gfn_t gfn,
					      struct kvm_memory_slot *slot,
					      int level)
M
Marcelo Tosatti 已提交
800 801 802
{
	unsigned long idx;

803
	idx = gfn_to_index(gfn, slot->base_gfn, level);
804
	return &slot->arch.lpage_info[level - 2][idx];
M
Marcelo Tosatti 已提交
805 806 807 808
}

static void account_shadowed(struct kvm *kvm, gfn_t gfn)
{
809
	struct kvm_memory_slot *slot;
810
	struct kvm_lpage_info *linfo;
811
	int i;
M
Marcelo Tosatti 已提交
812

A
Avi Kivity 已提交
813
	slot = gfn_to_memslot(kvm, gfn);
814
	for (i = PT_DIRECTORY_LEVEL; i <= PT_MAX_HUGEPAGE_LEVEL; ++i) {
815 816
		linfo = lpage_info_slot(gfn, slot, i);
		linfo->write_count += 1;
817
	}
818
	kvm->arch.indirect_shadow_pages++;
M
Marcelo Tosatti 已提交
819 820 821 822
}

static void unaccount_shadowed(struct kvm *kvm, gfn_t gfn)
{
823
	struct kvm_memory_slot *slot;
824
	struct kvm_lpage_info *linfo;
825
	int i;
M
Marcelo Tosatti 已提交
826

A
Avi Kivity 已提交
827
	slot = gfn_to_memslot(kvm, gfn);
828
	for (i = PT_DIRECTORY_LEVEL; i <= PT_MAX_HUGEPAGE_LEVEL; ++i) {
829 830 831
		linfo = lpage_info_slot(gfn, slot, i);
		linfo->write_count -= 1;
		WARN_ON(linfo->write_count < 0);
832
	}
833
	kvm->arch.indirect_shadow_pages--;
M
Marcelo Tosatti 已提交
834 835
}

836 837 838
static int has_wrprotected_page(struct kvm *kvm,
				gfn_t gfn,
				int level)
M
Marcelo Tosatti 已提交
839
{
840
	struct kvm_memory_slot *slot;
841
	struct kvm_lpage_info *linfo;
M
Marcelo Tosatti 已提交
842

A
Avi Kivity 已提交
843
	slot = gfn_to_memslot(kvm, gfn);
M
Marcelo Tosatti 已提交
844
	if (slot) {
845 846
		linfo = lpage_info_slot(gfn, slot, level);
		return linfo->write_count;
M
Marcelo Tosatti 已提交
847 848 849 850 851
	}

	return 1;
}

852
static int host_mapping_level(struct kvm *kvm, gfn_t gfn)
M
Marcelo Tosatti 已提交
853
{
J
Joerg Roedel 已提交
854
	unsigned long page_size;
855
	int i, ret = 0;
M
Marcelo Tosatti 已提交
856

J
Joerg Roedel 已提交
857
	page_size = kvm_host_page_size(kvm, gfn);
M
Marcelo Tosatti 已提交
858

859
	for (i = PT_PAGE_TABLE_LEVEL; i <= PT_MAX_HUGEPAGE_LEVEL; ++i) {
860 861 862 863 864 865
		if (page_size >= KVM_HPAGE_SIZE(i))
			ret = i;
		else
			break;
	}

866
	return ret;
M
Marcelo Tosatti 已提交
867 868
}

869 870 871
static struct kvm_memory_slot *
gfn_to_memslot_dirty_bitmap(struct kvm_vcpu *vcpu, gfn_t gfn,
			    bool no_dirty_log)
M
Marcelo Tosatti 已提交
872 873
{
	struct kvm_memory_slot *slot;
874 875 876 877 878 879 880 881 882 883 884

	slot = gfn_to_memslot(vcpu->kvm, gfn);
	if (!slot || slot->flags & KVM_MEMSLOT_INVALID ||
	      (no_dirty_log && slot->dirty_bitmap))
		slot = NULL;

	return slot;
}

static bool mapping_level_dirty_bitmap(struct kvm_vcpu *vcpu, gfn_t large_gfn)
{
885
	return !gfn_to_memslot_dirty_bitmap(vcpu, large_gfn, true);
886 887 888 889 890
}

static int mapping_level(struct kvm_vcpu *vcpu, gfn_t large_gfn)
{
	int host_level, level, max_level;
M
Marcelo Tosatti 已提交
891

892 893 894 895 896
	host_level = host_mapping_level(vcpu->kvm, large_gfn);

	if (host_level == PT_PAGE_TABLE_LEVEL)
		return host_level;

X
Xiao Guangrong 已提交
897
	max_level = min(kvm_x86_ops->get_lpage_level(), host_level);
898 899

	for (level = PT_DIRECTORY_LEVEL; level <= max_level; ++level)
900 901 902 903
		if (has_wrprotected_page(vcpu->kvm, large_gfn, level))
			break;

	return level - 1;
M
Marcelo Tosatti 已提交
904 905
}

906
/*
907
 * Pte mapping structures:
908
 *
909
 * If pte_list bit zero is zero, then pte_list point to the spte.
910
 *
911 912
 * If pte_list bit zero is one, (then pte_list & ~1) points to a struct
 * pte_list_desc containing more mappings.
913
 *
914
 * Returns the number of pte entries before the spte was added or zero if
915 916
 * the spte was not added.
 *
917
 */
918 919
static int pte_list_add(struct kvm_vcpu *vcpu, u64 *spte,
			unsigned long *pte_list)
920
{
921
	struct pte_list_desc *desc;
922
	int i, count = 0;
923

924 925 926 927 928 929 930
	if (!*pte_list) {
		rmap_printk("pte_list_add: %p %llx 0->1\n", spte, *spte);
		*pte_list = (unsigned long)spte;
	} else if (!(*pte_list & 1)) {
		rmap_printk("pte_list_add: %p %llx 1->many\n", spte, *spte);
		desc = mmu_alloc_pte_list_desc(vcpu);
		desc->sptes[0] = (u64 *)*pte_list;
A
Avi Kivity 已提交
931
		desc->sptes[1] = spte;
932
		*pte_list = (unsigned long)desc | 1;
933
		++count;
934
	} else {
935 936 937
		rmap_printk("pte_list_add: %p %llx many->many\n", spte, *spte);
		desc = (struct pte_list_desc *)(*pte_list & ~1ul);
		while (desc->sptes[PTE_LIST_EXT-1] && desc->more) {
938
			desc = desc->more;
939
			count += PTE_LIST_EXT;
940
		}
941 942
		if (desc->sptes[PTE_LIST_EXT-1]) {
			desc->more = mmu_alloc_pte_list_desc(vcpu);
943 944
			desc = desc->more;
		}
A
Avi Kivity 已提交
945
		for (i = 0; desc->sptes[i]; ++i)
946
			++count;
A
Avi Kivity 已提交
947
		desc->sptes[i] = spte;
948
	}
949
	return count;
950 951
}

952 953 954
static void
pte_list_desc_remove_entry(unsigned long *pte_list, struct pte_list_desc *desc,
			   int i, struct pte_list_desc *prev_desc)
955 956 957
{
	int j;

958
	for (j = PTE_LIST_EXT - 1; !desc->sptes[j] && j > i; --j)
959
		;
A
Avi Kivity 已提交
960 961
	desc->sptes[i] = desc->sptes[j];
	desc->sptes[j] = NULL;
962 963 964
	if (j != 0)
		return;
	if (!prev_desc && !desc->more)
965
		*pte_list = (unsigned long)desc->sptes[0];
966 967 968 969
	else
		if (prev_desc)
			prev_desc->more = desc->more;
		else
970 971
			*pte_list = (unsigned long)desc->more | 1;
	mmu_free_pte_list_desc(desc);
972 973
}

974
static void pte_list_remove(u64 *spte, unsigned long *pte_list)
975
{
976 977
	struct pte_list_desc *desc;
	struct pte_list_desc *prev_desc;
978 979
	int i;

980 981
	if (!*pte_list) {
		printk(KERN_ERR "pte_list_remove: %p 0->BUG\n", spte);
982
		BUG();
983 984 985 986
	} else if (!(*pte_list & 1)) {
		rmap_printk("pte_list_remove:  %p 1->0\n", spte);
		if ((u64 *)*pte_list != spte) {
			printk(KERN_ERR "pte_list_remove:  %p 1->BUG\n", spte);
987 988
			BUG();
		}
989
		*pte_list = 0;
990
	} else {
991 992
		rmap_printk("pte_list_remove:  %p many->many\n", spte);
		desc = (struct pte_list_desc *)(*pte_list & ~1ul);
993 994
		prev_desc = NULL;
		while (desc) {
995
			for (i = 0; i < PTE_LIST_EXT && desc->sptes[i]; ++i)
A
Avi Kivity 已提交
996
				if (desc->sptes[i] == spte) {
997
					pte_list_desc_remove_entry(pte_list,
998
							       desc, i,
999 1000 1001 1002 1003 1004
							       prev_desc);
					return;
				}
			prev_desc = desc;
			desc = desc->more;
		}
1005
		pr_err("pte_list_remove: %p many->many\n", spte);
1006 1007 1008 1009
		BUG();
	}
}

1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029
typedef void (*pte_list_walk_fn) (u64 *spte);
static void pte_list_walk(unsigned long *pte_list, pte_list_walk_fn fn)
{
	struct pte_list_desc *desc;
	int i;

	if (!*pte_list)
		return;

	if (!(*pte_list & 1))
		return fn((u64 *)*pte_list);

	desc = (struct pte_list_desc *)(*pte_list & ~1ul);
	while (desc) {
		for (i = 0; i < PTE_LIST_EXT && desc->sptes[i]; ++i)
			fn(desc->sptes[i]);
		desc = desc->more;
	}
}

1030
static unsigned long *__gfn_to_rmap(gfn_t gfn, int level,
1031
				    struct kvm_memory_slot *slot)
1032
{
1033
	unsigned long idx;
1034

1035
	idx = gfn_to_index(gfn, slot->base_gfn, level);
1036
	return &slot->arch.rmap[level - PT_PAGE_TABLE_LEVEL][idx];
1037 1038
}

1039 1040 1041 1042 1043 1044 1045 1046
/*
 * Take gfn and return the reverse mapping to it.
 */
static unsigned long *gfn_to_rmap(struct kvm *kvm, gfn_t gfn, int level)
{
	struct kvm_memory_slot *slot;

	slot = gfn_to_memslot(kvm, gfn);
1047
	return __gfn_to_rmap(gfn, level, slot);
1048 1049
}

1050 1051 1052 1053 1054 1055 1056 1057
static bool rmap_can_add(struct kvm_vcpu *vcpu)
{
	struct kvm_mmu_memory_cache *cache;

	cache = &vcpu->arch.mmu_pte_list_desc_cache;
	return mmu_memory_cache_free_objects(cache);
}

1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080
static int rmap_add(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn)
{
	struct kvm_mmu_page *sp;
	unsigned long *rmapp;

	sp = page_header(__pa(spte));
	kvm_mmu_page_set_gfn(sp, spte - sp->spt, gfn);
	rmapp = gfn_to_rmap(vcpu->kvm, gfn, sp->role.level);
	return pte_list_add(vcpu, spte, rmapp);
}

static void rmap_remove(struct kvm *kvm, u64 *spte)
{
	struct kvm_mmu_page *sp;
	gfn_t gfn;
	unsigned long *rmapp;

	sp = page_header(__pa(spte));
	gfn = kvm_mmu_page_get_gfn(sp, spte - sp->spt);
	rmapp = gfn_to_rmap(kvm, gfn, sp->role.level);
	pte_list_remove(spte, rmapp);
}

1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141
/*
 * Used by the following functions to iterate through the sptes linked by a
 * rmap.  All fields are private and not assumed to be used outside.
 */
struct rmap_iterator {
	/* private fields */
	struct pte_list_desc *desc;	/* holds the sptep if not NULL */
	int pos;			/* index of the sptep */
};

/*
 * Iteration must be started by this function.  This should also be used after
 * removing/dropping sptes from the rmap link because in such cases the
 * information in the itererator may not be valid.
 *
 * Returns sptep if found, NULL otherwise.
 */
static u64 *rmap_get_first(unsigned long rmap, struct rmap_iterator *iter)
{
	if (!rmap)
		return NULL;

	if (!(rmap & 1)) {
		iter->desc = NULL;
		return (u64 *)rmap;
	}

	iter->desc = (struct pte_list_desc *)(rmap & ~1ul);
	iter->pos = 0;
	return iter->desc->sptes[iter->pos];
}

/*
 * Must be used with a valid iterator: e.g. after rmap_get_first().
 *
 * Returns sptep if found, NULL otherwise.
 */
static u64 *rmap_get_next(struct rmap_iterator *iter)
{
	if (iter->desc) {
		if (iter->pos < PTE_LIST_EXT - 1) {
			u64 *sptep;

			++iter->pos;
			sptep = iter->desc->sptes[iter->pos];
			if (sptep)
				return sptep;
		}

		iter->desc = iter->desc->more;

		if (iter->desc) {
			iter->pos = 0;
			/* desc->sptes[0] cannot be NULL */
			return iter->desc->sptes[iter->pos];
		}
	}

	return NULL;
}

1142 1143 1144 1145 1146
#define for_each_rmap_spte(_rmap_, _iter_, _spte_)			    \
	   for (_spte_ = rmap_get_first(*_rmap_, _iter_);		    \
		_spte_ && ({BUG_ON(!is_shadow_present_pte(*_spte_)); 1;});  \
			_spte_ = rmap_get_next(_iter_))

1147
static void drop_spte(struct kvm *kvm, u64 *sptep)
1148
{
1149
	if (mmu_spte_clear_track_bits(sptep))
1150
		rmap_remove(kvm, sptep);
A
Avi Kivity 已提交
1151 1152
}

1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173

static bool __drop_large_spte(struct kvm *kvm, u64 *sptep)
{
	if (is_large_pte(*sptep)) {
		WARN_ON(page_header(__pa(sptep))->role.level ==
			PT_PAGE_TABLE_LEVEL);
		drop_spte(kvm, sptep);
		--kvm->stat.lpages;
		return true;
	}

	return false;
}

static void drop_large_spte(struct kvm_vcpu *vcpu, u64 *sptep)
{
	if (__drop_large_spte(vcpu->kvm, sptep))
		kvm_flush_remote_tlbs(vcpu->kvm);
}

/*
1174
 * Write-protect on the specified @sptep, @pt_protect indicates whether
1175
 * spte write-protection is caused by protecting shadow page table.
1176
 *
T
Tiejun Chen 已提交
1177
 * Note: write protection is difference between dirty logging and spte
1178 1179 1180 1181 1182
 * protection:
 * - for dirty logging, the spte can be set to writable at anytime if
 *   its dirty bitmap is properly set.
 * - for spte protection, the spte can be writable only after unsync-ing
 *   shadow page.
1183
 *
1184
 * Return true if tlb need be flushed.
1185
 */
1186
static bool spte_write_protect(struct kvm *kvm, u64 *sptep, bool pt_protect)
1187 1188 1189
{
	u64 spte = *sptep;

1190 1191
	if (!is_writable_pte(spte) &&
	      !(pt_protect && spte_is_locklessly_modifiable(spte)))
1192 1193 1194 1195
		return false;

	rmap_printk("rmap_write_protect: spte %p %llx\n", sptep, *sptep);

1196 1197
	if (pt_protect)
		spte &= ~SPTE_MMU_WRITEABLE;
1198
	spte = spte & ~PT_WRITABLE_MASK;
1199

1200
	return mmu_spte_update(sptep, spte);
1201 1202
}

1203
static bool __rmap_write_protect(struct kvm *kvm, unsigned long *rmapp,
1204
				 bool pt_protect)
1205
{
1206 1207
	u64 *sptep;
	struct rmap_iterator iter;
1208
	bool flush = false;
1209

1210
	for_each_rmap_spte(rmapp, &iter, sptep)
1211
		flush |= spte_write_protect(kvm, sptep, pt_protect);
1212

1213
	return flush;
1214 1215
}

1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232
static bool spte_clear_dirty(struct kvm *kvm, u64 *sptep)
{
	u64 spte = *sptep;

	rmap_printk("rmap_clear_dirty: spte %p %llx\n", sptep, *sptep);

	spte &= ~shadow_dirty_mask;

	return mmu_spte_update(sptep, spte);
}

static bool __rmap_clear_dirty(struct kvm *kvm, unsigned long *rmapp)
{
	u64 *sptep;
	struct rmap_iterator iter;
	bool flush = false;

1233
	for_each_rmap_spte(rmapp, &iter, sptep)
1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255
		flush |= spte_clear_dirty(kvm, sptep);

	return flush;
}

static bool spte_set_dirty(struct kvm *kvm, u64 *sptep)
{
	u64 spte = *sptep;

	rmap_printk("rmap_set_dirty: spte %p %llx\n", sptep, *sptep);

	spte |= shadow_dirty_mask;

	return mmu_spte_update(sptep, spte);
}

static bool __rmap_set_dirty(struct kvm *kvm, unsigned long *rmapp)
{
	u64 *sptep;
	struct rmap_iterator iter;
	bool flush = false;

1256
	for_each_rmap_spte(rmapp, &iter, sptep)
1257 1258 1259 1260 1261
		flush |= spte_set_dirty(kvm, sptep);

	return flush;
}

1262
/**
1263
 * kvm_mmu_write_protect_pt_masked - write protect selected PT level pages
1264 1265 1266 1267 1268 1269 1270 1271
 * @kvm: kvm instance
 * @slot: slot to protect
 * @gfn_offset: start of the BITS_PER_LONG pages we care about
 * @mask: indicates which pages we should protect
 *
 * Used when we do not need to care about huge page mappings: e.g. during dirty
 * logging we do not have any such mappings.
 */
1272
static void kvm_mmu_write_protect_pt_masked(struct kvm *kvm,
1273 1274
				     struct kvm_memory_slot *slot,
				     gfn_t gfn_offset, unsigned long mask)
1275 1276 1277
{
	unsigned long *rmapp;

1278
	while (mask) {
1279 1280
		rmapp = __gfn_to_rmap(slot->base_gfn + gfn_offset + __ffs(mask),
				      PT_PAGE_TABLE_LEVEL, slot);
1281
		__rmap_write_protect(kvm, rmapp, false);
M
Marcelo Tosatti 已提交
1282

1283 1284 1285
		/* clear the first set bit */
		mask &= mask - 1;
	}
1286 1287
}

1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313
/**
 * kvm_mmu_clear_dirty_pt_masked - clear MMU D-bit for PT level pages
 * @kvm: kvm instance
 * @slot: slot to clear D-bit
 * @gfn_offset: start of the BITS_PER_LONG pages we care about
 * @mask: indicates which pages we should clear D-bit
 *
 * Used for PML to re-log the dirty GPAs after userspace querying dirty_bitmap.
 */
void kvm_mmu_clear_dirty_pt_masked(struct kvm *kvm,
				     struct kvm_memory_slot *slot,
				     gfn_t gfn_offset, unsigned long mask)
{
	unsigned long *rmapp;

	while (mask) {
		rmapp = __gfn_to_rmap(slot->base_gfn + gfn_offset + __ffs(mask),
				      PT_PAGE_TABLE_LEVEL, slot);
		__rmap_clear_dirty(kvm, rmapp);

		/* clear the first set bit */
		mask &= mask - 1;
	}
}
EXPORT_SYMBOL_GPL(kvm_mmu_clear_dirty_pt_masked);

1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327
/**
 * kvm_arch_mmu_enable_log_dirty_pt_masked - enable dirty logging for selected
 * PT level pages.
 *
 * It calls kvm_mmu_write_protect_pt_masked to write protect selected pages to
 * enable dirty logging for them.
 *
 * Used when we do not need to care about huge page mappings: e.g. during dirty
 * logging we do not have any such mappings.
 */
void kvm_arch_mmu_enable_log_dirty_pt_masked(struct kvm *kvm,
				struct kvm_memory_slot *slot,
				gfn_t gfn_offset, unsigned long mask)
{
1328 1329 1330 1331 1332
	if (kvm_x86_ops->enable_log_dirty_pt_masked)
		kvm_x86_ops->enable_log_dirty_pt_masked(kvm, slot, gfn_offset,
				mask);
	else
		kvm_mmu_write_protect_pt_masked(kvm, slot, gfn_offset, mask);
1333 1334
}

1335
static bool rmap_write_protect(struct kvm *kvm, u64 gfn)
1336 1337
{
	struct kvm_memory_slot *slot;
1338 1339
	unsigned long *rmapp;
	int i;
1340
	bool write_protected = false;
1341 1342

	slot = gfn_to_memslot(kvm, gfn);
1343

1344
	for (i = PT_PAGE_TABLE_LEVEL; i <= PT_MAX_HUGEPAGE_LEVEL; ++i) {
1345
		rmapp = __gfn_to_rmap(gfn, i, slot);
1346
		write_protected |= __rmap_write_protect(kvm, rmapp, true);
1347 1348 1349
	}

	return write_protected;
1350 1351
}

1352
static bool kvm_zap_rmapp(struct kvm *kvm, unsigned long *rmapp)
1353
{
1354 1355
	u64 *sptep;
	struct rmap_iterator iter;
1356
	bool flush = false;
1357

1358 1359
	while ((sptep = rmap_get_first(*rmapp, &iter))) {
		BUG_ON(!(*sptep & PT_PRESENT_MASK));
1360
		rmap_printk("%s: spte %p %llx.\n", __func__, sptep, *sptep);
1361 1362

		drop_spte(kvm, sptep);
1363
		flush = true;
1364
	}
1365

1366 1367 1368 1369 1370 1371 1372 1373
	return flush;
}

static int kvm_unmap_rmapp(struct kvm *kvm, unsigned long *rmapp,
			   struct kvm_memory_slot *slot, gfn_t gfn, int level,
			   unsigned long data)
{
	return kvm_zap_rmapp(kvm, rmapp);
1374 1375
}

F
Frederik Deweerdt 已提交
1376
static int kvm_set_pte_rmapp(struct kvm *kvm, unsigned long *rmapp,
1377 1378
			     struct kvm_memory_slot *slot, gfn_t gfn, int level,
			     unsigned long data)
1379
{
1380 1381
	u64 *sptep;
	struct rmap_iterator iter;
1382
	int need_flush = 0;
1383
	u64 new_spte;
1384 1385 1386 1387 1388
	pte_t *ptep = (pte_t *)data;
	pfn_t new_pfn;

	WARN_ON(pte_huge(*ptep));
	new_pfn = pte_pfn(*ptep);
1389

1390 1391
restart:
	for_each_rmap_spte(rmapp, &iter, sptep) {
1392 1393
		rmap_printk("kvm_set_pte_rmapp: spte %p %llx gfn %llx (%d)\n",
			     sptep, *sptep, gfn, level);
1394

1395
		need_flush = 1;
1396

1397
		if (pte_write(*ptep)) {
1398
			drop_spte(kvm, sptep);
1399
			goto restart;
1400
		} else {
1401
			new_spte = *sptep & ~PT64_BASE_ADDR_MASK;
1402 1403 1404 1405
			new_spte |= (u64)new_pfn << PAGE_SHIFT;

			new_spte &= ~PT_WRITABLE_MASK;
			new_spte &= ~SPTE_HOST_WRITEABLE;
1406
			new_spte &= ~shadow_accessed_mask;
1407 1408 1409

			mmu_spte_clear_track_bits(sptep);
			mmu_spte_set(sptep, new_spte);
1410 1411
		}
	}
1412

1413 1414 1415 1416 1417 1418
	if (need_flush)
		kvm_flush_remote_tlbs(kvm);

	return 0;
}

1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486
struct slot_rmap_walk_iterator {
	/* input fields. */
	struct kvm_memory_slot *slot;
	gfn_t start_gfn;
	gfn_t end_gfn;
	int start_level;
	int end_level;

	/* output fields. */
	gfn_t gfn;
	unsigned long *rmap;
	int level;

	/* private field. */
	unsigned long *end_rmap;
};

static void
rmap_walk_init_level(struct slot_rmap_walk_iterator *iterator, int level)
{
	iterator->level = level;
	iterator->gfn = iterator->start_gfn;
	iterator->rmap = __gfn_to_rmap(iterator->gfn, level, iterator->slot);
	iterator->end_rmap = __gfn_to_rmap(iterator->end_gfn, level,
					   iterator->slot);
}

static void
slot_rmap_walk_init(struct slot_rmap_walk_iterator *iterator,
		    struct kvm_memory_slot *slot, int start_level,
		    int end_level, gfn_t start_gfn, gfn_t end_gfn)
{
	iterator->slot = slot;
	iterator->start_level = start_level;
	iterator->end_level = end_level;
	iterator->start_gfn = start_gfn;
	iterator->end_gfn = end_gfn;

	rmap_walk_init_level(iterator, iterator->start_level);
}

static bool slot_rmap_walk_okay(struct slot_rmap_walk_iterator *iterator)
{
	return !!iterator->rmap;
}

static void slot_rmap_walk_next(struct slot_rmap_walk_iterator *iterator)
{
	if (++iterator->rmap <= iterator->end_rmap) {
		iterator->gfn += (1UL << KVM_HPAGE_GFN_SHIFT(iterator->level));
		return;
	}

	if (++iterator->level > iterator->end_level) {
		iterator->rmap = NULL;
		return;
	}

	rmap_walk_init_level(iterator, iterator->level);
}

#define for_each_slot_rmap_range(_slot_, _start_level_, _end_level_,	\
	   _start_gfn, _end_gfn, _iter_)				\
	for (slot_rmap_walk_init(_iter_, _slot_, _start_level_,		\
				 _end_level_, _start_gfn, _end_gfn);	\
	     slot_rmap_walk_okay(_iter_);				\
	     slot_rmap_walk_next(_iter_))

1487 1488 1489 1490 1491 1492
static int kvm_handle_hva_range(struct kvm *kvm,
				unsigned long start,
				unsigned long end,
				unsigned long data,
				int (*handler)(struct kvm *kvm,
					       unsigned long *rmapp,
1493
					       struct kvm_memory_slot *slot,
1494 1495
					       gfn_t gfn,
					       int level,
1496
					       unsigned long data))
1497
{
1498
	struct kvm_memslots *slots;
1499
	struct kvm_memory_slot *memslot;
1500 1501
	struct slot_rmap_walk_iterator iterator;
	int ret = 0;
1502

1503
	slots = kvm_memslots(kvm);
1504

1505
	kvm_for_each_memslot(memslot, slots) {
1506
		unsigned long hva_start, hva_end;
1507
		gfn_t gfn_start, gfn_end;
1508

1509 1510 1511 1512 1513 1514 1515
		hva_start = max(start, memslot->userspace_addr);
		hva_end = min(end, memslot->userspace_addr +
					(memslot->npages << PAGE_SHIFT));
		if (hva_start >= hva_end)
			continue;
		/*
		 * {gfn(page) | page intersects with [hva_start, hva_end)} =
1516
		 * {gfn_start, gfn_start+1, ..., gfn_end-1}.
1517
		 */
1518
		gfn_start = hva_to_gfn_memslot(hva_start, memslot);
1519
		gfn_end = hva_to_gfn_memslot(hva_end + PAGE_SIZE - 1, memslot);
1520

1521 1522 1523 1524 1525
		for_each_slot_rmap_range(memslot, PT_PAGE_TABLE_LEVEL,
				PT_MAX_HUGEPAGE_LEVEL, gfn_start, gfn_end - 1,
				&iterator)
			ret |= handler(kvm, iterator.rmap, memslot,
				       iterator.gfn, iterator.level, data);
1526 1527
	}

1528
	return ret;
1529 1530
}

1531 1532 1533
static int kvm_handle_hva(struct kvm *kvm, unsigned long hva,
			  unsigned long data,
			  int (*handler)(struct kvm *kvm, unsigned long *rmapp,
1534
					 struct kvm_memory_slot *slot,
1535
					 gfn_t gfn, int level,
1536 1537 1538
					 unsigned long data))
{
	return kvm_handle_hva_range(kvm, hva, hva + 1, data, handler);
1539 1540 1541 1542
}

int kvm_unmap_hva(struct kvm *kvm, unsigned long hva)
{
1543 1544 1545
	return kvm_handle_hva(kvm, hva, 0, kvm_unmap_rmapp);
}

1546 1547 1548 1549 1550
int kvm_unmap_hva_range(struct kvm *kvm, unsigned long start, unsigned long end)
{
	return kvm_handle_hva_range(kvm, start, end, 0, kvm_unmap_rmapp);
}

1551 1552
void kvm_set_spte_hva(struct kvm *kvm, unsigned long hva, pte_t pte)
{
F
Frederik Deweerdt 已提交
1553
	kvm_handle_hva(kvm, hva, (unsigned long)&pte, kvm_set_pte_rmapp);
1554 1555
}

F
Frederik Deweerdt 已提交
1556
static int kvm_age_rmapp(struct kvm *kvm, unsigned long *rmapp,
1557 1558
			 struct kvm_memory_slot *slot, gfn_t gfn, int level,
			 unsigned long data)
1559
{
1560
	u64 *sptep;
1561
	struct rmap_iterator uninitialized_var(iter);
1562 1563
	int young = 0;

A
Andres Lagar-Cavilla 已提交
1564
	BUG_ON(!shadow_accessed_mask);
1565

1566
	for_each_rmap_spte(rmapp, &iter, sptep)
1567
		if (*sptep & shadow_accessed_mask) {
1568
			young = 1;
1569 1570
			clear_bit((ffs(shadow_accessed_mask) - 1),
				 (unsigned long *)sptep);
1571
		}
1572

1573
	trace_kvm_age_page(gfn, level, slot, young);
1574 1575 1576
	return young;
}

A
Andrea Arcangeli 已提交
1577
static int kvm_test_age_rmapp(struct kvm *kvm, unsigned long *rmapp,
1578 1579
			      struct kvm_memory_slot *slot, gfn_t gfn,
			      int level, unsigned long data)
A
Andrea Arcangeli 已提交
1580
{
1581 1582
	u64 *sptep;
	struct rmap_iterator iter;
A
Andrea Arcangeli 已提交
1583 1584 1585 1586 1587 1588 1589 1590 1591 1592
	int young = 0;

	/*
	 * If there's no access bit in the secondary pte set by the
	 * hardware it's up to gup-fast/gup to set the access bit in
	 * the primary pte or in the page structure.
	 */
	if (!shadow_accessed_mask)
		goto out;

1593
	for_each_rmap_spte(rmapp, &iter, sptep)
1594
		if (*sptep & shadow_accessed_mask) {
A
Andrea Arcangeli 已提交
1595 1596 1597 1598 1599 1600 1601
			young = 1;
			break;
		}
out:
	return young;
}

1602 1603
#define RMAP_RECYCLE_THRESHOLD 1000

1604
static void rmap_recycle(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn)
1605 1606
{
	unsigned long *rmapp;
1607 1608 1609
	struct kvm_mmu_page *sp;

	sp = page_header(__pa(spte));
1610

1611
	rmapp = gfn_to_rmap(vcpu->kvm, gfn, sp->role.level);
1612

1613
	kvm_unmap_rmapp(vcpu->kvm, rmapp, NULL, gfn, sp->role.level, 0);
1614 1615 1616
	kvm_flush_remote_tlbs(vcpu->kvm);
}

A
Andres Lagar-Cavilla 已提交
1617
int kvm_age_hva(struct kvm *kvm, unsigned long start, unsigned long end)
1618
{
A
Andres Lagar-Cavilla 已提交
1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639
	/*
	 * In case of absence of EPT Access and Dirty Bits supports,
	 * emulate the accessed bit for EPT, by checking if this page has
	 * an EPT mapping, and clearing it if it does. On the next access,
	 * a new EPT mapping will be established.
	 * This has some overhead, but not as much as the cost of swapping
	 * out actively used pages or breaking up actively used hugepages.
	 */
	if (!shadow_accessed_mask) {
		/*
		 * We are holding the kvm->mmu_lock, and we are blowing up
		 * shadow PTEs. MMU notifier consumers need to be kept at bay.
		 * This is correct as long as we don't decouple the mmu_lock
		 * protected regions (like invalidate_range_start|end does).
		 */
		kvm->mmu_notifier_seq++;
		return kvm_handle_hva_range(kvm, start, end, 0,
					    kvm_unmap_rmapp);
	}

	return kvm_handle_hva_range(kvm, start, end, 0, kvm_age_rmapp);
1640 1641
}

A
Andrea Arcangeli 已提交
1642 1643 1644 1645 1646
int kvm_test_age_hva(struct kvm *kvm, unsigned long hva)
{
	return kvm_handle_hva(kvm, hva, 0, kvm_test_age_rmapp);
}

1647
#ifdef MMU_DEBUG
1648
static int is_empty_shadow_page(u64 *spt)
A
Avi Kivity 已提交
1649
{
1650 1651 1652
	u64 *pos;
	u64 *end;

1653
	for (pos = spt, end = pos + PAGE_SIZE / sizeof(u64); pos != end; pos++)
1654
		if (is_shadow_present_pte(*pos)) {
1655
			printk(KERN_ERR "%s: %p %llx\n", __func__,
1656
			       pos, *pos);
A
Avi Kivity 已提交
1657
			return 0;
1658
		}
A
Avi Kivity 已提交
1659 1660
	return 1;
}
1661
#endif
A
Avi Kivity 已提交
1662

1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674
/*
 * This value is the sum of all of the kvm instances's
 * kvm->arch.n_used_mmu_pages values.  We need a global,
 * aggregate version in order to make the slab shrinker
 * faster
 */
static inline void kvm_mod_used_mmu_pages(struct kvm *kvm, int nr)
{
	kvm->arch.n_used_mmu_pages += nr;
	percpu_counter_add(&kvm_total_used_mmu_pages, nr);
}

1675
static void kvm_mmu_free_page(struct kvm_mmu_page *sp)
1676
{
1677
	MMU_WARN_ON(!is_empty_shadow_page(sp->spt));
1678
	hlist_del(&sp->hash_link);
1679 1680
	list_del(&sp->link);
	free_page((unsigned long)sp->spt);
1681 1682
	if (!sp->role.direct)
		free_page((unsigned long)sp->gfns);
1683
	kmem_cache_free(mmu_page_header_cache, sp);
1684 1685
}

1686 1687
static unsigned kvm_page_table_hashfn(gfn_t gfn)
{
1688
	return gfn & ((1 << KVM_MMU_HASH_SHIFT) - 1);
1689 1690
}

1691
static void mmu_page_add_parent_pte(struct kvm_vcpu *vcpu,
1692
				    struct kvm_mmu_page *sp, u64 *parent_pte)
1693 1694 1695 1696
{
	if (!parent_pte)
		return;

1697
	pte_list_add(vcpu, parent_pte, &sp->parent_ptes);
1698 1699
}

1700
static void mmu_page_remove_parent_pte(struct kvm_mmu_page *sp,
1701 1702
				       u64 *parent_pte)
{
1703
	pte_list_remove(parent_pte, &sp->parent_ptes);
1704 1705
}

1706 1707 1708 1709
static void drop_parent_pte(struct kvm_mmu_page *sp,
			    u64 *parent_pte)
{
	mmu_page_remove_parent_pte(sp, parent_pte);
1710
	mmu_spte_clear_no_track(parent_pte);
1711 1712
}

1713 1714
static struct kvm_mmu_page *kvm_mmu_alloc_page(struct kvm_vcpu *vcpu,
					       u64 *parent_pte, int direct)
M
Marcelo Tosatti 已提交
1715
{
1716
	struct kvm_mmu_page *sp;
1717

1718 1719
	sp = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_header_cache);
	sp->spt = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_cache);
1720
	if (!direct)
1721
		sp->gfns = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_cache);
1722
	set_page_private(virt_to_page(sp->spt), (unsigned long)sp);
1723 1724 1725 1726 1727 1728

	/*
	 * The active_mmu_pages list is the FIFO list, do not move the
	 * page until it is zapped. kvm_zap_obsolete_pages depends on
	 * this feature. See the comments in kvm_zap_obsolete_pages().
	 */
1729 1730 1731 1732 1733
	list_add(&sp->link, &vcpu->kvm->arch.active_mmu_pages);
	sp->parent_ptes = 0;
	mmu_page_add_parent_pte(vcpu, sp, parent_pte);
	kvm_mod_used_mmu_pages(vcpu->kvm, +1);
	return sp;
M
Marcelo Tosatti 已提交
1734 1735
}

1736
static void mark_unsync(u64 *spte);
1737
static void kvm_mmu_mark_parents_unsync(struct kvm_mmu_page *sp)
1738
{
1739
	pte_list_walk(&sp->parent_ptes, mark_unsync);
1740 1741
}

1742
static void mark_unsync(u64 *spte)
1743
{
1744
	struct kvm_mmu_page *sp;
1745
	unsigned int index;
1746

1747
	sp = page_header(__pa(spte));
1748 1749
	index = spte - sp->spt;
	if (__test_and_set_bit(index, sp->unsync_child_bitmap))
1750
		return;
1751
	if (sp->unsync_children++)
1752
		return;
1753
	kvm_mmu_mark_parents_unsync(sp);
1754 1755
}

1756
static int nonpaging_sync_page(struct kvm_vcpu *vcpu,
1757
			       struct kvm_mmu_page *sp)
1758 1759 1760 1761
{
	return 1;
}

M
Marcelo Tosatti 已提交
1762 1763 1764 1765
static void nonpaging_invlpg(struct kvm_vcpu *vcpu, gva_t gva)
{
}

1766 1767
static void nonpaging_update_pte(struct kvm_vcpu *vcpu,
				 struct kvm_mmu_page *sp, u64 *spte,
1768
				 const void *pte)
1769 1770 1771 1772
{
	WARN_ON(1);
}

1773 1774 1775 1776 1777 1778 1779 1780 1781 1782
#define KVM_PAGE_ARRAY_NR 16

struct kvm_mmu_pages {
	struct mmu_page_and_offset {
		struct kvm_mmu_page *sp;
		unsigned int idx;
	} page[KVM_PAGE_ARRAY_NR];
	unsigned int nr;
};

1783 1784
static int mmu_pages_add(struct kvm_mmu_pages *pvec, struct kvm_mmu_page *sp,
			 int idx)
1785
{
1786
	int i;
1787

1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802
	if (sp->unsync)
		for (i=0; i < pvec->nr; i++)
			if (pvec->page[i].sp == sp)
				return 0;

	pvec->page[pvec->nr].sp = sp;
	pvec->page[pvec->nr].idx = idx;
	pvec->nr++;
	return (pvec->nr == KVM_PAGE_ARRAY_NR);
}

static int __mmu_unsync_walk(struct kvm_mmu_page *sp,
			   struct kvm_mmu_pages *pvec)
{
	int i, ret, nr_unsync_leaf = 0;
1803

1804
	for_each_set_bit(i, sp->unsync_child_bitmap, 512) {
1805
		struct kvm_mmu_page *child;
1806 1807
		u64 ent = sp->spt[i];

1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836
		if (!is_shadow_present_pte(ent) || is_large_pte(ent))
			goto clear_child_bitmap;

		child = page_header(ent & PT64_BASE_ADDR_MASK);

		if (child->unsync_children) {
			if (mmu_pages_add(pvec, child, i))
				return -ENOSPC;

			ret = __mmu_unsync_walk(child, pvec);
			if (!ret)
				goto clear_child_bitmap;
			else if (ret > 0)
				nr_unsync_leaf += ret;
			else
				return ret;
		} else if (child->unsync) {
			nr_unsync_leaf++;
			if (mmu_pages_add(pvec, child, i))
				return -ENOSPC;
		} else
			 goto clear_child_bitmap;

		continue;

clear_child_bitmap:
		__clear_bit(i, sp->unsync_child_bitmap);
		sp->unsync_children--;
		WARN_ON((int)sp->unsync_children < 0);
1837 1838 1839
	}


1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850
	return nr_unsync_leaf;
}

static int mmu_unsync_walk(struct kvm_mmu_page *sp,
			   struct kvm_mmu_pages *pvec)
{
	if (!sp->unsync_children)
		return 0;

	mmu_pages_add(pvec, sp, 0);
	return __mmu_unsync_walk(sp, pvec);
1851 1852 1853 1854 1855
}

static void kvm_unlink_unsync_page(struct kvm *kvm, struct kvm_mmu_page *sp)
{
	WARN_ON(!sp->unsync);
1856
	trace_kvm_mmu_sync_page(sp);
1857 1858 1859 1860
	sp->unsync = 0;
	--kvm->stat.mmu_unsync;
}

1861 1862 1863 1864
static int kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp,
				    struct list_head *invalid_list);
static void kvm_mmu_commit_zap_page(struct kvm *kvm,
				    struct list_head *invalid_list);
1865

1866 1867 1868 1869 1870 1871 1872 1873 1874 1875
/*
 * NOTE: we should pay more attention on the zapped-obsolete page
 * (is_obsolete_sp(sp) && sp->role.invalid) when you do hash list walk
 * since it has been deleted from active_mmu_pages but still can be found
 * at hast list.
 *
 * for_each_gfn_indirect_valid_sp has skipped that kind of page and
 * kvm_mmu_get_page(), the only user of for_each_gfn_sp(), has skipped
 * all the obsolete pages.
 */
1876 1877 1878 1879 1880 1881 1882 1883
#define for_each_gfn_sp(_kvm, _sp, _gfn)				\
	hlist_for_each_entry(_sp,					\
	  &(_kvm)->arch.mmu_page_hash[kvm_page_table_hashfn(_gfn)], hash_link) \
		if ((_sp)->gfn != (_gfn)) {} else

#define for_each_gfn_indirect_valid_sp(_kvm, _sp, _gfn)			\
	for_each_gfn_sp(_kvm, _sp, _gfn)				\
		if ((_sp)->role.direct || (_sp)->role.invalid) {} else
1884

1885
/* @sp->gfn should be write-protected at the call site */
1886
static int __kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
1887
			   struct list_head *invalid_list, bool clear_unsync)
1888
{
1889
	if (sp->role.cr4_pae != !!is_pae(vcpu)) {
1890
		kvm_mmu_prepare_zap_page(vcpu->kvm, sp, invalid_list);
1891 1892 1893
		return 1;
	}

1894
	if (clear_unsync)
1895 1896
		kvm_unlink_unsync_page(vcpu->kvm, sp);

1897
	if (vcpu->arch.mmu.sync_page(vcpu, sp)) {
1898
		kvm_mmu_prepare_zap_page(vcpu->kvm, sp, invalid_list);
1899 1900 1901
		return 1;
	}

1902
	kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
1903 1904 1905
	return 0;
}

1906 1907 1908
static int kvm_sync_page_transient(struct kvm_vcpu *vcpu,
				   struct kvm_mmu_page *sp)
{
1909
	LIST_HEAD(invalid_list);
1910 1911
	int ret;

1912
	ret = __kvm_sync_page(vcpu, sp, &invalid_list, false);
1913
	if (ret)
1914 1915
		kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);

1916 1917 1918
	return ret;
}

1919 1920 1921 1922 1923 1924 1925
#ifdef CONFIG_KVM_MMU_AUDIT
#include "mmu_audit.c"
#else
static void kvm_mmu_audit(struct kvm_vcpu *vcpu, int point) { }
static void mmu_audit_disable(void) { }
#endif

1926 1927
static int kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
			 struct list_head *invalid_list)
1928
{
1929
	return __kvm_sync_page(vcpu, sp, invalid_list, true);
1930 1931
}

1932 1933 1934 1935
/* @gfn should be write-protected at the call site */
static void kvm_sync_pages(struct kvm_vcpu *vcpu,  gfn_t gfn)
{
	struct kvm_mmu_page *s;
1936
	LIST_HEAD(invalid_list);
1937 1938
	bool flush = false;

1939
	for_each_gfn_indirect_valid_sp(vcpu->kvm, s, gfn) {
1940
		if (!s->unsync)
1941 1942 1943
			continue;

		WARN_ON(s->role.level != PT_PAGE_TABLE_LEVEL);
1944
		kvm_unlink_unsync_page(vcpu->kvm, s);
1945
		if ((s->role.cr4_pae != !!is_pae(vcpu)) ||
1946
			(vcpu->arch.mmu.sync_page(vcpu, s))) {
1947
			kvm_mmu_prepare_zap_page(vcpu->kvm, s, &invalid_list);
1948 1949 1950 1951 1952
			continue;
		}
		flush = true;
	}

1953
	kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
1954
	if (flush)
1955
		kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
1956 1957
}

1958 1959 1960
struct mmu_page_path {
	struct kvm_mmu_page *parent[PT64_ROOT_LEVEL-1];
	unsigned int idx[PT64_ROOT_LEVEL-1];
1961 1962
};

1963 1964 1965 1966 1967 1968
#define for_each_sp(pvec, sp, parents, i)			\
		for (i = mmu_pages_next(&pvec, &parents, -1),	\
			sp = pvec.page[i].sp;			\
			i < pvec.nr && ({ sp = pvec.page[i].sp; 1;});	\
			i = mmu_pages_next(&pvec, &parents, i))

1969 1970 1971
static int mmu_pages_next(struct kvm_mmu_pages *pvec,
			  struct mmu_page_path *parents,
			  int i)
1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989
{
	int n;

	for (n = i+1; n < pvec->nr; n++) {
		struct kvm_mmu_page *sp = pvec->page[n].sp;

		if (sp->role.level == PT_PAGE_TABLE_LEVEL) {
			parents->idx[0] = pvec->page[n].idx;
			return n;
		}

		parents->parent[sp->role.level-2] = sp;
		parents->idx[sp->role.level-1] = pvec->page[n].idx;
	}

	return n;
}

1990
static void mmu_pages_clear_parents(struct mmu_page_path *parents)
1991
{
1992 1993 1994 1995 1996
	struct kvm_mmu_page *sp;
	unsigned int level = 0;

	do {
		unsigned int idx = parents->idx[level];
1997

1998 1999 2000 2001 2002 2003 2004 2005 2006
		sp = parents->parent[level];
		if (!sp)
			return;

		--sp->unsync_children;
		WARN_ON((int)sp->unsync_children < 0);
		__clear_bit(idx, sp->unsync_child_bitmap);
		level++;
	} while (level < PT64_ROOT_LEVEL-1 && !sp->unsync_children);
2007 2008
}

2009 2010 2011
static void kvm_mmu_pages_init(struct kvm_mmu_page *parent,
			       struct mmu_page_path *parents,
			       struct kvm_mmu_pages *pvec)
2012
{
2013 2014 2015
	parents->parent[parent->role.level-1] = NULL;
	pvec->nr = 0;
}
2016

2017 2018 2019 2020 2021 2022 2023
static void mmu_sync_children(struct kvm_vcpu *vcpu,
			      struct kvm_mmu_page *parent)
{
	int i;
	struct kvm_mmu_page *sp;
	struct mmu_page_path parents;
	struct kvm_mmu_pages pages;
2024
	LIST_HEAD(invalid_list);
2025 2026 2027

	kvm_mmu_pages_init(parent, &parents, &pages);
	while (mmu_unsync_walk(parent, &pages)) {
2028
		bool protected = false;
2029 2030 2031 2032 2033 2034 2035

		for_each_sp(pages, sp, parents, i)
			protected |= rmap_write_protect(vcpu->kvm, sp->gfn);

		if (protected)
			kvm_flush_remote_tlbs(vcpu->kvm);

2036
		for_each_sp(pages, sp, parents, i) {
2037
			kvm_sync_page(vcpu, sp, &invalid_list);
2038 2039
			mmu_pages_clear_parents(&parents);
		}
2040
		kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
2041
		cond_resched_lock(&vcpu->kvm->mmu_lock);
2042 2043
		kvm_mmu_pages_init(parent, &parents, &pages);
	}
2044 2045
}

2046 2047 2048 2049 2050 2051 2052 2053
static void init_shadow_page_table(struct kvm_mmu_page *sp)
{
	int i;

	for (i = 0; i < PT64_ENT_PER_PAGE; ++i)
		sp->spt[i] = 0ull;
}

2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065
static void __clear_sp_write_flooding_count(struct kvm_mmu_page *sp)
{
	sp->write_flooding_count = 0;
}

static void clear_sp_write_flooding_count(u64 *spte)
{
	struct kvm_mmu_page *sp =  page_header(__pa(spte));

	__clear_sp_write_flooding_count(sp);
}

2066 2067 2068 2069 2070
static bool is_obsolete_sp(struct kvm *kvm, struct kvm_mmu_page *sp)
{
	return unlikely(sp->mmu_valid_gen != kvm->arch.mmu_valid_gen);
}

2071 2072 2073 2074
static struct kvm_mmu_page *kvm_mmu_get_page(struct kvm_vcpu *vcpu,
					     gfn_t gfn,
					     gva_t gaddr,
					     unsigned level,
2075
					     int direct,
2076
					     unsigned access,
2077
					     u64 *parent_pte)
2078 2079 2080
{
	union kvm_mmu_page_role role;
	unsigned quadrant;
2081 2082
	struct kvm_mmu_page *sp;
	bool need_sync = false;
2083

2084
	role = vcpu->arch.mmu.base_role;
2085
	role.level = level;
2086
	role.direct = direct;
2087
	if (role.direct)
2088
		role.cr4_pae = 0;
2089
	role.access = access;
2090 2091
	if (!vcpu->arch.mmu.direct_map
	    && vcpu->arch.mmu.root_level <= PT32_ROOT_LEVEL) {
2092 2093 2094 2095
		quadrant = gaddr >> (PAGE_SHIFT + (PT64_PT_BITS * level));
		quadrant &= (1 << ((PT32_PT_BITS - PT64_PT_BITS) * level)) - 1;
		role.quadrant = quadrant;
	}
2096
	for_each_gfn_sp(vcpu->kvm, sp, gfn) {
2097 2098 2099
		if (is_obsolete_sp(vcpu->kvm, sp))
			continue;

2100 2101
		if (!need_sync && sp->unsync)
			need_sync = true;
2102

2103 2104
		if (sp->role.word != role.word)
			continue;
2105

2106 2107
		if (sp->unsync && kvm_sync_page_transient(vcpu, sp))
			break;
2108

2109 2110
		mmu_page_add_parent_pte(vcpu, sp, parent_pte);
		if (sp->unsync_children) {
2111
			kvm_make_request(KVM_REQ_MMU_SYNC, vcpu);
2112 2113 2114
			kvm_mmu_mark_parents_unsync(sp);
		} else if (sp->unsync)
			kvm_mmu_mark_parents_unsync(sp);
2115

2116
		__clear_sp_write_flooding_count(sp);
2117 2118 2119
		trace_kvm_mmu_get_page(sp, false);
		return sp;
	}
A
Avi Kivity 已提交
2120
	++vcpu->kvm->stat.mmu_cache_miss;
2121
	sp = kvm_mmu_alloc_page(vcpu, parent_pte, direct);
2122 2123 2124 2125
	if (!sp)
		return sp;
	sp->gfn = gfn;
	sp->role = role;
2126 2127
	hlist_add_head(&sp->hash_link,
		&vcpu->kvm->arch.mmu_page_hash[kvm_page_table_hashfn(gfn)]);
2128
	if (!direct) {
2129 2130
		if (rmap_write_protect(vcpu->kvm, gfn))
			kvm_flush_remote_tlbs(vcpu->kvm);
2131 2132 2133
		if (level > PT_PAGE_TABLE_LEVEL && need_sync)
			kvm_sync_pages(vcpu, gfn);

2134 2135
		account_shadowed(vcpu->kvm, gfn);
	}
2136
	sp->mmu_valid_gen = vcpu->kvm->arch.mmu_valid_gen;
2137
	init_shadow_page_table(sp);
A
Avi Kivity 已提交
2138
	trace_kvm_mmu_get_page(sp, true);
2139
	return sp;
2140 2141
}

2142 2143 2144 2145 2146 2147
static void shadow_walk_init(struct kvm_shadow_walk_iterator *iterator,
			     struct kvm_vcpu *vcpu, u64 addr)
{
	iterator->addr = addr;
	iterator->shadow_addr = vcpu->arch.mmu.root_hpa;
	iterator->level = vcpu->arch.mmu.shadow_root_level;
2148 2149 2150 2151 2152 2153

	if (iterator->level == PT64_ROOT_LEVEL &&
	    vcpu->arch.mmu.root_level < PT64_ROOT_LEVEL &&
	    !vcpu->arch.mmu.direct_map)
		--iterator->level;

2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167
	if (iterator->level == PT32E_ROOT_LEVEL) {
		iterator->shadow_addr
			= vcpu->arch.mmu.pae_root[(addr >> 30) & 3];
		iterator->shadow_addr &= PT64_BASE_ADDR_MASK;
		--iterator->level;
		if (!iterator->shadow_addr)
			iterator->level = 0;
	}
}

static bool shadow_walk_okay(struct kvm_shadow_walk_iterator *iterator)
{
	if (iterator->level < PT_PAGE_TABLE_LEVEL)
		return false;
2168

2169 2170 2171 2172 2173
	iterator->index = SHADOW_PT_INDEX(iterator->addr, iterator->level);
	iterator->sptep	= ((u64 *)__va(iterator->shadow_addr)) + iterator->index;
	return true;
}

2174 2175
static void __shadow_walk_next(struct kvm_shadow_walk_iterator *iterator,
			       u64 spte)
2176
{
2177
	if (is_last_spte(spte, iterator->level)) {
2178 2179 2180 2181
		iterator->level = 0;
		return;
	}

2182
	iterator->shadow_addr = spte & PT64_BASE_ADDR_MASK;
2183 2184 2185
	--iterator->level;
}

2186 2187 2188 2189 2190
static void shadow_walk_next(struct kvm_shadow_walk_iterator *iterator)
{
	return __shadow_walk_next(iterator, *iterator->sptep);
}

2191
static void link_shadow_page(u64 *sptep, struct kvm_mmu_page *sp, bool accessed)
2192 2193 2194
{
	u64 spte;

2195 2196 2197
	BUILD_BUG_ON(VMX_EPT_READABLE_MASK != PT_PRESENT_MASK ||
			VMX_EPT_WRITABLE_MASK != PT_WRITABLE_MASK);

X
Xiao Guangrong 已提交
2198
	spte = __pa(sp->spt) | PT_PRESENT_MASK | PT_WRITABLE_MASK |
2199 2200 2201 2202
	       shadow_user_mask | shadow_x_mask;

	if (accessed)
		spte |= shadow_accessed_mask;
X
Xiao Guangrong 已提交
2203

2204
	mmu_spte_set(sptep, spte);
2205 2206
}

2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223
static void validate_direct_spte(struct kvm_vcpu *vcpu, u64 *sptep,
				   unsigned direct_access)
{
	if (is_shadow_present_pte(*sptep) && !is_large_pte(*sptep)) {
		struct kvm_mmu_page *child;

		/*
		 * For the direct sp, if the guest pte's dirty bit
		 * changed form clean to dirty, it will corrupt the
		 * sp's access: allow writable in the read-only sp,
		 * so we should update the spte at this point to get
		 * a new sp with the correct access.
		 */
		child = page_header(*sptep & PT64_BASE_ADDR_MASK);
		if (child->role.access == direct_access)
			return;

2224
		drop_parent_pte(child, sptep);
2225 2226 2227 2228
		kvm_flush_remote_tlbs(vcpu->kvm);
	}
}

X
Xiao Guangrong 已提交
2229
static bool mmu_page_zap_pte(struct kvm *kvm, struct kvm_mmu_page *sp,
2230 2231 2232 2233 2234 2235 2236
			     u64 *spte)
{
	u64 pte;
	struct kvm_mmu_page *child;

	pte = *spte;
	if (is_shadow_present_pte(pte)) {
X
Xiao Guangrong 已提交
2237
		if (is_last_spte(pte, sp->role.level)) {
2238
			drop_spte(kvm, spte);
X
Xiao Guangrong 已提交
2239 2240 2241
			if (is_large_pte(pte))
				--kvm->stat.lpages;
		} else {
2242
			child = page_header(pte & PT64_BASE_ADDR_MASK);
2243
			drop_parent_pte(child, spte);
2244
		}
X
Xiao Guangrong 已提交
2245 2246 2247 2248
		return true;
	}

	if (is_mmio_spte(pte))
2249
		mmu_spte_clear_no_track(spte);
2250

X
Xiao Guangrong 已提交
2251
	return false;
2252 2253
}

2254
static void kvm_mmu_page_unlink_children(struct kvm *kvm,
2255
					 struct kvm_mmu_page *sp)
2256
{
2257 2258
	unsigned i;

2259 2260
	for (i = 0; i < PT64_ENT_PER_PAGE; ++i)
		mmu_page_zap_pte(kvm, sp, sp->spt + i);
2261 2262
}

2263
static void kvm_mmu_put_page(struct kvm_mmu_page *sp, u64 *parent_pte)
2264
{
2265
	mmu_page_remove_parent_pte(sp, parent_pte);
2266 2267
}

2268
static void kvm_mmu_unlink_parents(struct kvm *kvm, struct kvm_mmu_page *sp)
2269
{
2270 2271
	u64 *sptep;
	struct rmap_iterator iter;
2272

2273 2274
	while ((sptep = rmap_get_first(sp->parent_ptes, &iter)))
		drop_parent_pte(sp, sptep);
2275 2276
}

2277
static int mmu_zap_unsync_children(struct kvm *kvm,
2278 2279
				   struct kvm_mmu_page *parent,
				   struct list_head *invalid_list)
2280
{
2281 2282 2283
	int i, zapped = 0;
	struct mmu_page_path parents;
	struct kvm_mmu_pages pages;
2284

2285
	if (parent->role.level == PT_PAGE_TABLE_LEVEL)
2286
		return 0;
2287 2288 2289 2290 2291 2292

	kvm_mmu_pages_init(parent, &parents, &pages);
	while (mmu_unsync_walk(parent, &pages)) {
		struct kvm_mmu_page *sp;

		for_each_sp(pages, sp, parents, i) {
2293
			kvm_mmu_prepare_zap_page(kvm, sp, invalid_list);
2294
			mmu_pages_clear_parents(&parents);
2295
			zapped++;
2296 2297 2298 2299 2300
		}
		kvm_mmu_pages_init(parent, &parents, &pages);
	}

	return zapped;
2301 2302
}

2303 2304
static int kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp,
				    struct list_head *invalid_list)
2305
{
2306
	int ret;
A
Avi Kivity 已提交
2307

2308
	trace_kvm_mmu_prepare_zap_page(sp);
2309
	++kvm->stat.mmu_shadow_zapped;
2310
	ret = mmu_zap_unsync_children(kvm, sp, invalid_list);
2311
	kvm_mmu_page_unlink_children(kvm, sp);
2312
	kvm_mmu_unlink_parents(kvm, sp);
2313

2314
	if (!sp->role.invalid && !sp->role.direct)
A
Avi Kivity 已提交
2315
		unaccount_shadowed(kvm, sp->gfn);
2316

2317 2318
	if (sp->unsync)
		kvm_unlink_unsync_page(kvm, sp);
2319
	if (!sp->root_count) {
2320 2321
		/* Count self */
		ret++;
2322
		list_move(&sp->link, invalid_list);
2323
		kvm_mod_used_mmu_pages(kvm, -1);
2324
	} else {
A
Avi Kivity 已提交
2325
		list_move(&sp->link, &kvm->arch.active_mmu_pages);
2326 2327 2328 2329 2330 2331 2332

		/*
		 * The obsolete pages can not be used on any vcpus.
		 * See the comments in kvm_mmu_invalidate_zap_all_pages().
		 */
		if (!sp->role.invalid && !is_obsolete_sp(kvm, sp))
			kvm_reload_remote_mmus(kvm);
2333
	}
2334 2335

	sp->role.invalid = 1;
2336
	return ret;
2337 2338
}

2339 2340 2341
static void kvm_mmu_commit_zap_page(struct kvm *kvm,
				    struct list_head *invalid_list)
{
2342
	struct kvm_mmu_page *sp, *nsp;
2343 2344 2345 2346

	if (list_empty(invalid_list))
		return;

2347 2348 2349 2350 2351
	/*
	 * wmb: make sure everyone sees our modifications to the page tables
	 * rmb: make sure we see changes to vcpu->mode
	 */
	smp_mb();
X
Xiao Guangrong 已提交
2352

2353 2354 2355 2356 2357
	/*
	 * Wait for all vcpus to exit guest mode and/or lockless shadow
	 * page table walks.
	 */
	kvm_flush_remote_tlbs(kvm);
2358

2359
	list_for_each_entry_safe(sp, nsp, invalid_list, link) {
2360
		WARN_ON(!sp->role.invalid || sp->root_count);
2361
		kvm_mmu_free_page(sp);
2362
	}
2363 2364
}

2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379
static bool prepare_zap_oldest_mmu_page(struct kvm *kvm,
					struct list_head *invalid_list)
{
	struct kvm_mmu_page *sp;

	if (list_empty(&kvm->arch.active_mmu_pages))
		return false;

	sp = list_entry(kvm->arch.active_mmu_pages.prev,
			struct kvm_mmu_page, link);
	kvm_mmu_prepare_zap_page(kvm, sp, invalid_list);

	return true;
}

2380 2381
/*
 * Changing the number of mmu pages allocated to the vm
2382
 * Note: if goal_nr_mmu_pages is too small, you will get dead lock
2383
 */
2384
void kvm_mmu_change_mmu_pages(struct kvm *kvm, unsigned int goal_nr_mmu_pages)
2385
{
2386
	LIST_HEAD(invalid_list);
2387

2388 2389
	spin_lock(&kvm->mmu_lock);

2390
	if (kvm->arch.n_used_mmu_pages > goal_nr_mmu_pages) {
2391 2392 2393 2394
		/* Need to free some mmu pages to achieve the goal. */
		while (kvm->arch.n_used_mmu_pages > goal_nr_mmu_pages)
			if (!prepare_zap_oldest_mmu_page(kvm, &invalid_list))
				break;
2395

2396
		kvm_mmu_commit_zap_page(kvm, &invalid_list);
2397
		goal_nr_mmu_pages = kvm->arch.n_used_mmu_pages;
2398 2399
	}

2400
	kvm->arch.n_max_mmu_pages = goal_nr_mmu_pages;
2401 2402

	spin_unlock(&kvm->mmu_lock);
2403 2404
}

2405
int kvm_mmu_unprotect_page(struct kvm *kvm, gfn_t gfn)
2406
{
2407
	struct kvm_mmu_page *sp;
2408
	LIST_HEAD(invalid_list);
2409 2410
	int r;

2411
	pgprintk("%s: looking for gfn %llx\n", __func__, gfn);
2412
	r = 0;
2413
	spin_lock(&kvm->mmu_lock);
2414
	for_each_gfn_indirect_valid_sp(kvm, sp, gfn) {
2415
		pgprintk("%s: gfn %llx role %x\n", __func__, gfn,
2416 2417
			 sp->role.word);
		r = 1;
2418
		kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list);
2419
	}
2420
	kvm_mmu_commit_zap_page(kvm, &invalid_list);
2421 2422
	spin_unlock(&kvm->mmu_lock);

2423
	return r;
2424
}
2425
EXPORT_SYMBOL_GPL(kvm_mmu_unprotect_page);
2426

2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519
/*
 * The function is based on mtrr_type_lookup() in
 * arch/x86/kernel/cpu/mtrr/generic.c
 */
static int get_mtrr_type(struct mtrr_state_type *mtrr_state,
			 u64 start, u64 end)
{
	int i;
	u64 base, mask;
	u8 prev_match, curr_match;
	int num_var_ranges = KVM_NR_VAR_MTRR;

	if (!mtrr_state->enabled)
		return 0xFF;

	/* Make end inclusive end, instead of exclusive */
	end--;

	/* Look in fixed ranges. Just return the type as per start */
	if (mtrr_state->have_fixed && (start < 0x100000)) {
		int idx;

		if (start < 0x80000) {
			idx = 0;
			idx += (start >> 16);
			return mtrr_state->fixed_ranges[idx];
		} else if (start < 0xC0000) {
			idx = 1 * 8;
			idx += ((start - 0x80000) >> 14);
			return mtrr_state->fixed_ranges[idx];
		} else if (start < 0x1000000) {
			idx = 3 * 8;
			idx += ((start - 0xC0000) >> 12);
			return mtrr_state->fixed_ranges[idx];
		}
	}

	/*
	 * Look in variable ranges
	 * Look of multiple ranges matching this address and pick type
	 * as per MTRR precedence
	 */
	if (!(mtrr_state->enabled & 2))
		return mtrr_state->def_type;

	prev_match = 0xFF;
	for (i = 0; i < num_var_ranges; ++i) {
		unsigned short start_state, end_state;

		if (!(mtrr_state->var_ranges[i].mask_lo & (1 << 11)))
			continue;

		base = (((u64)mtrr_state->var_ranges[i].base_hi) << 32) +
		       (mtrr_state->var_ranges[i].base_lo & PAGE_MASK);
		mask = (((u64)mtrr_state->var_ranges[i].mask_hi) << 32) +
		       (mtrr_state->var_ranges[i].mask_lo & PAGE_MASK);

		start_state = ((start & mask) == (base & mask));
		end_state = ((end & mask) == (base & mask));
		if (start_state != end_state)
			return 0xFE;

		if ((start & mask) != (base & mask))
			continue;

		curr_match = mtrr_state->var_ranges[i].base_lo & 0xff;
		if (prev_match == 0xFF) {
			prev_match = curr_match;
			continue;
		}

		if (prev_match == MTRR_TYPE_UNCACHABLE ||
		    curr_match == MTRR_TYPE_UNCACHABLE)
			return MTRR_TYPE_UNCACHABLE;

		if ((prev_match == MTRR_TYPE_WRBACK &&
		     curr_match == MTRR_TYPE_WRTHROUGH) ||
		    (prev_match == MTRR_TYPE_WRTHROUGH &&
		     curr_match == MTRR_TYPE_WRBACK)) {
			prev_match = MTRR_TYPE_WRTHROUGH;
			curr_match = MTRR_TYPE_WRTHROUGH;
		}

		if (prev_match != curr_match)
			return MTRR_TYPE_UNCACHABLE;
	}

	if (prev_match != 0xFF)
		return prev_match;

	return mtrr_state->def_type;
}

2520
u8 kvm_get_guest_memory_type(struct kvm_vcpu *vcpu, gfn_t gfn)
2521 2522 2523 2524 2525 2526 2527 2528 2529
{
	u8 mtrr;

	mtrr = get_mtrr_type(&vcpu->arch.mtrr_state, gfn << PAGE_SHIFT,
			     (gfn << PAGE_SHIFT) + PAGE_SIZE);
	if (mtrr == 0xfe || mtrr == 0xff)
		mtrr = MTRR_TYPE_WRBACK;
	return mtrr;
}
2530
EXPORT_SYMBOL_GPL(kvm_get_guest_memory_type);
2531

2532 2533 2534 2535 2536 2537 2538 2539 2540 2541
static void __kvm_unsync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp)
{
	trace_kvm_mmu_unsync_page(sp);
	++vcpu->kvm->stat.mmu_unsync;
	sp->unsync = 1;

	kvm_mmu_mark_parents_unsync(sp);
}

static void kvm_unsync_pages(struct kvm_vcpu *vcpu,  gfn_t gfn)
2542 2543
{
	struct kvm_mmu_page *s;
2544

2545
	for_each_gfn_indirect_valid_sp(vcpu->kvm, s, gfn) {
2546
		if (s->unsync)
2547
			continue;
2548 2549
		WARN_ON(s->role.level != PT_PAGE_TABLE_LEVEL);
		__kvm_unsync_page(vcpu, s);
2550 2551 2552 2553 2554 2555
	}
}

static int mmu_need_write_protect(struct kvm_vcpu *vcpu, gfn_t gfn,
				  bool can_unsync)
{
2556 2557 2558
	struct kvm_mmu_page *s;
	bool need_unsync = false;

2559
	for_each_gfn_indirect_valid_sp(vcpu->kvm, s, gfn) {
2560 2561 2562
		if (!can_unsync)
			return 1;

2563
		if (s->role.level != PT_PAGE_TABLE_LEVEL)
2564
			return 1;
2565

G
Gleb Natapov 已提交
2566
		if (!s->unsync)
2567
			need_unsync = true;
2568
	}
2569 2570
	if (need_unsync)
		kvm_unsync_pages(vcpu, gfn);
2571 2572 2573
	return 0;
}

A
Avi Kivity 已提交
2574
static int set_spte(struct kvm_vcpu *vcpu, u64 *sptep,
2575
		    unsigned pte_access, int level,
2576
		    gfn_t gfn, pfn_t pfn, bool speculative,
2577
		    bool can_unsync, bool host_writable)
2578
{
2579
	u64 spte;
M
Marcelo Tosatti 已提交
2580
	int ret = 0;
S
Sheng Yang 已提交
2581

2582
	if (set_mmio_spte(vcpu->kvm, sptep, gfn, pfn, pte_access))
2583 2584
		return 0;

2585
	spte = PT_PRESENT_MASK;
2586
	if (!speculative)
2587
		spte |= shadow_accessed_mask;
2588

S
Sheng Yang 已提交
2589 2590 2591 2592
	if (pte_access & ACC_EXEC_MASK)
		spte |= shadow_x_mask;
	else
		spte |= shadow_nx_mask;
2593

2594
	if (pte_access & ACC_USER_MASK)
S
Sheng Yang 已提交
2595
		spte |= shadow_user_mask;
2596

2597
	if (level > PT_PAGE_TABLE_LEVEL)
M
Marcelo Tosatti 已提交
2598
		spte |= PT_PAGE_SIZE_MASK;
2599
	if (tdp_enabled)
2600
		spte |= kvm_x86_ops->get_mt_mask(vcpu, gfn,
2601
			kvm_is_reserved_pfn(pfn));
2602

2603
	if (host_writable)
2604
		spte |= SPTE_HOST_WRITEABLE;
2605 2606
	else
		pte_access &= ~ACC_WRITE_MASK;
2607

2608
	spte |= (u64)pfn << PAGE_SHIFT;
2609

2610
	if (pte_access & ACC_WRITE_MASK) {
2611

X
Xiao Guangrong 已提交
2612
		/*
2613 2614 2615 2616
		 * Other vcpu creates new sp in the window between
		 * mapping_level() and acquiring mmu-lock. We can
		 * allow guest to retry the access, the mapping can
		 * be fixed if guest refault.
X
Xiao Guangrong 已提交
2617
		 */
2618
		if (level > PT_PAGE_TABLE_LEVEL &&
X
Xiao Guangrong 已提交
2619
		    has_wrprotected_page(vcpu->kvm, gfn, level))
A
Avi Kivity 已提交
2620
			goto done;
2621

2622
		spte |= PT_WRITABLE_MASK | SPTE_MMU_WRITEABLE;
2623

2624 2625 2626 2627 2628 2629
		/*
		 * Optimization: for pte sync, if spte was writable the hash
		 * lookup is unnecessary (and expensive). Write protection
		 * is responsibility of mmu_get_page / kvm_sync_page.
		 * Same reasoning can be applied to dirty page accounting.
		 */
2630
		if (!can_unsync && is_writable_pte(*sptep))
2631 2632
			goto set_pte;

2633
		if (mmu_need_write_protect(vcpu, gfn, can_unsync)) {
2634
			pgprintk("%s: found shadow page for %llx, marking ro\n",
2635
				 __func__, gfn);
M
Marcelo Tosatti 已提交
2636
			ret = 1;
2637
			pte_access &= ~ACC_WRITE_MASK;
2638
			spte &= ~(PT_WRITABLE_MASK | SPTE_MMU_WRITEABLE);
2639 2640 2641
		}
	}

2642
	if (pte_access & ACC_WRITE_MASK) {
2643
		mark_page_dirty(vcpu->kvm, gfn);
2644 2645
		spte |= shadow_dirty_mask;
	}
2646

2647
set_pte:
2648
	if (mmu_spte_update(sptep, spte))
2649
		kvm_flush_remote_tlbs(vcpu->kvm);
A
Avi Kivity 已提交
2650
done:
M
Marcelo Tosatti 已提交
2651 2652 2653
	return ret;
}

A
Avi Kivity 已提交
2654
static void mmu_set_spte(struct kvm_vcpu *vcpu, u64 *sptep,
2655 2656 2657
			 unsigned pte_access, int write_fault, int *emulate,
			 int level, gfn_t gfn, pfn_t pfn, bool speculative,
			 bool host_writable)
M
Marcelo Tosatti 已提交
2658 2659
{
	int was_rmapped = 0;
2660
	int rmap_count;
M
Marcelo Tosatti 已提交
2661

2662 2663
	pgprintk("%s: spte %llx write_fault %d gfn %llx\n", __func__,
		 *sptep, write_fault, gfn);
M
Marcelo Tosatti 已提交
2664

A
Avi Kivity 已提交
2665
	if (is_rmap_spte(*sptep)) {
M
Marcelo Tosatti 已提交
2666 2667 2668 2669
		/*
		 * If we overwrite a PTE page pointer with a 2MB PMD, unlink
		 * the parent of the now unreachable PTE.
		 */
2670 2671
		if (level > PT_PAGE_TABLE_LEVEL &&
		    !is_large_pte(*sptep)) {
M
Marcelo Tosatti 已提交
2672
			struct kvm_mmu_page *child;
A
Avi Kivity 已提交
2673
			u64 pte = *sptep;
M
Marcelo Tosatti 已提交
2674 2675

			child = page_header(pte & PT64_BASE_ADDR_MASK);
2676
			drop_parent_pte(child, sptep);
2677
			kvm_flush_remote_tlbs(vcpu->kvm);
A
Avi Kivity 已提交
2678
		} else if (pfn != spte_to_pfn(*sptep)) {
2679
			pgprintk("hfn old %llx new %llx\n",
A
Avi Kivity 已提交
2680
				 spte_to_pfn(*sptep), pfn);
2681
			drop_spte(vcpu->kvm, sptep);
2682
			kvm_flush_remote_tlbs(vcpu->kvm);
2683 2684
		} else
			was_rmapped = 1;
M
Marcelo Tosatti 已提交
2685
	}
2686

2687 2688
	if (set_spte(vcpu, sptep, pte_access, level, gfn, pfn, speculative,
	      true, host_writable)) {
M
Marcelo Tosatti 已提交
2689
		if (write_fault)
2690
			*emulate = 1;
2691
		kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
2692
	}
M
Marcelo Tosatti 已提交
2693

2694 2695 2696
	if (unlikely(is_mmio_spte(*sptep) && emulate))
		*emulate = 1;

A
Avi Kivity 已提交
2697
	pgprintk("%s: setting spte %llx\n", __func__, *sptep);
2698
	pgprintk("instantiating %s PTE (%s) at %llx (%llx) addr %p\n",
A
Avi Kivity 已提交
2699
		 is_large_pte(*sptep)? "2MB" : "4kB",
2700 2701
		 *sptep & PT_PRESENT_MASK ?"RW":"R", gfn,
		 *sptep, sptep);
A
Avi Kivity 已提交
2702
	if (!was_rmapped && is_large_pte(*sptep))
M
Marcelo Tosatti 已提交
2703 2704
		++vcpu->kvm->stat.lpages;

2705 2706 2707 2708 2709 2710
	if (is_shadow_present_pte(*sptep)) {
		if (!was_rmapped) {
			rmap_count = rmap_add(vcpu, sptep, gfn);
			if (rmap_count > RMAP_RECYCLE_THRESHOLD)
				rmap_recycle(vcpu, sptep, gfn);
		}
2711
	}
2712

X
Xiao Guangrong 已提交
2713
	kvm_release_pfn_clean(pfn);
2714 2715
}

2716 2717 2718 2719 2720
static pfn_t pte_prefetch_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn,
				     bool no_dirty_log)
{
	struct kvm_memory_slot *slot;

2721
	slot = gfn_to_memslot_dirty_bitmap(vcpu, gfn, no_dirty_log);
2722
	if (!slot)
2723
		return KVM_PFN_ERR_FAULT;
2724

2725
	return gfn_to_pfn_memslot_atomic(slot, gfn);
2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737
}

static int direct_pte_prefetch_many(struct kvm_vcpu *vcpu,
				    struct kvm_mmu_page *sp,
				    u64 *start, u64 *end)
{
	struct page *pages[PTE_PREFETCH_NUM];
	unsigned access = sp->role.access;
	int i, ret;
	gfn_t gfn;

	gfn = kvm_mmu_page_get_gfn(sp, start - sp->spt);
2738
	if (!gfn_to_memslot_dirty_bitmap(vcpu, gfn, access & ACC_WRITE_MASK))
2739 2740 2741 2742 2743 2744 2745
		return -1;

	ret = gfn_to_page_many_atomic(vcpu->kvm, gfn, pages, end - start);
	if (ret <= 0)
		return -1;

	for (i = 0; i < ret; i++, gfn++, start++)
2746
		mmu_set_spte(vcpu, start, access, 0, NULL,
2747 2748
			     sp->role.level, gfn, page_to_pfn(pages[i]),
			     true, true);
2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764

	return 0;
}

static void __direct_pte_prefetch(struct kvm_vcpu *vcpu,
				  struct kvm_mmu_page *sp, u64 *sptep)
{
	u64 *spte, *start = NULL;
	int i;

	WARN_ON(!sp->role.direct);

	i = (sptep - sp->spt) & ~(PTE_PREFETCH_NUM - 1);
	spte = sp->spt + i;

	for (i = 0; i < PTE_PREFETCH_NUM; i++, spte++) {
2765
		if (is_shadow_present_pte(*spte) || spte == sptep) {
2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795
			if (!start)
				continue;
			if (direct_pte_prefetch_many(vcpu, sp, start, spte) < 0)
				break;
			start = NULL;
		} else if (!start)
			start = spte;
	}
}

static void direct_pte_prefetch(struct kvm_vcpu *vcpu, u64 *sptep)
{
	struct kvm_mmu_page *sp;

	/*
	 * Since it's no accessed bit on EPT, it's no way to
	 * distinguish between actually accessed translations
	 * and prefetched, so disable pte prefetch if EPT is
	 * enabled.
	 */
	if (!shadow_accessed_mask)
		return;

	sp = page_header(__pa(sptep));
	if (sp->role.level > PT_PAGE_TABLE_LEVEL)
		return;

	__direct_pte_prefetch(vcpu, sp, sptep);
}

2796
static int __direct_map(struct kvm_vcpu *vcpu, gpa_t v, int write,
2797 2798
			int map_writable, int level, gfn_t gfn, pfn_t pfn,
			bool prefault)
2799
{
2800
	struct kvm_shadow_walk_iterator iterator;
2801
	struct kvm_mmu_page *sp;
2802
	int emulate = 0;
2803
	gfn_t pseudo_gfn;
A
Avi Kivity 已提交
2804

2805 2806 2807
	if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
		return 0;

2808
	for_each_shadow_entry(vcpu, (u64)gfn << PAGE_SHIFT, iterator) {
2809
		if (iterator.level == level) {
2810
			mmu_set_spte(vcpu, iterator.sptep, ACC_ALL,
2811 2812
				     write, &emulate, level, gfn, pfn,
				     prefault, map_writable);
2813
			direct_pte_prefetch(vcpu, iterator.sptep);
2814 2815
			++vcpu->stat.pf_fixed;
			break;
A
Avi Kivity 已提交
2816 2817
		}

2818
		drop_large_spte(vcpu, iterator.sptep);
2819
		if (!is_shadow_present_pte(*iterator.sptep)) {
2820 2821 2822 2823
			u64 base_addr = iterator.addr;

			base_addr &= PT64_LVL_ADDR_MASK(iterator.level);
			pseudo_gfn = base_addr >> PAGE_SHIFT;
2824 2825 2826
			sp = kvm_mmu_get_page(vcpu, pseudo_gfn, iterator.addr,
					      iterator.level - 1,
					      1, ACC_ALL, iterator.sptep);
2827

2828
			link_shadow_page(iterator.sptep, sp, true);
2829 2830
		}
	}
2831
	return emulate;
A
Avi Kivity 已提交
2832 2833
}

H
Huang Ying 已提交
2834
static void kvm_send_hwpoison_signal(unsigned long address, struct task_struct *tsk)
2835
{
H
Huang Ying 已提交
2836 2837 2838 2839 2840 2841 2842
	siginfo_t info;

	info.si_signo	= SIGBUS;
	info.si_errno	= 0;
	info.si_code	= BUS_MCEERR_AR;
	info.si_addr	= (void __user *)address;
	info.si_addr_lsb = PAGE_SHIFT;
2843

H
Huang Ying 已提交
2844
	send_sig_info(SIGBUS, &info, tsk);
2845 2846
}

2847
static int kvm_handle_bad_page(struct kvm_vcpu *vcpu, gfn_t gfn, pfn_t pfn)
2848
{
X
Xiao Guangrong 已提交
2849 2850 2851 2852 2853 2854 2855 2856 2857
	/*
	 * Do not cache the mmio info caused by writing the readonly gfn
	 * into the spte otherwise read access on readonly gfn also can
	 * caused mmio page fault and treat it as mmio access.
	 * Return 1 to tell kvm to emulate it.
	 */
	if (pfn == KVM_PFN_ERR_RO_FAULT)
		return 1;

2858
	if (pfn == KVM_PFN_ERR_HWPOISON) {
2859
		kvm_send_hwpoison_signal(gfn_to_hva(vcpu->kvm, gfn), current);
2860
		return 0;
2861
	}
2862

2863
	return -EFAULT;
2864 2865
}

2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878
static void transparent_hugepage_adjust(struct kvm_vcpu *vcpu,
					gfn_t *gfnp, pfn_t *pfnp, int *levelp)
{
	pfn_t pfn = *pfnp;
	gfn_t gfn = *gfnp;
	int level = *levelp;

	/*
	 * Check if it's a transparent hugepage. If this would be an
	 * hugetlbfs page, level wouldn't be set to
	 * PT_PAGE_TABLE_LEVEL and there would be no adjustment done
	 * here.
	 */
2879
	if (!is_error_noslot_pfn(pfn) && !kvm_is_reserved_pfn(pfn) &&
2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900
	    level == PT_PAGE_TABLE_LEVEL &&
	    PageTransCompound(pfn_to_page(pfn)) &&
	    !has_wrprotected_page(vcpu->kvm, gfn, PT_DIRECTORY_LEVEL)) {
		unsigned long mask;
		/*
		 * mmu_notifier_retry was successful and we hold the
		 * mmu_lock here, so the pmd can't become splitting
		 * from under us, and in turn
		 * __split_huge_page_refcount() can't run from under
		 * us and we can safely transfer the refcount from
		 * PG_tail to PG_head as we switch the pfn to tail to
		 * head.
		 */
		*levelp = level = PT_DIRECTORY_LEVEL;
		mask = KVM_PAGES_PER_HPAGE(level) - 1;
		VM_BUG_ON((gfn & mask) != (pfn & mask));
		if (pfn & mask) {
			gfn &= ~mask;
			*gfnp = gfn;
			kvm_release_pfn_clean(pfn);
			pfn &= ~mask;
2901
			kvm_get_pfn(pfn);
2902 2903 2904 2905 2906
			*pfnp = pfn;
		}
	}
}

2907 2908 2909 2910 2911 2912
static bool handle_abnormal_pfn(struct kvm_vcpu *vcpu, gva_t gva, gfn_t gfn,
				pfn_t pfn, unsigned access, int *ret_val)
{
	bool ret = true;

	/* The pfn is invalid, report the error! */
2913
	if (unlikely(is_error_pfn(pfn))) {
2914 2915 2916 2917
		*ret_val = kvm_handle_bad_page(vcpu, gfn, pfn);
		goto exit;
	}

2918
	if (unlikely(is_noslot_pfn(pfn)))
2919 2920 2921 2922 2923 2924 2925
		vcpu_cache_mmio_info(vcpu, gva, gfn, access);

	ret = false;
exit:
	return ret;
}

2926
static bool page_fault_can_be_fast(u32 error_code)
2927
{
2928 2929 2930 2931 2932 2933 2934
	/*
	 * Do not fix the mmio spte with invalid generation number which
	 * need to be updated by slow page fault path.
	 */
	if (unlikely(error_code & PFERR_RSVD_MASK))
		return false;

2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947
	/*
	 * #PF can be fast only if the shadow page table is present and it
	 * is caused by write-protect, that means we just need change the
	 * W bit of the spte which can be done out of mmu-lock.
	 */
	if (!(error_code & PFERR_PRESENT_MASK) ||
	      !(error_code & PFERR_WRITE_MASK))
		return false;

	return true;
}

static bool
2948 2949
fast_pf_fix_direct_spte(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
			u64 *sptep, u64 spte)
2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960
{
	gfn_t gfn;

	WARN_ON(!sp->role.direct);

	/*
	 * The gfn of direct spte is stable since it is calculated
	 * by sp->gfn.
	 */
	gfn = kvm_mmu_page_get_gfn(sp, sptep - sp->spt);

2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972
	/*
	 * Theoretically we could also set dirty bit (and flush TLB) here in
	 * order to eliminate unnecessary PML logging. See comments in
	 * set_spte. But fast_page_fault is very unlikely to happen with PML
	 * enabled, so we do not do this. This might result in the same GPA
	 * to be logged in PML buffer again when the write really happens, and
	 * eventually to be called by mark_page_dirty twice. But it's also no
	 * harm. This also avoids the TLB flush needed after setting dirty bit
	 * so non-PML cases won't be impacted.
	 *
	 * Compare with set_spte where instead shadow_dirty_mask is set.
	 */
2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987
	if (cmpxchg64(sptep, spte, spte | PT_WRITABLE_MASK) == spte)
		mark_page_dirty(vcpu->kvm, gfn);

	return true;
}

/*
 * Return value:
 * - true: let the vcpu to access on the same address again.
 * - false: let the real page fault path to fix it.
 */
static bool fast_page_fault(struct kvm_vcpu *vcpu, gva_t gva, int level,
			    u32 error_code)
{
	struct kvm_shadow_walk_iterator iterator;
2988
	struct kvm_mmu_page *sp;
2989 2990 2991
	bool ret = false;
	u64 spte = 0ull;

2992 2993 2994
	if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
		return false;

2995
	if (!page_fault_can_be_fast(error_code))
2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011
		return false;

	walk_shadow_page_lockless_begin(vcpu);
	for_each_shadow_entry_lockless(vcpu, gva, iterator, spte)
		if (!is_shadow_present_pte(spte) || iterator.level < level)
			break;

	/*
	 * If the mapping has been changed, let the vcpu fault on the
	 * same address again.
	 */
	if (!is_rmap_spte(spte)) {
		ret = true;
		goto exit;
	}

3012 3013
	sp = page_header(__pa(iterator.sptep));
	if (!is_last_spte(spte, sp->role.level))
3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033
		goto exit;

	/*
	 * Check if it is a spurious fault caused by TLB lazily flushed.
	 *
	 * Need not check the access of upper level table entries since
	 * they are always ACC_ALL.
	 */
	 if (is_writable_pte(spte)) {
		ret = true;
		goto exit;
	}

	/*
	 * Currently, to simplify the code, only the spte write-protected
	 * by dirty-log can be fast fixed.
	 */
	if (!spte_is_locklessly_modifiable(spte))
		goto exit;

3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046
	/*
	 * Do not fix write-permission on the large spte since we only dirty
	 * the first page into the dirty-bitmap in fast_pf_fix_direct_spte()
	 * that means other pages are missed if its slot is dirty-logged.
	 *
	 * Instead, we let the slow page fault path create a normal spte to
	 * fix the access.
	 *
	 * See the comments in kvm_arch_commit_memory_region().
	 */
	if (sp->role.level > PT_PAGE_TABLE_LEVEL)
		goto exit;

3047 3048 3049 3050 3051
	/*
	 * Currently, fast page fault only works for direct mapping since
	 * the gfn is not stable for indirect shadow page.
	 * See Documentation/virtual/kvm/locking.txt to get more detail.
	 */
3052
	ret = fast_pf_fix_direct_spte(vcpu, sp, iterator.sptep, spte);
3053
exit:
X
Xiao Guangrong 已提交
3054 3055
	trace_fast_page_fault(vcpu, gva, error_code, iterator.sptep,
			      spte, ret);
3056 3057 3058 3059 3060
	walk_shadow_page_lockless_end(vcpu);

	return ret;
}

3061
static bool try_async_pf(struct kvm_vcpu *vcpu, bool prefault, gfn_t gfn,
3062
			 gva_t gva, pfn_t *pfn, bool write, bool *writable);
3063
static void make_mmu_pages_available(struct kvm_vcpu *vcpu);
3064

3065 3066
static int nonpaging_map(struct kvm_vcpu *vcpu, gva_t v, u32 error_code,
			 gfn_t gfn, bool prefault)
3067 3068
{
	int r;
3069
	int level;
3070
	int force_pt_level;
3071
	pfn_t pfn;
3072
	unsigned long mmu_seq;
3073
	bool map_writable, write = error_code & PFERR_WRITE_MASK;
3074

3075 3076 3077 3078 3079 3080 3081 3082 3083 3084
	force_pt_level = mapping_level_dirty_bitmap(vcpu, gfn);
	if (likely(!force_pt_level)) {
		level = mapping_level(vcpu, gfn);
		/*
		 * This path builds a PAE pagetable - so we can map
		 * 2mb pages at maximum. Therefore check if the level
		 * is larger than that.
		 */
		if (level > PT_DIRECTORY_LEVEL)
			level = PT_DIRECTORY_LEVEL;
3085

3086 3087 3088
		gfn &= ~(KVM_PAGES_PER_HPAGE(level) - 1);
	} else
		level = PT_PAGE_TABLE_LEVEL;
M
Marcelo Tosatti 已提交
3089

3090 3091 3092
	if (fast_page_fault(vcpu, v, level, error_code))
		return 0;

3093
	mmu_seq = vcpu->kvm->mmu_notifier_seq;
3094
	smp_rmb();
3095

3096
	if (try_async_pf(vcpu, prefault, gfn, v, &pfn, write, &map_writable))
3097
		return 0;
3098

3099 3100
	if (handle_abnormal_pfn(vcpu, v, gfn, pfn, ACC_ALL, &r))
		return r;
3101

3102
	spin_lock(&vcpu->kvm->mmu_lock);
3103
	if (mmu_notifier_retry(vcpu->kvm, mmu_seq))
3104
		goto out_unlock;
3105
	make_mmu_pages_available(vcpu);
3106 3107
	if (likely(!force_pt_level))
		transparent_hugepage_adjust(vcpu, &gfn, &pfn, &level);
3108 3109
	r = __direct_map(vcpu, v, write, map_writable, level, gfn, pfn,
			 prefault);
3110 3111 3112
	spin_unlock(&vcpu->kvm->mmu_lock);


3113
	return r;
3114 3115 3116 3117 3118

out_unlock:
	spin_unlock(&vcpu->kvm->mmu_lock);
	kvm_release_pfn_clean(pfn);
	return 0;
3119 3120 3121
}


3122 3123 3124
static void mmu_free_roots(struct kvm_vcpu *vcpu)
{
	int i;
3125
	struct kvm_mmu_page *sp;
3126
	LIST_HEAD(invalid_list);
3127

3128
	if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
A
Avi Kivity 已提交
3129
		return;
3130

3131 3132 3133
	if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL &&
	    (vcpu->arch.mmu.root_level == PT64_ROOT_LEVEL ||
	     vcpu->arch.mmu.direct_map)) {
3134
		hpa_t root = vcpu->arch.mmu.root_hpa;
3135

3136
		spin_lock(&vcpu->kvm->mmu_lock);
3137 3138
		sp = page_header(root);
		--sp->root_count;
3139 3140 3141 3142
		if (!sp->root_count && sp->role.invalid) {
			kvm_mmu_prepare_zap_page(vcpu->kvm, sp, &invalid_list);
			kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
		}
3143
		spin_unlock(&vcpu->kvm->mmu_lock);
3144
		vcpu->arch.mmu.root_hpa = INVALID_PAGE;
3145 3146
		return;
	}
3147 3148

	spin_lock(&vcpu->kvm->mmu_lock);
3149
	for (i = 0; i < 4; ++i) {
3150
		hpa_t root = vcpu->arch.mmu.pae_root[i];
3151

A
Avi Kivity 已提交
3152 3153
		if (root) {
			root &= PT64_BASE_ADDR_MASK;
3154 3155
			sp = page_header(root);
			--sp->root_count;
3156
			if (!sp->root_count && sp->role.invalid)
3157 3158
				kvm_mmu_prepare_zap_page(vcpu->kvm, sp,
							 &invalid_list);
A
Avi Kivity 已提交
3159
		}
3160
		vcpu->arch.mmu.pae_root[i] = INVALID_PAGE;
3161
	}
3162
	kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
3163
	spin_unlock(&vcpu->kvm->mmu_lock);
3164
	vcpu->arch.mmu.root_hpa = INVALID_PAGE;
3165 3166
}

3167 3168 3169 3170 3171
static int mmu_check_root(struct kvm_vcpu *vcpu, gfn_t root_gfn)
{
	int ret = 0;

	if (!kvm_is_visible_gfn(vcpu->kvm, root_gfn)) {
3172
		kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
3173 3174 3175 3176 3177 3178
		ret = 1;
	}

	return ret;
}

3179 3180 3181
static int mmu_alloc_direct_roots(struct kvm_vcpu *vcpu)
{
	struct kvm_mmu_page *sp;
3182
	unsigned i;
3183 3184 3185

	if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL) {
		spin_lock(&vcpu->kvm->mmu_lock);
3186
		make_mmu_pages_available(vcpu);
3187 3188 3189 3190 3191 3192 3193 3194 3195
		sp = kvm_mmu_get_page(vcpu, 0, 0, PT64_ROOT_LEVEL,
				      1, ACC_ALL, NULL);
		++sp->root_count;
		spin_unlock(&vcpu->kvm->mmu_lock);
		vcpu->arch.mmu.root_hpa = __pa(sp->spt);
	} else if (vcpu->arch.mmu.shadow_root_level == PT32E_ROOT_LEVEL) {
		for (i = 0; i < 4; ++i) {
			hpa_t root = vcpu->arch.mmu.pae_root[i];

3196
			MMU_WARN_ON(VALID_PAGE(root));
3197
			spin_lock(&vcpu->kvm->mmu_lock);
3198
			make_mmu_pages_available(vcpu);
3199 3200
			sp = kvm_mmu_get_page(vcpu, i << (30 - PAGE_SHIFT),
					      i << 30,
3201 3202 3203 3204 3205 3206 3207
					      PT32_ROOT_LEVEL, 1, ACC_ALL,
					      NULL);
			root = __pa(sp->spt);
			++sp->root_count;
			spin_unlock(&vcpu->kvm->mmu_lock);
			vcpu->arch.mmu.pae_root[i] = root | PT_PRESENT_MASK;
		}
3208
		vcpu->arch.mmu.root_hpa = __pa(vcpu->arch.mmu.pae_root);
3209 3210 3211 3212 3213 3214 3215
	} else
		BUG();

	return 0;
}

static int mmu_alloc_shadow_roots(struct kvm_vcpu *vcpu)
3216
{
3217
	struct kvm_mmu_page *sp;
3218 3219 3220
	u64 pdptr, pm_mask;
	gfn_t root_gfn;
	int i;
3221

3222
	root_gfn = vcpu->arch.mmu.get_cr3(vcpu) >> PAGE_SHIFT;
3223

3224 3225 3226 3227 3228 3229 3230 3231
	if (mmu_check_root(vcpu, root_gfn))
		return 1;

	/*
	 * Do we shadow a long mode page table? If so we need to
	 * write-protect the guests page table root.
	 */
	if (vcpu->arch.mmu.root_level == PT64_ROOT_LEVEL) {
3232
		hpa_t root = vcpu->arch.mmu.root_hpa;
3233

3234
		MMU_WARN_ON(VALID_PAGE(root));
3235

3236
		spin_lock(&vcpu->kvm->mmu_lock);
3237
		make_mmu_pages_available(vcpu);
3238 3239
		sp = kvm_mmu_get_page(vcpu, root_gfn, 0, PT64_ROOT_LEVEL,
				      0, ACC_ALL, NULL);
3240 3241
		root = __pa(sp->spt);
		++sp->root_count;
3242
		spin_unlock(&vcpu->kvm->mmu_lock);
3243
		vcpu->arch.mmu.root_hpa = root;
3244
		return 0;
3245
	}
3246

3247 3248
	/*
	 * We shadow a 32 bit page table. This may be a legacy 2-level
3249 3250
	 * or a PAE 3-level page table. In either case we need to be aware that
	 * the shadow page table may be a PAE or a long mode page table.
3251
	 */
3252 3253 3254 3255
	pm_mask = PT_PRESENT_MASK;
	if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL)
		pm_mask |= PT_ACCESSED_MASK | PT_WRITABLE_MASK | PT_USER_MASK;

3256
	for (i = 0; i < 4; ++i) {
3257
		hpa_t root = vcpu->arch.mmu.pae_root[i];
3258

3259
		MMU_WARN_ON(VALID_PAGE(root));
3260
		if (vcpu->arch.mmu.root_level == PT32E_ROOT_LEVEL) {
3261
			pdptr = vcpu->arch.mmu.get_pdptr(vcpu, i);
3262
			if (!is_present_gpte(pdptr)) {
3263
				vcpu->arch.mmu.pae_root[i] = 0;
A
Avi Kivity 已提交
3264 3265
				continue;
			}
A
Avi Kivity 已提交
3266
			root_gfn = pdptr >> PAGE_SHIFT;
3267 3268
			if (mmu_check_root(vcpu, root_gfn))
				return 1;
3269
		}
3270
		spin_lock(&vcpu->kvm->mmu_lock);
3271
		make_mmu_pages_available(vcpu);
3272
		sp = kvm_mmu_get_page(vcpu, root_gfn, i << 30,
3273
				      PT32_ROOT_LEVEL, 0,
3274
				      ACC_ALL, NULL);
3275 3276
		root = __pa(sp->spt);
		++sp->root_count;
3277 3278
		spin_unlock(&vcpu->kvm->mmu_lock);

3279
		vcpu->arch.mmu.pae_root[i] = root | pm_mask;
3280
	}
3281
	vcpu->arch.mmu.root_hpa = __pa(vcpu->arch.mmu.pae_root);
3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307

	/*
	 * If we shadow a 32 bit page table with a long mode page
	 * table we enter this path.
	 */
	if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL) {
		if (vcpu->arch.mmu.lm_root == NULL) {
			/*
			 * The additional page necessary for this is only
			 * allocated on demand.
			 */

			u64 *lm_root;

			lm_root = (void*)get_zeroed_page(GFP_KERNEL);
			if (lm_root == NULL)
				return 1;

			lm_root[0] = __pa(vcpu->arch.mmu.pae_root) | pm_mask;

			vcpu->arch.mmu.lm_root = lm_root;
		}

		vcpu->arch.mmu.root_hpa = __pa(vcpu->arch.mmu.lm_root);
	}

3308
	return 0;
3309 3310
}

3311 3312 3313 3314 3315 3316 3317 3318
static int mmu_alloc_roots(struct kvm_vcpu *vcpu)
{
	if (vcpu->arch.mmu.direct_map)
		return mmu_alloc_direct_roots(vcpu);
	else
		return mmu_alloc_shadow_roots(vcpu);
}

3319 3320 3321 3322 3323
static void mmu_sync_roots(struct kvm_vcpu *vcpu)
{
	int i;
	struct kvm_mmu_page *sp;

3324 3325 3326
	if (vcpu->arch.mmu.direct_map)
		return;

3327 3328
	if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
		return;
3329

3330
	vcpu_clear_mmio_info(vcpu, MMIO_GVA_ANY);
3331
	kvm_mmu_audit(vcpu, AUDIT_PRE_SYNC);
3332
	if (vcpu->arch.mmu.root_level == PT64_ROOT_LEVEL) {
3333 3334 3335
		hpa_t root = vcpu->arch.mmu.root_hpa;
		sp = page_header(root);
		mmu_sync_children(vcpu, sp);
3336
		kvm_mmu_audit(vcpu, AUDIT_POST_SYNC);
3337 3338 3339 3340 3341
		return;
	}
	for (i = 0; i < 4; ++i) {
		hpa_t root = vcpu->arch.mmu.pae_root[i];

3342
		if (root && VALID_PAGE(root)) {
3343 3344 3345 3346 3347
			root &= PT64_BASE_ADDR_MASK;
			sp = page_header(root);
			mmu_sync_children(vcpu, sp);
		}
	}
3348
	kvm_mmu_audit(vcpu, AUDIT_POST_SYNC);
3349 3350 3351 3352 3353 3354
}

void kvm_mmu_sync_roots(struct kvm_vcpu *vcpu)
{
	spin_lock(&vcpu->kvm->mmu_lock);
	mmu_sync_roots(vcpu);
3355
	spin_unlock(&vcpu->kvm->mmu_lock);
3356
}
N
Nadav Har'El 已提交
3357
EXPORT_SYMBOL_GPL(kvm_mmu_sync_roots);
3358

3359
static gpa_t nonpaging_gva_to_gpa(struct kvm_vcpu *vcpu, gva_t vaddr,
3360
				  u32 access, struct x86_exception *exception)
A
Avi Kivity 已提交
3361
{
3362 3363
	if (exception)
		exception->error_code = 0;
A
Avi Kivity 已提交
3364 3365 3366
	return vaddr;
}

3367
static gpa_t nonpaging_gva_to_gpa_nested(struct kvm_vcpu *vcpu, gva_t vaddr,
3368 3369
					 u32 access,
					 struct x86_exception *exception)
3370
{
3371 3372
	if (exception)
		exception->error_code = 0;
3373
	return vcpu->arch.nested_mmu.translate_gpa(vcpu, vaddr, access, exception);
3374 3375
}

3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403
static bool quickly_check_mmio_pf(struct kvm_vcpu *vcpu, u64 addr, bool direct)
{
	if (direct)
		return vcpu_match_mmio_gpa(vcpu, addr);

	return vcpu_match_mmio_gva(vcpu, addr);
}


/*
 * On direct hosts, the last spte is only allows two states
 * for mmio page fault:
 *   - It is the mmio spte
 *   - It is zapped or it is being zapped.
 *
 * This function completely checks the spte when the last spte
 * is not the mmio spte.
 */
static bool check_direct_spte_mmio_pf(u64 spte)
{
	return __check_direct_spte_mmio_pf(spte);
}

static u64 walk_shadow_page_get_mmio_spte(struct kvm_vcpu *vcpu, u64 addr)
{
	struct kvm_shadow_walk_iterator iterator;
	u64 spte = 0ull;

3404 3405 3406
	if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
		return spte;

3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420
	walk_shadow_page_lockless_begin(vcpu);
	for_each_shadow_entry_lockless(vcpu, addr, iterator, spte)
		if (!is_shadow_present_pte(spte))
			break;
	walk_shadow_page_lockless_end(vcpu);

	return spte;
}

int handle_mmio_page_fault_common(struct kvm_vcpu *vcpu, u64 addr, bool direct)
{
	u64 spte;

	if (quickly_check_mmio_pf(vcpu, addr, direct))
3421
		return RET_MMIO_PF_EMULATE;
3422 3423 3424 3425 3426 3427 3428

	spte = walk_shadow_page_get_mmio_spte(vcpu, addr);

	if (is_mmio_spte(spte)) {
		gfn_t gfn = get_mmio_spte_gfn(spte);
		unsigned access = get_mmio_spte_access(spte);

3429 3430 3431
		if (!check_mmio_spte(vcpu->kvm, spte))
			return RET_MMIO_PF_INVALID;

3432 3433
		if (direct)
			addr = 0;
X
Xiao Guangrong 已提交
3434 3435

		trace_handle_mmio_page_fault(addr, gfn, access);
3436
		vcpu_cache_mmio_info(vcpu, addr, gfn, access);
3437
		return RET_MMIO_PF_EMULATE;
3438 3439 3440 3441 3442 3443 3444
	}

	/*
	 * It's ok if the gva is remapped by other cpus on shadow guest,
	 * it's a BUG if the gfn is not a mmio page.
	 */
	if (direct && !check_direct_spte_mmio_pf(spte))
3445
		return RET_MMIO_PF_BUG;
3446 3447 3448 3449 3450

	/*
	 * If the page table is zapped by other cpus, let CPU fault again on
	 * the address.
	 */
3451
	return RET_MMIO_PF_RETRY;
3452 3453 3454 3455 3456 3457 3458 3459 3460
}
EXPORT_SYMBOL_GPL(handle_mmio_page_fault_common);

static int handle_mmio_page_fault(struct kvm_vcpu *vcpu, u64 addr,
				  u32 error_code, bool direct)
{
	int ret;

	ret = handle_mmio_page_fault_common(vcpu, addr, direct);
3461
	WARN_ON(ret == RET_MMIO_PF_BUG);
3462 3463 3464
	return ret;
}

A
Avi Kivity 已提交
3465
static int nonpaging_page_fault(struct kvm_vcpu *vcpu, gva_t gva,
3466
				u32 error_code, bool prefault)
A
Avi Kivity 已提交
3467
{
3468
	gfn_t gfn;
3469
	int r;
A
Avi Kivity 已提交
3470

3471
	pgprintk("%s: gva %lx error %x\n", __func__, gva, error_code);
3472

3473 3474 3475 3476 3477 3478
	if (unlikely(error_code & PFERR_RSVD_MASK)) {
		r = handle_mmio_page_fault(vcpu, gva, error_code, true);

		if (likely(r != RET_MMIO_PF_INVALID))
			return r;
	}
3479

3480 3481 3482
	r = mmu_topup_memory_caches(vcpu);
	if (r)
		return r;
3483

3484
	MMU_WARN_ON(!VALID_PAGE(vcpu->arch.mmu.root_hpa));
A
Avi Kivity 已提交
3485

3486
	gfn = gva >> PAGE_SHIFT;
A
Avi Kivity 已提交
3487

3488
	return nonpaging_map(vcpu, gva & PAGE_MASK,
3489
			     error_code, gfn, prefault);
A
Avi Kivity 已提交
3490 3491
}

3492
static int kvm_arch_setup_async_pf(struct kvm_vcpu *vcpu, gva_t gva, gfn_t gfn)
3493 3494
{
	struct kvm_arch_async_pf arch;
X
Xiao Guangrong 已提交
3495

3496
	arch.token = (vcpu->arch.apf.id++ << 12) | vcpu->vcpu_id;
3497
	arch.gfn = gfn;
3498
	arch.direct_map = vcpu->arch.mmu.direct_map;
X
Xiao Guangrong 已提交
3499
	arch.cr3 = vcpu->arch.mmu.get_cr3(vcpu);
3500

3501
	return kvm_setup_async_pf(vcpu, gva, gfn_to_hva(vcpu->kvm, gfn), &arch);
3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512
}

static bool can_do_async_pf(struct kvm_vcpu *vcpu)
{
	if (unlikely(!irqchip_in_kernel(vcpu->kvm) ||
		     kvm_event_needs_reinjection(vcpu)))
		return false;

	return kvm_x86_ops->interrupt_allowed(vcpu);
}

3513
static bool try_async_pf(struct kvm_vcpu *vcpu, bool prefault, gfn_t gfn,
3514
			 gva_t gva, pfn_t *pfn, bool write, bool *writable)
3515 3516 3517
{
	bool async;

3518
	*pfn = gfn_to_pfn_async(vcpu->kvm, gfn, &async, write, writable);
3519 3520 3521 3522

	if (!async)
		return false; /* *pfn has correct page already */

3523
	if (!prefault && can_do_async_pf(vcpu)) {
3524
		trace_kvm_try_async_get_page(gva, gfn);
3525 3526 3527 3528 3529 3530 3531 3532
		if (kvm_find_async_pf_gfn(vcpu, gfn)) {
			trace_kvm_async_pf_doublefault(gva, gfn);
			kvm_make_request(KVM_REQ_APF_HALT, vcpu);
			return true;
		} else if (kvm_arch_setup_async_pf(vcpu, gva, gfn))
			return true;
	}

3533
	*pfn = gfn_to_pfn_prot(vcpu->kvm, gfn, write, writable);
3534 3535 3536 3537

	return false;
}

G
Gleb Natapov 已提交
3538
static int tdp_page_fault(struct kvm_vcpu *vcpu, gva_t gpa, u32 error_code,
3539
			  bool prefault)
3540
{
3541
	pfn_t pfn;
3542
	int r;
3543
	int level;
3544
	int force_pt_level;
M
Marcelo Tosatti 已提交
3545
	gfn_t gfn = gpa >> PAGE_SHIFT;
3546
	unsigned long mmu_seq;
3547 3548
	int write = error_code & PFERR_WRITE_MASK;
	bool map_writable;
3549

3550
	MMU_WARN_ON(!VALID_PAGE(vcpu->arch.mmu.root_hpa));
3551

3552 3553 3554 3555 3556 3557
	if (unlikely(error_code & PFERR_RSVD_MASK)) {
		r = handle_mmio_page_fault(vcpu, gpa, error_code, true);

		if (likely(r != RET_MMIO_PF_INVALID))
			return r;
	}
3558

3559 3560 3561 3562
	r = mmu_topup_memory_caches(vcpu);
	if (r)
		return r;

3563 3564 3565 3566 3567 3568
	force_pt_level = mapping_level_dirty_bitmap(vcpu, gfn);
	if (likely(!force_pt_level)) {
		level = mapping_level(vcpu, gfn);
		gfn &= ~(KVM_PAGES_PER_HPAGE(level) - 1);
	} else
		level = PT_PAGE_TABLE_LEVEL;
3569

3570 3571 3572
	if (fast_page_fault(vcpu, gpa, level, error_code))
		return 0;

3573
	mmu_seq = vcpu->kvm->mmu_notifier_seq;
3574
	smp_rmb();
3575

3576
	if (try_async_pf(vcpu, prefault, gfn, gpa, &pfn, write, &map_writable))
3577 3578
		return 0;

3579 3580 3581
	if (handle_abnormal_pfn(vcpu, 0, gfn, pfn, ACC_ALL, &r))
		return r;

3582
	spin_lock(&vcpu->kvm->mmu_lock);
3583
	if (mmu_notifier_retry(vcpu->kvm, mmu_seq))
3584
		goto out_unlock;
3585
	make_mmu_pages_available(vcpu);
3586 3587
	if (likely(!force_pt_level))
		transparent_hugepage_adjust(vcpu, &gfn, &pfn, &level);
3588
	r = __direct_map(vcpu, gpa, write, map_writable,
3589
			 level, gfn, pfn, prefault);
3590 3591 3592
	spin_unlock(&vcpu->kvm->mmu_lock);

	return r;
3593 3594 3595 3596 3597

out_unlock:
	spin_unlock(&vcpu->kvm->mmu_lock);
	kvm_release_pfn_clean(pfn);
	return 0;
3598 3599
}

3600 3601
static void nonpaging_init_context(struct kvm_vcpu *vcpu,
				   struct kvm_mmu *context)
A
Avi Kivity 已提交
3602 3603 3604
{
	context->page_fault = nonpaging_page_fault;
	context->gva_to_gpa = nonpaging_gva_to_gpa;
3605
	context->sync_page = nonpaging_sync_page;
M
Marcelo Tosatti 已提交
3606
	context->invlpg = nonpaging_invlpg;
3607
	context->update_pte = nonpaging_update_pte;
3608
	context->root_level = 0;
A
Avi Kivity 已提交
3609
	context->shadow_root_level = PT32E_ROOT_LEVEL;
A
Avi Kivity 已提交
3610
	context->root_hpa = INVALID_PAGE;
3611
	context->direct_map = true;
3612
	context->nx = false;
A
Avi Kivity 已提交
3613 3614
}

3615
void kvm_mmu_new_cr3(struct kvm_vcpu *vcpu)
A
Avi Kivity 已提交
3616
{
3617
	mmu_free_roots(vcpu);
A
Avi Kivity 已提交
3618 3619
}

3620 3621
static unsigned long get_cr3(struct kvm_vcpu *vcpu)
{
3622
	return kvm_read_cr3(vcpu);
3623 3624
}

3625 3626
static void inject_page_fault(struct kvm_vcpu *vcpu,
			      struct x86_exception *fault)
A
Avi Kivity 已提交
3627
{
3628
	vcpu->arch.mmu.inject_page_fault(vcpu, fault);
A
Avi Kivity 已提交
3629 3630
}

3631 3632
static bool sync_mmio_spte(struct kvm *kvm, u64 *sptep, gfn_t gfn,
			   unsigned access, int *nr_present)
3633 3634 3635 3636 3637 3638 3639 3640
{
	if (unlikely(is_mmio_spte(*sptep))) {
		if (gfn != get_mmio_spte_gfn(*sptep)) {
			mmu_spte_clear_no_track(sptep);
			return true;
		}

		(*nr_present)++;
3641
		mark_mmio_spte(kvm, sptep, gfn, access);
3642 3643 3644 3645 3646 3647
		return true;
	}

	return false;
}

A
Avi Kivity 已提交
3648 3649 3650 3651 3652 3653 3654 3655 3656
static inline bool is_last_gpte(struct kvm_mmu *mmu, unsigned level, unsigned gpte)
{
	unsigned index;

	index = level - 1;
	index |= (gpte & PT_PAGE_SIZE_MASK) >> (PT_PAGE_SIZE_SHIFT - 2);
	return mmu->last_pte_bitmap & (1 << index);
}

3657 3658 3659 3660 3661
#define PTTYPE_EPT 18 /* arbitrary */
#define PTTYPE PTTYPE_EPT
#include "paging_tmpl.h"
#undef PTTYPE

A
Avi Kivity 已提交
3662 3663 3664 3665 3666 3667 3668 3669
#define PTTYPE 64
#include "paging_tmpl.h"
#undef PTTYPE

#define PTTYPE 32
#include "paging_tmpl.h"
#undef PTTYPE

3670
static void reset_rsvds_bits_mask(struct kvm_vcpu *vcpu,
3671
				  struct kvm_mmu *context)
3672 3673 3674
{
	int maxphyaddr = cpuid_maxphyaddr(vcpu);
	u64 exb_bit_rsvd = 0;
3675
	u64 gbpages_bit_rsvd = 0;
3676
	u64 nonleaf_bit8_rsvd = 0;
3677

3678 3679
	context->bad_mt_xwr = 0;

3680
	if (!context->nx)
3681
		exb_bit_rsvd = rsvd_bits(63, 63);
3682 3683
	if (!guest_cpuid_has_gbpages(vcpu))
		gbpages_bit_rsvd = rsvd_bits(7, 7);
3684 3685 3686 3687 3688 3689 3690 3691

	/*
	 * Non-leaf PML4Es and PDPEs reserve bit 8 (which would be the G bit for
	 * leaf entries) on AMD CPUs only.
	 */
	if (guest_cpuid_is_amd(vcpu))
		nonleaf_bit8_rsvd = rsvd_bits(8, 8);

3692
	switch (context->root_level) {
3693 3694 3695 3696
	case PT32_ROOT_LEVEL:
		/* no rsvd bits for 2 level 4K page table entries */
		context->rsvd_bits_mask[0][1] = 0;
		context->rsvd_bits_mask[0][0] = 0;
3697 3698 3699 3700 3701 3702 3703
		context->rsvd_bits_mask[1][0] = context->rsvd_bits_mask[0][0];

		if (!is_pse(vcpu)) {
			context->rsvd_bits_mask[1][1] = 0;
			break;
		}

3704 3705 3706 3707 3708 3709 3710 3711
		if (is_cpuid_PSE36())
			/* 36bits PSE 4MB page */
			context->rsvd_bits_mask[1][1] = rsvd_bits(17, 21);
		else
			/* 32 bits PSE 4MB page */
			context->rsvd_bits_mask[1][1] = rsvd_bits(13, 21);
		break;
	case PT32E_ROOT_LEVEL:
3712 3713
		context->rsvd_bits_mask[0][2] =
			rsvd_bits(maxphyaddr, 63) |
3714
			rsvd_bits(5, 8) | rsvd_bits(1, 2);	/* PDPTE */
3715
		context->rsvd_bits_mask[0][1] = exb_bit_rsvd |
3716
			rsvd_bits(maxphyaddr, 62);	/* PDE */
3717 3718 3719 3720 3721
		context->rsvd_bits_mask[0][0] = exb_bit_rsvd |
			rsvd_bits(maxphyaddr, 62); 	/* PTE */
		context->rsvd_bits_mask[1][1] = exb_bit_rsvd |
			rsvd_bits(maxphyaddr, 62) |
			rsvd_bits(13, 20);		/* large page */
3722
		context->rsvd_bits_mask[1][0] = context->rsvd_bits_mask[0][0];
3723 3724 3725
		break;
	case PT64_ROOT_LEVEL:
		context->rsvd_bits_mask[0][3] = exb_bit_rsvd |
3726
			nonleaf_bit8_rsvd | rsvd_bits(7, 7) | rsvd_bits(maxphyaddr, 51);
3727
		context->rsvd_bits_mask[0][2] = exb_bit_rsvd |
3728
			nonleaf_bit8_rsvd | gbpages_bit_rsvd | rsvd_bits(maxphyaddr, 51);
3729
		context->rsvd_bits_mask[0][1] = exb_bit_rsvd |
3730
			rsvd_bits(maxphyaddr, 51);
3731 3732 3733
		context->rsvd_bits_mask[0][0] = exb_bit_rsvd |
			rsvd_bits(maxphyaddr, 51);
		context->rsvd_bits_mask[1][3] = context->rsvd_bits_mask[0][3];
3734
		context->rsvd_bits_mask[1][2] = exb_bit_rsvd |
3735
			gbpages_bit_rsvd | rsvd_bits(maxphyaddr, 51) |
3736
			rsvd_bits(13, 29);
3737
		context->rsvd_bits_mask[1][1] = exb_bit_rsvd |
3738 3739
			rsvd_bits(maxphyaddr, 51) |
			rsvd_bits(13, 20);		/* large page */
3740
		context->rsvd_bits_mask[1][0] = context->rsvd_bits_mask[0][0];
3741 3742 3743 3744
		break;
	}
}

3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776
static void reset_rsvds_bits_mask_ept(struct kvm_vcpu *vcpu,
		struct kvm_mmu *context, bool execonly)
{
	int maxphyaddr = cpuid_maxphyaddr(vcpu);
	int pte;

	context->rsvd_bits_mask[0][3] =
		rsvd_bits(maxphyaddr, 51) | rsvd_bits(3, 7);
	context->rsvd_bits_mask[0][2] =
		rsvd_bits(maxphyaddr, 51) | rsvd_bits(3, 6);
	context->rsvd_bits_mask[0][1] =
		rsvd_bits(maxphyaddr, 51) | rsvd_bits(3, 6);
	context->rsvd_bits_mask[0][0] = rsvd_bits(maxphyaddr, 51);

	/* large page */
	context->rsvd_bits_mask[1][3] = context->rsvd_bits_mask[0][3];
	context->rsvd_bits_mask[1][2] =
		rsvd_bits(maxphyaddr, 51) | rsvd_bits(12, 29);
	context->rsvd_bits_mask[1][1] =
		rsvd_bits(maxphyaddr, 51) | rsvd_bits(12, 20);
	context->rsvd_bits_mask[1][0] = context->rsvd_bits_mask[0][0];

	for (pte = 0; pte < 64; pte++) {
		int rwx_bits = pte & 7;
		int mt = pte >> 3;
		if (mt == 0x2 || mt == 0x3 || mt == 0x7 ||
				rwx_bits == 0x2 || rwx_bits == 0x6 ||
				(rwx_bits == 0x4 && !execonly))
			context->bad_mt_xwr |= (1ull << pte);
	}
}

3777 3778
static void update_permission_bitmask(struct kvm_vcpu *vcpu,
				      struct kvm_mmu *mmu, bool ept)
3779 3780 3781
{
	unsigned bit, byte, pfec;
	u8 map;
F
Feng Wu 已提交
3782
	bool fault, x, w, u, wf, uf, ff, smapf, cr4_smap, cr4_smep, smap = 0;
3783

F
Feng Wu 已提交
3784
	cr4_smep = kvm_read_cr4_bits(vcpu, X86_CR4_SMEP);
F
Feng Wu 已提交
3785
	cr4_smap = kvm_read_cr4_bits(vcpu, X86_CR4_SMAP);
3786 3787 3788 3789 3790 3791
	for (byte = 0; byte < ARRAY_SIZE(mmu->permissions); ++byte) {
		pfec = byte << 1;
		map = 0;
		wf = pfec & PFERR_WRITE_MASK;
		uf = pfec & PFERR_USER_MASK;
		ff = pfec & PFERR_FETCH_MASK;
F
Feng Wu 已提交
3792 3793 3794 3795 3796 3797
		/*
		 * PFERR_RSVD_MASK bit is set in PFEC if the access is not
		 * subject to SMAP restrictions, and cleared otherwise. The
		 * bit is only meaningful if the SMAP bit is set in CR4.
		 */
		smapf = !(pfec & PFERR_RSVD_MASK);
3798 3799 3800 3801 3802
		for (bit = 0; bit < 8; ++bit) {
			x = bit & ACC_EXEC_MASK;
			w = bit & ACC_WRITE_MASK;
			u = bit & ACC_USER_MASK;

3803 3804 3805 3806 3807 3808
			if (!ept) {
				/* Not really needed: !nx will cause pte.nx to fault */
				x |= !mmu->nx;
				/* Allow supervisor writes if !cr0.wp */
				w |= !is_write_protection(vcpu) && !uf;
				/* Disallow supervisor fetches of user code if cr4.smep */
F
Feng Wu 已提交
3809
				x &= !(cr4_smep && u && !uf);
F
Feng Wu 已提交
3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829

				/*
				 * SMAP:kernel-mode data accesses from user-mode
				 * mappings should fault. A fault is considered
				 * as a SMAP violation if all of the following
				 * conditions are ture:
				 *   - X86_CR4_SMAP is set in CR4
				 *   - An user page is accessed
				 *   - Page fault in kernel mode
				 *   - if CPL = 3 or X86_EFLAGS_AC is clear
				 *
				 *   Here, we cover the first three conditions.
				 *   The fourth is computed dynamically in
				 *   permission_fault() and is in smapf.
				 *
				 *   Also, SMAP does not affect instruction
				 *   fetches, add the !ff check here to make it
				 *   clearer.
				 */
				smap = cr4_smap && u && !uf && !ff;
3830 3831 3832
			} else
				/* Not really needed: no U/S accesses on ept  */
				u = 1;
3833

F
Feng Wu 已提交
3834 3835
			fault = (ff && !x) || (uf && !u) || (wf && !w) ||
				(smapf && smap);
3836 3837 3838 3839 3840 3841
			map |= fault << bit;
		}
		mmu->permissions[byte] = map;
	}
}

A
Avi Kivity 已提交
3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859
static void update_last_pte_bitmap(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu)
{
	u8 map;
	unsigned level, root_level = mmu->root_level;
	const unsigned ps_set_index = 1 << 2;  /* bit 2 of index: ps */

	if (root_level == PT32E_ROOT_LEVEL)
		--root_level;
	/* PT_PAGE_TABLE_LEVEL always terminates */
	map = 1 | (1 << ps_set_index);
	for (level = PT_DIRECTORY_LEVEL; level <= root_level; ++level) {
		if (level <= PT_PDPE_LEVEL
		    && (mmu->root_level >= PT32E_ROOT_LEVEL || is_pse(vcpu)))
			map |= 1 << (ps_set_index | (level - 1));
	}
	mmu->last_pte_bitmap = map;
}

3860 3861 3862
static void paging64_init_context_common(struct kvm_vcpu *vcpu,
					 struct kvm_mmu *context,
					 int level)
A
Avi Kivity 已提交
3863
{
3864
	context->nx = is_nx(vcpu);
3865
	context->root_level = level;
3866

3867
	reset_rsvds_bits_mask(vcpu, context);
3868
	update_permission_bitmask(vcpu, context, false);
A
Avi Kivity 已提交
3869
	update_last_pte_bitmap(vcpu, context);
A
Avi Kivity 已提交
3870

3871
	MMU_WARN_ON(!is_pae(vcpu));
A
Avi Kivity 已提交
3872 3873
	context->page_fault = paging64_page_fault;
	context->gva_to_gpa = paging64_gva_to_gpa;
3874
	context->sync_page = paging64_sync_page;
M
Marcelo Tosatti 已提交
3875
	context->invlpg = paging64_invlpg;
3876
	context->update_pte = paging64_update_pte;
3877
	context->shadow_root_level = level;
A
Avi Kivity 已提交
3878
	context->root_hpa = INVALID_PAGE;
3879
	context->direct_map = false;
A
Avi Kivity 已提交
3880 3881
}

3882 3883
static void paging64_init_context(struct kvm_vcpu *vcpu,
				  struct kvm_mmu *context)
3884
{
3885
	paging64_init_context_common(vcpu, context, PT64_ROOT_LEVEL);
3886 3887
}

3888 3889
static void paging32_init_context(struct kvm_vcpu *vcpu,
				  struct kvm_mmu *context)
A
Avi Kivity 已提交
3890
{
3891
	context->nx = false;
3892
	context->root_level = PT32_ROOT_LEVEL;
3893

3894
	reset_rsvds_bits_mask(vcpu, context);
3895
	update_permission_bitmask(vcpu, context, false);
A
Avi Kivity 已提交
3896
	update_last_pte_bitmap(vcpu, context);
A
Avi Kivity 已提交
3897 3898 3899

	context->page_fault = paging32_page_fault;
	context->gva_to_gpa = paging32_gva_to_gpa;
3900
	context->sync_page = paging32_sync_page;
M
Marcelo Tosatti 已提交
3901
	context->invlpg = paging32_invlpg;
3902
	context->update_pte = paging32_update_pte;
A
Avi Kivity 已提交
3903
	context->shadow_root_level = PT32E_ROOT_LEVEL;
A
Avi Kivity 已提交
3904
	context->root_hpa = INVALID_PAGE;
3905
	context->direct_map = false;
A
Avi Kivity 已提交
3906 3907
}

3908 3909
static void paging32E_init_context(struct kvm_vcpu *vcpu,
				   struct kvm_mmu *context)
A
Avi Kivity 已提交
3910
{
3911
	paging64_init_context_common(vcpu, context, PT32E_ROOT_LEVEL);
A
Avi Kivity 已提交
3912 3913
}

3914
static void init_kvm_tdp_mmu(struct kvm_vcpu *vcpu)
3915
{
3916
	struct kvm_mmu *context = &vcpu->arch.mmu;
3917

3918
	context->base_role.word = 0;
3919
	context->page_fault = tdp_page_fault;
3920
	context->sync_page = nonpaging_sync_page;
M
Marcelo Tosatti 已提交
3921
	context->invlpg = nonpaging_invlpg;
3922
	context->update_pte = nonpaging_update_pte;
3923
	context->shadow_root_level = kvm_x86_ops->get_tdp_level();
3924
	context->root_hpa = INVALID_PAGE;
3925
	context->direct_map = true;
3926
	context->set_cr3 = kvm_x86_ops->set_tdp_cr3;
3927
	context->get_cr3 = get_cr3;
3928
	context->get_pdptr = kvm_pdptr_read;
3929
	context->inject_page_fault = kvm_inject_page_fault;
3930 3931

	if (!is_paging(vcpu)) {
3932
		context->nx = false;
3933 3934 3935
		context->gva_to_gpa = nonpaging_gva_to_gpa;
		context->root_level = 0;
	} else if (is_long_mode(vcpu)) {
3936
		context->nx = is_nx(vcpu);
3937
		context->root_level = PT64_ROOT_LEVEL;
3938 3939
		reset_rsvds_bits_mask(vcpu, context);
		context->gva_to_gpa = paging64_gva_to_gpa;
3940
	} else if (is_pae(vcpu)) {
3941
		context->nx = is_nx(vcpu);
3942
		context->root_level = PT32E_ROOT_LEVEL;
3943 3944
		reset_rsvds_bits_mask(vcpu, context);
		context->gva_to_gpa = paging64_gva_to_gpa;
3945
	} else {
3946
		context->nx = false;
3947
		context->root_level = PT32_ROOT_LEVEL;
3948 3949
		reset_rsvds_bits_mask(vcpu, context);
		context->gva_to_gpa = paging32_gva_to_gpa;
3950 3951
	}

3952
	update_permission_bitmask(vcpu, context, false);
A
Avi Kivity 已提交
3953
	update_last_pte_bitmap(vcpu, context);
3954 3955
}

3956
void kvm_init_shadow_mmu(struct kvm_vcpu *vcpu)
A
Avi Kivity 已提交
3957
{
3958
	bool smep = kvm_read_cr4_bits(vcpu, X86_CR4_SMEP);
3959
	bool smap = kvm_read_cr4_bits(vcpu, X86_CR4_SMAP);
3960 3961
	struct kvm_mmu *context = &vcpu->arch.mmu;

3962
	MMU_WARN_ON(VALID_PAGE(context->root_hpa));
A
Avi Kivity 已提交
3963 3964

	if (!is_paging(vcpu))
3965
		nonpaging_init_context(vcpu, context);
A
Avi Kivity 已提交
3966
	else if (is_long_mode(vcpu))
3967
		paging64_init_context(vcpu, context);
A
Avi Kivity 已提交
3968
	else if (is_pae(vcpu))
3969
		paging32E_init_context(vcpu, context);
A
Avi Kivity 已提交
3970
	else
3971
		paging32_init_context(vcpu, context);
3972

3973 3974 3975 3976
	context->base_role.nxe = is_nx(vcpu);
	context->base_role.cr4_pae = !!is_pae(vcpu);
	context->base_role.cr0_wp  = is_write_protection(vcpu);
	context->base_role.smep_andnot_wp
3977
		= smep && !is_write_protection(vcpu);
3978 3979
	context->base_role.smap_andnot_wp
		= smap && !is_write_protection(vcpu);
3980 3981 3982
}
EXPORT_SYMBOL_GPL(kvm_init_shadow_mmu);

3983
void kvm_init_shadow_ept_mmu(struct kvm_vcpu *vcpu, bool execonly)
N
Nadav Har'El 已提交
3984
{
3985 3986
	struct kvm_mmu *context = &vcpu->arch.mmu;

3987
	MMU_WARN_ON(VALID_PAGE(context->root_hpa));
N
Nadav Har'El 已提交
3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005

	context->shadow_root_level = kvm_x86_ops->get_tdp_level();

	context->nx = true;
	context->page_fault = ept_page_fault;
	context->gva_to_gpa = ept_gva_to_gpa;
	context->sync_page = ept_sync_page;
	context->invlpg = ept_invlpg;
	context->update_pte = ept_update_pte;
	context->root_level = context->shadow_root_level;
	context->root_hpa = INVALID_PAGE;
	context->direct_map = false;

	update_permission_bitmask(vcpu, context, true);
	reset_rsvds_bits_mask_ept(vcpu, context, execonly);
}
EXPORT_SYMBOL_GPL(kvm_init_shadow_ept_mmu);

4006
static void init_kvm_softmmu(struct kvm_vcpu *vcpu)
4007
{
4008 4009 4010 4011 4012 4013 4014
	struct kvm_mmu *context = &vcpu->arch.mmu;

	kvm_init_shadow_mmu(vcpu);
	context->set_cr3           = kvm_x86_ops->set_cr3;
	context->get_cr3           = get_cr3;
	context->get_pdptr         = kvm_pdptr_read;
	context->inject_page_fault = kvm_inject_page_fault;
A
Avi Kivity 已提交
4015 4016
}

4017
static void init_kvm_nested_mmu(struct kvm_vcpu *vcpu)
4018 4019 4020 4021
{
	struct kvm_mmu *g_context = &vcpu->arch.nested_mmu;

	g_context->get_cr3           = get_cr3;
4022
	g_context->get_pdptr         = kvm_pdptr_read;
4023 4024 4025 4026 4027 4028 4029 4030 4031
	g_context->inject_page_fault = kvm_inject_page_fault;

	/*
	 * Note that arch.mmu.gva_to_gpa translates l2_gva to l1_gpa. The
	 * translation of l2_gpa to l1_gpa addresses is done using the
	 * arch.nested_mmu.gva_to_gpa function. Basically the gva_to_gpa
	 * functions between mmu and nested_mmu are swapped.
	 */
	if (!is_paging(vcpu)) {
4032
		g_context->nx = false;
4033 4034 4035
		g_context->root_level = 0;
		g_context->gva_to_gpa = nonpaging_gva_to_gpa_nested;
	} else if (is_long_mode(vcpu)) {
4036
		g_context->nx = is_nx(vcpu);
4037
		g_context->root_level = PT64_ROOT_LEVEL;
4038
		reset_rsvds_bits_mask(vcpu, g_context);
4039 4040
		g_context->gva_to_gpa = paging64_gva_to_gpa_nested;
	} else if (is_pae(vcpu)) {
4041
		g_context->nx = is_nx(vcpu);
4042
		g_context->root_level = PT32E_ROOT_LEVEL;
4043
		reset_rsvds_bits_mask(vcpu, g_context);
4044 4045
		g_context->gva_to_gpa = paging64_gva_to_gpa_nested;
	} else {
4046
		g_context->nx = false;
4047
		g_context->root_level = PT32_ROOT_LEVEL;
4048
		reset_rsvds_bits_mask(vcpu, g_context);
4049 4050 4051
		g_context->gva_to_gpa = paging32_gva_to_gpa_nested;
	}

4052
	update_permission_bitmask(vcpu, g_context, false);
A
Avi Kivity 已提交
4053
	update_last_pte_bitmap(vcpu, g_context);
4054 4055
}

4056
static void init_kvm_mmu(struct kvm_vcpu *vcpu)
4057
{
4058
	if (mmu_is_nested(vcpu))
4059
		init_kvm_nested_mmu(vcpu);
4060
	else if (tdp_enabled)
4061
		init_kvm_tdp_mmu(vcpu);
4062
	else
4063
		init_kvm_softmmu(vcpu);
4064 4065
}

4066
void kvm_mmu_reset_context(struct kvm_vcpu *vcpu)
A
Avi Kivity 已提交
4067
{
4068
	kvm_mmu_unload(vcpu);
4069
	init_kvm_mmu(vcpu);
A
Avi Kivity 已提交
4070
}
4071
EXPORT_SYMBOL_GPL(kvm_mmu_reset_context);
A
Avi Kivity 已提交
4072 4073

int kvm_mmu_load(struct kvm_vcpu *vcpu)
A
Avi Kivity 已提交
4074
{
4075 4076
	int r;

4077
	r = mmu_topup_memory_caches(vcpu);
A
Avi Kivity 已提交
4078 4079
	if (r)
		goto out;
4080
	r = mmu_alloc_roots(vcpu);
4081
	kvm_mmu_sync_roots(vcpu);
4082 4083
	if (r)
		goto out;
4084
	/* set_cr3() should ensure TLB has been flushed */
4085
	vcpu->arch.mmu.set_cr3(vcpu, vcpu->arch.mmu.root_hpa);
4086 4087
out:
	return r;
A
Avi Kivity 已提交
4088
}
A
Avi Kivity 已提交
4089 4090 4091 4092 4093
EXPORT_SYMBOL_GPL(kvm_mmu_load);

void kvm_mmu_unload(struct kvm_vcpu *vcpu)
{
	mmu_free_roots(vcpu);
4094
	WARN_ON(VALID_PAGE(vcpu->arch.mmu.root_hpa));
A
Avi Kivity 已提交
4095
}
4096
EXPORT_SYMBOL_GPL(kvm_mmu_unload);
A
Avi Kivity 已提交
4097

4098
static void mmu_pte_write_new_pte(struct kvm_vcpu *vcpu,
4099 4100
				  struct kvm_mmu_page *sp, u64 *spte,
				  const void *new)
4101
{
4102
	if (sp->role.level != PT_PAGE_TABLE_LEVEL) {
4103 4104
		++vcpu->kvm->stat.mmu_pde_zapped;
		return;
4105
        }
4106

A
Avi Kivity 已提交
4107
	++vcpu->kvm->stat.mmu_pte_updated;
4108
	vcpu->arch.mmu.update_pte(vcpu, sp, spte, new);
4109 4110
}

4111 4112 4113 4114 4115 4116 4117 4118
static bool need_remote_flush(u64 old, u64 new)
{
	if (!is_shadow_present_pte(old))
		return false;
	if (!is_shadow_present_pte(new))
		return true;
	if ((old ^ new) & PT64_BASE_ADDR_MASK)
		return true;
4119 4120
	old ^= shadow_nx_mask;
	new ^= shadow_nx_mask;
4121 4122 4123
	return (old & ~new & PT64_PERM_MASK) != 0;
}

4124 4125
static void mmu_pte_write_flush_tlb(struct kvm_vcpu *vcpu, bool zap_page,
				    bool remote_flush, bool local_flush)
4126
{
4127 4128 4129 4130
	if (zap_page)
		return;

	if (remote_flush)
4131
		kvm_flush_remote_tlbs(vcpu->kvm);
4132
	else if (local_flush)
4133
		kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
4134 4135
}

4136 4137
static u64 mmu_pte_write_fetch_gpte(struct kvm_vcpu *vcpu, gpa_t *gpa,
				    const u8 *new, int *bytes)
4138
{
4139 4140
	u64 gentry;
	int r;
4141 4142 4143

	/*
	 * Assume that the pte write on a page table of the same type
4144 4145
	 * as the current vcpu paging mode since we update the sptes only
	 * when they have the same mode.
4146
	 */
4147
	if (is_pae(vcpu) && *bytes == 4) {
4148
		/* Handle a 32-bit guest writing two halves of a 64-bit gpte */
4149 4150
		*gpa &= ~(gpa_t)7;
		*bytes = 8;
4151
		r = kvm_read_guest(vcpu->kvm, *gpa, &gentry, 8);
4152 4153
		if (r)
			gentry = 0;
4154 4155 4156
		new = (const u8 *)&gentry;
	}

4157
	switch (*bytes) {
4158 4159 4160 4161 4162 4163 4164 4165 4166
	case 4:
		gentry = *(const u32 *)new;
		break;
	case 8:
		gentry = *(const u64 *)new;
		break;
	default:
		gentry = 0;
		break;
4167 4168
	}

4169 4170 4171 4172 4173 4174 4175
	return gentry;
}

/*
 * If we're seeing too many writes to a page, it may no longer be a page table,
 * or we may be forking, in which case it is better to unmap the page.
 */
4176
static bool detect_write_flooding(struct kvm_mmu_page *sp)
4177
{
4178 4179 4180 4181
	/*
	 * Skip write-flooding detected for the sp whose level is 1, because
	 * it can become unsync, then the guest page is not write-protected.
	 */
4182
	if (sp->role.level == PT_PAGE_TABLE_LEVEL)
4183
		return false;
4184

4185
	return ++sp->write_flooding_count >= 3;
4186 4187 4188 4189 4190 4191 4192 4193 4194 4195 4196 4197 4198 4199 4200 4201
}

/*
 * Misaligned accesses are too much trouble to fix up; also, they usually
 * indicate a page is not used as a page table.
 */
static bool detect_write_misaligned(struct kvm_mmu_page *sp, gpa_t gpa,
				    int bytes)
{
	unsigned offset, pte_size, misaligned;

	pgprintk("misaligned: gpa %llx bytes %d role %x\n",
		 gpa, bytes, sp->role.word);

	offset = offset_in_page(gpa);
	pte_size = sp->role.cr4_pae ? 8 : 4;
4202 4203 4204 4205 4206 4207 4208 4209

	/*
	 * Sometimes, the OS only writes the last one bytes to update status
	 * bits, for example, in linux, andb instruction is used in clear_bit().
	 */
	if (!(offset & (pte_size - 1)) && bytes == 1)
		return false;

4210 4211 4212 4213 4214 4215 4216 4217 4218 4219 4220 4221 4222 4223 4224 4225 4226 4227 4228 4229 4230 4231 4232 4233 4234 4235 4236 4237 4238 4239 4240 4241 4242 4243 4244 4245 4246 4247 4248 4249 4250 4251 4252 4253 4254
	misaligned = (offset ^ (offset + bytes - 1)) & ~(pte_size - 1);
	misaligned |= bytes < 4;

	return misaligned;
}

static u64 *get_written_sptes(struct kvm_mmu_page *sp, gpa_t gpa, int *nspte)
{
	unsigned page_offset, quadrant;
	u64 *spte;
	int level;

	page_offset = offset_in_page(gpa);
	level = sp->role.level;
	*nspte = 1;
	if (!sp->role.cr4_pae) {
		page_offset <<= 1;	/* 32->64 */
		/*
		 * A 32-bit pde maps 4MB while the shadow pdes map
		 * only 2MB.  So we need to double the offset again
		 * and zap two pdes instead of one.
		 */
		if (level == PT32_ROOT_LEVEL) {
			page_offset &= ~7; /* kill rounding error */
			page_offset <<= 1;
			*nspte = 2;
		}
		quadrant = page_offset >> PAGE_SHIFT;
		page_offset &= ~PAGE_MASK;
		if (quadrant != sp->role.quadrant)
			return NULL;
	}

	spte = &sp->spt[page_offset / sizeof(*spte)];
	return spte;
}

void kvm_mmu_pte_write(struct kvm_vcpu *vcpu, gpa_t gpa,
		       const u8 *new, int bytes)
{
	gfn_t gfn = gpa >> PAGE_SHIFT;
	struct kvm_mmu_page *sp;
	LIST_HEAD(invalid_list);
	u64 entry, gentry, *spte;
	int npte;
4255
	bool remote_flush, local_flush, zap_page;
4256 4257 4258 4259 4260 4261 4262
	union kvm_mmu_page_role mask = (union kvm_mmu_page_role) {
		.cr0_wp = 1,
		.cr4_pae = 1,
		.nxe = 1,
		.smep_andnot_wp = 1,
		.smap_andnot_wp = 1,
	};
4263 4264 4265 4266 4267 4268 4269 4270 4271 4272 4273 4274 4275 4276 4277 4278 4279 4280 4281 4282 4283 4284 4285

	/*
	 * If we don't have indirect shadow pages, it means no page is
	 * write-protected, so we can exit simply.
	 */
	if (!ACCESS_ONCE(vcpu->kvm->arch.indirect_shadow_pages))
		return;

	zap_page = remote_flush = local_flush = false;

	pgprintk("%s: gpa %llx bytes %d\n", __func__, gpa, bytes);

	gentry = mmu_pte_write_fetch_gpte(vcpu, &gpa, new, &bytes);

	/*
	 * No need to care whether allocation memory is successful
	 * or not since pte prefetch is skiped if it does not have
	 * enough objects in the cache.
	 */
	mmu_topup_memory_caches(vcpu);

	spin_lock(&vcpu->kvm->mmu_lock);
	++vcpu->kvm->stat.mmu_pte_write;
4286
	kvm_mmu_audit(vcpu, AUDIT_PRE_PTE_WRITE);
4287

4288
	for_each_gfn_indirect_valid_sp(vcpu->kvm, sp, gfn) {
4289
		if (detect_write_misaligned(sp, gpa, bytes) ||
4290
		      detect_write_flooding(sp)) {
4291
			zap_page |= !!kvm_mmu_prepare_zap_page(vcpu->kvm, sp,
4292
						     &invalid_list);
A
Avi Kivity 已提交
4293
			++vcpu->kvm->stat.mmu_flooded;
4294 4295
			continue;
		}
4296 4297 4298 4299 4300

		spte = get_written_sptes(sp, gpa, &npte);
		if (!spte)
			continue;

4301
		local_flush = true;
4302
		while (npte--) {
4303
			entry = *spte;
4304
			mmu_page_zap_pte(vcpu->kvm, sp, spte);
4305 4306
			if (gentry &&
			      !((sp->role.word ^ vcpu->arch.mmu.base_role.word)
4307
			      & mask.word) && rmap_can_add(vcpu))
4308
				mmu_pte_write_new_pte(vcpu, sp, spte, &gentry);
G
Gleb Natapov 已提交
4309
			if (need_remote_flush(entry, *spte))
4310
				remote_flush = true;
4311
			++spte;
4312 4313
		}
	}
4314
	mmu_pte_write_flush_tlb(vcpu, zap_page, remote_flush, local_flush);
4315
	kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
4316
	kvm_mmu_audit(vcpu, AUDIT_POST_PTE_WRITE);
4317
	spin_unlock(&vcpu->kvm->mmu_lock);
4318 4319
}

4320 4321
int kvm_mmu_unprotect_page_virt(struct kvm_vcpu *vcpu, gva_t gva)
{
4322 4323
	gpa_t gpa;
	int r;
4324

4325
	if (vcpu->arch.mmu.direct_map)
4326 4327
		return 0;

4328
	gpa = kvm_mmu_gva_to_gpa_read(vcpu, gva, NULL);
4329 4330

	r = kvm_mmu_unprotect_page(vcpu->kvm, gpa >> PAGE_SHIFT);
4331

4332
	return r;
4333
}
4334
EXPORT_SYMBOL_GPL(kvm_mmu_unprotect_page_virt);
4335

4336
static void make_mmu_pages_available(struct kvm_vcpu *vcpu)
A
Avi Kivity 已提交
4337
{
4338
	LIST_HEAD(invalid_list);
4339

4340 4341 4342
	if (likely(kvm_mmu_available_pages(vcpu->kvm) >= KVM_MIN_FREE_MMU_PAGES))
		return;

4343 4344 4345
	while (kvm_mmu_available_pages(vcpu->kvm) < KVM_REFILL_PAGES) {
		if (!prepare_zap_oldest_mmu_page(vcpu->kvm, &invalid_list))
			break;
A
Avi Kivity 已提交
4346

A
Avi Kivity 已提交
4347
		++vcpu->kvm->stat.mmu_recycled;
A
Avi Kivity 已提交
4348
	}
4349
	kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
A
Avi Kivity 已提交
4350 4351
}

4352 4353 4354 4355 4356 4357 4358 4359
static bool is_mmio_page_fault(struct kvm_vcpu *vcpu, gva_t addr)
{
	if (vcpu->arch.mmu.direct_map || mmu_is_nested(vcpu))
		return vcpu_match_mmio_gpa(vcpu, addr);

	return vcpu_match_mmio_gva(vcpu, addr);
}

4360 4361
int kvm_mmu_page_fault(struct kvm_vcpu *vcpu, gva_t cr2, u32 error_code,
		       void *insn, int insn_len)
4362
{
4363
	int r, emulation_type = EMULTYPE_RETRY;
4364 4365
	enum emulation_result er;

G
Gleb Natapov 已提交
4366
	r = vcpu->arch.mmu.page_fault(vcpu, cr2, error_code, false);
4367 4368 4369 4370 4371 4372 4373 4374
	if (r < 0)
		goto out;

	if (!r) {
		r = 1;
		goto out;
	}

4375 4376 4377 4378
	if (is_mmio_page_fault(vcpu, cr2))
		emulation_type = 0;

	er = x86_emulate_instruction(vcpu, cr2, emulation_type, insn, insn_len);
4379 4380 4381 4382

	switch (er) {
	case EMULATE_DONE:
		return 1;
P
Paolo Bonzini 已提交
4383
	case EMULATE_USER_EXIT:
4384
		++vcpu->stat.mmio_exits;
4385
		/* fall through */
4386
	case EMULATE_FAIL:
4387
		return 0;
4388 4389 4390 4391 4392 4393 4394 4395
	default:
		BUG();
	}
out:
	return r;
}
EXPORT_SYMBOL_GPL(kvm_mmu_page_fault);

M
Marcelo Tosatti 已提交
4396 4397 4398
void kvm_mmu_invlpg(struct kvm_vcpu *vcpu, gva_t gva)
{
	vcpu->arch.mmu.invlpg(vcpu, gva);
4399
	kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
M
Marcelo Tosatti 已提交
4400 4401 4402 4403
	++vcpu->stat.invlpg;
}
EXPORT_SYMBOL_GPL(kvm_mmu_invlpg);

4404 4405 4406 4407 4408 4409
void kvm_enable_tdp(void)
{
	tdp_enabled = true;
}
EXPORT_SYMBOL_GPL(kvm_enable_tdp);

4410 4411 4412 4413 4414 4415
void kvm_disable_tdp(void)
{
	tdp_enabled = false;
}
EXPORT_SYMBOL_GPL(kvm_disable_tdp);

A
Avi Kivity 已提交
4416 4417
static void free_mmu_pages(struct kvm_vcpu *vcpu)
{
4418
	free_page((unsigned long)vcpu->arch.mmu.pae_root);
4419 4420
	if (vcpu->arch.mmu.lm_root != NULL)
		free_page((unsigned long)vcpu->arch.mmu.lm_root);
A
Avi Kivity 已提交
4421 4422 4423 4424
}

static int alloc_mmu_pages(struct kvm_vcpu *vcpu)
{
4425
	struct page *page;
A
Avi Kivity 已提交
4426 4427
	int i;

4428 4429 4430 4431 4432 4433 4434
	/*
	 * When emulating 32-bit mode, cr3 is only 32 bits even on x86_64.
	 * Therefore we need to allocate shadow page tables in the first
	 * 4GB of memory, which happens to fit the DMA32 zone.
	 */
	page = alloc_page(GFP_KERNEL | __GFP_DMA32);
	if (!page)
4435 4436
		return -ENOMEM;

4437
	vcpu->arch.mmu.pae_root = page_address(page);
4438
	for (i = 0; i < 4; ++i)
4439
		vcpu->arch.mmu.pae_root[i] = INVALID_PAGE;
4440

A
Avi Kivity 已提交
4441 4442 4443
	return 0;
}

4444
int kvm_mmu_create(struct kvm_vcpu *vcpu)
A
Avi Kivity 已提交
4445
{
4446 4447 4448 4449
	vcpu->arch.walk_mmu = &vcpu->arch.mmu;
	vcpu->arch.mmu.root_hpa = INVALID_PAGE;
	vcpu->arch.mmu.translate_gpa = translate_gpa;
	vcpu->arch.nested_mmu.translate_gpa = translate_nested_gpa;
A
Avi Kivity 已提交
4450

4451 4452
	return alloc_mmu_pages(vcpu);
}
A
Avi Kivity 已提交
4453

4454
void kvm_mmu_setup(struct kvm_vcpu *vcpu)
4455
{
4456
	MMU_WARN_ON(VALID_PAGE(vcpu->arch.mmu.root_hpa));
4457

4458
	init_kvm_mmu(vcpu);
A
Avi Kivity 已提交
4459 4460
}

4461 4462 4463 4464 4465 4466 4467 4468 4469 4470 4471 4472 4473 4474 4475 4476 4477 4478 4479 4480 4481 4482 4483 4484 4485 4486 4487 4488 4489 4490 4491 4492 4493 4494 4495 4496 4497 4498 4499 4500 4501 4502 4503 4504 4505 4506 4507 4508 4509 4510 4511 4512 4513 4514 4515 4516 4517 4518 4519 4520 4521 4522 4523 4524 4525 4526 4527 4528 4529
/* The return value indicates if tlb flush on all vcpus is needed. */
typedef bool (*slot_level_handler) (struct kvm *kvm, unsigned long *rmap);

/* The caller should hold mmu-lock before calling this function. */
static bool
slot_handle_level_range(struct kvm *kvm, struct kvm_memory_slot *memslot,
			slot_level_handler fn, int start_level, int end_level,
			gfn_t start_gfn, gfn_t end_gfn, bool lock_flush_tlb)
{
	struct slot_rmap_walk_iterator iterator;
	bool flush = false;

	for_each_slot_rmap_range(memslot, start_level, end_level, start_gfn,
			end_gfn, &iterator) {
		if (iterator.rmap)
			flush |= fn(kvm, iterator.rmap);

		if (need_resched() || spin_needbreak(&kvm->mmu_lock)) {
			if (flush && lock_flush_tlb) {
				kvm_flush_remote_tlbs(kvm);
				flush = false;
			}
			cond_resched_lock(&kvm->mmu_lock);
		}
	}

	if (flush && lock_flush_tlb) {
		kvm_flush_remote_tlbs(kvm);
		flush = false;
	}

	return flush;
}

static bool
slot_handle_level(struct kvm *kvm, struct kvm_memory_slot *memslot,
		  slot_level_handler fn, int start_level, int end_level,
		  bool lock_flush_tlb)
{
	return slot_handle_level_range(kvm, memslot, fn, start_level,
			end_level, memslot->base_gfn,
			memslot->base_gfn + memslot->npages - 1,
			lock_flush_tlb);
}

static bool
slot_handle_all_level(struct kvm *kvm, struct kvm_memory_slot *memslot,
		      slot_level_handler fn, bool lock_flush_tlb)
{
	return slot_handle_level(kvm, memslot, fn, PT_PAGE_TABLE_LEVEL,
				 PT_MAX_HUGEPAGE_LEVEL, lock_flush_tlb);
}

static bool
slot_handle_large_level(struct kvm *kvm, struct kvm_memory_slot *memslot,
			slot_level_handler fn, bool lock_flush_tlb)
{
	return slot_handle_level(kvm, memslot, fn, PT_PAGE_TABLE_LEVEL + 1,
				 PT_MAX_HUGEPAGE_LEVEL, lock_flush_tlb);
}

static bool
slot_handle_leaf(struct kvm *kvm, struct kvm_memory_slot *memslot,
		 slot_level_handler fn, bool lock_flush_tlb)
{
	return slot_handle_level(kvm, memslot, fn, PT_PAGE_TABLE_LEVEL,
				 PT_PAGE_TABLE_LEVEL, lock_flush_tlb);
}

4530 4531 4532 4533 4534
static bool slot_rmap_write_protect(struct kvm *kvm, unsigned long *rmapp)
{
	return __rmap_write_protect(kvm, rmapp, false);
}

4535 4536
void kvm_mmu_slot_remove_write_access(struct kvm *kvm,
				      struct kvm_memory_slot *memslot)
A
Avi Kivity 已提交
4537
{
4538
	bool flush;
A
Avi Kivity 已提交
4539

4540
	spin_lock(&kvm->mmu_lock);
4541 4542
	flush = slot_handle_all_level(kvm, memslot, slot_rmap_write_protect,
				      false);
4543
	spin_unlock(&kvm->mmu_lock);
4544 4545 4546 4547 4548 4549 4550 4551 4552 4553 4554 4555 4556 4557 4558 4559 4560 4561 4562

	/*
	 * kvm_mmu_slot_remove_write_access() and kvm_vm_ioctl_get_dirty_log()
	 * which do tlb flush out of mmu-lock should be serialized by
	 * kvm->slots_lock otherwise tlb flush would be missed.
	 */
	lockdep_assert_held(&kvm->slots_lock);

	/*
	 * We can flush all the TLBs out of the mmu lock without TLB
	 * corruption since we just change the spte from writable to
	 * readonly so that we only need to care the case of changing
	 * spte from present to present (changing the spte from present
	 * to nonpresent will flush all the TLBs immediately), in other
	 * words, the only case we care is mmu_spte_update() where we
	 * haved checked SPTE_HOST_WRITEABLE | SPTE_MMU_WRITEABLE
	 * instead of PT_WRITABLE_MASK, that means it does not depend
	 * on PT_WRITABLE_MASK anymore.
	 */
4563 4564
	if (flush)
		kvm_flush_remote_tlbs(kvm);
A
Avi Kivity 已提交
4565
}
4566

4567 4568 4569 4570 4571 4572 4573 4574 4575
static bool kvm_mmu_zap_collapsible_spte(struct kvm *kvm,
		unsigned long *rmapp)
{
	u64 *sptep;
	struct rmap_iterator iter;
	int need_tlb_flush = 0;
	pfn_t pfn;
	struct kvm_mmu_page *sp;

4576 4577
restart:
	for_each_rmap_spte(rmapp, &iter, sptep) {
4578 4579 4580 4581
		sp = page_header(__pa(sptep));
		pfn = spte_to_pfn(*sptep);

		/*
4582 4583 4584 4585 4586
		 * We cannot do huge page mapping for indirect shadow pages,
		 * which are found on the last rmap (level = 1) when not using
		 * tdp; such shadow pages are synced with the page table in
		 * the guest, and the guest page table is using 4K page size
		 * mapping if the indirect sp has level = 1.
4587 4588 4589 4590 4591 4592
		 */
		if (sp->role.direct &&
			!kvm_is_reserved_pfn(pfn) &&
			PageTransCompound(pfn_to_page(pfn))) {
			drop_spte(kvm, sptep);
			need_tlb_flush = 1;
4593 4594
			goto restart;
		}
4595 4596 4597 4598 4599 4600 4601 4602 4603
	}

	return need_tlb_flush;
}

void kvm_mmu_zap_collapsible_sptes(struct kvm *kvm,
			struct kvm_memory_slot *memslot)
{
	spin_lock(&kvm->mmu_lock);
4604
	slot_handle_leaf(kvm, memslot, kvm_mmu_zap_collapsible_spte, true);
4605 4606 4607
	spin_unlock(&kvm->mmu_lock);
}

4608 4609 4610
void kvm_mmu_slot_leaf_clear_dirty(struct kvm *kvm,
				   struct kvm_memory_slot *memslot)
{
4611
	bool flush;
4612 4613

	spin_lock(&kvm->mmu_lock);
4614
	flush = slot_handle_leaf(kvm, memslot, __rmap_clear_dirty, false);
4615 4616 4617 4618 4619 4620 4621 4622 4623 4624 4625 4626 4627 4628 4629 4630 4631 4632
	spin_unlock(&kvm->mmu_lock);

	lockdep_assert_held(&kvm->slots_lock);

	/*
	 * It's also safe to flush TLBs out of mmu lock here as currently this
	 * function is only used for dirty logging, in which case flushing TLB
	 * out of mmu lock also guarantees no dirty pages will be lost in
	 * dirty_bitmap.
	 */
	if (flush)
		kvm_flush_remote_tlbs(kvm);
}
EXPORT_SYMBOL_GPL(kvm_mmu_slot_leaf_clear_dirty);

void kvm_mmu_slot_largepage_remove_write_access(struct kvm *kvm,
					struct kvm_memory_slot *memslot)
{
4633
	bool flush;
4634 4635

	spin_lock(&kvm->mmu_lock);
4636 4637
	flush = slot_handle_large_level(kvm, memslot, slot_rmap_write_protect,
					false);
4638 4639 4640 4641 4642 4643 4644 4645 4646 4647 4648 4649 4650
	spin_unlock(&kvm->mmu_lock);

	/* see kvm_mmu_slot_remove_write_access */
	lockdep_assert_held(&kvm->slots_lock);

	if (flush)
		kvm_flush_remote_tlbs(kvm);
}
EXPORT_SYMBOL_GPL(kvm_mmu_slot_largepage_remove_write_access);

void kvm_mmu_slot_set_dirty(struct kvm *kvm,
			    struct kvm_memory_slot *memslot)
{
4651
	bool flush;
4652 4653

	spin_lock(&kvm->mmu_lock);
4654
	flush = slot_handle_all_level(kvm, memslot, __rmap_set_dirty, false);
4655 4656 4657 4658 4659 4660 4661 4662 4663 4664
	spin_unlock(&kvm->mmu_lock);

	lockdep_assert_held(&kvm->slots_lock);

	/* see kvm_mmu_slot_leaf_clear_dirty */
	if (flush)
		kvm_flush_remote_tlbs(kvm);
}
EXPORT_SYMBOL_GPL(kvm_mmu_slot_set_dirty);

X
Xiao Guangrong 已提交
4665
#define BATCH_ZAP_PAGES	10
4666 4667 4668
static void kvm_zap_obsolete_pages(struct kvm *kvm)
{
	struct kvm_mmu_page *sp, *node;
X
Xiao Guangrong 已提交
4669
	int batch = 0;
4670 4671 4672 4673

restart:
	list_for_each_entry_safe_reverse(sp, node,
	      &kvm->arch.active_mmu_pages, link) {
X
Xiao Guangrong 已提交
4674 4675
		int ret;

4676 4677 4678 4679 4680 4681 4682 4683 4684 4685 4686 4687 4688 4689 4690
		/*
		 * No obsolete page exists before new created page since
		 * active_mmu_pages is the FIFO list.
		 */
		if (!is_obsolete_sp(kvm, sp))
			break;

		/*
		 * Since we are reversely walking the list and the invalid
		 * list will be moved to the head, skip the invalid page
		 * can help us to avoid the infinity list walking.
		 */
		if (sp->role.invalid)
			continue;

4691 4692 4693 4694
		/*
		 * Need not flush tlb since we only zap the sp with invalid
		 * generation number.
		 */
X
Xiao Guangrong 已提交
4695
		if (batch >= BATCH_ZAP_PAGES &&
4696
		      cond_resched_lock(&kvm->mmu_lock)) {
X
Xiao Guangrong 已提交
4697
			batch = 0;
4698 4699 4700
			goto restart;
		}

4701 4702
		ret = kvm_mmu_prepare_zap_page(kvm, sp,
				&kvm->arch.zapped_obsolete_pages);
X
Xiao Guangrong 已提交
4703 4704 4705
		batch += ret;

		if (ret)
4706 4707 4708
			goto restart;
	}

4709 4710 4711 4712
	/*
	 * Should flush tlb before free page tables since lockless-walking
	 * may use the pages.
	 */
4713
	kvm_mmu_commit_zap_page(kvm, &kvm->arch.zapped_obsolete_pages);
4714 4715 4716 4717 4718 4719 4720 4721 4722 4723 4724 4725 4726 4727
}

/*
 * Fast invalidate all shadow pages and use lock-break technique
 * to zap obsolete pages.
 *
 * It's required when memslot is being deleted or VM is being
 * destroyed, in these cases, we should ensure that KVM MMU does
 * not use any resource of the being-deleted slot or all slots
 * after calling the function.
 */
void kvm_mmu_invalidate_zap_all_pages(struct kvm *kvm)
{
	spin_lock(&kvm->mmu_lock);
4728
	trace_kvm_mmu_invalidate_zap_all_pages(kvm);
4729 4730
	kvm->arch.mmu_valid_gen++;

4731 4732 4733 4734 4735 4736 4737 4738 4739 4740 4741
	/*
	 * Notify all vcpus to reload its shadow page table
	 * and flush TLB. Then all vcpus will switch to new
	 * shadow page table with the new mmu_valid_gen.
	 *
	 * Note: we should do this under the protection of
	 * mmu-lock, otherwise, vcpu would purge shadow page
	 * but miss tlb flush.
	 */
	kvm_reload_remote_mmus(kvm);

4742 4743 4744 4745
	kvm_zap_obsolete_pages(kvm);
	spin_unlock(&kvm->mmu_lock);
}

4746 4747 4748 4749 4750
static bool kvm_has_zapped_obsolete_pages(struct kvm *kvm)
{
	return unlikely(!list_empty_careful(&kvm->arch.zapped_obsolete_pages));
}

4751 4752 4753 4754 4755 4756
void kvm_mmu_invalidate_mmio_sptes(struct kvm *kvm)
{
	/*
	 * The very rare case: if the generation-number is round,
	 * zap all shadow pages.
	 */
4757
	if (unlikely(kvm_current_mmio_generation(kvm) == 0)) {
4758
		printk_ratelimited(KERN_DEBUG "kvm: zapping shadow pages for mmio generation wraparound\n");
4759
		kvm_mmu_invalidate_zap_all_pages(kvm);
4760
	}
4761 4762
}

4763 4764
static unsigned long
mmu_shrink_scan(struct shrinker *shrink, struct shrink_control *sc)
4765 4766
{
	struct kvm *kvm;
4767
	int nr_to_scan = sc->nr_to_scan;
4768
	unsigned long freed = 0;
4769

4770
	spin_lock(&kvm_lock);
4771 4772

	list_for_each_entry(kvm, &vm_list, vm_list) {
4773
		int idx;
4774
		LIST_HEAD(invalid_list);
4775

4776 4777 4778 4779 4780 4781 4782 4783
		/*
		 * Never scan more than sc->nr_to_scan VM instances.
		 * Will not hit this condition practically since we do not try
		 * to shrink more than one VM and it is very unlikely to see
		 * !n_used_mmu_pages so many times.
		 */
		if (!nr_to_scan--)
			break;
4784 4785 4786 4787 4788 4789
		/*
		 * n_used_mmu_pages is accessed without holding kvm->mmu_lock
		 * here. We may skip a VM instance errorneosly, but we do not
		 * want to shrink a VM that only started to populate its MMU
		 * anyway.
		 */
4790 4791
		if (!kvm->arch.n_used_mmu_pages &&
		      !kvm_has_zapped_obsolete_pages(kvm))
4792 4793
			continue;

4794
		idx = srcu_read_lock(&kvm->srcu);
4795 4796
		spin_lock(&kvm->mmu_lock);

4797 4798 4799 4800 4801 4802
		if (kvm_has_zapped_obsolete_pages(kvm)) {
			kvm_mmu_commit_zap_page(kvm,
			      &kvm->arch.zapped_obsolete_pages);
			goto unlock;
		}

4803 4804
		if (prepare_zap_oldest_mmu_page(kvm, &invalid_list))
			freed++;
4805
		kvm_mmu_commit_zap_page(kvm, &invalid_list);
4806

4807
unlock:
4808
		spin_unlock(&kvm->mmu_lock);
4809
		srcu_read_unlock(&kvm->srcu, idx);
4810

4811 4812 4813 4814 4815
		/*
		 * unfair on small ones
		 * per-vm shrinkers cry out
		 * sadness comes quickly
		 */
4816 4817
		list_move_tail(&kvm->vm_list, &vm_list);
		break;
4818 4819
	}

4820
	spin_unlock(&kvm_lock);
4821 4822 4823 4824 4825 4826
	return freed;
}

static unsigned long
mmu_shrink_count(struct shrinker *shrink, struct shrink_control *sc)
{
4827
	return percpu_counter_read_positive(&kvm_total_used_mmu_pages);
4828 4829 4830
}

static struct shrinker mmu_shrinker = {
4831 4832
	.count_objects = mmu_shrink_count,
	.scan_objects = mmu_shrink_scan,
4833 4834 4835
	.seeks = DEFAULT_SEEKS * 10,
};

I
Ingo Molnar 已提交
4836
static void mmu_destroy_caches(void)
4837
{
4838 4839
	if (pte_list_desc_cache)
		kmem_cache_destroy(pte_list_desc_cache);
4840 4841
	if (mmu_page_header_cache)
		kmem_cache_destroy(mmu_page_header_cache);
4842 4843 4844 4845
}

int kvm_mmu_module_init(void)
{
4846 4847
	pte_list_desc_cache = kmem_cache_create("pte_list_desc",
					    sizeof(struct pte_list_desc),
4848
					    0, 0, NULL);
4849
	if (!pte_list_desc_cache)
4850 4851
		goto nomem;

4852 4853
	mmu_page_header_cache = kmem_cache_create("kvm_mmu_page_header",
						  sizeof(struct kvm_mmu_page),
4854
						  0, 0, NULL);
4855 4856 4857
	if (!mmu_page_header_cache)
		goto nomem;

4858
	if (percpu_counter_init(&kvm_total_used_mmu_pages, 0, GFP_KERNEL))
4859 4860
		goto nomem;

4861 4862
	register_shrinker(&mmu_shrinker);

4863 4864 4865
	return 0;

nomem:
4866
	mmu_destroy_caches();
4867 4868 4869
	return -ENOMEM;
}

4870 4871 4872 4873 4874 4875 4876
/*
 * Caculate mmu pages needed for kvm.
 */
unsigned int kvm_mmu_calculate_mmu_pages(struct kvm *kvm)
{
	unsigned int nr_mmu_pages;
	unsigned int  nr_pages = 0;
4877
	struct kvm_memslots *slots;
4878
	struct kvm_memory_slot *memslot;
4879

4880 4881
	slots = kvm_memslots(kvm);

4882 4883
	kvm_for_each_memslot(memslot, slots)
		nr_pages += memslot->npages;
4884 4885 4886 4887 4888 4889 4890 4891

	nr_mmu_pages = nr_pages * KVM_PERMILLE_MMU_PAGES / 1000;
	nr_mmu_pages = max(nr_mmu_pages,
			(unsigned int) KVM_MIN_ALLOC_MMU_PAGES);

	return nr_mmu_pages;
}

4892 4893 4894
int kvm_mmu_get_spte_hierarchy(struct kvm_vcpu *vcpu, u64 addr, u64 sptes[4])
{
	struct kvm_shadow_walk_iterator iterator;
4895
	u64 spte;
4896 4897
	int nr_sptes = 0;

4898 4899 4900
	if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
		return nr_sptes;

4901 4902 4903
	walk_shadow_page_lockless_begin(vcpu);
	for_each_shadow_entry_lockless(vcpu, addr, iterator, spte) {
		sptes[iterator.level-1] = spte;
4904
		nr_sptes++;
4905
		if (!is_shadow_present_pte(spte))
4906 4907
			break;
	}
4908
	walk_shadow_page_lockless_end(vcpu);
4909 4910 4911 4912 4913

	return nr_sptes;
}
EXPORT_SYMBOL_GPL(kvm_mmu_get_spte_hierarchy);

4914 4915
void kvm_mmu_destroy(struct kvm_vcpu *vcpu)
{
4916
	kvm_mmu_unload(vcpu);
4917 4918
	free_mmu_pages(vcpu);
	mmu_free_memory_caches(vcpu);
4919 4920 4921 4922 4923 4924 4925
}

void kvm_mmu_module_exit(void)
{
	mmu_destroy_caches();
	percpu_counter_destroy(&kvm_total_used_mmu_pages);
	unregister_shrinker(&mmu_shrinker);
4926 4927
	mmu_audit_disable();
}