spu.c 13.5 KB
Newer Older
G
Geoff Levand 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
/*
 *  PS3 Platform spu routines.
 *
 *  Copyright (C) 2006 Sony Computer Entertainment Inc.
 *  Copyright 2006 Sony Corp.
 *
 *  This program is free software; you can redistribute it and/or modify
 *  it under the terms of the GNU General Public License as published by
 *  the Free Software Foundation; version 2 of the License.
 *
 *  This program is distributed in the hope that it will be useful,
 *  but WITHOUT ANY WARRANTY; without even the implied warranty of
 *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 *  GNU General Public License for more details.
 *
 *  You should have received a copy of the GNU General Public License
 *  along with this program; if not, write to the Free Software
 *  Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
 */

#include <linux/kernel.h>
#include <linux/init.h>
#include <linux/mmzone.h>
#include <linux/io.h>
#include <linux/mm.h>

#include <asm/spu.h>
#include <asm/spu_priv1.h>
#include <asm/lv1call.h>

31 32
#include "platform.h"

G
Geoff Levand 已提交
33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53
/* spu_management_ops */

/**
 * enum spe_type - Type of spe to create.
 * @spe_type_logical: Standard logical spe.
 *
 * For use with lv1_construct_logical_spe().  The current HV does not support
 * any types other than those listed.
 */

enum spe_type {
	SPE_TYPE_LOGICAL = 0,
};

/**
 * struct spe_shadow - logical spe shadow register area.
 *
 * Read-only shadow of spe registers.
 */

struct spe_shadow {
54
	u8 padding_0140[0x0140];
G
Geoff Levand 已提交
55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70
	u64 int_status_class0_RW;       /* 0x0140 */
	u64 int_status_class1_RW;       /* 0x0148 */
	u64 int_status_class2_RW;       /* 0x0150 */
	u8 padding_0158[0x0610-0x0158];
	u64 mfc_dsisr_RW;               /* 0x0610 */
	u8 padding_0618[0x0620-0x0618];
	u64 mfc_dar_RW;                 /* 0x0620 */
	u8 padding_0628[0x0800-0x0628];
	u64 mfc_dsipr_R;                /* 0x0800 */
	u8 padding_0808[0x0810-0x0808];
	u64 mfc_lscrr_R;                /* 0x0810 */
	u8 padding_0818[0x0c00-0x0818];
	u64 mfc_cer_R;                  /* 0x0c00 */
	u8 padding_0c08[0x0f00-0x0c08];
	u64 spe_execution_status;       /* 0x0f00 */
	u8 padding_0f08[0x1000-0x0f08];
71
};
G
Geoff Levand 已提交
72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186

/**
 * enum spe_ex_state - Logical spe execution state.
 * @spe_ex_state_unexecutable: Uninitialized.
 * @spe_ex_state_executable: Enabled, not ready.
 * @spe_ex_state_executed: Ready for use.
 *
 * The execution state (status) of the logical spe as reported in
 * struct spe_shadow:spe_execution_status.
 */

enum spe_ex_state {
	SPE_EX_STATE_UNEXECUTABLE = 0,
	SPE_EX_STATE_EXECUTABLE = 2,
	SPE_EX_STATE_EXECUTED = 3,
};

/**
 * struct priv1_cache - Cached values of priv1 registers.
 * @masks[]: Array of cached spe interrupt masks, indexed by class.
 * @sr1: Cached mfc_sr1 register.
 * @tclass_id: Cached mfc_tclass_id register.
 */

struct priv1_cache {
	u64 masks[3];
	u64 sr1;
	u64 tclass_id;
};

/**
 * struct spu_pdata - Platform state variables.
 * @spe_id: HV spe id returned by lv1_construct_logical_spe().
 * @resource_id: HV spe resource id returned by
 * 	ps3_repository_read_spe_resource_id().
 * @priv2_addr: lpar address of spe priv2 area returned by
 * 	lv1_construct_logical_spe().
 * @shadow_addr: lpar address of spe register shadow area returned by
 * 	lv1_construct_logical_spe().
 * @shadow: Virtual (ioremap) address of spe register shadow area.
 * @cache: Cached values of priv1 registers.
 */

struct spu_pdata {
	u64 spe_id;
	u64 resource_id;
	u64 priv2_addr;
	u64 shadow_addr;
	struct spe_shadow __iomem *shadow;
	struct priv1_cache cache;
};

static struct spu_pdata *spu_pdata(struct spu *spu)
{
	return spu->pdata;
}

#define dump_areas(_a, _b, _c, _d, _e) \
	_dump_areas(_a, _b, _c, _d, _e, __func__, __LINE__)
static void _dump_areas(unsigned int spe_id, unsigned long priv2,
	unsigned long problem, unsigned long ls, unsigned long shadow,
	const char* func, int line)
{
	pr_debug("%s:%d: spe_id:  %xh (%u)\n", func, line, spe_id, spe_id);
	pr_debug("%s:%d: priv2:   %lxh\n", func, line, priv2);
	pr_debug("%s:%d: problem: %lxh\n", func, line, problem);
	pr_debug("%s:%d: ls:      %lxh\n", func, line, ls);
	pr_debug("%s:%d: shadow:  %lxh\n", func, line, shadow);
}

static unsigned long get_vas_id(void)
{
	unsigned long id;

	lv1_get_logical_ppe_id(&id);
	lv1_get_virtual_address_space_id_of_ppe(id, &id);

	return id;
}

static int __init construct_spu(struct spu *spu)
{
	int result;
	unsigned long unused;

	result = lv1_construct_logical_spe(PAGE_SHIFT, PAGE_SHIFT, PAGE_SHIFT,
		PAGE_SHIFT, PAGE_SHIFT, get_vas_id(), SPE_TYPE_LOGICAL,
		&spu_pdata(spu)->priv2_addr, &spu->problem_phys,
		&spu->local_store_phys, &unused,
		&spu_pdata(spu)->shadow_addr,
		&spu_pdata(spu)->spe_id);

	if (result) {
		pr_debug("%s:%d: lv1_construct_logical_spe failed: %s\n",
			__func__, __LINE__, ps3_result(result));
		return result;
	}

	return result;
}

static void spu_unmap(struct spu *spu)
{
	iounmap(spu->priv2);
	iounmap(spu->problem);
	iounmap((__force u8 __iomem *)spu->local_store);
	iounmap(spu_pdata(spu)->shadow);
}

static int __init setup_areas(struct spu *spu)
{
	struct table {char* name; unsigned long addr; unsigned long size;};

	spu_pdata(spu)->shadow = __ioremap(
		spu_pdata(spu)->shadow_addr, sizeof(struct spe_shadow),
187
		pgprot_val(PAGE_READONLY) | _PAGE_NO_CACHE | _PAGE_GUARDED);
G
Geoff Levand 已提交
188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224
	if (!spu_pdata(spu)->shadow) {
		pr_debug("%s:%d: ioremap shadow failed\n", __func__, __LINE__);
		goto fail_ioremap;
	}

	spu->local_store = ioremap(spu->local_store_phys, LS_SIZE);
	if (!spu->local_store) {
		pr_debug("%s:%d: ioremap local_store failed\n",
			__func__, __LINE__);
		goto fail_ioremap;
	}

	spu->problem = ioremap(spu->problem_phys,
		sizeof(struct spu_problem));
	if (!spu->problem) {
		pr_debug("%s:%d: ioremap problem failed\n", __func__, __LINE__);
		goto fail_ioremap;
	}

	spu->priv2 = ioremap(spu_pdata(spu)->priv2_addr,
		sizeof(struct spu_priv2));
	if (!spu->priv2) {
		pr_debug("%s:%d: ioremap priv2 failed\n", __func__, __LINE__);
		goto fail_ioremap;
	}

	dump_areas(spu_pdata(spu)->spe_id, spu_pdata(spu)->priv2_addr,
		spu->problem_phys, spu->local_store_phys,
		spu_pdata(spu)->shadow_addr);
	dump_areas(spu_pdata(spu)->spe_id, (unsigned long)spu->priv2,
		(unsigned long)spu->problem, (unsigned long)spu->local_store,
		(unsigned long)spu_pdata(spu)->shadow);

	return 0;

fail_ioremap:
	spu_unmap(spu);
225 226

	return -ENOMEM;
G
Geoff Levand 已提交
227 228 229 230 231 232
}

static int __init setup_interrupts(struct spu *spu)
{
	int result;

233 234
	result = ps3_alloc_spe_irq(PS3_BINDING_CPU_ANY, spu_pdata(spu)->spe_id,
		0, &spu->irqs[0]);
G
Geoff Levand 已提交
235 236 237 238

	if (result)
		goto fail_alloc_0;

239 240
	result = ps3_alloc_spe_irq(PS3_BINDING_CPU_ANY, spu_pdata(spu)->spe_id,
		1, &spu->irqs[1]);
G
Geoff Levand 已提交
241 242 243 244

	if (result)
		goto fail_alloc_1;

245 246
	result = ps3_alloc_spe_irq(PS3_BINDING_CPU_ANY, spu_pdata(spu)->spe_id,
		2, &spu->irqs[2]);
G
Geoff Levand 已提交
247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575

	if (result)
		goto fail_alloc_2;

	return result;

fail_alloc_2:
	ps3_free_spe_irq(spu->irqs[1]);
fail_alloc_1:
	ps3_free_spe_irq(spu->irqs[0]);
fail_alloc_0:
	spu->irqs[0] = spu->irqs[1] = spu->irqs[2] = NO_IRQ;
	return result;
}

static int __init enable_spu(struct spu *spu)
{
	int result;

	result = lv1_enable_logical_spe(spu_pdata(spu)->spe_id,
		spu_pdata(spu)->resource_id);

	if (result) {
		pr_debug("%s:%d: lv1_enable_logical_spe failed: %s\n",
			__func__, __LINE__, ps3_result(result));
		goto fail_enable;
	}

	result = setup_areas(spu);

	if (result)
		goto fail_areas;

	result = setup_interrupts(spu);

	if (result)
		goto fail_interrupts;

	return 0;

fail_interrupts:
	spu_unmap(spu);
fail_areas:
	lv1_disable_logical_spe(spu_pdata(spu)->spe_id, 0);
fail_enable:
	return result;
}

static int ps3_destroy_spu(struct spu *spu)
{
	int result;

	pr_debug("%s:%d spu_%d\n", __func__, __LINE__, spu->number);

	result = lv1_disable_logical_spe(spu_pdata(spu)->spe_id, 0);
	BUG_ON(result);

	ps3_free_spe_irq(spu->irqs[2]);
	ps3_free_spe_irq(spu->irqs[1]);
	ps3_free_spe_irq(spu->irqs[0]);

	spu->irqs[0] = spu->irqs[1] = spu->irqs[2] = NO_IRQ;

	spu_unmap(spu);

	result = lv1_destruct_logical_spe(spu_pdata(spu)->spe_id);
	BUG_ON(result);

	kfree(spu->pdata);
	spu->pdata = NULL;

	return 0;
}

static int __init ps3_create_spu(struct spu *spu, void *data)
{
	int result;

	pr_debug("%s:%d spu_%d\n", __func__, __LINE__, spu->number);

	spu->pdata = kzalloc(sizeof(struct spu_pdata),
		GFP_KERNEL);

	if (!spu->pdata) {
		result = -ENOMEM;
		goto fail_malloc;
	}

	spu_pdata(spu)->resource_id = (unsigned long)data;

	/* Init cached reg values to HV defaults. */

	spu_pdata(spu)->cache.sr1 = 0x33;

	result = construct_spu(spu);

	if (result)
		goto fail_construct;

	/* For now, just go ahead and enable it. */

	result = enable_spu(spu);

	if (result)
		goto fail_enable;

	/* Make sure the spu is in SPE_EX_STATE_EXECUTED. */

	/* need something better here!!! */
	while (in_be64(&spu_pdata(spu)->shadow->spe_execution_status)
		!= SPE_EX_STATE_EXECUTED)
		(void)0;

	return result;

fail_enable:
fail_construct:
	ps3_destroy_spu(spu);
fail_malloc:
	return result;
}

static int __init ps3_enumerate_spus(int (*fn)(void *data))
{
	int result;
	unsigned int num_resource_id;
	unsigned int i;

	result = ps3_repository_read_num_spu_resource_id(&num_resource_id);

	pr_debug("%s:%d: num_resource_id %u\n", __func__, __LINE__,
		num_resource_id);

	/*
	 * For now, just create logical spus equal to the number
	 * of physical spus reserved for the partition.
	 */

	for (i = 0; i < num_resource_id; i++) {
		enum ps3_spu_resource_type resource_type;
		unsigned int resource_id;

		result = ps3_repository_read_spu_resource_id(i,
			&resource_type, &resource_id);

		if (result)
			break;

		if (resource_type == PS3_SPU_RESOURCE_TYPE_EXCLUSIVE) {
			result = fn((void*)(unsigned long)resource_id);

			if (result)
				break;
		}
	}

	if (result)
		printk(KERN_WARNING "%s:%d: Error initializing spus\n",
			__func__, __LINE__);

	return result;
}

const struct spu_management_ops spu_management_ps3_ops = {
	.enumerate_spus = ps3_enumerate_spus,
	.create_spu = ps3_create_spu,
	.destroy_spu = ps3_destroy_spu,
};

/* spu_priv1_ops */

static void int_mask_and(struct spu *spu, int class, u64 mask)
{
	u64 old_mask;

	/* are these serialized by caller??? */
	old_mask = spu_int_mask_get(spu, class);
	spu_int_mask_set(spu, class, old_mask & mask);
}

static void int_mask_or(struct spu *spu, int class, u64 mask)
{
	u64 old_mask;

	old_mask = spu_int_mask_get(spu, class);
	spu_int_mask_set(spu, class, old_mask | mask);
}

static void int_mask_set(struct spu *spu, int class, u64 mask)
{
	spu_pdata(spu)->cache.masks[class] = mask;
	lv1_set_spe_interrupt_mask(spu_pdata(spu)->spe_id, class,
		spu_pdata(spu)->cache.masks[class]);
}

static u64 int_mask_get(struct spu *spu, int class)
{
	return spu_pdata(spu)->cache.masks[class];
}

static void int_stat_clear(struct spu *spu, int class, u64 stat)
{
	/* Note that MFC_DSISR will be cleared when class1[MF] is set. */

	lv1_clear_spe_interrupt_status(spu_pdata(spu)->spe_id, class,
		stat, 0);
}

static u64 int_stat_get(struct spu *spu, int class)
{
	u64 stat;

	lv1_get_spe_interrupt_status(spu_pdata(spu)->spe_id, class, &stat);
	return stat;
}

static void cpu_affinity_set(struct spu *spu, int cpu)
{
	/* No support. */
}

static u64 mfc_dar_get(struct spu *spu)
{
	return in_be64(&spu_pdata(spu)->shadow->mfc_dar_RW);
}

static void mfc_dsisr_set(struct spu *spu, u64 dsisr)
{
	/* Nothing to do, cleared in int_stat_clear(). */
}

static u64 mfc_dsisr_get(struct spu *spu)
{
	return in_be64(&spu_pdata(spu)->shadow->mfc_dsisr_RW);
}

static void mfc_sdr_setup(struct spu *spu)
{
	/* Nothing to do. */
}

static void mfc_sr1_set(struct spu *spu, u64 sr1)
{
	/* Check bits allowed by HV. */

	static const u64 allowed = ~(MFC_STATE1_LOCAL_STORAGE_DECODE_MASK
		| MFC_STATE1_PROBLEM_STATE_MASK);

	BUG_ON((sr1 & allowed) != (spu_pdata(spu)->cache.sr1 & allowed));

	spu_pdata(spu)->cache.sr1 = sr1;
	lv1_set_spe_privilege_state_area_1_register(
		spu_pdata(spu)->spe_id,
		offsetof(struct spu_priv1, mfc_sr1_RW),
		spu_pdata(spu)->cache.sr1);
}

static u64 mfc_sr1_get(struct spu *spu)
{
	return spu_pdata(spu)->cache.sr1;
}

static void mfc_tclass_id_set(struct spu *spu, u64 tclass_id)
{
	spu_pdata(spu)->cache.tclass_id = tclass_id;
	lv1_set_spe_privilege_state_area_1_register(
		spu_pdata(spu)->spe_id,
		offsetof(struct spu_priv1, mfc_tclass_id_RW),
		spu_pdata(spu)->cache.tclass_id);
}

static u64 mfc_tclass_id_get(struct spu *spu)
{
	return spu_pdata(spu)->cache.tclass_id;
}

static void tlb_invalidate(struct spu *spu)
{
	/* Nothing to do. */
}

static void resource_allocation_groupID_set(struct spu *spu, u64 id)
{
	/* No support. */
}

static u64 resource_allocation_groupID_get(struct spu *spu)
{
	return 0; /* No support. */
}

static void resource_allocation_enable_set(struct spu *spu, u64 enable)
{
	/* No support. */
}

static u64 resource_allocation_enable_get(struct spu *spu)
{
	return 0; /* No support. */
}

const struct spu_priv1_ops spu_priv1_ps3_ops = {
	.int_mask_and = int_mask_and,
	.int_mask_or = int_mask_or,
	.int_mask_set = int_mask_set,
	.int_mask_get = int_mask_get,
	.int_stat_clear = int_stat_clear,
	.int_stat_get = int_stat_get,
	.cpu_affinity_set = cpu_affinity_set,
	.mfc_dar_get = mfc_dar_get,
	.mfc_dsisr_set = mfc_dsisr_set,
	.mfc_dsisr_get = mfc_dsisr_get,
	.mfc_sdr_setup = mfc_sdr_setup,
	.mfc_sr1_set = mfc_sr1_set,
	.mfc_sr1_get = mfc_sr1_get,
	.mfc_tclass_id_set = mfc_tclass_id_set,
	.mfc_tclass_id_get = mfc_tclass_id_get,
	.tlb_invalidate = tlb_invalidate,
	.resource_allocation_groupID_set = resource_allocation_groupID_set,
	.resource_allocation_groupID_get = resource_allocation_groupID_get,
	.resource_allocation_enable_set = resource_allocation_enable_set,
	.resource_allocation_enable_get = resource_allocation_enable_get,
};

void ps3_spu_set_platform(void)
{
	spu_priv1_ops = &spu_priv1_ps3_ops;
	spu_management_ops = &spu_management_ps3_ops;
}