fec.c 62.7 KB
Newer Older
L
Linus Torvalds 已提交
1 2 3 4
/*
 * Fast Ethernet Controller (FEC) driver for Motorola MPC8xx.
 * Copyright (c) 1997 Dan Malek (dmalek@jlc.net)
 *
5
 * Right now, I am very wasteful with the buffers.  I allocate memory
L
Linus Torvalds 已提交
6 7 8 9 10 11 12 13 14
 * pages and then divide them into 2K frame buffers.  This way I know I
 * have buffers large enough to hold one frame within one buffer descriptor.
 * Once I get this working, I will use 64 or 128 byte CPM buffers, which
 * will be much more memory efficient and will easily handle lots of
 * small packets.
 *
 * Much better multiple PHY support by Magnus Damm.
 * Copyright (c) 2000 Ericsson Radio Systems AB.
 *
15 16
 * Support for FEC controller of ColdFire processors.
 * Copyright (c) 2001-2005 Greg Ungerer (gerg@snapgear.com)
17 18
 *
 * Bug fixes and cleanup by Philippe De Muyter (phdm@macqel.be)
19
 * Copyright (c) 2004-2006 Macq Electronique SA.
L
Linus Torvalds 已提交
20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38
 */

#include <linux/module.h>
#include <linux/kernel.h>
#include <linux/string.h>
#include <linux/ptrace.h>
#include <linux/errno.h>
#include <linux/ioport.h>
#include <linux/slab.h>
#include <linux/interrupt.h>
#include <linux/pci.h>
#include <linux/init.h>
#include <linux/delay.h>
#include <linux/netdevice.h>
#include <linux/etherdevice.h>
#include <linux/skbuff.h>
#include <linux/spinlock.h>
#include <linux/workqueue.h>
#include <linux/bitops.h>
39 40
#include <linux/io.h>
#include <linux/irq.h>
L
Linus Torvalds 已提交
41

42
#include <asm/cacheflush.h>
L
Linus Torvalds 已提交
43 44
#include <asm/coldfire.h>
#include <asm/mcfsim.h>
45

L
Linus Torvalds 已提交
46 47 48 49 50 51 52 53
#include "fec.h"

#if defined(CONFIG_FEC2)
#define	FEC_MAX_PORTS	2
#else
#define	FEC_MAX_PORTS	1
#endif

54
#if defined(CONFIG_M5272)
55 56 57
#define HAVE_mii_link_interrupt
#endif

L
Linus Torvalds 已提交
58 59 60 61 62 63 64 65 66
/*
 * Define the fixed address of the FEC hardware.
 */
static unsigned int fec_hw[] = {
#if defined(CONFIG_M5272)
	(MCF_MBAR + 0x840),
#elif defined(CONFIG_M527x)
	(MCF_MBAR + 0x1000),
	(MCF_MBAR + 0x1800),
67
#elif defined(CONFIG_M523x) || defined(CONFIG_M528x)
L
Linus Torvalds 已提交
68
	(MCF_MBAR + 0x1000),
69 70
#elif defined(CONFIG_M520x)
	(MCF_MBAR+0x30000),
71 72
#elif defined(CONFIG_M532x)
	(MCF_MBAR+0xfc030000),
L
Linus Torvalds 已提交
73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89
#endif
};

static unsigned char	fec_mac_default[] = {
	0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
};

/*
 * Some hardware gets it MAC address out of local flash memory.
 * if this is non-zero then assume it is the address to get MAC from.
 */
#if defined(CONFIG_NETtel)
#define	FEC_FLASHMAC	0xf0006006
#elif defined(CONFIG_GILBARCONAP) || defined(CONFIG_SCALES)
#define	FEC_FLASHMAC	0xf0006000
#elif defined(CONFIG_CANCam)
#define	FEC_FLASHMAC	0xf0020000
90 91 92 93
#elif defined (CONFIG_M5272C3)
#define	FEC_FLASHMAC	(0xffe04000 + 4)
#elif defined(CONFIG_MOD5272)
#define FEC_FLASHMAC 	0xffc0406b
L
Linus Torvalds 已提交
94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130
#else
#define	FEC_FLASHMAC	0
#endif

/* Forward declarations of some structures to support different PHYs
*/

typedef struct {
	uint mii_data;
	void (*funct)(uint mii_reg, struct net_device *dev);
} phy_cmd_t;

typedef struct {
	uint id;
	char *name;

	const phy_cmd_t *config;
	const phy_cmd_t *startup;
	const phy_cmd_t *ack_int;
	const phy_cmd_t *shutdown;
} phy_info_t;

/* The number of Tx and Rx buffers.  These are allocated from the page
 * pool.  The code may assume these are power of two, so it it best
 * to keep them that size.
 * We don't need to allocate pages for the transmitter.  We just use
 * the skbuffer directly.
 */
#define FEC_ENET_RX_PAGES	8
#define FEC_ENET_RX_FRSIZE	2048
#define FEC_ENET_RX_FRPPG	(PAGE_SIZE / FEC_ENET_RX_FRSIZE)
#define RX_RING_SIZE		(FEC_ENET_RX_FRPPG * FEC_ENET_RX_PAGES)
#define FEC_ENET_TX_FRSIZE	2048
#define FEC_ENET_TX_FRPPG	(PAGE_SIZE / FEC_ENET_TX_FRSIZE)
#define TX_RING_SIZE		16	/* Must be power of two */
#define TX_RING_MOD_MASK	15	/*   for this to work */

131
#if (((RX_RING_SIZE + TX_RING_SIZE) * 8) > PAGE_SIZE)
132
#error "FEC: descriptor ring size constants too large"
133 134
#endif

L
Linus Torvalds 已提交
135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155
/* Interrupt events/masks.
*/
#define FEC_ENET_HBERR	((uint)0x80000000)	/* Heartbeat error */
#define FEC_ENET_BABR	((uint)0x40000000)	/* Babbling receiver */
#define FEC_ENET_BABT	((uint)0x20000000)	/* Babbling transmitter */
#define FEC_ENET_GRA	((uint)0x10000000)	/* Graceful stop complete */
#define FEC_ENET_TXF	((uint)0x08000000)	/* Full frame transmitted */
#define FEC_ENET_TXB	((uint)0x04000000)	/* A buffer was transmitted */
#define FEC_ENET_RXF	((uint)0x02000000)	/* Full frame received */
#define FEC_ENET_RXB	((uint)0x01000000)	/* A buffer was received */
#define FEC_ENET_MII	((uint)0x00800000)	/* MII interrupt */
#define FEC_ENET_EBERR	((uint)0x00400000)	/* SDMA bus error */

/* The FEC stores dest/src/type, data, and checksum for receive packets.
 */
#define PKT_MAXBUF_SIZE		1518
#define PKT_MINBUF_SIZE		64
#define PKT_MAXBLR_SIZE		1520


/*
156
 * The 5270/5271/5280/5282/532x RX control register also contains maximum frame
L
Linus Torvalds 已提交
157 158 159
 * size bits. Other FEC hardware does not, so we need to take that into
 * account when setting it.
 */
160
#if defined(CONFIG_M523x) || defined(CONFIG_M527x) || defined(CONFIG_M528x) || \
161
    defined(CONFIG_M520x) || defined(CONFIG_M532x)
L
Linus Torvalds 已提交
162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178
#define	OPT_FRAME_SIZE	(PKT_MAXBUF_SIZE << 16)
#else
#define	OPT_FRAME_SIZE	0
#endif

/* The FEC buffer descriptors track the ring buffers.  The rx_bd_base and
 * tx_bd_base always point to the base of the buffer descriptors.  The
 * cur_rx and cur_tx point to the currently available buffer.
 * The dirty_tx tracks the current buffer that is being sent by the
 * controller.  The cur_tx and dirty_tx are equal under both completely
 * empty and completely full conditions.  The empty/ready indicator in
 * the buffer descriptor determines the actual condition.
 */
struct fec_enet_private {
	/* Hardware registers of the FEC device */
	volatile fec_t	*hwp;

G
Greg Ungerer 已提交
179 180
	struct net_device *netdev;

L
Linus Torvalds 已提交
181 182 183 184 185 186 187 188 189 190 191 192 193
	/* The saved address of a sent-in-place packet/buffer, for skfree(). */
	unsigned char *tx_bounce[TX_RING_SIZE];
	struct	sk_buff* tx_skbuff[TX_RING_SIZE];
	ushort	skb_cur;
	ushort	skb_dirty;

	/* CPM dual port RAM relative addresses.
	*/
	cbd_t	*rx_bd_base;		/* Address of Rx and Tx buffers. */
	cbd_t	*tx_bd_base;
	cbd_t	*cur_rx, *cur_tx;		/* The next free ring entry */
	cbd_t	*dirty_tx;	/* The ring entries to be free()ed. */
	uint	tx_full;
194 195 196 197
	/* hold while accessing the HW like ringbuffer for tx/rx but not MAC */
	spinlock_t hw_lock;
	/* hold while accessing the mii_list_t() elements */
	spinlock_t mii_lock;
L
Linus Torvalds 已提交
198 199 200 201 202

	uint	phy_id;
	uint	phy_id_done;
	uint	phy_status;
	uint	phy_speed;
203
	phy_info_t const	*phy;
L
Linus Torvalds 已提交
204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220
	struct work_struct phy_task;

	uint	sequence_done;
	uint	mii_phy_task_queued;

	uint	phy_addr;

	int	index;
	int	opened;
	int	link;
	int	old_link;
	int	full_duplex;
};

static int fec_enet_open(struct net_device *dev);
static int fec_enet_start_xmit(struct sk_buff *skb, struct net_device *dev);
static void fec_enet_mii(struct net_device *dev);
221
static irqreturn_t fec_enet_interrupt(int irq, void * dev_id);
L
Linus Torvalds 已提交
222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241
static void fec_enet_tx(struct net_device *dev);
static void fec_enet_rx(struct net_device *dev);
static int fec_enet_close(struct net_device *dev);
static void set_multicast_list(struct net_device *dev);
static void fec_restart(struct net_device *dev, int duplex);
static void fec_stop(struct net_device *dev);
static void fec_set_mac_address(struct net_device *dev);


/* MII processing.  We keep this as simple as possible.  Requests are
 * placed on the list (if there is room).  When the request is finished
 * by the MII, an optional function may be called.
 */
typedef struct mii_list {
	uint	mii_regval;
	void	(*mii_func)(uint val, struct net_device *dev);
	struct	mii_list *mii_next;
} mii_list_t;

#define		NMII	20
242 243 244 245
static mii_list_t	mii_cmds[NMII];
static mii_list_t	*mii_free;
static mii_list_t	*mii_head;
static mii_list_t	*mii_tail;
L
Linus Torvalds 已提交
246

247
static int	mii_queue(struct net_device *dev, int request,
L
Linus Torvalds 已提交
248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267
				void (*func)(uint, struct net_device *));

/* Make MII read/write commands for the FEC.
*/
#define mk_mii_read(REG)	(0x60020000 | ((REG & 0x1f) << 18))
#define mk_mii_write(REG, VAL)	(0x50020000 | ((REG & 0x1f) << 18) | \
						(VAL & 0xffff))
#define mk_mii_end	0

/* Transmitter timeout.
*/
#define TX_TIMEOUT (2*HZ)

/* Register definitions for the PHY.
*/

#define MII_REG_CR          0  /* Control Register                         */
#define MII_REG_SR          1  /* Status Register                          */
#define MII_REG_PHYIR1      2  /* PHY Identification Register 1            */
#define MII_REG_PHYIR2      3  /* PHY Identification Register 2            */
268
#define MII_REG_ANAR        4  /* A-N Advertisement Register               */
L
Linus Torvalds 已提交
269 270 271 272 273 274 275 276 277 278 279
#define MII_REG_ANLPAR      5  /* A-N Link Partner Ability Register        */
#define MII_REG_ANER        6  /* A-N Expansion Register                   */
#define MII_REG_ANNPTR      7  /* A-N Next Page Transmit Register          */
#define MII_REG_ANLPRNPR    8  /* A-N Link Partner Received Next Page Reg. */

/* values for phy_status */

#define PHY_CONF_ANE	0x0001  /* 1 auto-negotiation enabled */
#define PHY_CONF_LOOP	0x0002  /* 1 loopback mode enabled */
#define PHY_CONF_SPMASK	0x00f0  /* mask for speed */
#define PHY_CONF_10HDX	0x0010  /* 10 Mbit half duplex supported */
280
#define PHY_CONF_10FDX	0x0020  /* 10 Mbit full duplex supported */
L
Linus Torvalds 已提交
281
#define PHY_CONF_100HDX	0x0040  /* 100 Mbit half duplex supported */
282
#define PHY_CONF_100FDX	0x0080  /* 100 Mbit full duplex supported */
L
Linus Torvalds 已提交
283 284 285 286 287 288

#define PHY_STAT_LINK	0x0100  /* 1 up - 0 down */
#define PHY_STAT_FAULT	0x0200  /* 1 remote fault */
#define PHY_STAT_ANC	0x0400  /* 1 auto-negotiation complete	*/
#define PHY_STAT_SPMASK	0xf000  /* mask for speed */
#define PHY_STAT_10HDX	0x1000  /* 10 Mbit half duplex selected	*/
289
#define PHY_STAT_10FDX	0x2000  /* 10 Mbit full duplex selected	*/
L
Linus Torvalds 已提交
290
#define PHY_STAT_100HDX	0x4000  /* 100 Mbit half duplex selected */
291
#define PHY_STAT_100FDX	0x8000  /* 100 Mbit full duplex selected */
L
Linus Torvalds 已提交
292 293 294 295 296 297 298 299


static int
fec_enet_start_xmit(struct sk_buff *skb, struct net_device *dev)
{
	struct fec_enet_private *fep;
	volatile fec_t	*fecp;
	volatile cbd_t	*bdp;
300
	unsigned short	status;
301
	unsigned long flags;
L
Linus Torvalds 已提交
302 303 304 305 306 307 308 309 310

	fep = netdev_priv(dev);
	fecp = (volatile fec_t*)dev->base_addr;

	if (!fep->link) {
		/* Link is down or autonegotiation is in progress. */
		return 1;
	}

311
	spin_lock_irqsave(&fep->hw_lock, flags);
L
Linus Torvalds 已提交
312 313 314
	/* Fill in a Tx ring entry */
	bdp = fep->cur_tx;

315
	status = bdp->cbd_sc;
L
Linus Torvalds 已提交
316
#ifndef final_version
317
	if (status & BD_ENET_TX_READY) {
L
Linus Torvalds 已提交
318 319 320 321
		/* Ooops.  All transmit buffers are full.  Bail out.
		 * This should not happen, since dev->tbusy should be set.
		 */
		printk("%s: tx queue full!.\n", dev->name);
322
		spin_unlock_irqrestore(&fep->hw_lock, flags);
L
Linus Torvalds 已提交
323 324 325 326 327 328
		return 1;
	}
#endif

	/* Clear all of the status flags.
	 */
329
	status &= ~BD_ENET_TX_STATS;
L
Linus Torvalds 已提交
330 331 332 333 334 335 336 337 338 339 340 341 342 343

	/* Set buffer length and buffer pointer.
	*/
	bdp->cbd_bufaddr = __pa(skb->data);
	bdp->cbd_datlen = skb->len;

	/*
	 *	On some FEC implementations data must be aligned on
	 *	4-byte boundaries. Use bounce buffers to copy data
	 *	and get it aligned. Ugh.
	 */
	if (bdp->cbd_bufaddr & 0x3) {
		unsigned int index;
		index = bdp - fep->tx_bd_base;
344
		memcpy(fep->tx_bounce[index], (void *)skb->data, skb->len);
L
Linus Torvalds 已提交
345 346 347 348 349 350 351
		bdp->cbd_bufaddr = __pa(fep->tx_bounce[index]);
	}

	/* Save skb pointer.
	*/
	fep->tx_skbuff[fep->skb_cur] = skb;

352
	dev->stats.tx_bytes += skb->len;
L
Linus Torvalds 已提交
353
	fep->skb_cur = (fep->skb_cur+1) & TX_RING_MOD_MASK;
354

L
Linus Torvalds 已提交
355 356 357 358 359 360
	/* Push the data cache so the CPM does not get stale memory
	 * data.
	 */
	flush_dcache_range((unsigned long)skb->data,
			   (unsigned long)skb->data + skb->len);

361 362
	/* Send it on its way.  Tell FEC it's ready, interrupt when done,
	 * it's the last BD of the frame, and to put the CRC on the end.
L
Linus Torvalds 已提交
363 364
	 */

365
	status |= (BD_ENET_TX_READY | BD_ENET_TX_INTR
L
Linus Torvalds 已提交
366
			| BD_ENET_TX_LAST | BD_ENET_TX_TC);
367
	bdp->cbd_sc = status;
L
Linus Torvalds 已提交
368 369 370 371

	dev->trans_start = jiffies;

	/* Trigger transmission start */
372
	fecp->fec_x_des_active = 0;
L
Linus Torvalds 已提交
373 374 375

	/* If this was the last BD in the ring, start at the beginning again.
	*/
376
	if (status & BD_ENET_TX_WRAP) {
L
Linus Torvalds 已提交
377 378 379 380 381 382 383 384 385 386 387 388
		bdp = fep->tx_bd_base;
	} else {
		bdp++;
	}

	if (bdp == fep->dirty_tx) {
		fep->tx_full = 1;
		netif_stop_queue(dev);
	}

	fep->cur_tx = (cbd_t *)bdp;

389
	spin_unlock_irqrestore(&fep->hw_lock, flags);
L
Linus Torvalds 已提交
390 391 392 393 394 395 396 397 398 399

	return 0;
}

static void
fec_timeout(struct net_device *dev)
{
	struct fec_enet_private *fep = netdev_priv(dev);

	printk("%s: transmit timed out.\n", dev->name);
400
	dev->stats.tx_errors++;
L
Linus Torvalds 已提交
401 402 403 404 405 406 407 408 409 410 411 412 413
#ifndef final_version
	{
	int	i;
	cbd_t	*bdp;

	printk("Ring data dump: cur_tx %lx%s, dirty_tx %lx cur_rx: %lx\n",
	       (unsigned long)fep->cur_tx, fep->tx_full ? " (full)" : "",
	       (unsigned long)fep->dirty_tx,
	       (unsigned long)fep->cur_rx);

	bdp = fep->tx_bd_base;
	printk(" tx: %u buffers\n",  TX_RING_SIZE);
	for (i = 0 ; i < TX_RING_SIZE; i++) {
414
		printk("  %08x: %04x %04x %08x\n",
L
Linus Torvalds 已提交
415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433
		       (uint) bdp,
		       bdp->cbd_sc,
		       bdp->cbd_datlen,
		       (int) bdp->cbd_bufaddr);
		bdp++;
	}

	bdp = fep->rx_bd_base;
	printk(" rx: %lu buffers\n",  (unsigned long) RX_RING_SIZE);
	for (i = 0 ; i < RX_RING_SIZE; i++) {
		printk("  %08x: %04x %04x %08x\n",
		       (uint) bdp,
		       bdp->cbd_sc,
		       bdp->cbd_datlen,
		       (int) bdp->cbd_bufaddr);
		bdp++;
	}
	}
#endif
434
	fec_restart(dev, fep->full_duplex);
L
Linus Torvalds 已提交
435 436 437 438 439 440 441
	netif_wake_queue(dev);
}

/* The interrupt handler.
 * This is called from the MPC core interrupt.
 */
static irqreturn_t
442
fec_enet_interrupt(int irq, void * dev_id)
L
Linus Torvalds 已提交
443 444 445 446
{
	struct	net_device *dev = dev_id;
	volatile fec_t	*fecp;
	uint	int_events;
447
	irqreturn_t ret = IRQ_NONE;
L
Linus Torvalds 已提交
448 449 450 451 452

	fecp = (volatile fec_t*)dev->base_addr;

	/* Get the interrupt events that caused us to be here.
	*/
453 454
	do {
		int_events = fecp->fec_ievent;
L
Linus Torvalds 已提交
455 456 457 458 459
		fecp->fec_ievent = int_events;

		/* Handle receive event in its own function.
		 */
		if (int_events & FEC_ENET_RXF) {
460
			ret = IRQ_HANDLED;
L
Linus Torvalds 已提交
461 462 463 464 465 466 467 468
			fec_enet_rx(dev);
		}

		/* Transmit OK, or non-fatal error. Update the buffer
		   descriptors. FEC handles all errors, we just discover
		   them as part of the transmit process.
		*/
		if (int_events & FEC_ENET_TXF) {
469
			ret = IRQ_HANDLED;
L
Linus Torvalds 已提交
470 471 472 473
			fec_enet_tx(dev);
		}

		if (int_events & FEC_ENET_MII) {
474
			ret = IRQ_HANDLED;
L
Linus Torvalds 已提交
475 476
			fec_enet_mii(dev);
		}
477

478 479 480
	} while (int_events);

	return ret;
L
Linus Torvalds 已提交
481 482 483 484 485 486 487 488
}


static void
fec_enet_tx(struct net_device *dev)
{
	struct	fec_enet_private *fep;
	volatile cbd_t	*bdp;
489
	unsigned short status;
L
Linus Torvalds 已提交
490 491 492
	struct	sk_buff	*skb;

	fep = netdev_priv(dev);
493
	spin_lock_irq(&fep->hw_lock);
L
Linus Torvalds 已提交
494 495
	bdp = fep->dirty_tx;

496
	while (((status = bdp->cbd_sc) & BD_ENET_TX_READY) == 0) {
L
Linus Torvalds 已提交
497 498 499 500
		if (bdp == fep->cur_tx && fep->tx_full == 0) break;

		skb = fep->tx_skbuff[fep->skb_dirty];
		/* Check for errors. */
501
		if (status & (BD_ENET_TX_HB | BD_ENET_TX_LC |
L
Linus Torvalds 已提交
502 503
				   BD_ENET_TX_RL | BD_ENET_TX_UN |
				   BD_ENET_TX_CSL)) {
504
			dev->stats.tx_errors++;
505
			if (status & BD_ENET_TX_HB)  /* No heartbeat */
506
				dev->stats.tx_heartbeat_errors++;
507
			if (status & BD_ENET_TX_LC)  /* Late collision */
508
				dev->stats.tx_window_errors++;
509
			if (status & BD_ENET_TX_RL)  /* Retrans limit */
510
				dev->stats.tx_aborted_errors++;
511
			if (status & BD_ENET_TX_UN)  /* Underrun */
512
				dev->stats.tx_fifo_errors++;
513
			if (status & BD_ENET_TX_CSL) /* Carrier lost */
514
				dev->stats.tx_carrier_errors++;
L
Linus Torvalds 已提交
515
		} else {
516
			dev->stats.tx_packets++;
L
Linus Torvalds 已提交
517 518 519
		}

#ifndef final_version
520
		if (status & BD_ENET_TX_READY)
L
Linus Torvalds 已提交
521 522 523 524 525
			printk("HEY! Enet xmit interrupt and TX_READY.\n");
#endif
		/* Deferred means some collisions occurred during transmit,
		 * but we eventually sent the packet OK.
		 */
526
		if (status & BD_ENET_TX_DEF)
527
			dev->stats.collisions++;
528

L
Linus Torvalds 已提交
529 530 531 532 533
		/* Free the sk buffer associated with this last transmit.
		 */
		dev_kfree_skb_any(skb);
		fep->tx_skbuff[fep->skb_dirty] = NULL;
		fep->skb_dirty = (fep->skb_dirty + 1) & TX_RING_MOD_MASK;
534

L
Linus Torvalds 已提交
535 536
		/* Update pointer to next buffer descriptor to be transmitted.
		 */
537
		if (status & BD_ENET_TX_WRAP)
L
Linus Torvalds 已提交
538 539 540
			bdp = fep->tx_bd_base;
		else
			bdp++;
541

L
Linus Torvalds 已提交
542 543 544 545 546 547 548 549 550 551
		/* Since we have freed up a buffer, the ring is no longer
		 * full.
		 */
		if (fep->tx_full) {
			fep->tx_full = 0;
			if (netif_queue_stopped(dev))
				netif_wake_queue(dev);
		}
	}
	fep->dirty_tx = (cbd_t *)bdp;
552
	spin_unlock_irq(&fep->hw_lock);
L
Linus Torvalds 已提交
553 554 555 556 557 558 559 560 561 562 563 564 565 566
}


/* During a receive, the cur_rx points to the current incoming buffer.
 * When we update through the ring, if the next incoming buffer has
 * not been given to the system, we just set the empty indicator,
 * effectively tossing the packet.
 */
static void
fec_enet_rx(struct net_device *dev)
{
	struct	fec_enet_private *fep;
	volatile fec_t	*fecp;
	volatile cbd_t *bdp;
567
	unsigned short status;
L
Linus Torvalds 已提交
568 569 570
	struct	sk_buff	*skb;
	ushort	pkt_len;
	__u8 *data;
571

572 573
#ifdef CONFIG_M532x
	flush_cache_all();
574
#endif
L
Linus Torvalds 已提交
575 576 577 578

	fep = netdev_priv(dev);
	fecp = (volatile fec_t*)dev->base_addr;

579 580
	spin_lock_irq(&fep->hw_lock);

L
Linus Torvalds 已提交
581 582 583 584 585
	/* First, grab all of the stats for the incoming packet.
	 * These get messed up if we get called due to a busy condition.
	 */
	bdp = fep->cur_rx;

586
while (!((status = bdp->cbd_sc) & BD_ENET_RX_EMPTY)) {
L
Linus Torvalds 已提交
587 588 589 590 591

#ifndef final_version
	/* Since we have allocated space to hold a complete frame,
	 * the last indicator should be set.
	 */
592
	if ((status & BD_ENET_RX_LAST) == 0)
L
Linus Torvalds 已提交
593 594 595 596 597 598 599
		printk("FEC ENET: rcv is not +last\n");
#endif

	if (!fep->opened)
		goto rx_processing_done;

	/* Check for errors. */
600
	if (status & (BD_ENET_RX_LG | BD_ENET_RX_SH | BD_ENET_RX_NO |
L
Linus Torvalds 已提交
601
			   BD_ENET_RX_CR | BD_ENET_RX_OV)) {
602
		dev->stats.rx_errors++;
603
		if (status & (BD_ENET_RX_LG | BD_ENET_RX_SH)) {
L
Linus Torvalds 已提交
604
		/* Frame too long or too short. */
605
			dev->stats.rx_length_errors++;
L
Linus Torvalds 已提交
606
		}
607
		if (status & BD_ENET_RX_NO)	/* Frame alignment */
608
			dev->stats.rx_frame_errors++;
609
		if (status & BD_ENET_RX_CR)	/* CRC Error */
610
			dev->stats.rx_crc_errors++;
611
		if (status & BD_ENET_RX_OV)	/* FIFO overrun */
612
			dev->stats.rx_fifo_errors++;
L
Linus Torvalds 已提交
613 614 615 616 617 618
	}

	/* Report late collisions as a frame error.
	 * On this error, the BD is closed, but we don't know what we
	 * have in the buffer.  So, just drop this frame on the floor.
	 */
619
	if (status & BD_ENET_RX_CL) {
620 621
		dev->stats.rx_errors++;
		dev->stats.rx_frame_errors++;
L
Linus Torvalds 已提交
622 623 624 625 626
		goto rx_processing_done;
	}

	/* Process the incoming frame.
	 */
627
	dev->stats.rx_packets++;
L
Linus Torvalds 已提交
628
	pkt_len = bdp->cbd_datlen;
629
	dev->stats.rx_bytes += pkt_len;
L
Linus Torvalds 已提交
630 631 632 633 634 635 636 637 638 639 640
	data = (__u8*)__va(bdp->cbd_bufaddr);

	/* This does 16 byte alignment, exactly what we need.
	 * The packet length includes FCS, but we don't want to
	 * include that when passing upstream as it messes up
	 * bridging applications.
	 */
	skb = dev_alloc_skb(pkt_len-4);

	if (skb == NULL) {
		printk("%s: Memory squeeze, dropping packet.\n", dev->name);
641
		dev->stats.rx_dropped++;
L
Linus Torvalds 已提交
642 643
	} else {
		skb_put(skb,pkt_len-4);	/* Make room */
644
		skb_copy_to_linear_data(skb, data, pkt_len-4);
L
Linus Torvalds 已提交
645 646 647 648 649 650 651
		skb->protocol=eth_type_trans(skb,dev);
		netif_rx(skb);
	}
  rx_processing_done:

	/* Clear the status flags for this buffer.
	*/
652
	status &= ~BD_ENET_RX_STATS;
L
Linus Torvalds 已提交
653 654 655

	/* Mark the buffer empty.
	*/
656 657
	status |= BD_ENET_RX_EMPTY;
	bdp->cbd_sc = status;
L
Linus Torvalds 已提交
658 659 660

	/* Update BD pointer to next entry.
	*/
661
	if (status & BD_ENET_RX_WRAP)
L
Linus Torvalds 已提交
662 663 664
		bdp = fep->rx_bd_base;
	else
		bdp++;
665

L
Linus Torvalds 已提交
666 667 668 669 670
#if 1
	/* Doing this here will keep the FEC running while we process
	 * incoming frames.  On a heavily loaded network, we should be
	 * able to keep up at the expense of system resources.
	 */
671
	fecp->fec_r_des_active = 0;
L
Linus Torvalds 已提交
672
#endif
673
   } /* while (!((status = bdp->cbd_sc) & BD_ENET_RX_EMPTY)) */
L
Linus Torvalds 已提交
674 675 676 677 678 679 680 681 682 683
	fep->cur_rx = (cbd_t *)bdp;

#if 0
	/* Doing this here will allow us to process all frames in the
	 * ring before the FEC is allowed to put more there.  On a heavily
	 * loaded network, some frames may be lost.  Unfortunately, this
	 * increases the interrupt overhead since we can potentially work
	 * our way back to the interrupt return only to come right back
	 * here.
	 */
684
	fecp->fec_r_des_active = 0;
L
Linus Torvalds 已提交
685
#endif
686 687

	spin_unlock_irq(&fep->hw_lock);
L
Linus Torvalds 已提交
688 689 690
}


691
/* called from interrupt context */
L
Linus Torvalds 已提交
692 693 694 695 696 697 698 699 700
static void
fec_enet_mii(struct net_device *dev)
{
	struct	fec_enet_private *fep;
	volatile fec_t	*ep;
	mii_list_t	*mip;
	uint		mii_reg;

	fep = netdev_priv(dev);
701 702
	spin_lock_irq(&fep->mii_lock);

L
Linus Torvalds 已提交
703 704
	ep = fep->hwp;
	mii_reg = ep->fec_mii_data;
705

L
Linus Torvalds 已提交
706 707
	if ((mip = mii_head) == NULL) {
		printk("MII and no head!\n");
708
		goto unlock;
L
Linus Torvalds 已提交
709 710 711 712 713 714 715 716 717 718 719
	}

	if (mip->mii_func != NULL)
		(*(mip->mii_func))(mii_reg, dev);

	mii_head = mip->mii_next;
	mip->mii_next = mii_free;
	mii_free = mip;

	if ((mip = mii_head) != NULL)
		ep->fec_mii_data = mip->mii_regval;
720 721

unlock:
722
	spin_unlock_irq(&fep->mii_lock);
L
Linus Torvalds 已提交
723 724 725 726 727 728 729 730 731 732 733 734 735
}

static int
mii_queue(struct net_device *dev, int regval, void (*func)(uint, struct net_device *))
{
	struct fec_enet_private *fep;
	unsigned long	flags;
	mii_list_t	*mip;
	int		retval;

	/* Add PHY address to register command.
	*/
	fep = netdev_priv(dev);
736
	spin_lock_irqsave(&fep->mii_lock, flags);
L
Linus Torvalds 已提交
737

738
	regval |= fep->phy_addr << 23;
L
Linus Torvalds 已提交
739 740 741 742 743 744 745 746 747 748
	retval = 0;

	if ((mip = mii_free) != NULL) {
		mii_free = mip->mii_next;
		mip->mii_regval = regval;
		mip->mii_func = func;
		mip->mii_next = NULL;
		if (mii_head) {
			mii_tail->mii_next = mip;
			mii_tail = mip;
749
		} else {
L
Linus Torvalds 已提交
750 751 752
			mii_head = mii_tail = mip;
			fep->hwp->fec_mii_data = regval;
		}
753
	} else {
L
Linus Torvalds 已提交
754 755 756
		retval = 1;
	}

757 758
	spin_unlock_irqrestore(&fep->mii_lock, flags);
	return retval;
L
Linus Torvalds 已提交
759 760 761 762 763 764 765
}

static void mii_do_cmd(struct net_device *dev, const phy_cmd_t *c)
{
	if(!c)
		return;

766 767
	for (; c->mii_data != mk_mii_end; c++)
		mii_queue(dev, c->mii_data, c->funct);
L
Linus Torvalds 已提交
768 769 770 771 772 773
}

static void mii_parse_sr(uint mii_reg, struct net_device *dev)
{
	struct fec_enet_private *fep = netdev_priv(dev);
	volatile uint *s = &(fep->phy_status);
774
	uint status;
L
Linus Torvalds 已提交
775

776
	status = *s & ~(PHY_STAT_LINK | PHY_STAT_FAULT | PHY_STAT_ANC);
L
Linus Torvalds 已提交
777 778

	if (mii_reg & 0x0004)
779
		status |= PHY_STAT_LINK;
L
Linus Torvalds 已提交
780
	if (mii_reg & 0x0010)
781
		status |= PHY_STAT_FAULT;
L
Linus Torvalds 已提交
782
	if (mii_reg & 0x0020)
783 784
		status |= PHY_STAT_ANC;
	*s = status;
L
Linus Torvalds 已提交
785 786 787 788 789 790
}

static void mii_parse_cr(uint mii_reg, struct net_device *dev)
{
	struct fec_enet_private *fep = netdev_priv(dev);
	volatile uint *s = &(fep->phy_status);
791
	uint status;
L
Linus Torvalds 已提交
792

793
	status = *s & ~(PHY_CONF_ANE | PHY_CONF_LOOP);
L
Linus Torvalds 已提交
794 795

	if (mii_reg & 0x1000)
796
		status |= PHY_CONF_ANE;
L
Linus Torvalds 已提交
797
	if (mii_reg & 0x4000)
798 799
		status |= PHY_CONF_LOOP;
	*s = status;
L
Linus Torvalds 已提交
800 801 802 803 804 805
}

static void mii_parse_anar(uint mii_reg, struct net_device *dev)
{
	struct fec_enet_private *fep = netdev_priv(dev);
	volatile uint *s = &(fep->phy_status);
806
	uint status;
L
Linus Torvalds 已提交
807

808
	status = *s & ~(PHY_CONF_SPMASK);
L
Linus Torvalds 已提交
809 810

	if (mii_reg & 0x0020)
811
		status |= PHY_CONF_10HDX;
L
Linus Torvalds 已提交
812
	if (mii_reg & 0x0040)
813
		status |= PHY_CONF_10FDX;
L
Linus Torvalds 已提交
814
	if (mii_reg & 0x0080)
815
		status |= PHY_CONF_100HDX;
L
Linus Torvalds 已提交
816
	if (mii_reg & 0x00100)
817 818
		status |= PHY_CONF_100FDX;
	*s = status;
L
Linus Torvalds 已提交
819 820 821 822 823 824 825 826 827 828 829 830 831 832 833
}

/* ------------------------------------------------------------------------- */
/* The Level one LXT970 is used by many boards				     */

#define MII_LXT970_MIRROR    16  /* Mirror register           */
#define MII_LXT970_IER       17  /* Interrupt Enable Register */
#define MII_LXT970_ISR       18  /* Interrupt Status Register */
#define MII_LXT970_CONFIG    19  /* Configuration Register    */
#define MII_LXT970_CSR       20  /* Chip Status Register      */

static void mii_parse_lxt970_csr(uint mii_reg, struct net_device *dev)
{
	struct fec_enet_private *fep = netdev_priv(dev);
	volatile uint *s = &(fep->phy_status);
834
	uint status;
L
Linus Torvalds 已提交
835

836
	status = *s & ~(PHY_STAT_SPMASK);
L
Linus Torvalds 已提交
837 838
	if (mii_reg & 0x0800) {
		if (mii_reg & 0x1000)
839
			status |= PHY_STAT_100FDX;
L
Linus Torvalds 已提交
840
		else
841
			status |= PHY_STAT_100HDX;
L
Linus Torvalds 已提交
842 843
	} else {
		if (mii_reg & 0x1000)
844
			status |= PHY_STAT_10FDX;
L
Linus Torvalds 已提交
845
		else
846
			status |= PHY_STAT_10HDX;
L
Linus Torvalds 已提交
847
	}
848
	*s = status;
L
Linus Torvalds 已提交
849 850
}

851
static phy_cmd_t const phy_cmd_lxt970_config[] = {
L
Linus Torvalds 已提交
852 853 854
		{ mk_mii_read(MII_REG_CR), mii_parse_cr },
		{ mk_mii_read(MII_REG_ANAR), mii_parse_anar },
		{ mk_mii_end, }
855 856
	};
static phy_cmd_t const phy_cmd_lxt970_startup[] = { /* enable interrupts */
L
Linus Torvalds 已提交
857 858 859
		{ mk_mii_write(MII_LXT970_IER, 0x0002), NULL },
		{ mk_mii_write(MII_REG_CR, 0x1200), NULL }, /* autonegotiate */
		{ mk_mii_end, }
860 861
	};
static phy_cmd_t const phy_cmd_lxt970_ack_int[] = {
L
Linus Torvalds 已提交
862 863 864 865 866 867 868
		/* read SR and ISR to acknowledge */
		{ mk_mii_read(MII_REG_SR), mii_parse_sr },
		{ mk_mii_read(MII_LXT970_ISR), NULL },

		/* find out the current status */
		{ mk_mii_read(MII_LXT970_CSR), mii_parse_lxt970_csr },
		{ mk_mii_end, }
869 870
	};
static phy_cmd_t const phy_cmd_lxt970_shutdown[] = { /* disable interrupts */
L
Linus Torvalds 已提交
871 872
		{ mk_mii_write(MII_LXT970_IER, 0x0000), NULL },
		{ mk_mii_end, }
873 874
	};
static phy_info_t const phy_info_lxt970 = {
875
	.id = 0x07810000,
876 877 878 879 880
	.name = "LXT970",
	.config = phy_cmd_lxt970_config,
	.startup = phy_cmd_lxt970_startup,
	.ack_int = phy_cmd_lxt970_ack_int,
	.shutdown = phy_cmd_lxt970_shutdown
L
Linus Torvalds 已提交
881
};
882

L
Linus Torvalds 已提交
883 884 885 886 887 888 889 890 891 892 893 894
/* ------------------------------------------------------------------------- */
/* The Level one LXT971 is used on some of my custom boards                  */

/* register definitions for the 971 */

#define MII_LXT971_PCR       16  /* Port Control Register     */
#define MII_LXT971_SR2       17  /* Status Register 2         */
#define MII_LXT971_IER       18  /* Interrupt Enable Register */
#define MII_LXT971_ISR       19  /* Interrupt Status Register */
#define MII_LXT971_LCR       20  /* LED Control Register      */
#define MII_LXT971_TCR       30  /* Transmit Control Register */

895
/*
L
Linus Torvalds 已提交
896 897 898 899 900 901 902 903 904
 * I had some nice ideas of running the MDIO faster...
 * The 971 should support 8MHz and I tried it, but things acted really
 * weird, so 2.5 MHz ought to be enough for anyone...
 */

static void mii_parse_lxt971_sr2(uint mii_reg, struct net_device *dev)
{
	struct fec_enet_private *fep = netdev_priv(dev);
	volatile uint *s = &(fep->phy_status);
905
	uint status;
L
Linus Torvalds 已提交
906

907
	status = *s & ~(PHY_STAT_SPMASK | PHY_STAT_LINK | PHY_STAT_ANC);
L
Linus Torvalds 已提交
908 909 910

	if (mii_reg & 0x0400) {
		fep->link = 1;
911
		status |= PHY_STAT_LINK;
L
Linus Torvalds 已提交
912 913 914 915
	} else {
		fep->link = 0;
	}
	if (mii_reg & 0x0080)
916
		status |= PHY_STAT_ANC;
L
Linus Torvalds 已提交
917 918
	if (mii_reg & 0x4000) {
		if (mii_reg & 0x0200)
919
			status |= PHY_STAT_100FDX;
L
Linus Torvalds 已提交
920
		else
921
			status |= PHY_STAT_100HDX;
L
Linus Torvalds 已提交
922 923
	} else {
		if (mii_reg & 0x0200)
924
			status |= PHY_STAT_10FDX;
L
Linus Torvalds 已提交
925
		else
926
			status |= PHY_STAT_10HDX;
L
Linus Torvalds 已提交
927 928
	}
	if (mii_reg & 0x0008)
929
		status |= PHY_STAT_FAULT;
L
Linus Torvalds 已提交
930

931 932
	*s = status;
}
933

934
static phy_cmd_t const phy_cmd_lxt971_config[] = {
935
		/* limit to 10MBit because my prototype board
L
Linus Torvalds 已提交
936 937 938 939 940
		 * doesn't work with 100. */
		{ mk_mii_read(MII_REG_CR), mii_parse_cr },
		{ mk_mii_read(MII_REG_ANAR), mii_parse_anar },
		{ mk_mii_read(MII_LXT971_SR2), mii_parse_lxt971_sr2 },
		{ mk_mii_end, }
941 942
	};
static phy_cmd_t const phy_cmd_lxt971_startup[] = {  /* enable interrupts */
L
Linus Torvalds 已提交
943 944 945 946 947 948
		{ mk_mii_write(MII_LXT971_IER, 0x00f2), NULL },
		{ mk_mii_write(MII_REG_CR, 0x1200), NULL }, /* autonegotiate */
		{ mk_mii_write(MII_LXT971_LCR, 0xd422), NULL }, /* LED config */
		/* Somehow does the 971 tell me that the link is down
		 * the first read after power-up.
		 * read here to get a valid value in ack_int */
949
		{ mk_mii_read(MII_REG_SR), mii_parse_sr },
L
Linus Torvalds 已提交
950
		{ mk_mii_end, }
951 952 953 954
	};
static phy_cmd_t const phy_cmd_lxt971_ack_int[] = {
		/* acknowledge the int before reading status ! */
		{ mk_mii_read(MII_LXT971_ISR), NULL },
L
Linus Torvalds 已提交
955 956 957 958
		/* find out the current status */
		{ mk_mii_read(MII_REG_SR), mii_parse_sr },
		{ mk_mii_read(MII_LXT971_SR2), mii_parse_lxt971_sr2 },
		{ mk_mii_end, }
959 960
	};
static phy_cmd_t const phy_cmd_lxt971_shutdown[] = { /* disable interrupts */
L
Linus Torvalds 已提交
961 962
		{ mk_mii_write(MII_LXT971_IER, 0x0000), NULL },
		{ mk_mii_end, }
963 964
	};
static phy_info_t const phy_info_lxt971 = {
965
	.id = 0x0001378e,
966 967 968 969 970
	.name = "LXT971",
	.config = phy_cmd_lxt971_config,
	.startup = phy_cmd_lxt971_startup,
	.ack_int = phy_cmd_lxt971_ack_int,
	.shutdown = phy_cmd_lxt971_shutdown
L
Linus Torvalds 已提交
971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988
};

/* ------------------------------------------------------------------------- */
/* The Quality Semiconductor QS6612 is used on the RPX CLLF                  */

/* register definitions */

#define MII_QS6612_MCR       17  /* Mode Control Register      */
#define MII_QS6612_FTR       27  /* Factory Test Register      */
#define MII_QS6612_MCO       28  /* Misc. Control Register     */
#define MII_QS6612_ISR       29  /* Interrupt Source Register  */
#define MII_QS6612_IMR       30  /* Interrupt Mask Register    */
#define MII_QS6612_PCR       31  /* 100BaseTx PHY Control Reg. */

static void mii_parse_qs6612_pcr(uint mii_reg, struct net_device *dev)
{
	struct fec_enet_private *fep = netdev_priv(dev);
	volatile uint *s = &(fep->phy_status);
989
	uint status;
L
Linus Torvalds 已提交
990

991
	status = *s & ~(PHY_STAT_SPMASK);
L
Linus Torvalds 已提交
992 993

	switch((mii_reg >> 2) & 7) {
994 995 996 997
	case 1: status |= PHY_STAT_10HDX; break;
	case 2: status |= PHY_STAT_100HDX; break;
	case 5: status |= PHY_STAT_10FDX; break;
	case 6: status |= PHY_STAT_100FDX; break;
L
Linus Torvalds 已提交
998 999
}

1000 1001 1002 1003
	*s = status;
}

static phy_cmd_t const phy_cmd_qs6612_config[] = {
1004
		/* The PHY powers up isolated on the RPX,
L
Linus Torvalds 已提交
1005 1006 1007 1008 1009 1010 1011 1012
		 * so send a command to allow operation.
		 */
		{ mk_mii_write(MII_QS6612_PCR, 0x0dc0), NULL },

		/* parse cr and anar to get some info */
		{ mk_mii_read(MII_REG_CR), mii_parse_cr },
		{ mk_mii_read(MII_REG_ANAR), mii_parse_anar },
		{ mk_mii_end, }
1013 1014
	};
static phy_cmd_t const phy_cmd_qs6612_startup[] = {  /* enable interrupts */
L
Linus Torvalds 已提交
1015 1016 1017
		{ mk_mii_write(MII_QS6612_IMR, 0x003a), NULL },
		{ mk_mii_write(MII_REG_CR, 0x1200), NULL }, /* autonegotiate */
		{ mk_mii_end, }
1018 1019
	};
static phy_cmd_t const phy_cmd_qs6612_ack_int[] = {
L
Linus Torvalds 已提交
1020 1021 1022 1023 1024 1025 1026 1027
		/* we need to read ISR, SR and ANER to acknowledge */
		{ mk_mii_read(MII_QS6612_ISR), NULL },
		{ mk_mii_read(MII_REG_SR), mii_parse_sr },
		{ mk_mii_read(MII_REG_ANER), NULL },

		/* read pcr to get info */
		{ mk_mii_read(MII_QS6612_PCR), mii_parse_qs6612_pcr },
		{ mk_mii_end, }
1028 1029
	};
static phy_cmd_t const phy_cmd_qs6612_shutdown[] = { /* disable interrupts */
L
Linus Torvalds 已提交
1030 1031
		{ mk_mii_write(MII_QS6612_IMR, 0x0000), NULL },
		{ mk_mii_end, }
1032 1033
	};
static phy_info_t const phy_info_qs6612 = {
1034
	.id = 0x00181440,
1035 1036 1037 1038 1039
	.name = "QS6612",
	.config = phy_cmd_qs6612_config,
	.startup = phy_cmd_qs6612_startup,
	.ack_int = phy_cmd_qs6612_ack_int,
	.shutdown = phy_cmd_qs6612_shutdown
L
Linus Torvalds 已提交
1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058
};

/* ------------------------------------------------------------------------- */
/* AMD AM79C874 phy                                                          */

/* register definitions for the 874 */

#define MII_AM79C874_MFR       16  /* Miscellaneous Feature Register */
#define MII_AM79C874_ICSR      17  /* Interrupt/Status Register      */
#define MII_AM79C874_DR        18  /* Diagnostic Register            */
#define MII_AM79C874_PMLR      19  /* Power and Loopback Register    */
#define MII_AM79C874_MCR       21  /* ModeControl Register           */
#define MII_AM79C874_DC        23  /* Disconnect Counter             */
#define MII_AM79C874_REC       24  /* Recieve Error Counter          */

static void mii_parse_am79c874_dr(uint mii_reg, struct net_device *dev)
{
	struct fec_enet_private *fep = netdev_priv(dev);
	volatile uint *s = &(fep->phy_status);
1059
	uint status;
L
Linus Torvalds 已提交
1060

1061
	status = *s & ~(PHY_STAT_SPMASK | PHY_STAT_ANC);
L
Linus Torvalds 已提交
1062 1063

	if (mii_reg & 0x0080)
1064
		status |= PHY_STAT_ANC;
L
Linus Torvalds 已提交
1065
	if (mii_reg & 0x0400)
1066
		status |= ((mii_reg & 0x0800) ? PHY_STAT_100FDX : PHY_STAT_100HDX);
L
Linus Torvalds 已提交
1067
	else
1068 1069 1070
		status |= ((mii_reg & 0x0800) ? PHY_STAT_10FDX : PHY_STAT_10HDX);

	*s = status;
L
Linus Torvalds 已提交
1071 1072
}

1073
static phy_cmd_t const phy_cmd_am79c874_config[] = {
L
Linus Torvalds 已提交
1074 1075 1076 1077
		{ mk_mii_read(MII_REG_CR), mii_parse_cr },
		{ mk_mii_read(MII_REG_ANAR), mii_parse_anar },
		{ mk_mii_read(MII_AM79C874_DR), mii_parse_am79c874_dr },
		{ mk_mii_end, }
1078 1079
	};
static phy_cmd_t const phy_cmd_am79c874_startup[] = {  /* enable interrupts */
L
Linus Torvalds 已提交
1080 1081
		{ mk_mii_write(MII_AM79C874_ICSR, 0xff00), NULL },
		{ mk_mii_write(MII_REG_CR, 0x1200), NULL }, /* autonegotiate */
1082
		{ mk_mii_read(MII_REG_SR), mii_parse_sr },
L
Linus Torvalds 已提交
1083
		{ mk_mii_end, }
1084 1085
	};
static phy_cmd_t const phy_cmd_am79c874_ack_int[] = {
L
Linus Torvalds 已提交
1086 1087 1088 1089 1090 1091
		/* find out the current status */
		{ mk_mii_read(MII_REG_SR), mii_parse_sr },
		{ mk_mii_read(MII_AM79C874_DR), mii_parse_am79c874_dr },
		/* we only need to read ISR to acknowledge */
		{ mk_mii_read(MII_AM79C874_ICSR), NULL },
		{ mk_mii_end, }
1092 1093
	};
static phy_cmd_t const phy_cmd_am79c874_shutdown[] = { /* disable interrupts */
L
Linus Torvalds 已提交
1094 1095
		{ mk_mii_write(MII_AM79C874_ICSR, 0x0000), NULL },
		{ mk_mii_end, }
1096 1097 1098 1099 1100 1101 1102 1103
	};
static phy_info_t const phy_info_am79c874 = {
	.id = 0x00022561,
	.name = "AM79C874",
	.config = phy_cmd_am79c874_config,
	.startup = phy_cmd_am79c874_startup,
	.ack_int = phy_cmd_am79c874_ack_int,
	.shutdown = phy_cmd_am79c874_shutdown
L
Linus Torvalds 已提交
1104 1105
};

1106

L
Linus Torvalds 已提交
1107 1108 1109 1110 1111 1112 1113 1114 1115
/* ------------------------------------------------------------------------- */
/* Kendin KS8721BL phy                                                       */

/* register definitions for the 8721 */

#define MII_KS8721BL_RXERCR	21
#define MII_KS8721BL_ICSR	22
#define	MII_KS8721BL_PHYCR	31

1116
static phy_cmd_t const phy_cmd_ks8721bl_config[] = {
L
Linus Torvalds 已提交
1117 1118 1119
		{ mk_mii_read(MII_REG_CR), mii_parse_cr },
		{ mk_mii_read(MII_REG_ANAR), mii_parse_anar },
		{ mk_mii_end, }
1120 1121
	};
static phy_cmd_t const phy_cmd_ks8721bl_startup[] = {  /* enable interrupts */
L
Linus Torvalds 已提交
1122 1123
		{ mk_mii_write(MII_KS8721BL_ICSR, 0xff00), NULL },
		{ mk_mii_write(MII_REG_CR, 0x1200), NULL }, /* autonegotiate */
1124
		{ mk_mii_read(MII_REG_SR), mii_parse_sr },
L
Linus Torvalds 已提交
1125
		{ mk_mii_end, }
1126 1127
	};
static phy_cmd_t const phy_cmd_ks8721bl_ack_int[] = {
L
Linus Torvalds 已提交
1128 1129 1130 1131 1132
		/* find out the current status */
		{ mk_mii_read(MII_REG_SR), mii_parse_sr },
		/* we only need to read ISR to acknowledge */
		{ mk_mii_read(MII_KS8721BL_ICSR), NULL },
		{ mk_mii_end, }
1133 1134
	};
static phy_cmd_t const phy_cmd_ks8721bl_shutdown[] = { /* disable interrupts */
L
Linus Torvalds 已提交
1135 1136
		{ mk_mii_write(MII_KS8721BL_ICSR, 0x0000), NULL },
		{ mk_mii_end, }
1137 1138
	};
static phy_info_t const phy_info_ks8721bl = {
1139
	.id = 0x00022161,
1140 1141 1142 1143 1144
	.name = "KS8721BL",
	.config = phy_cmd_ks8721bl_config,
	.startup = phy_cmd_ks8721bl_startup,
	.ack_int = phy_cmd_ks8721bl_ack_int,
	.shutdown = phy_cmd_ks8721bl_shutdown
L
Linus Torvalds 已提交
1145 1146
};

1147 1148 1149 1150 1151 1152 1153
/* ------------------------------------------------------------------------- */
/* register definitions for the DP83848 */

#define MII_DP8384X_PHYSTST    16  /* PHY Status Register */

static void mii_parse_dp8384x_sr2(uint mii_reg, struct net_device *dev)
{
1154
	struct fec_enet_private *fep = netdev_priv(dev);
1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205
	volatile uint *s = &(fep->phy_status);

	*s &= ~(PHY_STAT_SPMASK | PHY_STAT_LINK | PHY_STAT_ANC);

	/* Link up */
	if (mii_reg & 0x0001) {
		fep->link = 1;
		*s |= PHY_STAT_LINK;
	} else
		fep->link = 0;
	/* Status of link */
	if (mii_reg & 0x0010)   /* Autonegotioation complete */
		*s |= PHY_STAT_ANC;
	if (mii_reg & 0x0002) {   /* 10MBps? */
		if (mii_reg & 0x0004)   /* Full Duplex? */
			*s |= PHY_STAT_10FDX;
		else
			*s |= PHY_STAT_10HDX;
	} else {                  /* 100 Mbps? */
		if (mii_reg & 0x0004)   /* Full Duplex? */
			*s |= PHY_STAT_100FDX;
		else
			*s |= PHY_STAT_100HDX;
	}
	if (mii_reg & 0x0008)
		*s |= PHY_STAT_FAULT;
}

static phy_info_t phy_info_dp83848= {
	0x020005c9,
	"DP83848",

	(const phy_cmd_t []) {  /* config */
		{ mk_mii_read(MII_REG_CR), mii_parse_cr },
		{ mk_mii_read(MII_REG_ANAR), mii_parse_anar },
		{ mk_mii_read(MII_DP8384X_PHYSTST), mii_parse_dp8384x_sr2 },
		{ mk_mii_end, }
	},
	(const phy_cmd_t []) {  /* startup - enable interrupts */
		{ mk_mii_write(MII_REG_CR, 0x1200), NULL }, /* autonegotiate */
		{ mk_mii_read(MII_REG_SR), mii_parse_sr },
		{ mk_mii_end, }
	},
	(const phy_cmd_t []) { /* ack_int - never happens, no interrupt */
		{ mk_mii_end, }
	},
	(const phy_cmd_t []) {  /* shutdown */
		{ mk_mii_end, }
	},
};

L
Linus Torvalds 已提交
1206 1207
/* ------------------------------------------------------------------------- */

1208
static phy_info_t const * const phy_info[] = {
L
Linus Torvalds 已提交
1209 1210 1211 1212 1213
	&phy_info_lxt970,
	&phy_info_lxt971,
	&phy_info_qs6612,
	&phy_info_am79c874,
	&phy_info_ks8721bl,
1214
	&phy_info_dp83848,
L
Linus Torvalds 已提交
1215 1216 1217 1218
	NULL
};

/* ------------------------------------------------------------------------- */
1219
#ifdef HAVE_mii_link_interrupt
L
Linus Torvalds 已提交
1220
static irqreturn_t
1221
mii_link_interrupt(int irq, void * dev_id);
L
Linus Torvalds 已提交
1222 1223 1224 1225 1226 1227 1228 1229 1230
#endif

#if defined(CONFIG_M5272)
/*
 *	Code specific to Coldfire 5272 setup.
 */
static void __inline__ fec_request_intrs(struct net_device *dev)
{
	volatile unsigned long *icrp;
1231 1232 1233
	static const struct idesc {
		char *name;
		unsigned short irq;
1234
		irq_handler_t handler;
1235 1236 1237 1238 1239 1240 1241
	} *idp, id[] = {
		{ "fec(RX)", 86, fec_enet_interrupt },
		{ "fec(TX)", 87, fec_enet_interrupt },
		{ "fec(OTHER)", 88, fec_enet_interrupt },
		{ "fec(MII)", 66, mii_link_interrupt },
		{ NULL },
	};
L
Linus Torvalds 已提交
1242 1243

	/* Setup interrupt handlers. */
1244
	for (idp = id; idp->name; idp++) {
1245
		if (request_irq(idp->irq, idp->handler, IRQF_DISABLED, idp->name, dev) != 0)
1246 1247
			printk("FEC: Could not allocate %s IRQ(%d)!\n", idp->name, idp->irq);
	}
L
Linus Torvalds 已提交
1248 1249 1250 1251 1252

	/* Unmask interrupt at ColdFire 5272 SIM */
	icrp = (volatile unsigned long *) (MCF_MBAR + MCFSIM_ICR3);
	*icrp = 0x00000ddd;
	icrp = (volatile unsigned long *) (MCF_MBAR + MCFSIM_ICR1);
1253
	*icrp = 0x0d000000;
L
Linus Torvalds 已提交
1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277
}

static void __inline__ fec_set_mii(struct net_device *dev, struct fec_enet_private *fep)
{
	volatile fec_t *fecp;

	fecp = fep->hwp;
	fecp->fec_r_cntrl = OPT_FRAME_SIZE | 0x04;
	fecp->fec_x_cntrl = 0x00;

	/*
	 * Set MII speed to 2.5 MHz
	 * See 5272 manual section 11.5.8: MSCR
	 */
	fep->phy_speed = ((((MCF_CLK / 4) / (2500000 / 10)) + 5) / 10) * 2;
	fecp->fec_mii_speed = fep->phy_speed;

	fec_restart(dev, 0);
}

static void __inline__ fec_get_mac(struct net_device *dev)
{
	struct fec_enet_private *fep = netdev_priv(dev);
	volatile fec_t *fecp;
1278
	unsigned char *iap, tmpaddr[ETH_ALEN];
L
Linus Torvalds 已提交
1279 1280 1281

	fecp = fep->hwp;

1282
	if (FEC_FLASHMAC) {
L
Linus Torvalds 已提交
1283 1284 1285 1286
		/*
		 * Get MAC address from FLASH.
		 * If it is all 1's or 0's, use the default.
		 */
1287
		iap = (unsigned char *)FEC_FLASHMAC;
L
Linus Torvalds 已提交
1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299
		if ((iap[0] == 0) && (iap[1] == 0) && (iap[2] == 0) &&
		    (iap[3] == 0) && (iap[4] == 0) && (iap[5] == 0))
			iap = fec_mac_default;
		if ((iap[0] == 0xff) && (iap[1] == 0xff) && (iap[2] == 0xff) &&
		    (iap[3] == 0xff) && (iap[4] == 0xff) && (iap[5] == 0xff))
			iap = fec_mac_default;
	} else {
		*((unsigned long *) &tmpaddr[0]) = fecp->fec_addr_low;
		*((unsigned short *) &tmpaddr[4]) = (fecp->fec_addr_high >> 16);
		iap = &tmpaddr[0];
	}

1300
	memcpy(dev->dev_addr, iap, ETH_ALEN);
L
Linus Torvalds 已提交
1301 1302

	/* Adjust MAC if using default MAC address */
1303 1304
	if (iap == fec_mac_default)
		 dev->dev_addr[ETH_ALEN-1] = fec_mac_default[ETH_ALEN-1] + fep->index;
L
Linus Torvalds 已提交
1305 1306 1307 1308 1309 1310
}

static void __inline__ fec_disable_phy_intr(void)
{
	volatile unsigned long *icrp;
	icrp = (volatile unsigned long *) (MCF_MBAR + MCFSIM_ICR1);
1311
	*icrp = 0x08000000;
L
Linus Torvalds 已提交
1312 1313 1314 1315 1316 1317 1318
}

static void __inline__ fec_phy_ack_intr(void)
{
	volatile unsigned long *icrp;
	/* Acknowledge the interrupt */
	icrp = (volatile unsigned long *) (MCF_MBAR + MCFSIM_ICR1);
1319
	*icrp = 0x0d000000;
L
Linus Torvalds 已提交
1320 1321 1322 1323
}

/* ------------------------------------------------------------------------- */

1324
#elif defined(CONFIG_M523x) || defined(CONFIG_M527x) || defined(CONFIG_M528x)
L
Linus Torvalds 已提交
1325 1326

/*
1327 1328
 *	Code specific to Coldfire 5230/5231/5232/5234/5235,
 *	the 5270/5271/5274/5275 and 5280/5282 setups.
L
Linus Torvalds 已提交
1329 1330 1331 1332 1333
 */
static void __inline__ fec_request_intrs(struct net_device *dev)
{
	struct fec_enet_private *fep;
	int b;
1334 1335 1336 1337 1338 1339 1340 1341 1342
	static const struct idesc {
		char *name;
		unsigned short irq;
	} *idp, id[] = {
		{ "fec(TXF)", 23 },
		{ "fec(RXF)", 27 },
		{ "fec(MII)", 29 },
		{ NULL },
	};
L
Linus Torvalds 已提交
1343 1344 1345 1346 1347

	fep = netdev_priv(dev);
	b = (fep->index) ? 128 : 64;

	/* Setup interrupt handlers. */
1348
	for (idp = id; idp->name; idp++) {
1349
		if (request_irq(b+idp->irq, fec_enet_interrupt, IRQF_DISABLED, idp->name, dev) != 0)
1350 1351
			printk("FEC: Could not allocate %s IRQ(%d)!\n", idp->name, b+idp->irq);
	}
L
Linus Torvalds 已提交
1352 1353 1354 1355 1356

	/* Unmask interrupts at ColdFire 5280/5282 interrupt controller */
	{
		volatile unsigned char  *icrp;
		volatile unsigned long  *imrp;
1357
		int i, ilip;
L
Linus Torvalds 已提交
1358 1359 1360 1361

		b = (fep->index) ? MCFICM_INTC1 : MCFICM_INTC0;
		icrp = (volatile unsigned char *) (MCF_IPSBAR + b +
			MCFINTC_ICR0);
1362 1363
		for (i = 23, ilip = 0x28; (i < 36); i++)
			icrp[i] = ilip--;
L
Linus Torvalds 已提交
1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375

		imrp = (volatile unsigned long *) (MCF_IPSBAR + b +
			MCFINTC_IMRH);
		*imrp &= ~0x0000000f;
		imrp = (volatile unsigned long *) (MCF_IPSBAR + b +
			MCFINTC_IMRL);
		*imrp &= ~0xff800001;
	}

#if defined(CONFIG_M528x)
	/* Set up gpio outputs for MII lines */
	{
1376 1377
		volatile u16 *gpio_paspar;
		volatile u8 *gpio_pehlpar;
1378

1379 1380 1381 1382
		gpio_paspar = (volatile u16 *) (MCF_IPSBAR + 0x100056);
		gpio_pehlpar = (volatile u16 *) (MCF_IPSBAR + 0x100058);
		*gpio_paspar |= 0x0f00;
		*gpio_pehlpar = 0xc0;
L
Linus Torvalds 已提交
1383 1384
	}
#endif
1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407

#if defined(CONFIG_M527x)
	/* Set up gpio outputs for MII lines */
	{
		volatile u8 *gpio_par_fec;
		volatile u16 *gpio_par_feci2c;

		gpio_par_feci2c = (volatile u16 *)(MCF_IPSBAR + 0x100082);
		/* Set up gpio outputs for FEC0 MII lines */
		gpio_par_fec = (volatile u8 *)(MCF_IPSBAR + 0x100078);

		*gpio_par_feci2c |= 0x0f00;
		*gpio_par_fec |= 0xc0;

#if defined(CONFIG_FEC2)
		/* Set up gpio outputs for FEC1 MII lines */
		gpio_par_fec = (volatile u8 *)(MCF_IPSBAR + 0x100079);

		*gpio_par_feci2c |= 0x00a0;
		*gpio_par_fec |= 0xc0;
#endif /* CONFIG_FEC2 */
	}
#endif /* CONFIG_M527x */
L
Linus Torvalds 已提交
1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431
}

static void __inline__ fec_set_mii(struct net_device *dev, struct fec_enet_private *fep)
{
	volatile fec_t *fecp;

	fecp = fep->hwp;
	fecp->fec_r_cntrl = OPT_FRAME_SIZE | 0x04;
	fecp->fec_x_cntrl = 0x00;

	/*
	 * Set MII speed to 2.5 MHz
	 * See 5282 manual section 17.5.4.7: MSCR
	 */
	fep->phy_speed = ((((MCF_CLK / 2) / (2500000 / 10)) + 5) / 10) * 2;
	fecp->fec_mii_speed = fep->phy_speed;

	fec_restart(dev, 0);
}

static void __inline__ fec_get_mac(struct net_device *dev)
{
	struct fec_enet_private *fep = netdev_priv(dev);
	volatile fec_t *fecp;
1432
	unsigned char *iap, tmpaddr[ETH_ALEN];
L
Linus Torvalds 已提交
1433 1434 1435

	fecp = fep->hwp;

1436
	if (FEC_FLASHMAC) {
L
Linus Torvalds 已提交
1437 1438 1439 1440
		/*
		 * Get MAC address from FLASH.
		 * If it is all 1's or 0's, use the default.
		 */
1441
		iap = FEC_FLASHMAC;
L
Linus Torvalds 已提交
1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453
		if ((iap[0] == 0) && (iap[1] == 0) && (iap[2] == 0) &&
		    (iap[3] == 0) && (iap[4] == 0) && (iap[5] == 0))
			iap = fec_mac_default;
		if ((iap[0] == 0xff) && (iap[1] == 0xff) && (iap[2] == 0xff) &&
		    (iap[3] == 0xff) && (iap[4] == 0xff) && (iap[5] == 0xff))
			iap = fec_mac_default;
	} else {
		*((unsigned long *) &tmpaddr[0]) = fecp->fec_addr_low;
		*((unsigned short *) &tmpaddr[4]) = (fecp->fec_addr_high >> 16);
		iap = &tmpaddr[0];
	}

1454
	memcpy(dev->dev_addr, iap, ETH_ALEN);
L
Linus Torvalds 已提交
1455 1456

	/* Adjust MAC if using default MAC address */
1457 1458
	if (iap == fec_mac_default)
		dev->dev_addr[ETH_ALEN-1] = fec_mac_default[ETH_ALEN-1] + fep->index;
L
Linus Torvalds 已提交
1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470
}

static void __inline__ fec_disable_phy_intr(void)
{
}

static void __inline__ fec_phy_ack_intr(void)
{
}

/* ------------------------------------------------------------------------- */

1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494
#elif defined(CONFIG_M520x)

/*
 *	Code specific to Coldfire 520x
 */
static void __inline__ fec_request_intrs(struct net_device *dev)
{
	struct fec_enet_private *fep;
	int b;
	static const struct idesc {
		char *name;
		unsigned short irq;
	} *idp, id[] = {
		{ "fec(TXF)", 23 },
		{ "fec(RXF)", 27 },
		{ "fec(MII)", 29 },
		{ NULL },
	};

	fep = netdev_priv(dev);
	b = 64 + 13;

	/* Setup interrupt handlers. */
	for (idp = id; idp->name; idp++) {
1495
		if (request_irq(b+idp->irq, fec_enet_interrupt, IRQF_DISABLED, idp->name,dev) != 0)
1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576
			printk("FEC: Could not allocate %s IRQ(%d)!\n", idp->name, b+idp->irq);
	}

	/* Unmask interrupts at ColdFire interrupt controller */
	{
		volatile unsigned char  *icrp;
		volatile unsigned long  *imrp;

		icrp = (volatile unsigned char *) (MCF_IPSBAR + MCFICM_INTC0 +
			MCFINTC_ICR0);
		for (b = 36; (b < 49); b++)
			icrp[b] = 0x04;
		imrp = (volatile unsigned long *) (MCF_IPSBAR + MCFICM_INTC0 +
			MCFINTC_IMRH);
		*imrp &= ~0x0001FFF0;
	}
	*(volatile unsigned char *)(MCF_IPSBAR + MCF_GPIO_PAR_FEC) |= 0xf0;
	*(volatile unsigned char *)(MCF_IPSBAR + MCF_GPIO_PAR_FECI2C) |= 0x0f;
}

static void __inline__ fec_set_mii(struct net_device *dev, struct fec_enet_private *fep)
{
	volatile fec_t *fecp;

	fecp = fep->hwp;
	fecp->fec_r_cntrl = OPT_FRAME_SIZE | 0x04;
	fecp->fec_x_cntrl = 0x00;

	/*
	 * Set MII speed to 2.5 MHz
	 * See 5282 manual section 17.5.4.7: MSCR
	 */
	fep->phy_speed = ((((MCF_CLK / 2) / (2500000 / 10)) + 5) / 10) * 2;
	fecp->fec_mii_speed = fep->phy_speed;

	fec_restart(dev, 0);
}

static void __inline__ fec_get_mac(struct net_device *dev)
{
	struct fec_enet_private *fep = netdev_priv(dev);
	volatile fec_t *fecp;
	unsigned char *iap, tmpaddr[ETH_ALEN];

	fecp = fep->hwp;

	if (FEC_FLASHMAC) {
		/*
		 * Get MAC address from FLASH.
		 * If it is all 1's or 0's, use the default.
		 */
		iap = FEC_FLASHMAC;
		if ((iap[0] == 0) && (iap[1] == 0) && (iap[2] == 0) &&
		   (iap[3] == 0) && (iap[4] == 0) && (iap[5] == 0))
			iap = fec_mac_default;
		if ((iap[0] == 0xff) && (iap[1] == 0xff) && (iap[2] == 0xff) &&
		   (iap[3] == 0xff) && (iap[4] == 0xff) && (iap[5] == 0xff))
			iap = fec_mac_default;
	} else {
		*((unsigned long *) &tmpaddr[0]) = fecp->fec_addr_low;
		*((unsigned short *) &tmpaddr[4]) = (fecp->fec_addr_high >> 16);
		iap = &tmpaddr[0];
	}

	memcpy(dev->dev_addr, iap, ETH_ALEN);

	/* Adjust MAC if using default MAC address */
	if (iap == fec_mac_default)
		dev->dev_addr[ETH_ALEN-1] = fec_mac_default[ETH_ALEN-1] + fep->index;
}

static void __inline__ fec_disable_phy_intr(void)
{
}

static void __inline__ fec_phy_ack_intr(void)
{
}

/* ------------------------------------------------------------------------- */

1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599
#elif defined(CONFIG_M532x)
/*
 * Code specific for M532x
 */
static void __inline__ fec_request_intrs(struct net_device *dev)
{
	struct fec_enet_private *fep;
	int b;
	static const struct idesc {
		char *name;
		unsigned short irq;
	} *idp, id[] = {
	    { "fec(TXF)", 36 },
	    { "fec(RXF)", 40 },
	    { "fec(MII)", 42 },
	    { NULL },
	};

	fep = netdev_priv(dev);
	b = (fep->index) ? 128 : 64;

	/* Setup interrupt handlers. */
	for (idp = id; idp->name; idp++) {
1600
		if (request_irq(b+idp->irq, fec_enet_interrupt, IRQF_DISABLED, idp->name,dev) != 0)
1601
			printk("FEC: Could not allocate %s IRQ(%d)!\n",
1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701
				idp->name, b+idp->irq);
	}

	/* Unmask interrupts */
	MCF_INTC0_ICR36 = 0x2;
	MCF_INTC0_ICR37 = 0x2;
	MCF_INTC0_ICR38 = 0x2;
	MCF_INTC0_ICR39 = 0x2;
	MCF_INTC0_ICR40 = 0x2;
	MCF_INTC0_ICR41 = 0x2;
	MCF_INTC0_ICR42 = 0x2;
	MCF_INTC0_ICR43 = 0x2;
	MCF_INTC0_ICR44 = 0x2;
	MCF_INTC0_ICR45 = 0x2;
	MCF_INTC0_ICR46 = 0x2;
	MCF_INTC0_ICR47 = 0x2;
	MCF_INTC0_ICR48 = 0x2;

	MCF_INTC0_IMRH &= ~(
		MCF_INTC_IMRH_INT_MASK36 |
		MCF_INTC_IMRH_INT_MASK37 |
		MCF_INTC_IMRH_INT_MASK38 |
		MCF_INTC_IMRH_INT_MASK39 |
		MCF_INTC_IMRH_INT_MASK40 |
		MCF_INTC_IMRH_INT_MASK41 |
		MCF_INTC_IMRH_INT_MASK42 |
		MCF_INTC_IMRH_INT_MASK43 |
		MCF_INTC_IMRH_INT_MASK44 |
		MCF_INTC_IMRH_INT_MASK45 |
		MCF_INTC_IMRH_INT_MASK46 |
		MCF_INTC_IMRH_INT_MASK47 |
		MCF_INTC_IMRH_INT_MASK48 );

	/* Set up gpio outputs for MII lines */
	MCF_GPIO_PAR_FECI2C |= (0 |
		MCF_GPIO_PAR_FECI2C_PAR_MDC_EMDC |
		MCF_GPIO_PAR_FECI2C_PAR_MDIO_EMDIO);
	MCF_GPIO_PAR_FEC = (0 |
		MCF_GPIO_PAR_FEC_PAR_FEC_7W_FEC |
		MCF_GPIO_PAR_FEC_PAR_FEC_MII_FEC);
}

static void __inline__ fec_set_mii(struct net_device *dev, struct fec_enet_private *fep)
{
	volatile fec_t *fecp;

	fecp = fep->hwp;
	fecp->fec_r_cntrl = OPT_FRAME_SIZE | 0x04;
	fecp->fec_x_cntrl = 0x00;

	/*
	 * Set MII speed to 2.5 MHz
	 */
	fep->phy_speed = ((((MCF_CLK / 2) / (2500000 / 10)) + 5) / 10) * 2;
	fecp->fec_mii_speed = fep->phy_speed;

	fec_restart(dev, 0);
}

static void __inline__ fec_get_mac(struct net_device *dev)
{
	struct fec_enet_private *fep = netdev_priv(dev);
	volatile fec_t *fecp;
	unsigned char *iap, tmpaddr[ETH_ALEN];

	fecp = fep->hwp;

	if (FEC_FLASHMAC) {
		/*
		 * Get MAC address from FLASH.
		 * If it is all 1's or 0's, use the default.
		 */
		iap = FEC_FLASHMAC;
		if ((iap[0] == 0) && (iap[1] == 0) && (iap[2] == 0) &&
		    (iap[3] == 0) && (iap[4] == 0) && (iap[5] == 0))
			iap = fec_mac_default;
		if ((iap[0] == 0xff) && (iap[1] == 0xff) && (iap[2] == 0xff) &&
		    (iap[3] == 0xff) && (iap[4] == 0xff) && (iap[5] == 0xff))
			iap = fec_mac_default;
	} else {
		*((unsigned long *) &tmpaddr[0]) = fecp->fec_addr_low;
		*((unsigned short *) &tmpaddr[4]) = (fecp->fec_addr_high >> 16);
		iap = &tmpaddr[0];
	}

	memcpy(dev->dev_addr, iap, ETH_ALEN);

	/* Adjust MAC if using default MAC address */
	if (iap == fec_mac_default)
		dev->dev_addr[ETH_ALEN-1] = fec_mac_default[ETH_ALEN-1] + fep->index;
}

static void __inline__ fec_disable_phy_intr(void)
{
}

static void __inline__ fec_phy_ack_intr(void)
{
}

L
Linus Torvalds 已提交
1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741
#endif

/* ------------------------------------------------------------------------- */

static void mii_display_status(struct net_device *dev)
{
	struct fec_enet_private *fep = netdev_priv(dev);
	volatile uint *s = &(fep->phy_status);

	if (!fep->link && !fep->old_link) {
		/* Link is still down - don't print anything */
		return;
	}

	printk("%s: status: ", dev->name);

	if (!fep->link) {
		printk("link down");
	} else {
		printk("link up");

		switch(*s & PHY_STAT_SPMASK) {
		case PHY_STAT_100FDX: printk(", 100MBit Full Duplex"); break;
		case PHY_STAT_100HDX: printk(", 100MBit Half Duplex"); break;
		case PHY_STAT_10FDX: printk(", 10MBit Full Duplex"); break;
		case PHY_STAT_10HDX: printk(", 10MBit Half Duplex"); break;
		default:
			printk(", Unknown speed/duplex");
		}

		if (*s & PHY_STAT_ANC)
			printk(", auto-negotiation complete");
	}

	if (*s & PHY_STAT_FAULT)
		printk(", remote fault");

	printk(".\n");
}

G
Greg Ungerer 已提交
1742
static void mii_display_config(struct work_struct *work)
L
Linus Torvalds 已提交
1743
{
G
Greg Ungerer 已提交
1744 1745
	struct fec_enet_private *fep = container_of(work, struct fec_enet_private, phy_task);
	struct net_device *dev = fep->netdev;
1746
	uint status = fep->phy_status;
L
Linus Torvalds 已提交
1747 1748 1749 1750 1751 1752 1753 1754

	/*
	** When we get here, phy_task is already removed from
	** the workqueue.  It is thus safe to allow to reuse it.
	*/
	fep->mii_phy_task_queued = 0;
	printk("%s: config: auto-negotiation ", dev->name);

1755
	if (status & PHY_CONF_ANE)
L
Linus Torvalds 已提交
1756 1757 1758 1759
		printk("on");
	else
		printk("off");

1760
	if (status & PHY_CONF_100FDX)
L
Linus Torvalds 已提交
1761
		printk(", 100FDX");
1762
	if (status & PHY_CONF_100HDX)
L
Linus Torvalds 已提交
1763
		printk(", 100HDX");
1764
	if (status & PHY_CONF_10FDX)
L
Linus Torvalds 已提交
1765
		printk(", 10FDX");
1766
	if (status & PHY_CONF_10HDX)
L
Linus Torvalds 已提交
1767
		printk(", 10HDX");
1768
	if (!(status & PHY_CONF_SPMASK))
L
Linus Torvalds 已提交
1769 1770
		printk(", No speed/duplex selected?");

1771
	if (status & PHY_CONF_LOOP)
L
Linus Torvalds 已提交
1772
		printk(", loopback enabled");
1773

L
Linus Torvalds 已提交
1774 1775 1776 1777 1778
	printk(".\n");

	fep->sequence_done = 1;
}

G
Greg Ungerer 已提交
1779
static void mii_relink(struct work_struct *work)
L
Linus Torvalds 已提交
1780
{
G
Greg Ungerer 已提交
1781 1782
	struct fec_enet_private *fep = container_of(work, struct fec_enet_private, phy_task);
	struct net_device *dev = fep->netdev;
L
Linus Torvalds 已提交
1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795
	int duplex;

	/*
	** When we get here, phy_task is already removed from
	** the workqueue.  It is thus safe to allow to reuse it.
	*/
	fep->mii_phy_task_queued = 0;
	fep->link = (fep->phy_status & PHY_STAT_LINK) ? 1 : 0;
	mii_display_status(dev);
	fep->old_link = fep->link;

	if (fep->link) {
		duplex = 0;
1796
		if (fep->phy_status
L
Linus Torvalds 已提交
1797 1798 1799
		    & (PHY_STAT_100FDX | PHY_STAT_10FDX))
			duplex = 1;
		fec_restart(dev, duplex);
1800
	} else
L
Linus Torvalds 已提交
1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824
		fec_stop(dev);

#if 0
	enable_irq(fep->mii_irq);
#endif

}

/* mii_queue_relink is called in interrupt context from mii_link_interrupt */
static void mii_queue_relink(uint mii_reg, struct net_device *dev)
{
	struct fec_enet_private *fep = netdev_priv(dev);

	/*
	** We cannot queue phy_task twice in the workqueue.  It
	** would cause an endless loop in the workqueue.
	** Fortunately, if the last mii_relink entry has not yet been
	** executed now, it will do the job for the current interrupt,
	** which is just what we want.
	*/
	if (fep->mii_phy_task_queued)
		return;

	fep->mii_phy_task_queued = 1;
G
Greg Ungerer 已提交
1825
	INIT_WORK(&fep->phy_task, mii_relink);
L
Linus Torvalds 已提交
1826 1827 1828
	schedule_work(&fep->phy_task);
}

1829
/* mii_queue_config is called in interrupt context from fec_enet_mii */
L
Linus Torvalds 已提交
1830 1831 1832 1833 1834 1835 1836 1837
static void mii_queue_config(uint mii_reg, struct net_device *dev)
{
	struct fec_enet_private *fep = netdev_priv(dev);

	if (fep->mii_phy_task_queued)
		return;

	fep->mii_phy_task_queued = 1;
G
Greg Ungerer 已提交
1838
	INIT_WORK(&fep->phy_task, mii_display_config);
L
Linus Torvalds 已提交
1839 1840 1841
	schedule_work(&fep->phy_task);
}

1842 1843 1844 1845 1846 1847 1848 1849
phy_cmd_t const phy_cmd_relink[] = {
	{ mk_mii_read(MII_REG_CR), mii_queue_relink },
	{ mk_mii_end, }
	};
phy_cmd_t const phy_cmd_config[] = {
	{ mk_mii_read(MII_REG_CR), mii_queue_config },
	{ mk_mii_end, }
	};
L
Linus Torvalds 已提交
1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871

/* Read remainder of PHY ID.
*/
static void
mii_discover_phy3(uint mii_reg, struct net_device *dev)
{
	struct fec_enet_private *fep;
	int i;

	fep = netdev_priv(dev);
	fep->phy_id |= (mii_reg & 0xffff);
	printk("fec: PHY @ 0x%x, ID 0x%08x", fep->phy_addr, fep->phy_id);

	for(i = 0; phy_info[i]; i++) {
		if(phy_info[i]->id == (fep->phy_id >> 4))
			break;
	}

	if (phy_info[i])
		printk(" -- %s\n", phy_info[i]->name);
	else
		printk(" -- unknown PHY!\n");
1872

L
Linus Torvalds 已提交
1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891
	fep->phy = phy_info[i];
	fep->phy_id_done = 1;
}

/* Scan all of the MII PHY addresses looking for someone to respond
 * with a valid ID.  This usually happens quickly.
 */
static void
mii_discover_phy(uint mii_reg, struct net_device *dev)
{
	struct fec_enet_private *fep;
	volatile fec_t *fecp;
	uint phytype;

	fep = netdev_priv(dev);
	fecp = fep->hwp;

	if (fep->phy_addr < 32) {
		if ((phytype = (mii_reg & 0xffff)) != 0xffff && phytype != 0) {
1892

L
Linus Torvalds 已提交
1893 1894 1895 1896 1897
			/* Got first part of ID, now get remainder.
			*/
			fep->phy_id = phytype << 16;
			mii_queue(dev, mk_mii_read(MII_REG_PHYIR2),
							mii_discover_phy3);
1898
		} else {
L
Linus Torvalds 已提交
1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912
			fep->phy_addr++;
			mii_queue(dev, mk_mii_read(MII_REG_PHYIR1),
							mii_discover_phy);
		}
	} else {
		printk("FEC: No PHY device found.\n");
		/* Disable external MII interface */
		fecp->fec_mii_speed = fep->phy_speed = 0;
		fec_disable_phy_intr();
	}
}

/* This interrupt occurs when the PHY detects a link change.
*/
1913
#ifdef HAVE_mii_link_interrupt
L
Linus Torvalds 已提交
1914
static irqreturn_t
1915
mii_link_interrupt(int irq, void * dev_id)
L
Linus Torvalds 已提交
1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930
{
	struct	net_device *dev = dev_id;
	struct fec_enet_private *fep = netdev_priv(dev);

	fec_phy_ack_intr();

#if 0
	disable_irq(fep->mii_irq);  /* disable now, enable later */
#endif

	mii_do_cmd(dev, fep->phy->ack_int);
	mii_do_cmd(dev, phy_cmd_relink);  /* restart and display status */

	return IRQ_HANDLED;
}
1931
#endif
L
Linus Torvalds 已提交
1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950

static int
fec_enet_open(struct net_device *dev)
{
	struct fec_enet_private *fep = netdev_priv(dev);

	/* I should reset the ring buffers here, but I don't yet know
	 * a simple way to do that.
	 */
	fec_set_mac_address(dev);

	fep->sequence_done = 0;
	fep->link = 0;

	if (fep->phy) {
		mii_do_cmd(dev, fep->phy->ack_int);
		mii_do_cmd(dev, fep->phy->config);
		mii_do_cmd(dev, phy_cmd_config);  /* display configuration */

1951 1952 1953 1954 1955 1956
		/* Poll until the PHY tells us its configuration
		 * (not link state).
		 * Request is initiated by mii_do_cmd above, but answer
		 * comes by interrupt.
		 * This should take about 25 usec per register at 2.5 MHz,
		 * and we read approximately 5 registers.
L
Linus Torvalds 已提交
1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026
		 */
		while(!fep->sequence_done)
			schedule();

		mii_do_cmd(dev, fep->phy->startup);

		/* Set the initial link state to true. A lot of hardware
		 * based on this device does not implement a PHY interrupt,
		 * so we are never notified of link change.
		 */
		fep->link = 1;
	} else {
		fep->link = 1; /* lets just try it and see */
		/* no phy,  go full duplex,  it's most likely a hub chip */
		fec_restart(dev, 1);
	}

	netif_start_queue(dev);
	fep->opened = 1;
	return 0;		/* Success */
}

static int
fec_enet_close(struct net_device *dev)
{
	struct fec_enet_private *fep = netdev_priv(dev);

	/* Don't know what to do yet.
	*/
	fep->opened = 0;
	netif_stop_queue(dev);
	fec_stop(dev);

	return 0;
}

/* Set or clear the multicast filter for this adaptor.
 * Skeleton taken from sunlance driver.
 * The CPM Ethernet implementation allows Multicast as well as individual
 * MAC address filtering.  Some of the drivers check to make sure it is
 * a group multicast address, and discard those that are not.  I guess I
 * will do the same for now, but just remove the test if you want
 * individual filtering as well (do the upper net layers want or support
 * this kind of feature?).
 */

#define HASH_BITS	6		/* #bits in hash */
#define CRC32_POLY	0xEDB88320

static void set_multicast_list(struct net_device *dev)
{
	struct fec_enet_private *fep;
	volatile fec_t *ep;
	struct dev_mc_list *dmi;
	unsigned int i, j, bit, data, crc;
	unsigned char hash;

	fep = netdev_priv(dev);
	ep = fep->hwp;

	if (dev->flags&IFF_PROMISC) {
		ep->fec_r_cntrl |= 0x0008;
	} else {

		ep->fec_r_cntrl &= ~0x0008;

		if (dev->flags & IFF_ALLMULTI) {
			/* Catch all multicast addresses, so set the
			 * filter to all 1's.
			 */
2027 2028
			ep->fec_grp_hash_table_high = 0xffffffff;
			ep->fec_grp_hash_table_low = 0xffffffff;
L
Linus Torvalds 已提交
2029 2030 2031
		} else {
			/* Clear filter and add the addresses in hash register.
			*/
2032 2033
			ep->fec_grp_hash_table_high = 0;
			ep->fec_grp_hash_table_low = 0;
2034

L
Linus Torvalds 已提交
2035 2036 2037 2038 2039 2040 2041 2042
			dmi = dev->mc_list;

			for (j = 0; j < dev->mc_count; j++, dmi = dmi->next)
			{
				/* Only support group multicast for now.
				*/
				if (!(dmi->dmi_addr[0] & 1))
					continue;
2043

L
Linus Torvalds 已提交
2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061
				/* calculate crc32 value of mac address
				*/
				crc = 0xffffffff;

				for (i = 0; i < dmi->dmi_addrlen; i++)
				{
					data = dmi->dmi_addr[i];
					for (bit = 0; bit < 8; bit++, data >>= 1)
					{
						crc = (crc >> 1) ^
						(((crc ^ data) & 1) ? CRC32_POLY : 0);
					}
				}

				/* only upper 6 bits (HASH_BITS) are used
				   which point to specific bit in he hash registers
				*/
				hash = (crc >> (32 - HASH_BITS)) & 0x3f;
2062

L
Linus Torvalds 已提交
2063
				if (hash > 31)
2064
					ep->fec_grp_hash_table_high |= 1 << (hash - 32);
L
Linus Torvalds 已提交
2065
				else
2066
					ep->fec_grp_hash_table_low |= 1 << hash;
L
Linus Torvalds 已提交
2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078
			}
		}
	}
}

/* Set a MAC change in hardware.
 */
static void
fec_set_mac_address(struct net_device *dev)
{
	volatile fec_t *fecp;

2079
	fecp = ((struct fec_enet_private *)netdev_priv(dev))->hwp;
L
Linus Torvalds 已提交
2080 2081

	/* Set station address. */
2082 2083 2084 2085
	fecp->fec_addr_low = dev->dev_addr[3] | (dev->dev_addr[2] << 8) |
		(dev->dev_addr[1] << 16) | (dev->dev_addr[0] << 24);
	fecp->fec_addr_high = (dev->dev_addr[5] << 16) |
		(dev->dev_addr[4] << 24);
L
Linus Torvalds 已提交
2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107

}

/* Initialize the FEC Ethernet on 860T (or ColdFire 5272).
 */
 /*
  * XXX:  We need to clean up on failure exits here.
  */
int __init fec_enet_init(struct net_device *dev)
{
	struct fec_enet_private *fep = netdev_priv(dev);
	unsigned long	mem_addr;
	volatile cbd_t	*bdp;
	cbd_t		*cbd_base;
	volatile fec_t	*fecp;
	int 		i, j;
	static int	index = 0;

	/* Only allow us to be probed once. */
	if (index >= FEC_MAX_PORTS)
		return -ENXIO;

2108 2109 2110 2111 2112 2113 2114 2115
	/* Allocate memory for buffer descriptors.
	*/
	mem_addr = __get_free_page(GFP_KERNEL);
	if (mem_addr == 0) {
		printk("FEC: allocate descriptor memory failed?\n");
		return -ENOMEM;
	}

2116 2117 2118
	spin_lock_init(&fep->hw_lock);
	spin_lock_init(&fep->mii_lock);

L
Linus Torvalds 已提交
2119 2120 2121 2122 2123 2124
	/* Create an Ethernet device instance.
	*/
	fecp = (volatile fec_t *) fec_hw[index];

	fep->index = index;
	fep->hwp = fecp;
G
Greg Ungerer 已提交
2125
	fep->netdev = dev;
L
Linus Torvalds 已提交
2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212

	/* Whack a reset.  We should wait for this.
	*/
	fecp->fec_ecntrl = 1;
	udelay(10);

	/* Set the Ethernet address.  If using multiple Enets on the 8xx,
	 * this needs some work to get unique addresses.
	 *
	 * This is our default MAC address unless the user changes
	 * it via eth_mac_addr (our dev->set_mac_addr handler).
	 */
	fec_get_mac(dev);

	cbd_base = (cbd_t *)mem_addr;
	/* XXX: missing check for allocation failure */

	/* Set receive and transmit descriptor base.
	*/
	fep->rx_bd_base = cbd_base;
	fep->tx_bd_base = cbd_base + RX_RING_SIZE;

	fep->dirty_tx = fep->cur_tx = fep->tx_bd_base;
	fep->cur_rx = fep->rx_bd_base;

	fep->skb_cur = fep->skb_dirty = 0;

	/* Initialize the receive buffer descriptors.
	*/
	bdp = fep->rx_bd_base;
	for (i=0; i<FEC_ENET_RX_PAGES; i++) {

		/* Allocate a page.
		*/
		mem_addr = __get_free_page(GFP_KERNEL);
		/* XXX: missing check for allocation failure */

		/* Initialize the BD for every fragment in the page.
		*/
		for (j=0; j<FEC_ENET_RX_FRPPG; j++) {
			bdp->cbd_sc = BD_ENET_RX_EMPTY;
			bdp->cbd_bufaddr = __pa(mem_addr);
			mem_addr += FEC_ENET_RX_FRSIZE;
			bdp++;
		}
	}

	/* Set the last buffer to wrap.
	*/
	bdp--;
	bdp->cbd_sc |= BD_SC_WRAP;

	/* ...and the same for transmmit.
	*/
	bdp = fep->tx_bd_base;
	for (i=0, j=FEC_ENET_TX_FRPPG; i<TX_RING_SIZE; i++) {
		if (j >= FEC_ENET_TX_FRPPG) {
			mem_addr = __get_free_page(GFP_KERNEL);
			j = 1;
		} else {
			mem_addr += FEC_ENET_TX_FRSIZE;
			j++;
		}
		fep->tx_bounce[i] = (unsigned char *) mem_addr;

		/* Initialize the BD for every fragment in the page.
		*/
		bdp->cbd_sc = 0;
		bdp->cbd_bufaddr = 0;
		bdp++;
	}

	/* Set the last buffer to wrap.
	*/
	bdp--;
	bdp->cbd_sc |= BD_SC_WRAP;

	/* Set receive and transmit descriptor base.
	*/
	fecp->fec_r_des_start = __pa((uint)(fep->rx_bd_base));
	fecp->fec_x_des_start = __pa((uint)(fep->tx_bd_base));

	/* Install our interrupt handlers. This varies depending on
	 * the architecture.
	*/
	fec_request_intrs(dev);

2213 2214
	fecp->fec_grp_hash_table_high = 0;
	fecp->fec_grp_hash_table_low = 0;
2215 2216
	fecp->fec_r_buff_size = PKT_MAXBLR_SIZE;
	fecp->fec_ecntrl = 2;
2217
	fecp->fec_r_des_active = 0;
2218 2219 2220 2221
#ifndef CONFIG_M5272
	fecp->fec_hash_table_high = 0;
	fecp->fec_hash_table_low = 0;
#endif
2222

L
Linus Torvalds 已提交
2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239
	dev->base_addr = (unsigned long)fecp;

	/* The FEC Ethernet specific entries in the device structure. */
	dev->open = fec_enet_open;
	dev->hard_start_xmit = fec_enet_start_xmit;
	dev->tx_timeout = fec_timeout;
	dev->watchdog_timeo = TX_TIMEOUT;
	dev->stop = fec_enet_close;
	dev->set_multicast_list = set_multicast_list;

	for (i=0; i<NMII-1; i++)
		mii_cmds[i].mii_next = &mii_cmds[i+1];
	mii_free = mii_cmds;

	/* setup MII interface */
	fec_set_mii(dev, fep);

2240 2241
	/* Clear and enable interrupts */
	fecp->fec_ievent = 0xffc00000;
2242
	fecp->fec_imask = (FEC_ENET_TXF | FEC_ENET_RXF | FEC_ENET_MII);
2243

L
Linus Torvalds 已提交
2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276
	/* Queue up command to detect the PHY and initialize the
	 * remainder of the interface.
	 */
	fep->phy_id_done = 0;
	fep->phy_addr = 0;
	mii_queue(dev, mk_mii_read(MII_REG_PHYIR1), mii_discover_phy);

	index++;
	return 0;
}

/* This function is called to start or restart the FEC during a link
 * change.  This only happens when switching between half and full
 * duplex.
 */
static void
fec_restart(struct net_device *dev, int duplex)
{
	struct fec_enet_private *fep;
	volatile cbd_t *bdp;
	volatile fec_t *fecp;
	int i;

	fep = netdev_priv(dev);
	fecp = fep->hwp;

	/* Whack a reset.  We should wait for this.
	*/
	fecp->fec_ecntrl = 1;
	udelay(10);

	/* Clear any outstanding interrupt.
	*/
2277
	fecp->fec_ievent = 0xffc00000;
L
Linus Torvalds 已提交
2278 2279 2280

	/* Set station address.
	*/
2281
	fec_set_mac_address(dev);
L
Linus Torvalds 已提交
2282 2283 2284

	/* Reset all multicast.
	*/
2285 2286
	fecp->fec_grp_hash_table_high = 0;
	fecp->fec_grp_hash_table_low = 0;
L
Linus Torvalds 已提交
2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347

	/* Set maximum receive buffer size.
	*/
	fecp->fec_r_buff_size = PKT_MAXBLR_SIZE;

	/* Set receive and transmit descriptor base.
	*/
	fecp->fec_r_des_start = __pa((uint)(fep->rx_bd_base));
	fecp->fec_x_des_start = __pa((uint)(fep->tx_bd_base));

	fep->dirty_tx = fep->cur_tx = fep->tx_bd_base;
	fep->cur_rx = fep->rx_bd_base;

	/* Reset SKB transmit buffers.
	*/
	fep->skb_cur = fep->skb_dirty = 0;
	for (i=0; i<=TX_RING_MOD_MASK; i++) {
		if (fep->tx_skbuff[i] != NULL) {
			dev_kfree_skb_any(fep->tx_skbuff[i]);
			fep->tx_skbuff[i] = NULL;
		}
	}

	/* Initialize the receive buffer descriptors.
	*/
	bdp = fep->rx_bd_base;
	for (i=0; i<RX_RING_SIZE; i++) {

		/* Initialize the BD for every fragment in the page.
		*/
		bdp->cbd_sc = BD_ENET_RX_EMPTY;
		bdp++;
	}

	/* Set the last buffer to wrap.
	*/
	bdp--;
	bdp->cbd_sc |= BD_SC_WRAP;

	/* ...and the same for transmmit.
	*/
	bdp = fep->tx_bd_base;
	for (i=0; i<TX_RING_SIZE; i++) {

		/* Initialize the BD for every fragment in the page.
		*/
		bdp->cbd_sc = 0;
		bdp->cbd_bufaddr = 0;
		bdp++;
	}

	/* Set the last buffer to wrap.
	*/
	bdp--;
	bdp->cbd_sc |= BD_SC_WRAP;

	/* Enable MII mode.
	*/
	if (duplex) {
		fecp->fec_r_cntrl = OPT_FRAME_SIZE | 0x04;/* MII enable */
		fecp->fec_x_cntrl = 0x04;		  /* FD enable */
2348
	} else {
L
Linus Torvalds 已提交
2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361
		/* MII enable|No Rcv on Xmit */
		fecp->fec_r_cntrl = OPT_FRAME_SIZE | 0x06;
		fecp->fec_x_cntrl = 0x00;
	}
	fep->full_duplex = duplex;

	/* Set MII speed.
	*/
	fecp->fec_mii_speed = fep->phy_speed;

	/* And last, enable the transmit and receive processing.
	*/
	fecp->fec_ecntrl = 2;
2362 2363 2364 2365
	fecp->fec_r_des_active = 0;

	/* Enable interrupts we wish to service.
	*/
2366
	fecp->fec_imask = (FEC_ENET_TXF | FEC_ENET_RXF | FEC_ENET_MII);
L
Linus Torvalds 已提交
2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377
}

static void
fec_stop(struct net_device *dev)
{
	volatile fec_t *fecp;
	struct fec_enet_private *fep;

	fep = netdev_priv(dev);
	fecp = fep->hwp;

2378 2379 2380 2381 2382 2383 2384 2385 2386 2387
	/*
	** We cannot expect a graceful transmit stop without link !!!
	*/
	if (fep->link)
		{
		fecp->fec_x_cntrl = 0x01;	/* Graceful transmit stop */
		udelay(10);
		if (!(fecp->fec_ievent & FEC_ENET_GRA))
			printk("fec_stop : Graceful transmit stop did not complete !\n");
		}
L
Linus Torvalds 已提交
2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404

	/* Whack a reset.  We should wait for this.
	*/
	fecp->fec_ecntrl = 1;
	udelay(10);

	/* Clear outstanding MII command interrupts.
	*/
	fecp->fec_ievent = FEC_ENET_MII;

	fecp->fec_imask = FEC_ENET_MII;
	fecp->fec_mii_speed = fep->phy_speed;
}

static int __init fec_enet_module_init(void)
{
	struct net_device *dev;
2405
	int i, err;
2406 2407

	printk("FEC ENET Version 0.2\n");
L
Linus Torvalds 已提交
2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422

	for (i = 0; (i < FEC_MAX_PORTS); i++) {
		dev = alloc_etherdev(sizeof(struct fec_enet_private));
		if (!dev)
			return -ENOMEM;
		err = fec_enet_init(dev);
		if (err) {
			free_netdev(dev);
			continue;
		}
		if (register_netdev(dev) != 0) {
			/* XXX: missing cleanup here */
			free_netdev(dev);
			return -EIO;
		}
2423

J
Johannes Berg 已提交
2424
		printk("%s: ethernet %pM\n", dev->name, dev->dev_addr);
L
Linus Torvalds 已提交
2425 2426 2427 2428 2429 2430 2431
	}
	return 0;
}

module_init(fec_enet_module_init);

MODULE_LICENSE("GPL");