hrtimer.c 46.4 KB
Newer Older
1 2 3
/*
 *  linux/kernel/hrtimer.c
 *
4
 *  Copyright(C) 2005-2006, Thomas Gleixner <tglx@linutronix.de>
5
 *  Copyright(C) 2005-2007, Red Hat, Inc., Ingo Molnar
6
 *  Copyright(C) 2006-2007  Timesys Corp., Thomas Gleixner
7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
 *
 *  High-resolution kernel timers
 *
 *  In contrast to the low-resolution timeout API implemented in
 *  kernel/timer.c, hrtimers provide finer resolution and accuracy
 *  depending on system configuration and capabilities.
 *
 *  These timers are currently used for:
 *   - itimers
 *   - POSIX timers
 *   - nanosleep
 *   - precise in-kernel timing
 *
 *  Started by: Thomas Gleixner and Ingo Molnar
 *
 *  Credits:
 *	based on kernel/timer.c
 *
25 26 27 28 29 30
 *	Help, testing, suggestions, bugfixes, improvements were
 *	provided by:
 *
 *	George Anzinger, Andrew Morton, Steven Rostedt, Roman Zippel
 *	et. al.
 *
31 32 33 34 35 36 37 38 39
 *  For licencing details see kernel-base/COPYING
 */

#include <linux/cpu.h>
#include <linux/module.h>
#include <linux/percpu.h>
#include <linux/hrtimer.h>
#include <linux/notifier.h>
#include <linux/syscalls.h>
40
#include <linux/kallsyms.h>
41
#include <linux/interrupt.h>
42
#include <linux/tick.h>
43 44
#include <linux/seq_file.h>
#include <linux/err.h>
45
#include <linux/debugobjects.h>
46 47
#include <linux/sched.h>
#include <linux/timer.h>
48 49 50

#include <asm/uaccess.h>

51 52
#include <trace/events/timer.h>

53 54
/*
 * The timer bases:
55
 *
56 57 58 59
 * There are more clockids then hrtimer bases. Thus, we index
 * into the timer bases by the hrtimer_base_type enum. When trying
 * to reach a base using a clockid, hrtimer_clockid_to_base()
 * is used to convert from clockid to the proper hrtimer_base_type.
60
 */
61
DEFINE_PER_CPU(struct hrtimer_cpu_base, hrtimer_bases) =
62
{
63 64

	.clock_base =
65
	{
66
		{
67 68
			.index = HRTIMER_BASE_MONOTONIC,
			.clockid = CLOCK_MONOTONIC,
69
			.get_time = &ktime_get,
70
			.resolution = KTIME_LOW_RES,
71
		},
T
Thomas Gleixner 已提交
72 73 74 75 76 77
		{
			.index = HRTIMER_BASE_REALTIME,
			.clockid = CLOCK_REALTIME,
			.get_time = &ktime_get_real,
			.resolution = KTIME_LOW_RES,
		},
78
		{
79 80
			.index = HRTIMER_BASE_BOOTTIME,
			.clockid = CLOCK_BOOTTIME,
81 82 83
			.get_time = &ktime_get_boottime,
			.resolution = KTIME_LOW_RES,
		},
84
	}
85 86
};

87
static const int hrtimer_clock_to_base_table[MAX_CLOCKS] = {
88 89 90 91
	[CLOCK_REALTIME]	= HRTIMER_BASE_REALTIME,
	[CLOCK_MONOTONIC]	= HRTIMER_BASE_MONOTONIC,
	[CLOCK_BOOTTIME]	= HRTIMER_BASE_BOOTTIME,
};
92 93 94 95 96 97 98

static inline int hrtimer_clockid_to_base(clockid_t clock_id)
{
	return hrtimer_clock_to_base_table[clock_id];
}


99 100 101 102
/*
 * Get the coarse grained time at the softirq based on xtime and
 * wall_to_monotonic.
 */
103
static void hrtimer_get_softirq_time(struct hrtimer_cpu_base *base)
104
{
105
	ktime_t xtim, mono, boot;
106
	struct timespec xts, tom, slp;
107

108
	get_xtime_and_monotonic_and_sleep_offset(&xts, &tom, &slp);
109

J
john stultz 已提交
110
	xtim = timespec_to_ktime(xts);
111 112
	mono = ktime_add(xtim, timespec_to_ktime(tom));
	boot = ktime_add(mono, timespec_to_ktime(slp));
113
	base->clock_base[HRTIMER_BASE_REALTIME].softirq_time = xtim;
114 115
	base->clock_base[HRTIMER_BASE_MONOTONIC].softirq_time = mono;
	base->clock_base[HRTIMER_BASE_BOOTTIME].softirq_time = boot;
116 117
}

118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135
/*
 * Functions and macros which are different for UP/SMP systems are kept in a
 * single place
 */
#ifdef CONFIG_SMP

/*
 * We are using hashed locking: holding per_cpu(hrtimer_bases)[n].lock
 * means that all timers which are tied to this base via timer->base are
 * locked, and the base itself is locked too.
 *
 * So __run_timers/migrate_timers can safely modify all timers which could
 * be found on the lists/queues.
 *
 * When the timer's base is locked, and the timer removed from list, it is
 * possible to set timer->base = NULL and drop the lock: the timer remains
 * locked.
 */
136 137 138
static
struct hrtimer_clock_base *lock_hrtimer_base(const struct hrtimer *timer,
					     unsigned long *flags)
139
{
140
	struct hrtimer_clock_base *base;
141 142 143 144

	for (;;) {
		base = timer->base;
		if (likely(base != NULL)) {
145
			raw_spin_lock_irqsave(&base->cpu_base->lock, *flags);
146 147 148
			if (likely(base == timer->base))
				return base;
			/* The timer has migrated to another CPU: */
149
			raw_spin_unlock_irqrestore(&base->cpu_base->lock, *flags);
150 151 152 153 154
		}
		cpu_relax();
	}
}

155 156 157 158 159 160 161

/*
 * Get the preferred target CPU for NOHZ
 */
static int hrtimer_get_target(int this_cpu, int pinned)
{
#ifdef CONFIG_NO_HZ
162 163
	if (!pinned && get_sysctl_timer_migration() && idle_cpu(this_cpu))
		return get_nohz_timer_target();
164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190
#endif
	return this_cpu;
}

/*
 * With HIGHRES=y we do not migrate the timer when it is expiring
 * before the next event on the target cpu because we cannot reprogram
 * the target cpu hardware and we would cause it to fire late.
 *
 * Called with cpu_base->lock of target cpu held.
 */
static int
hrtimer_check_target(struct hrtimer *timer, struct hrtimer_clock_base *new_base)
{
#ifdef CONFIG_HIGH_RES_TIMERS
	ktime_t expires;

	if (!new_base->cpu_base->hres_active)
		return 0;

	expires = ktime_sub(hrtimer_get_expires(timer), new_base->offset);
	return expires.tv64 <= new_base->cpu_base->expires_next.tv64;
#else
	return 0;
#endif
}

191 192 193
/*
 * Switch the timer base to the current CPU when possible.
 */
194
static inline struct hrtimer_clock_base *
195 196
switch_hrtimer_base(struct hrtimer *timer, struct hrtimer_clock_base *base,
		    int pinned)
197
{
198 199
	struct hrtimer_clock_base *new_base;
	struct hrtimer_cpu_base *new_cpu_base;
200 201
	int this_cpu = smp_processor_id();
	int cpu = hrtimer_get_target(this_cpu, pinned);
202
	int basenum = base->index;
203

204 205
again:
	new_cpu_base = &per_cpu(hrtimer_bases, cpu);
206
	new_base = &new_cpu_base->clock_base[basenum];
207 208 209

	if (base != new_base) {
		/*
210
		 * We are trying to move timer to new_base.
211 212 213 214 215 216 217
		 * However we can't change timer's base while it is running,
		 * so we keep it on the same CPU. No hassle vs. reprogramming
		 * the event source in the high resolution case. The softirq
		 * code will take care of this when the timer function has
		 * completed. There is no conflict as we hold the lock until
		 * the timer is enqueued.
		 */
218
		if (unlikely(hrtimer_callback_running(timer)))
219 220 221 222
			return base;

		/* See the comment in lock_timer_base() */
		timer->base = NULL;
223 224
		raw_spin_unlock(&base->cpu_base->lock);
		raw_spin_lock(&new_base->cpu_base->lock);
225

226 227
		if (cpu != this_cpu && hrtimer_check_target(timer, new_base)) {
			cpu = this_cpu;
228 229
			raw_spin_unlock(&new_base->cpu_base->lock);
			raw_spin_lock(&base->cpu_base->lock);
230 231
			timer->base = base;
			goto again;
232
		}
233 234 235 236 237 238 239
		timer->base = new_base;
	}
	return new_base;
}

#else /* CONFIG_SMP */

240
static inline struct hrtimer_clock_base *
241 242
lock_hrtimer_base(const struct hrtimer *timer, unsigned long *flags)
{
243
	struct hrtimer_clock_base *base = timer->base;
244

245
	raw_spin_lock_irqsave(&base->cpu_base->lock, *flags);
246 247 248 249

	return base;
}

250
# define switch_hrtimer_base(t, b, p)	(b)
251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280

#endif	/* !CONFIG_SMP */

/*
 * Functions for the union type storage format of ktime_t which are
 * too large for inlining:
 */
#if BITS_PER_LONG < 64
# ifndef CONFIG_KTIME_SCALAR
/**
 * ktime_add_ns - Add a scalar nanoseconds value to a ktime_t variable
 * @kt:		addend
 * @nsec:	the scalar nsec value to add
 *
 * Returns the sum of kt and nsec in ktime_t format
 */
ktime_t ktime_add_ns(const ktime_t kt, u64 nsec)
{
	ktime_t tmp;

	if (likely(nsec < NSEC_PER_SEC)) {
		tmp.tv64 = nsec;
	} else {
		unsigned long rem = do_div(nsec, NSEC_PER_SEC);

		tmp = ktime_set((long)nsec, rem);
	}

	return ktime_add(kt, tmp);
}
281 282

EXPORT_SYMBOL_GPL(ktime_add_ns);
283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306

/**
 * ktime_sub_ns - Subtract a scalar nanoseconds value from a ktime_t variable
 * @kt:		minuend
 * @nsec:	the scalar nsec value to subtract
 *
 * Returns the subtraction of @nsec from @kt in ktime_t format
 */
ktime_t ktime_sub_ns(const ktime_t kt, u64 nsec)
{
	ktime_t tmp;

	if (likely(nsec < NSEC_PER_SEC)) {
		tmp.tv64 = nsec;
	} else {
		unsigned long rem = do_div(nsec, NSEC_PER_SEC);

		tmp = ktime_set((long)nsec, rem);
	}

	return ktime_sub(kt, tmp);
}

EXPORT_SYMBOL_GPL(ktime_sub_ns);
307 308 309 310 311
# endif /* !CONFIG_KTIME_SCALAR */

/*
 * Divide a ktime value by a nanosecond value
 */
D
Davide Libenzi 已提交
312
u64 ktime_divns(const ktime_t kt, s64 div)
313
{
314
	u64 dclc;
315 316
	int sft = 0;

317
	dclc = ktime_to_ns(kt);
318 319 320 321 322 323 324 325
	/* Make sure the divisor is less than 2^32: */
	while (div >> 32) {
		sft++;
		div >>= 1;
	}
	dclc >>= sft;
	do_div(dclc, (unsigned long) div);

D
Davide Libenzi 已提交
326
	return dclc;
327 328 329
}
#endif /* BITS_PER_LONG >= 64 */

330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346
/*
 * Add two ktime values and do a safety check for overflow:
 */
ktime_t ktime_add_safe(const ktime_t lhs, const ktime_t rhs)
{
	ktime_t res = ktime_add(lhs, rhs);

	/*
	 * We use KTIME_SEC_MAX here, the maximum timeout which we can
	 * return to user space in a timespec:
	 */
	if (res.tv64 < 0 || res.tv64 < lhs.tv64 || res.tv64 < rhs.tv64)
		res = ktime_set(KTIME_SEC_MAX, 0);

	return res;
}

347 348
EXPORT_SYMBOL_GPL(ktime_add_safe);

349 350 351 352
#ifdef CONFIG_DEBUG_OBJECTS_TIMERS

static struct debug_obj_descr hrtimer_debug_descr;

353 354 355 356 357
static void *hrtimer_debug_hint(void *addr)
{
	return ((struct hrtimer *) addr)->function;
}

358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416
/*
 * fixup_init is called when:
 * - an active object is initialized
 */
static int hrtimer_fixup_init(void *addr, enum debug_obj_state state)
{
	struct hrtimer *timer = addr;

	switch (state) {
	case ODEBUG_STATE_ACTIVE:
		hrtimer_cancel(timer);
		debug_object_init(timer, &hrtimer_debug_descr);
		return 1;
	default:
		return 0;
	}
}

/*
 * fixup_activate is called when:
 * - an active object is activated
 * - an unknown object is activated (might be a statically initialized object)
 */
static int hrtimer_fixup_activate(void *addr, enum debug_obj_state state)
{
	switch (state) {

	case ODEBUG_STATE_NOTAVAILABLE:
		WARN_ON_ONCE(1);
		return 0;

	case ODEBUG_STATE_ACTIVE:
		WARN_ON(1);

	default:
		return 0;
	}
}

/*
 * fixup_free is called when:
 * - an active object is freed
 */
static int hrtimer_fixup_free(void *addr, enum debug_obj_state state)
{
	struct hrtimer *timer = addr;

	switch (state) {
	case ODEBUG_STATE_ACTIVE:
		hrtimer_cancel(timer);
		debug_object_free(timer, &hrtimer_debug_descr);
		return 1;
	default:
		return 0;
	}
}

static struct debug_obj_descr hrtimer_debug_descr = {
	.name		= "hrtimer",
417
	.debug_hint	= hrtimer_debug_hint,
418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451
	.fixup_init	= hrtimer_fixup_init,
	.fixup_activate	= hrtimer_fixup_activate,
	.fixup_free	= hrtimer_fixup_free,
};

static inline void debug_hrtimer_init(struct hrtimer *timer)
{
	debug_object_init(timer, &hrtimer_debug_descr);
}

static inline void debug_hrtimer_activate(struct hrtimer *timer)
{
	debug_object_activate(timer, &hrtimer_debug_descr);
}

static inline void debug_hrtimer_deactivate(struct hrtimer *timer)
{
	debug_object_deactivate(timer, &hrtimer_debug_descr);
}

static inline void debug_hrtimer_free(struct hrtimer *timer)
{
	debug_object_free(timer, &hrtimer_debug_descr);
}

static void __hrtimer_init(struct hrtimer *timer, clockid_t clock_id,
			   enum hrtimer_mode mode);

void hrtimer_init_on_stack(struct hrtimer *timer, clockid_t clock_id,
			   enum hrtimer_mode mode)
{
	debug_object_init_on_stack(timer, &hrtimer_debug_descr);
	__hrtimer_init(timer, clock_id, mode);
}
S
Stephen Hemminger 已提交
452
EXPORT_SYMBOL_GPL(hrtimer_init_on_stack);
453 454 455 456 457 458 459 460 461 462 463 464

void destroy_hrtimer_on_stack(struct hrtimer *timer)
{
	debug_object_free(timer, &hrtimer_debug_descr);
}

#else
static inline void debug_hrtimer_init(struct hrtimer *timer) { }
static inline void debug_hrtimer_activate(struct hrtimer *timer) { }
static inline void debug_hrtimer_deactivate(struct hrtimer *timer) { }
#endif

465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484
static inline void
debug_init(struct hrtimer *timer, clockid_t clockid,
	   enum hrtimer_mode mode)
{
	debug_hrtimer_init(timer);
	trace_hrtimer_init(timer, clockid, mode);
}

static inline void debug_activate(struct hrtimer *timer)
{
	debug_hrtimer_activate(timer);
	trace_hrtimer_start(timer);
}

static inline void debug_deactivate(struct hrtimer *timer)
{
	debug_hrtimer_deactivate(timer);
	trace_hrtimer_cancel(timer);
}

485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521
/* High resolution timer related functions */
#ifdef CONFIG_HIGH_RES_TIMERS

/*
 * High resolution timer enabled ?
 */
static int hrtimer_hres_enabled __read_mostly  = 1;

/*
 * Enable / Disable high resolution mode
 */
static int __init setup_hrtimer_hres(char *str)
{
	if (!strcmp(str, "off"))
		hrtimer_hres_enabled = 0;
	else if (!strcmp(str, "on"))
		hrtimer_hres_enabled = 1;
	else
		return 0;
	return 1;
}

__setup("highres=", setup_hrtimer_hres);

/*
 * hrtimer_high_res_enabled - query, if the highres mode is enabled
 */
static inline int hrtimer_is_hres_enabled(void)
{
	return hrtimer_hres_enabled;
}

/*
 * Is the high resolution mode active ?
 */
static inline int hrtimer_hres_active(void)
{
522
	return __this_cpu_read(hrtimer_bases.hres_active);
523 524 525 526 527 528 529
}

/*
 * Reprogram the event source with checking both queues for the
 * next event
 * Called with interrupts disabled and base->lock held
 */
530 531
static void
hrtimer_force_reprogram(struct hrtimer_cpu_base *cpu_base, int skip_equal)
532 533 534
{
	int i;
	struct hrtimer_clock_base *base = cpu_base->clock_base;
535
	ktime_t expires, expires_next;
536

537
	expires_next.tv64 = KTIME_MAX;
538 539 540

	for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++, base++) {
		struct hrtimer *timer;
541
		struct timerqueue_node *next;
542

543 544
		next = timerqueue_getnext(&base->active);
		if (!next)
545
			continue;
546 547
		timer = container_of(next, struct hrtimer, node);

548
		expires = ktime_sub(hrtimer_get_expires(timer), base->offset);
549 550 551 552 553 554 555
		/*
		 * clock_was_set() has changed base->offset so the
		 * result might be negative. Fix it up to prevent a
		 * false positive in clockevents_program_event()
		 */
		if (expires.tv64 < 0)
			expires.tv64 = 0;
556 557
		if (expires.tv64 < expires_next.tv64)
			expires_next = expires;
558 559
	}

560 561 562 563 564
	if (skip_equal && expires_next.tv64 == cpu_base->expires_next.tv64)
		return;

	cpu_base->expires_next.tv64 = expires_next.tv64;

565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580
	if (cpu_base->expires_next.tv64 != KTIME_MAX)
		tick_program_event(cpu_base->expires_next, 1);
}

/*
 * Shared reprogramming for clock_realtime and clock_monotonic
 *
 * When a timer is enqueued and expires earlier than the already enqueued
 * timers, we have to check, whether it expires earlier than the timer for
 * which the clock event device was armed.
 *
 * Called with interrupts disabled and base->cpu_base.lock held
 */
static int hrtimer_reprogram(struct hrtimer *timer,
			     struct hrtimer_clock_base *base)
{
581
	struct hrtimer_cpu_base *cpu_base = &__get_cpu_var(hrtimer_bases);
582
	ktime_t expires = ktime_sub(hrtimer_get_expires(timer), base->offset);
583 584
	int res;

585
	WARN_ON_ONCE(hrtimer_get_expires_tv64(timer) < 0);
586

587 588 589
	/*
	 * When the callback is running, we do not reprogram the clock event
	 * device. The timer callback is either running on a different CPU or
590
	 * the callback is executed in the hrtimer_interrupt context. The
591 592 593 594 595 596
	 * reprogramming is handled either by the softirq, which called the
	 * callback or at the end of the hrtimer_interrupt.
	 */
	if (hrtimer_callback_running(timer))
		return 0;

597 598 599 600 601 602 603 604 605
	/*
	 * CLOCK_REALTIME timer might be requested with an absolute
	 * expiry time which is less than base->offset. Nothing wrong
	 * about that, just avoid to call into the tick code, which
	 * has now objections against negative expiry values.
	 */
	if (expires.tv64 < 0)
		return -ETIME;

606 607 608 609 610 611 612 613 614 615
	if (expires.tv64 >= cpu_base->expires_next.tv64)
		return 0;

	/*
	 * If a hang was detected in the last timer interrupt then we
	 * do not schedule a timer which is earlier than the expiry
	 * which we enforced in the hang detection. We want the system
	 * to make progress.
	 */
	if (cpu_base->hang_detected)
616 617 618 619 620 621 622
		return 0;

	/*
	 * Clockevents returns -ETIME, when the event was in the past.
	 */
	res = tick_program_event(expires, 0);
	if (!IS_ERR_VALUE(res))
623
		cpu_base->expires_next = expires;
624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642
	return res;
}

/*
 * Initialize the high resolution related parts of cpu_base
 */
static inline void hrtimer_init_hres(struct hrtimer_cpu_base *base)
{
	base->expires_next.tv64 = KTIME_MAX;
	base->hres_active = 0;
}

/*
 * When High resolution timers are active, try to reprogram. Note, that in case
 * the state has HRTIMER_STATE_CALLBACK set, no reprogramming and no expiry
 * check happens. The timer gets enqueued into the rbtree. The reprogramming
 * and expiry check is done in the hrtimer_interrupt or in the softirq.
 */
static inline int hrtimer_enqueue_reprogram(struct hrtimer *timer,
643 644
					    struct hrtimer_clock_base *base,
					    int wakeup)
645 646
{
	if (base->cpu_base->hres_active && hrtimer_reprogram(timer, base)) {
647
		if (wakeup) {
648
			raw_spin_unlock(&base->cpu_base->lock);
649
			raise_softirq_irqoff(HRTIMER_SOFTIRQ);
650
			raw_spin_lock(&base->cpu_base->lock);
651 652 653
		} else
			__raise_softirq_irqoff(HRTIMER_SOFTIRQ);

654
		return 1;
655
	}
656

657 658 659
	return 0;
}

660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686
/*
 * Retrigger next event is called after clock was set
 *
 * Called with interrupts disabled via on_each_cpu()
 */
static void retrigger_next_event(void *arg)
{
	struct hrtimer_cpu_base *base = &__get_cpu_var(hrtimer_bases);
	struct timespec realtime_offset, xtim, wtm, sleep;

	if (!hrtimer_hres_active())
		return;

	/* Optimized out for !HIGH_RES */
	get_xtime_and_monotonic_and_sleep_offset(&xtim, &wtm, &sleep);
	set_normalized_timespec(&realtime_offset, -wtm.tv_sec, -wtm.tv_nsec);

	/* Adjust CLOCK_REALTIME offset */
	raw_spin_lock(&base->lock);
	base->clock_base[HRTIMER_BASE_REALTIME].offset =
		timespec_to_ktime(realtime_offset);
	base->clock_base[HRTIMER_BASE_BOOTTIME].offset =
		timespec_to_ktime(sleep);

	hrtimer_force_reprogram(base, 0);
	raw_spin_unlock(&base->lock);
}
687

688 689 690
/*
 * Switch to high resolution mode
 */
691
static int hrtimer_switch_to_hres(void)
692
{
693
	int i, cpu = smp_processor_id();
I
Ingo Molnar 已提交
694
	struct hrtimer_cpu_base *base = &per_cpu(hrtimer_bases, cpu);
695 696 697
	unsigned long flags;

	if (base->hres_active)
698
		return 1;
699 700 701 702 703

	local_irq_save(flags);

	if (tick_init_highres()) {
		local_irq_restore(flags);
I
Ingo Molnar 已提交
704 705
		printk(KERN_WARNING "Could not switch to high resolution "
				    "mode on CPU %d\n", cpu);
706
		return 0;
707 708
	}
	base->hres_active = 1;
709 710
	for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++)
		base->clock_base[i].resolution = KTIME_HIGH_RES;
711 712 713 714 715 716

	tick_setup_sched_timer();

	/* "Retrigger" the interrupt to get things going */
	retrigger_next_event(NULL);
	local_irq_restore(flags);
717
	return 1;
718 719 720 721 722 723
}

#else

static inline int hrtimer_hres_active(void) { return 0; }
static inline int hrtimer_is_hres_enabled(void) { return 0; }
724
static inline int hrtimer_switch_to_hres(void) { return 0; }
725 726
static inline void
hrtimer_force_reprogram(struct hrtimer_cpu_base *base, int skip_equal) { }
727
static inline int hrtimer_enqueue_reprogram(struct hrtimer *timer,
728 729
					    struct hrtimer_clock_base *base,
					    int wakeup)
730 731 732 733
{
	return 0;
}
static inline void hrtimer_init_hres(struct hrtimer_cpu_base *base) { }
734
static inline void retrigger_next_event(void *arg) { }
735 736 737

#endif /* CONFIG_HIGH_RES_TIMERS */

738 739 740 741 742 743 744 745 746 747 748 749 750
/*
 * Clock realtime was set
 *
 * Change the offset of the realtime clock vs. the monotonic
 * clock.
 *
 * We might have to reprogram the high resolution timer interrupt. On
 * SMP we call the architecture specific code to retrigger _all_ high
 * resolution timer interrupts. On UP we just disable interrupts and
 * call the high resolution interrupt code.
 */
void clock_was_set(void)
{
751
#ifdef CONFIG_HIGHRES_TIMERS
752 753
	/* Retrigger the CPU local events everywhere */
	on_each_cpu(retrigger_next_event, NULL, 1);
754 755
#endif
	timerfd_clock_was_set();
756 757 758 759 760 761 762 763 764 765 766 767
}

/*
 * During resume we might have to reprogram the high resolution timer
 * interrupt (on the local CPU):
 */
void hrtimers_resume(void)
{
	WARN_ONCE(!irqs_disabled(),
		  KERN_INFO "hrtimers_resume() called with IRQs enabled!");

	retrigger_next_event(NULL);
768
	timerfd_clock_was_set();
769 770
}

771
static inline void timer_stats_hrtimer_set_start_info(struct hrtimer *timer)
772
{
773
#ifdef CONFIG_TIMER_STATS
774 775
	if (timer->start_site)
		return;
776
	timer->start_site = __builtin_return_address(0);
777 778
	memcpy(timer->start_comm, current->comm, TASK_COMM_LEN);
	timer->start_pid = current->pid;
779 780 781 782 783 784 785 786
#endif
}

static inline void timer_stats_hrtimer_clear_start_info(struct hrtimer *timer)
{
#ifdef CONFIG_TIMER_STATS
	timer->start_site = NULL;
#endif
787
}
788 789 790 791 792 793 794 795

static inline void timer_stats_account_hrtimer(struct hrtimer *timer)
{
#ifdef CONFIG_TIMER_STATS
	if (likely(!timer_stats_active))
		return;
	timer_stats_update_stats(timer, timer->start_pid, timer->start_site,
				 timer->function, timer->start_comm, 0);
796
#endif
797
}
798

799
/*
800
 * Counterpart to lock_hrtimer_base above:
801 802 803 804
 */
static inline
void unlock_hrtimer_base(const struct hrtimer *timer, unsigned long *flags)
{
805
	raw_spin_unlock_irqrestore(&timer->base->cpu_base->lock, *flags);
806 807 808 809 810
}

/**
 * hrtimer_forward - forward the timer expiry
 * @timer:	hrtimer to forward
811
 * @now:	forward past this time
812 813 814
 * @interval:	the interval to forward
 *
 * Forward the timer expiry so it will expire in the future.
J
Jonathan Corbet 已提交
815
 * Returns the number of overruns.
816
 */
D
Davide Libenzi 已提交
817
u64 hrtimer_forward(struct hrtimer *timer, ktime_t now, ktime_t interval)
818
{
D
Davide Libenzi 已提交
819
	u64 orun = 1;
820
	ktime_t delta;
821

822
	delta = ktime_sub(now, hrtimer_get_expires(timer));
823 824 825 826

	if (delta.tv64 < 0)
		return 0;

827 828 829
	if (interval.tv64 < timer->base->resolution.tv64)
		interval.tv64 = timer->base->resolution.tv64;

830
	if (unlikely(delta.tv64 >= interval.tv64)) {
831
		s64 incr = ktime_to_ns(interval);
832 833

		orun = ktime_divns(delta, incr);
834 835
		hrtimer_add_expires_ns(timer, incr * orun);
		if (hrtimer_get_expires_tv64(timer) > now.tv64)
836 837 838 839 840 841 842
			return orun;
		/*
		 * This (and the ktime_add() below) is the
		 * correction for exact:
		 */
		orun++;
	}
843
	hrtimer_add_expires(timer, interval);
844 845 846

	return orun;
}
S
Stas Sergeev 已提交
847
EXPORT_SYMBOL_GPL(hrtimer_forward);
848 849 850 851 852 853

/*
 * enqueue_hrtimer - internal function to (re)start a timer
 *
 * The timer is inserted in expiry order. Insertion into the
 * red black tree is O(log(n)). Must hold the base lock.
854 855
 *
 * Returns 1 when the new timer is the leftmost timer in the tree.
856
 */
857 858
static int enqueue_hrtimer(struct hrtimer *timer,
			   struct hrtimer_clock_base *base)
859
{
860
	debug_activate(timer);
861

862
	timerqueue_add(&base->active, &timer->node);
863
	base->cpu_base->active_bases |= 1 << base->index;
864

865 866 867 868 869
	/*
	 * HRTIMER_STATE_ENQUEUED is or'ed to the current state to preserve the
	 * state of a possibly running callback.
	 */
	timer->state |= HRTIMER_STATE_ENQUEUED;
870

871
	return (&timer->node == base->active.next);
872
}
873 874 875 876 877

/*
 * __remove_hrtimer - internal function to remove a timer
 *
 * Caller must hold the base lock.
878 879 880 881 882
 *
 * High resolution timer mode reprograms the clock event device when the
 * timer is the one which expires next. The caller can disable this by setting
 * reprogram to zero. This is useful, when the context does a reprogramming
 * anyway (e.g. timer interrupt)
883
 */
884
static void __remove_hrtimer(struct hrtimer *timer,
885
			     struct hrtimer_clock_base *base,
886
			     unsigned long newstate, int reprogram)
887
{
888 889 890
	if (!(timer->state & HRTIMER_STATE_ENQUEUED))
		goto out;

891
	if (&timer->node == timerqueue_getnext(&base->active)) {
892 893 894 895 896 897 898 899 900
#ifdef CONFIG_HIGH_RES_TIMERS
		/* Reprogram the clock event device. if enabled */
		if (reprogram && hrtimer_hres_active()) {
			ktime_t expires;

			expires = ktime_sub(hrtimer_get_expires(timer),
					    base->offset);
			if (base->cpu_base->expires_next.tv64 == expires.tv64)
				hrtimer_force_reprogram(base->cpu_base, 1);
901
		}
902
#endif
903
	}
904
	timerqueue_del(&base->active, &timer->node);
905 906
	if (!timerqueue_getnext(&base->active))
		base->cpu_base->active_bases &= ~(1 << base->index);
907
out:
908
	timer->state = newstate;
909 910 911 912 913 914
}

/*
 * remove hrtimer, called with base lock held
 */
static inline int
915
remove_hrtimer(struct hrtimer *timer, struct hrtimer_clock_base *base)
916
{
917
	if (hrtimer_is_queued(timer)) {
918
		unsigned long state;
919 920 921 922 923 924 925 926 927 928
		int reprogram;

		/*
		 * Remove the timer and force reprogramming when high
		 * resolution mode is active and the timer is on the current
		 * CPU. If we remove a timer on another CPU, reprogramming is
		 * skipped. The interrupt event on this CPU is fired and
		 * reprogramming happens in the interrupt handler. This is a
		 * rare case and less expensive than a smp call.
		 */
929
		debug_deactivate(timer);
930
		timer_stats_hrtimer_clear_start_info(timer);
931
		reprogram = base->cpu_base == &__get_cpu_var(hrtimer_bases);
932 933 934 935 936 937 938
		/*
		 * We must preserve the CALLBACK state flag here,
		 * otherwise we could move the timer base in
		 * switch_hrtimer_base.
		 */
		state = timer->state & HRTIMER_STATE_CALLBACK;
		__remove_hrtimer(timer, base, state, reprogram);
939 940 941 942 943
		return 1;
	}
	return 0;
}

944 945 946
int __hrtimer_start_range_ns(struct hrtimer *timer, ktime_t tim,
		unsigned long delta_ns, const enum hrtimer_mode mode,
		int wakeup)
947
{
948
	struct hrtimer_clock_base *base, *new_base;
949
	unsigned long flags;
950
	int ret, leftmost;
951 952 953 954 955 956 957

	base = lock_hrtimer_base(timer, &flags);

	/* Remove an active timer from the queue: */
	ret = remove_hrtimer(timer, base);

	/* Switch the timer base, if necessary: */
958
	new_base = switch_hrtimer_base(timer, base, mode & HRTIMER_MODE_PINNED);
959

960
	if (mode & HRTIMER_MODE_REL) {
961
		tim = ktime_add_safe(tim, new_base->get_time());
962 963 964 965 966 967 968 969
		/*
		 * CONFIG_TIME_LOW_RES is a temporary way for architectures
		 * to signal that they simply return xtime in
		 * do_gettimeoffset(). In this case we want to round up by
		 * resolution when starting a relative timer, to avoid short
		 * timeouts. This will go away with the GTOD framework.
		 */
#ifdef CONFIG_TIME_LOW_RES
970
		tim = ktime_add_safe(tim, base->resolution);
971 972
#endif
	}
973

974
	hrtimer_set_expires_range_ns(timer, tim, delta_ns);
975

976 977
	timer_stats_hrtimer_set_start_info(timer);

978 979
	leftmost = enqueue_hrtimer(timer, new_base);

980 981 982
	/*
	 * Only allow reprogramming if the new base is on this CPU.
	 * (it might still be on another CPU if the timer was pending)
983 984
	 *
	 * XXX send_remote_softirq() ?
985
	 */
986
	if (leftmost && new_base->cpu_base == &__get_cpu_var(hrtimer_bases))
987
		hrtimer_enqueue_reprogram(timer, new_base, wakeup);
988 989 990 991 992

	unlock_hrtimer_base(timer, &flags);

	return ret;
}
993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009

/**
 * hrtimer_start_range_ns - (re)start an hrtimer on the current CPU
 * @timer:	the timer to be added
 * @tim:	expiry time
 * @delta_ns:	"slack" range for the timer
 * @mode:	expiry mode: absolute (HRTIMER_ABS) or relative (HRTIMER_REL)
 *
 * Returns:
 *  0 on success
 *  1 when the timer was active
 */
int hrtimer_start_range_ns(struct hrtimer *timer, ktime_t tim,
		unsigned long delta_ns, const enum hrtimer_mode mode)
{
	return __hrtimer_start_range_ns(timer, tim, delta_ns, mode, 1);
}
1010 1011 1012
EXPORT_SYMBOL_GPL(hrtimer_start_range_ns);

/**
T
Thomas Gleixner 已提交
1013
 * hrtimer_start - (re)start an hrtimer on the current CPU
1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024
 * @timer:	the timer to be added
 * @tim:	expiry time
 * @mode:	expiry mode: absolute (HRTIMER_ABS) or relative (HRTIMER_REL)
 *
 * Returns:
 *  0 on success
 *  1 when the timer was active
 */
int
hrtimer_start(struct hrtimer *timer, ktime_t tim, const enum hrtimer_mode mode)
{
1025
	return __hrtimer_start_range_ns(timer, tim, 0, mode, 1);
1026
}
1027
EXPORT_SYMBOL_GPL(hrtimer_start);
1028

1029

1030 1031 1032 1033 1034 1035 1036 1037
/**
 * hrtimer_try_to_cancel - try to deactivate a timer
 * @timer:	hrtimer to stop
 *
 * Returns:
 *  0 when the timer was not active
 *  1 when the timer was active
 * -1 when the timer is currently excuting the callback function and
1038
 *    cannot be stopped
1039 1040 1041
 */
int hrtimer_try_to_cancel(struct hrtimer *timer)
{
1042
	struct hrtimer_clock_base *base;
1043 1044 1045 1046 1047
	unsigned long flags;
	int ret = -1;

	base = lock_hrtimer_base(timer, &flags);

1048
	if (!hrtimer_callback_running(timer))
1049 1050 1051 1052 1053 1054 1055
		ret = remove_hrtimer(timer, base);

	unlock_hrtimer_base(timer, &flags);

	return ret;

}
1056
EXPORT_SYMBOL_GPL(hrtimer_try_to_cancel);
1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072

/**
 * hrtimer_cancel - cancel a timer and wait for the handler to finish.
 * @timer:	the timer to be cancelled
 *
 * Returns:
 *  0 when the timer was not active
 *  1 when the timer was active
 */
int hrtimer_cancel(struct hrtimer *timer)
{
	for (;;) {
		int ret = hrtimer_try_to_cancel(timer);

		if (ret >= 0)
			return ret;
1073
		cpu_relax();
1074 1075
	}
}
1076
EXPORT_SYMBOL_GPL(hrtimer_cancel);
1077 1078 1079 1080 1081 1082 1083 1084 1085 1086

/**
 * hrtimer_get_remaining - get remaining time for the timer
 * @timer:	the timer to read
 */
ktime_t hrtimer_get_remaining(const struct hrtimer *timer)
{
	unsigned long flags;
	ktime_t rem;

1087
	lock_hrtimer_base(timer, &flags);
1088
	rem = hrtimer_expires_remaining(timer);
1089 1090 1091 1092
	unlock_hrtimer_base(timer, &flags);

	return rem;
}
1093
EXPORT_SYMBOL_GPL(hrtimer_get_remaining);
1094

1095
#ifdef CONFIG_NO_HZ
1096 1097 1098 1099 1100 1101 1102 1103
/**
 * hrtimer_get_next_event - get the time until next expiry event
 *
 * Returns the delta to the next expiry event or KTIME_MAX if no timer
 * is pending.
 */
ktime_t hrtimer_get_next_event(void)
{
1104 1105
	struct hrtimer_cpu_base *cpu_base = &__get_cpu_var(hrtimer_bases);
	struct hrtimer_clock_base *base = cpu_base->clock_base;
1106 1107 1108 1109
	ktime_t delta, mindelta = { .tv64 = KTIME_MAX };
	unsigned long flags;
	int i;

1110
	raw_spin_lock_irqsave(&cpu_base->lock, flags);
1111

1112 1113 1114
	if (!hrtimer_hres_active()) {
		for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++, base++) {
			struct hrtimer *timer;
1115
			struct timerqueue_node *next;
1116

1117 1118
			next = timerqueue_getnext(&base->active);
			if (!next)
1119
				continue;
1120

1121
			timer = container_of(next, struct hrtimer, node);
1122
			delta.tv64 = hrtimer_get_expires_tv64(timer);
1123 1124 1125 1126
			delta = ktime_sub(delta, base->get_time());
			if (delta.tv64 < mindelta.tv64)
				mindelta.tv64 = delta.tv64;
		}
1127
	}
1128

1129
	raw_spin_unlock_irqrestore(&cpu_base->lock, flags);
1130

1131 1132 1133 1134 1135 1136
	if (mindelta.tv64 < 0)
		mindelta.tv64 = 0;
	return mindelta;
}
#endif

1137 1138
static void __hrtimer_init(struct hrtimer *timer, clockid_t clock_id,
			   enum hrtimer_mode mode)
1139
{
1140
	struct hrtimer_cpu_base *cpu_base;
1141
	int base;
1142

1143 1144
	memset(timer, 0, sizeof(struct hrtimer));

1145
	cpu_base = &__raw_get_cpu_var(hrtimer_bases);
1146

1147
	if (clock_id == CLOCK_REALTIME && mode != HRTIMER_MODE_ABS)
1148 1149
		clock_id = CLOCK_MONOTONIC;

1150 1151
	base = hrtimer_clockid_to_base(clock_id);
	timer->base = &cpu_base->clock_base[base];
1152
	timerqueue_init(&timer->node);
1153 1154 1155 1156 1157 1158

#ifdef CONFIG_TIMER_STATS
	timer->start_site = NULL;
	timer->start_pid = -1;
	memset(timer->start_comm, 0, TASK_COMM_LEN);
#endif
1159
}
1160 1161 1162 1163 1164 1165 1166 1167 1168 1169

/**
 * hrtimer_init - initialize a timer to the given clock
 * @timer:	the timer to be initialized
 * @clock_id:	the clock to be used
 * @mode:	timer mode abs/rel
 */
void hrtimer_init(struct hrtimer *timer, clockid_t clock_id,
		  enum hrtimer_mode mode)
{
1170
	debug_init(timer, clock_id, mode);
1171 1172
	__hrtimer_init(timer, clock_id, mode);
}
1173
EXPORT_SYMBOL_GPL(hrtimer_init);
1174 1175 1176 1177 1178 1179

/**
 * hrtimer_get_res - get the timer resolution for a clock
 * @which_clock: which clock to query
 * @tp:		 pointer to timespec variable to store the resolution
 *
1180 1181
 * Store the resolution of the clock selected by @which_clock in the
 * variable pointed to by @tp.
1182 1183 1184
 */
int hrtimer_get_res(const clockid_t which_clock, struct timespec *tp)
{
1185
	struct hrtimer_cpu_base *cpu_base;
1186
	int base = hrtimer_clockid_to_base(which_clock);
1187

1188
	cpu_base = &__raw_get_cpu_var(hrtimer_bases);
1189
	*tp = ktime_to_timespec(cpu_base->clock_base[base].resolution);
1190 1191 1192

	return 0;
}
1193
EXPORT_SYMBOL_GPL(hrtimer_get_res);
1194

1195
static void __run_hrtimer(struct hrtimer *timer, ktime_t *now)
1196 1197 1198 1199 1200 1201
{
	struct hrtimer_clock_base *base = timer->base;
	struct hrtimer_cpu_base *cpu_base = base->cpu_base;
	enum hrtimer_restart (*fn)(struct hrtimer *);
	int restart;

1202 1203
	WARN_ON(!irqs_disabled());

1204
	debug_deactivate(timer);
1205 1206 1207
	__remove_hrtimer(timer, base, HRTIMER_STATE_CALLBACK, 0);
	timer_stats_account_hrtimer(timer);
	fn = timer->function;
1208 1209 1210 1211 1212 1213

	/*
	 * Because we run timers from hardirq context, there is no chance
	 * they get migrated to another cpu, therefore its safe to unlock
	 * the timer base.
	 */
1214
	raw_spin_unlock(&cpu_base->lock);
1215
	trace_hrtimer_expire_entry(timer, now);
1216
	restart = fn(timer);
1217
	trace_hrtimer_expire_exit(timer);
1218
	raw_spin_lock(&cpu_base->lock);
1219 1220

	/*
T
Thomas Gleixner 已提交
1221 1222 1223
	 * Note: We clear the CALLBACK bit after enqueue_hrtimer and
	 * we do not reprogramm the event hardware. Happens either in
	 * hrtimer_start_range_ns() or in hrtimer_interrupt()
1224 1225 1226
	 */
	if (restart != HRTIMER_NORESTART) {
		BUG_ON(timer->state != HRTIMER_STATE_CALLBACK);
1227
		enqueue_hrtimer(timer, base);
1228
	}
1229 1230 1231

	WARN_ON_ONCE(!(timer->state & HRTIMER_STATE_CALLBACK));

1232 1233 1234
	timer->state &= ~HRTIMER_STATE_CALLBACK;
}

1235 1236 1237 1238 1239 1240 1241 1242 1243
#ifdef CONFIG_HIGH_RES_TIMERS

/*
 * High resolution timer interrupt
 * Called with interrupts disabled
 */
void hrtimer_interrupt(struct clock_event_device *dev)
{
	struct hrtimer_cpu_base *cpu_base = &__get_cpu_var(hrtimer_bases);
1244 1245
	ktime_t expires_next, now, entry_time, delta;
	int i, retries = 0;
1246 1247 1248 1249 1250

	BUG_ON(!cpu_base->hres_active);
	cpu_base->nr_events++;
	dev->next_event.tv64 = KTIME_MAX;

1251 1252
	entry_time = now = ktime_get();
retry:
1253 1254
	expires_next.tv64 = KTIME_MAX;

1255
	raw_spin_lock(&cpu_base->lock);
1256 1257 1258 1259 1260 1261 1262 1263 1264
	/*
	 * We set expires_next to KTIME_MAX here with cpu_base->lock
	 * held to prevent that a timer is enqueued in our queue via
	 * the migration code. This does not affect enqueueing of
	 * timers which run their callback and need to be requeued on
	 * this CPU.
	 */
	cpu_base->expires_next.tv64 = KTIME_MAX;

1265
	for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++) {
1266
		struct hrtimer_clock_base *base;
1267
		struct timerqueue_node *node;
1268 1269 1270 1271
		ktime_t basenow;

		if (!(cpu_base->active_bases & (1 << i)))
			continue;
1272

1273
		base = cpu_base->clock_base + i;
1274 1275
		basenow = ktime_add(now, base->offset);

1276
		while ((node = timerqueue_getnext(&base->active))) {
1277 1278
			struct hrtimer *timer;

1279
			timer = container_of(node, struct hrtimer, node);
1280

1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294
			/*
			 * The immediate goal for using the softexpires is
			 * minimizing wakeups, not running timers at the
			 * earliest interrupt after their soft expiration.
			 * This allows us to avoid using a Priority Search
			 * Tree, which can answer a stabbing querry for
			 * overlapping intervals and instead use the simple
			 * BST we already have.
			 * We don't add extra wakeups by delaying timers that
			 * are right-of a not yet expired timer, because that
			 * timer will have to trigger a wakeup anyway.
			 */

			if (basenow.tv64 < hrtimer_get_softexpires_tv64(timer)) {
1295 1296
				ktime_t expires;

1297
				expires = ktime_sub(hrtimer_get_expires(timer),
1298 1299 1300 1301 1302 1303
						    base->offset);
				if (expires.tv64 < expires_next.tv64)
					expires_next = expires;
				break;
			}

1304
			__run_hrtimer(timer, &basenow);
1305 1306 1307
		}
	}

1308 1309 1310 1311
	/*
	 * Store the new expiry value so the migration code can verify
	 * against it.
	 */
1312
	cpu_base->expires_next = expires_next;
1313
	raw_spin_unlock(&cpu_base->lock);
1314 1315

	/* Reprogramming necessary ? */
1316 1317 1318 1319
	if (expires_next.tv64 == KTIME_MAX ||
	    !tick_program_event(expires_next, 0)) {
		cpu_base->hang_detected = 0;
		return;
1320
	}
1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357

	/*
	 * The next timer was already expired due to:
	 * - tracing
	 * - long lasting callbacks
	 * - being scheduled away when running in a VM
	 *
	 * We need to prevent that we loop forever in the hrtimer
	 * interrupt routine. We give it 3 attempts to avoid
	 * overreacting on some spurious event.
	 */
	now = ktime_get();
	cpu_base->nr_retries++;
	if (++retries < 3)
		goto retry;
	/*
	 * Give the system a chance to do something else than looping
	 * here. We stored the entry time, so we know exactly how long
	 * we spent here. We schedule the next event this amount of
	 * time away.
	 */
	cpu_base->nr_hangs++;
	cpu_base->hang_detected = 1;
	delta = ktime_sub(now, entry_time);
	if (delta.tv64 > cpu_base->max_hang_time.tv64)
		cpu_base->max_hang_time = delta;
	/*
	 * Limit it to a sensible value as we enforce a longer
	 * delay. Give the CPU at least 100ms to catch up.
	 */
	if (delta.tv64 > 100 * NSEC_PER_MSEC)
		expires_next = ktime_add_ns(now, 100 * NSEC_PER_MSEC);
	else
		expires_next = ktime_add(now, delta);
	tick_program_event(expires_next, 1);
	printk_once(KERN_WARNING "hrtimer: interrupt took %llu ns\n",
		    ktime_to_ns(delta));
1358 1359
}

1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375
/*
 * local version of hrtimer_peek_ahead_timers() called with interrupts
 * disabled.
 */
static void __hrtimer_peek_ahead_timers(void)
{
	struct tick_device *td;

	if (!hrtimer_hres_active())
		return;

	td = &__get_cpu_var(tick_cpu_device);
	if (td && td->evtdev)
		hrtimer_interrupt(td->evtdev);
}

1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386
/**
 * hrtimer_peek_ahead_timers -- run soft-expired timers now
 *
 * hrtimer_peek_ahead_timers will peek at the timer queue of
 * the current cpu and check if there are any timers for which
 * the soft expires time has passed. If any such timers exist,
 * they are run immediately and then removed from the timer queue.
 *
 */
void hrtimer_peek_ahead_timers(void)
{
1387
	unsigned long flags;
1388

1389
	local_irq_save(flags);
1390
	__hrtimer_peek_ahead_timers();
1391 1392 1393
	local_irq_restore(flags);
}

1394 1395 1396 1397 1398
static void run_hrtimer_softirq(struct softirq_action *h)
{
	hrtimer_peek_ahead_timers();
}

1399 1400 1401 1402 1403
#else /* CONFIG_HIGH_RES_TIMERS */

static inline void __hrtimer_peek_ahead_timers(void) { }

#endif	/* !CONFIG_HIGH_RES_TIMERS */
1404

1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415
/*
 * Called from timer softirq every jiffy, expire hrtimers:
 *
 * For HRT its the fall back code to run the softirq in the timer
 * softirq context in case the hrtimer initialization failed or has
 * not been done yet.
 */
void hrtimer_run_pending(void)
{
	if (hrtimer_hres_active())
		return;
1416

1417 1418 1419 1420 1421 1422 1423 1424 1425 1426
	/*
	 * This _is_ ugly: We have to check in the softirq context,
	 * whether we can switch to highres and / or nohz mode. The
	 * clocksource switch happens in the timer interrupt with
	 * xtime_lock held. Notification from there only sets the
	 * check bit in the tick_oneshot code, otherwise we might
	 * deadlock vs. xtime_lock.
	 */
	if (tick_check_oneshot_change(!hrtimer_is_hres_enabled()))
		hrtimer_switch_to_hres();
1427 1428
}

1429
/*
1430
 * Called from hardirq context every jiffy
1431
 */
1432
void hrtimer_run_queues(void)
1433
{
1434
	struct timerqueue_node *node;
1435 1436 1437
	struct hrtimer_cpu_base *cpu_base = &__get_cpu_var(hrtimer_bases);
	struct hrtimer_clock_base *base;
	int index, gettime = 1;
1438

1439
	if (hrtimer_hres_active())
1440 1441
		return;

1442 1443
	for (index = 0; index < HRTIMER_MAX_CLOCK_BASES; index++) {
		base = &cpu_base->clock_base[index];
1444
		if (!timerqueue_getnext(&base->active))
1445
			continue;
1446

1447
		if (gettime) {
1448 1449
			hrtimer_get_softirq_time(cpu_base);
			gettime = 0;
1450
		}
1451

1452
		raw_spin_lock(&cpu_base->lock);
1453

1454
		while ((node = timerqueue_getnext(&base->active))) {
1455
			struct hrtimer *timer;
1456

1457
			timer = container_of(node, struct hrtimer, node);
1458 1459
			if (base->softirq_time.tv64 <=
					hrtimer_get_expires_tv64(timer))
1460 1461
				break;

1462
			__run_hrtimer(timer, &base->softirq_time);
1463
		}
1464
		raw_spin_unlock(&cpu_base->lock);
1465
	}
1466 1467
}

1468 1469 1470
/*
 * Sleep related functions:
 */
1471
static enum hrtimer_restart hrtimer_wakeup(struct hrtimer *timer)
1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483
{
	struct hrtimer_sleeper *t =
		container_of(timer, struct hrtimer_sleeper, timer);
	struct task_struct *task = t->task;

	t->task = NULL;
	if (task)
		wake_up_process(task);

	return HRTIMER_NORESTART;
}

1484
void hrtimer_init_sleeper(struct hrtimer_sleeper *sl, struct task_struct *task)
1485 1486 1487 1488
{
	sl->timer.function = hrtimer_wakeup;
	sl->task = task;
}
S
Stephen Hemminger 已提交
1489
EXPORT_SYMBOL_GPL(hrtimer_init_sleeper);
1490

1491
static int __sched do_nanosleep(struct hrtimer_sleeper *t, enum hrtimer_mode mode)
1492
{
1493
	hrtimer_init_sleeper(t, current);
1494

1495 1496
	do {
		set_current_state(TASK_INTERRUPTIBLE);
1497
		hrtimer_start_expires(&t->timer, mode);
P
Peter Zijlstra 已提交
1498 1499
		if (!hrtimer_active(&t->timer))
			t->task = NULL;
1500

1501 1502
		if (likely(t->task))
			schedule();
1503

1504
		hrtimer_cancel(&t->timer);
1505
		mode = HRTIMER_MODE_ABS;
1506 1507

	} while (t->task && !signal_pending(current));
1508

1509 1510
	__set_current_state(TASK_RUNNING);

1511
	return t->task == NULL;
1512 1513
}

1514 1515 1516 1517 1518
static int update_rmtp(struct hrtimer *timer, struct timespec __user *rmtp)
{
	struct timespec rmt;
	ktime_t rem;

1519
	rem = hrtimer_expires_remaining(timer);
1520 1521 1522 1523 1524 1525 1526 1527 1528 1529
	if (rem.tv64 <= 0)
		return 0;
	rmt = ktime_to_timespec(rem);

	if (copy_to_user(rmtp, &rmt, sizeof(*rmtp)))
		return -EFAULT;

	return 1;
}

1530
long __sched hrtimer_nanosleep_restart(struct restart_block *restart)
1531
{
1532
	struct hrtimer_sleeper t;
1533
	struct timespec __user  *rmtp;
1534
	int ret = 0;
1535

1536
	hrtimer_init_on_stack(&t.timer, restart->nanosleep.clockid,
1537
				HRTIMER_MODE_ABS);
1538
	hrtimer_set_expires_tv64(&t.timer, restart->nanosleep.expires);
1539

1540
	if (do_nanosleep(&t, HRTIMER_MODE_ABS))
1541
		goto out;
1542

1543
	rmtp = restart->nanosleep.rmtp;
1544
	if (rmtp) {
1545
		ret = update_rmtp(&t.timer, rmtp);
1546
		if (ret <= 0)
1547
			goto out;
1548
	}
1549 1550

	/* The other values in restart are already filled in */
1551 1552 1553 1554
	ret = -ERESTART_RESTARTBLOCK;
out:
	destroy_hrtimer_on_stack(&t.timer);
	return ret;
1555 1556
}

1557
long hrtimer_nanosleep(struct timespec *rqtp, struct timespec __user *rmtp,
1558 1559 1560
		       const enum hrtimer_mode mode, const clockid_t clockid)
{
	struct restart_block *restart;
1561
	struct hrtimer_sleeper t;
1562
	int ret = 0;
1563 1564 1565 1566 1567
	unsigned long slack;

	slack = current->timer_slack_ns;
	if (rt_task(current))
		slack = 0;
1568

1569
	hrtimer_init_on_stack(&t.timer, clockid, mode);
1570
	hrtimer_set_expires_range_ns(&t.timer, timespec_to_ktime(*rqtp), slack);
1571
	if (do_nanosleep(&t, mode))
1572
		goto out;
1573

1574
	/* Absolute timers do not update the rmtp value and restart: */
1575 1576 1577 1578
	if (mode == HRTIMER_MODE_ABS) {
		ret = -ERESTARTNOHAND;
		goto out;
	}
1579

1580
	if (rmtp) {
1581
		ret = update_rmtp(&t.timer, rmtp);
1582
		if (ret <= 0)
1583
			goto out;
1584
	}
1585 1586

	restart = &current_thread_info()->restart_block;
1587
	restart->fn = hrtimer_nanosleep_restart;
1588
	restart->nanosleep.clockid = t.timer.base->clockid;
1589
	restart->nanosleep.rmtp = rmtp;
1590
	restart->nanosleep.expires = hrtimer_get_expires_tv64(&t.timer);
1591

1592 1593 1594 1595
	ret = -ERESTART_RESTARTBLOCK;
out:
	destroy_hrtimer_on_stack(&t.timer);
	return ret;
1596 1597
}

1598 1599
SYSCALL_DEFINE2(nanosleep, struct timespec __user *, rqtp,
		struct timespec __user *, rmtp)
1600
{
1601
	struct timespec tu;
1602 1603 1604 1605 1606 1607 1608

	if (copy_from_user(&tu, rqtp, sizeof(tu)))
		return -EFAULT;

	if (!timespec_valid(&tu))
		return -EINVAL;

1609
	return hrtimer_nanosleep(&tu, rmtp, HRTIMER_MODE_REL, CLOCK_MONOTONIC);
1610 1611
}

1612 1613 1614
/*
 * Functions related to boot-time initialization:
 */
R
Randy Dunlap 已提交
1615
static void __cpuinit init_hrtimers_cpu(int cpu)
1616
{
1617
	struct hrtimer_cpu_base *cpu_base = &per_cpu(hrtimer_bases, cpu);
1618 1619
	int i;

1620
	raw_spin_lock_init(&cpu_base->lock);
1621

1622
	for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++) {
1623
		cpu_base->clock_base[i].cpu_base = cpu_base;
1624 1625
		timerqueue_init_head(&cpu_base->clock_base[i].active);
	}
1626

1627
	hrtimer_init_hres(cpu_base);
1628 1629 1630 1631
}

#ifdef CONFIG_HOTPLUG_CPU

1632
static void migrate_hrtimer_list(struct hrtimer_clock_base *old_base,
1633
				struct hrtimer_clock_base *new_base)
1634 1635
{
	struct hrtimer *timer;
1636
	struct timerqueue_node *node;
1637

1638 1639
	while ((node = timerqueue_getnext(&old_base->active))) {
		timer = container_of(node, struct hrtimer, node);
1640
		BUG_ON(hrtimer_callback_running(timer));
1641
		debug_deactivate(timer);
T
Thomas Gleixner 已提交
1642 1643 1644 1645 1646 1647 1648

		/*
		 * Mark it as STATE_MIGRATE not INACTIVE otherwise the
		 * timer could be seen as !active and just vanish away
		 * under us on another CPU
		 */
		__remove_hrtimer(timer, old_base, HRTIMER_STATE_MIGRATE, 0);
1649
		timer->base = new_base;
1650
		/*
T
Thomas Gleixner 已提交
1651 1652 1653 1654 1655 1656
		 * Enqueue the timers on the new cpu. This does not
		 * reprogram the event device in case the timer
		 * expires before the earliest on this CPU, but we run
		 * hrtimer_interrupt after we migrated everything to
		 * sort out already expired timers and reprogram the
		 * event device.
1657
		 */
1658
		enqueue_hrtimer(timer, new_base);
1659

T
Thomas Gleixner 已提交
1660 1661
		/* Clear the migration state bit */
		timer->state &= ~HRTIMER_STATE_MIGRATE;
1662 1663 1664
	}
}

1665
static void migrate_hrtimers(int scpu)
1666
{
1667
	struct hrtimer_cpu_base *old_base, *new_base;
1668
	int i;
1669

1670 1671
	BUG_ON(cpu_online(scpu));
	tick_cancel_sched_timer(scpu);
1672 1673 1674 1675

	local_irq_disable();
	old_base = &per_cpu(hrtimer_bases, scpu);
	new_base = &__get_cpu_var(hrtimer_bases);
1676 1677 1678 1679
	/*
	 * The caller is globally serialized and nobody else
	 * takes two locks at once, deadlock is not possible.
	 */
1680 1681
	raw_spin_lock(&new_base->lock);
	raw_spin_lock_nested(&old_base->lock, SINGLE_DEPTH_NESTING);
1682

1683
	for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++) {
1684
		migrate_hrtimer_list(&old_base->clock_base[i],
1685
				     &new_base->clock_base[i]);
1686 1687
	}

1688 1689
	raw_spin_unlock(&old_base->lock);
	raw_spin_unlock(&new_base->lock);
1690

1691 1692 1693
	/* Check, if we got expired work to do */
	__hrtimer_peek_ahead_timers();
	local_irq_enable();
1694
}
1695

1696 1697
#endif /* CONFIG_HOTPLUG_CPU */

1698
static int __cpuinit hrtimer_cpu_notify(struct notifier_block *self,
1699 1700
					unsigned long action, void *hcpu)
{
1701
	int scpu = (long)hcpu;
1702 1703 1704 1705

	switch (action) {

	case CPU_UP_PREPARE:
1706
	case CPU_UP_PREPARE_FROZEN:
1707
		init_hrtimers_cpu(scpu);
1708 1709 1710
		break;

#ifdef CONFIG_HOTPLUG_CPU
1711 1712 1713 1714
	case CPU_DYING:
	case CPU_DYING_FROZEN:
		clockevents_notify(CLOCK_EVT_NOTIFY_CPU_DYING, &scpu);
		break;
1715
	case CPU_DEAD:
1716
	case CPU_DEAD_FROZEN:
1717
	{
1718
		clockevents_notify(CLOCK_EVT_NOTIFY_CPU_DEAD, &scpu);
1719
		migrate_hrtimers(scpu);
1720
		break;
1721
	}
1722 1723 1724 1725 1726 1727 1728 1729 1730
#endif

	default:
		break;
	}

	return NOTIFY_OK;
}

1731
static struct notifier_block __cpuinitdata hrtimers_nb = {
1732 1733 1734 1735 1736 1737 1738 1739
	.notifier_call = hrtimer_cpu_notify,
};

void __init hrtimers_init(void)
{
	hrtimer_cpu_notify(&hrtimers_nb, (unsigned long)CPU_UP_PREPARE,
			  (void *)(long)smp_processor_id());
	register_cpu_notifier(&hrtimers_nb);
1740 1741 1742
#ifdef CONFIG_HIGH_RES_TIMERS
	open_softirq(HRTIMER_SOFTIRQ, run_hrtimer_softirq);
#endif
1743 1744
}

1745
/**
1746
 * schedule_hrtimeout_range_clock - sleep until timeout
1747
 * @expires:	timeout value (ktime_t)
1748
 * @delta:	slack in expires timeout (ktime_t)
1749
 * @mode:	timer mode, HRTIMER_MODE_ABS or HRTIMER_MODE_REL
1750
 * @clock:	timer clock, CLOCK_MONOTONIC or CLOCK_REALTIME
1751
 */
1752 1753 1754
int __sched
schedule_hrtimeout_range_clock(ktime_t *expires, unsigned long delta,
			       const enum hrtimer_mode mode, int clock)
1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767
{
	struct hrtimer_sleeper t;

	/*
	 * Optimize when a zero timeout value is given. It does not
	 * matter whether this is an absolute or a relative time.
	 */
	if (expires && !expires->tv64) {
		__set_current_state(TASK_RUNNING);
		return 0;
	}

	/*
N
Namhyung Kim 已提交
1768
	 * A NULL parameter means "infinite"
1769 1770 1771 1772 1773 1774 1775
	 */
	if (!expires) {
		schedule();
		__set_current_state(TASK_RUNNING);
		return -EINTR;
	}

1776
	hrtimer_init_on_stack(&t.timer, clock, mode);
1777
	hrtimer_set_expires_range_ns(&t.timer, *expires, delta);
1778 1779 1780

	hrtimer_init_sleeper(&t, current);

1781
	hrtimer_start_expires(&t.timer, mode);
1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794
	if (!hrtimer_active(&t.timer))
		t.task = NULL;

	if (likely(t.task))
		schedule();

	hrtimer_cancel(&t.timer);
	destroy_hrtimer_on_stack(&t.timer);

	__set_current_state(TASK_RUNNING);

	return !t.task ? 0 : -EINTR;
}
1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829

/**
 * schedule_hrtimeout_range - sleep until timeout
 * @expires:	timeout value (ktime_t)
 * @delta:	slack in expires timeout (ktime_t)
 * @mode:	timer mode, HRTIMER_MODE_ABS or HRTIMER_MODE_REL
 *
 * Make the current task sleep until the given expiry time has
 * elapsed. The routine will return immediately unless
 * the current task state has been set (see set_current_state()).
 *
 * The @delta argument gives the kernel the freedom to schedule the
 * actual wakeup to a time that is both power and performance friendly.
 * The kernel give the normal best effort behavior for "@expires+@delta",
 * but may decide to fire the timer earlier, but no earlier than @expires.
 *
 * You can set the task state as follows -
 *
 * %TASK_UNINTERRUPTIBLE - at least @timeout time is guaranteed to
 * pass before the routine returns.
 *
 * %TASK_INTERRUPTIBLE - the routine may return early if a signal is
 * delivered to the current task.
 *
 * The current task state is guaranteed to be TASK_RUNNING when this
 * routine returns.
 *
 * Returns 0 when the timer has expired otherwise -EINTR
 */
int __sched schedule_hrtimeout_range(ktime_t *expires, unsigned long delta,
				     const enum hrtimer_mode mode)
{
	return schedule_hrtimeout_range_clock(expires, delta, mode,
					      CLOCK_MONOTONIC);
}
1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858
EXPORT_SYMBOL_GPL(schedule_hrtimeout_range);

/**
 * schedule_hrtimeout - sleep until timeout
 * @expires:	timeout value (ktime_t)
 * @mode:	timer mode, HRTIMER_MODE_ABS or HRTIMER_MODE_REL
 *
 * Make the current task sleep until the given expiry time has
 * elapsed. The routine will return immediately unless
 * the current task state has been set (see set_current_state()).
 *
 * You can set the task state as follows -
 *
 * %TASK_UNINTERRUPTIBLE - at least @timeout time is guaranteed to
 * pass before the routine returns.
 *
 * %TASK_INTERRUPTIBLE - the routine may return early if a signal is
 * delivered to the current task.
 *
 * The current task state is guaranteed to be TASK_RUNNING when this
 * routine returns.
 *
 * Returns 0 when the timer has expired otherwise -EINTR
 */
int __sched schedule_hrtimeout(ktime_t *expires,
			       const enum hrtimer_mode mode)
{
	return schedule_hrtimeout_range(expires, 0, mode);
}
1859
EXPORT_SYMBOL_GPL(schedule_hrtimeout);