fault.c 20.1 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
/*
 * Based on arch/arm/mm/fault.c
 *
 * Copyright (C) 1995  Linus Torvalds
 * Copyright (C) 1995-2004 Russell King
 * Copyright (C) 2012 ARM Ltd.
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License version 2 as
 * published by the Free Software Foundation.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program.  If not, see <http://www.gnu.org/licenses/>.
 */

21
#include <linux/extable.h>
22 23 24 25 26 27 28
#include <linux/signal.h>
#include <linux/mm.h>
#include <linux/hardirq.h>
#include <linux/init.h>
#include <linux/kprobes.h>
#include <linux/uaccess.h>
#include <linux/page-flags.h>
29
#include <linux/sched/signal.h>
30
#include <linux/sched/debug.h>
31 32
#include <linux/highmem.h>
#include <linux/perf_event.h>
33
#include <linux/preempt.h>
34

35
#include <asm/bug.h>
36
#include <asm/cpufeature.h>
37 38
#include <asm/exception.h>
#include <asm/debug-monitors.h>
39
#include <asm/esr.h>
40
#include <asm/sysreg.h>
41 42 43 44
#include <asm/system_misc.h>
#include <asm/pgtable.h>
#include <asm/tlbflush.h>

45 46 47 48 49 50 51 52 53 54 55 56 57 58
struct fault_info {
	int	(*fn)(unsigned long addr, unsigned int esr,
		      struct pt_regs *regs);
	int	sig;
	int	code;
	const char *name;
};

static const struct fault_info fault_info[];

static inline const struct fault_info *esr_to_fault_info(unsigned int esr)
{
	return fault_info + (esr & 63);
}
59

60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81
#ifdef CONFIG_KPROBES
static inline int notify_page_fault(struct pt_regs *regs, unsigned int esr)
{
	int ret = 0;

	/* kprobe_running() needs smp_processor_id() */
	if (!user_mode(regs)) {
		preempt_disable();
		if (kprobe_running() && kprobe_fault_handler(regs, esr))
			ret = 1;
		preempt_enable();
	}

	return ret;
}
#else
static inline int notify_page_fault(struct pt_regs *regs, unsigned int esr)
{
	return 0;
}
#endif

82
/*
83
 * Dump out the page tables associated with 'addr' in the currently active mm.
84
 */
85
void show_pte(unsigned long addr)
86
{
87
	struct mm_struct *mm;
88 89
	pgd_t *pgd;

90 91 92 93 94 95 96 97 98 99
	if (addr < TASK_SIZE) {
		/* TTBR0 */
		mm = current->active_mm;
		if (mm == &init_mm) {
			pr_alert("[%016lx] user address but active_mm is swapper\n",
				 addr);
			return;
		}
	} else if (addr >= VA_START) {
		/* TTBR1 */
100
		mm = &init_mm;
101 102 103 104 105
	} else {
		pr_alert("[%016lx] address between user and kernel address ranges\n",
			 addr);
		return;
	}
106 107 108

	pr_alert("pgd = %p\n", mm->pgd);
	pgd = pgd_offset(mm, addr);
109
	pr_alert("[%016lx] *pgd=%016llx", addr, pgd_val(*pgd));
110 111 112 113 114 115

	do {
		pud_t *pud;
		pmd_t *pmd;
		pte_t *pte;

116
		if (pgd_none(*pgd) || pgd_bad(*pgd))
117 118 119
			break;

		pud = pud_offset(pgd, addr);
120
		pr_cont(", *pud=%016llx", pud_val(*pud));
121
		if (pud_none(*pud) || pud_bad(*pud))
122 123 124
			break;

		pmd = pmd_offset(pud, addr);
125
		pr_cont(", *pmd=%016llx", pmd_val(*pmd));
126
		if (pmd_none(*pmd) || pmd_bad(*pmd))
127 128 129
			break;

		pte = pte_offset_map(pmd, addr);
130
		pr_cont(", *pte=%016llx", pte_val(*pte));
131 132 133
		pte_unmap(pte);
	} while(0);

134
	pr_cont("\n");
135 136
}

137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164
#ifdef CONFIG_ARM64_HW_AFDBM
/*
 * This function sets the access flags (dirty, accessed), as well as write
 * permission, and only to a more permissive setting.
 *
 * It needs to cope with hardware update of the accessed/dirty state by other
 * agents in the system and can safely skip the __sync_icache_dcache() call as,
 * like set_pte_at(), the PTE is never changed from no-exec to exec here.
 *
 * Returns whether or not the PTE actually changed.
 */
int ptep_set_access_flags(struct vm_area_struct *vma,
			  unsigned long address, pte_t *ptep,
			  pte_t entry, int dirty)
{
	pteval_t old_pteval;
	unsigned int tmp;

	if (pte_same(*ptep, entry))
		return 0;

	/* only preserve the access flags and write permission */
	pte_val(entry) &= PTE_AF | PTE_WRITE | PTE_DIRTY;

	/*
	 * PTE_RDONLY is cleared by default in the asm below, so set it in
	 * back if necessary (read-only or clean PTE).
	 */
165
	if (!pte_write(entry) || !pte_sw_dirty(entry))
166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186
		pte_val(entry) |= PTE_RDONLY;

	/*
	 * Setting the flags must be done atomically to avoid racing with the
	 * hardware update of the access/dirty state.
	 */
	asm volatile("//	ptep_set_access_flags\n"
	"	prfm	pstl1strm, %2\n"
	"1:	ldxr	%0, %2\n"
	"	and	%0, %0, %3		// clear PTE_RDONLY\n"
	"	orr	%0, %0, %4		// set flags\n"
	"	stxr	%w1, %0, %2\n"
	"	cbnz	%w1, 1b\n"
	: "=&r" (old_pteval), "=&r" (tmp), "+Q" (pte_val(*ptep))
	: "L" (~PTE_RDONLY), "r" (pte_val(entry)));

	flush_tlb_fix_spurious_fault(vma, address);
	return 1;
}
#endif

187 188 189 190 191
static bool is_el1_instruction_abort(unsigned int esr)
{
	return ESR_ELx_EC(esr) == ESR_ELx_EC_IABT_CUR;
}

192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210
static inline bool is_permission_fault(unsigned int esr, struct pt_regs *regs,
				       unsigned long addr)
{
	unsigned int ec       = ESR_ELx_EC(esr);
	unsigned int fsc_type = esr & ESR_ELx_FSC_TYPE;

	if (ec != ESR_ELx_EC_DABT_CUR && ec != ESR_ELx_EC_IABT_CUR)
		return false;

	if (fsc_type == ESR_ELx_FSC_PERM)
		return true;

	if (addr < USER_DS && system_uses_ttbr0_pan())
		return fsc_type == ESR_ELx_FSC_FAULT &&
			(regs->pstate & PSR_PAN_BIT);

	return false;
}

211 212 213
/*
 * The kernel tried to access some page that wasn't present.
 */
214 215
static void __do_kernel_fault(unsigned long addr, unsigned int esr,
			      struct pt_regs *regs)
216
{
217 218
	const char *msg;

219 220
	/*
	 * Are we prepared to handle this kernel fault?
221
	 * We are almost certainly not prepared to handle instruction faults.
222
	 */
223
	if (!is_el1_instruction_abort(esr) && fixup_exception(regs))
224 225 226 227 228 229
		return;

	/*
	 * No handler, we'll have to terminate things with extreme prejudice.
	 */
	bust_spinlocks(1);
230 231 232 233 234 235 236 237 238 239 240 241 242 243

	if (is_permission_fault(esr, regs, addr)) {
		if (esr & ESR_ELx_WNR)
			msg = "write to read-only memory";
		else
			msg = "read from unreadable memory";
	} else if (addr < PAGE_SIZE) {
		msg = "NULL pointer dereference";
	} else {
		msg = "paging request";
	}

	pr_alert("Unable to handle kernel %s at virtual address %08lx\n", msg,
		 addr);
244

245
	show_pte(addr);
246 247 248 249 250 251 252 253 254 255 256 257 258 259
	die("Oops", regs, esr);
	bust_spinlocks(0);
	do_exit(SIGKILL);
}

/*
 * Something tried to access memory that isn't in our memory map. User mode
 * accesses just cause a SIGSEGV
 */
static void __do_user_fault(struct task_struct *tsk, unsigned long addr,
			    unsigned int esr, unsigned int sig, int code,
			    struct pt_regs *regs)
{
	struct siginfo si;
260
	const struct fault_info *inf;
261

262
	if (unhandled_signal(tsk, sig) && show_unhandled_signals_ratelimited()) {
263
		inf = esr_to_fault_info(esr);
264
		pr_info("%s[%d]: unhandled %s (%d) at 0x%08lx, esr 0x%03x\n",
265
			tsk->comm, task_pid_nr(tsk), inf->name, sig,
266
			addr, esr);
267
		show_pte(addr);
K
Kefeng Wang 已提交
268
		__show_regs(regs);
269 270 271
	}

	tsk->thread.fault_address = addr;
272
	tsk->thread.fault_code = esr;
273 274 275 276 277 278 279
	si.si_signo = sig;
	si.si_errno = 0;
	si.si_code = code;
	si.si_addr = (void __user *)addr;
	force_sig_info(sig, &si, tsk);
}

280
static void do_bad_area(unsigned long addr, unsigned int esr, struct pt_regs *regs)
281 282
{
	struct task_struct *tsk = current;
283
	const struct fault_info *inf;
284 285 286 287 288

	/*
	 * If we are in kernel mode at this point, we have no context to
	 * handle this fault with.
	 */
289 290 291 292
	if (user_mode(regs)) {
		inf = esr_to_fault_info(esr);
		__do_user_fault(tsk, addr, esr, inf->sig, inf->code, regs);
	} else
293
		__do_kernel_fault(addr, esr, regs);
294 295 296 297 298 299
}

#define VM_FAULT_BADMAP		0x010000
#define VM_FAULT_BADACCESS	0x020000

static int __do_page_fault(struct mm_struct *mm, unsigned long addr,
300
			   unsigned int mm_flags, unsigned long vm_flags,
301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317
			   struct task_struct *tsk)
{
	struct vm_area_struct *vma;
	int fault;

	vma = find_vma(mm, addr);
	fault = VM_FAULT_BADMAP;
	if (unlikely(!vma))
		goto out;
	if (unlikely(vma->vm_start > addr))
		goto check_stack;

	/*
	 * Ok, we have a good vm_area for this memory access, so we can handle
	 * it.
	 */
good_area:
318 319
	/*
	 * Check that the permissions on the VMA allow for the fault which
320
	 * occurred.
321 322
	 */
	if (!(vma->vm_flags & vm_flags)) {
323 324 325 326
		fault = VM_FAULT_BADACCESS;
		goto out;
	}

327
	return handle_mm_fault(vma, addr & PAGE_MASK, mm_flags);
328 329 330 331 332 333 334 335

check_stack:
	if (vma->vm_flags & VM_GROWSDOWN && !expand_stack(vma, addr))
		goto good_area;
out:
	return fault;
}

M
Mark Rutland 已提交
336 337 338 339 340
static bool is_el0_instruction_abort(unsigned int esr)
{
	return ESR_ELx_EC(esr) == ESR_ELx_EC_IABT_LOW;
}

341 342 343 344 345 346
static int __kprobes do_page_fault(unsigned long addr, unsigned int esr,
				   struct pt_regs *regs)
{
	struct task_struct *tsk;
	struct mm_struct *mm;
	int fault, sig, code;
347
	unsigned long vm_flags = VM_READ | VM_WRITE;
348 349
	unsigned int mm_flags = FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_KILLABLE;

350 351 352
	if (notify_page_fault(regs, esr))
		return 0;

353 354 355 356 357 358 359
	tsk = current;
	mm  = tsk->mm;

	/*
	 * If we're in an interrupt or have no user context, we must not take
	 * the fault.
	 */
360
	if (faulthandler_disabled() || !mm)
361 362
		goto no_context;

363 364 365
	if (user_mode(regs))
		mm_flags |= FAULT_FLAG_USER;

M
Mark Rutland 已提交
366
	if (is_el0_instruction_abort(esr)) {
367
		vm_flags = VM_EXEC;
M
Mark Rutland 已提交
368
	} else if ((esr & ESR_ELx_WNR) && !(esr & ESR_ELx_CM)) {
369 370 371 372
		vm_flags = VM_WRITE;
		mm_flags |= FAULT_FLAG_WRITE;
	}

373
	if (addr < USER_DS && is_permission_fault(esr, regs, addr)) {
374 375
		/* regs->orig_addr_limit may be 0 if we entered from EL0 */
		if (regs->orig_addr_limit == KERNEL_DS)
376
			die("Accessing user space memory with fs=KERNEL_DS", regs, esr);
377

378 379 380
		if (is_el1_instruction_abort(esr))
			die("Attempting to execute userspace memory", regs, esr);

381
		if (!search_exception_tables(regs->pc))
382
			die("Accessing user space memory outside uaccess.h routines", regs, esr);
383
	}
384

385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406
	/*
	 * As per x86, we may deadlock here. However, since the kernel only
	 * validly references user space from well defined areas of the code,
	 * we can bug out early if this is from code which shouldn't.
	 */
	if (!down_read_trylock(&mm->mmap_sem)) {
		if (!user_mode(regs) && !search_exception_tables(regs->pc))
			goto no_context;
retry:
		down_read(&mm->mmap_sem);
	} else {
		/*
		 * The above down_read_trylock() might have succeeded in which
		 * case, we'll have missed the might_sleep() from down_read().
		 */
		might_sleep();
#ifdef CONFIG_DEBUG_VM
		if (!user_mode(regs) && !search_exception_tables(regs->pc))
			goto no_context;
#endif
	}

407
	fault = __do_page_fault(mm, addr, mm_flags, vm_flags, tsk);
408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423

	/*
	 * If we need to retry but a fatal signal is pending, handle the
	 * signal first. We do not need to release the mmap_sem because it
	 * would already be released in __lock_page_or_retry in mm/filemap.c.
	 */
	if ((fault & VM_FAULT_RETRY) && fatal_signal_pending(current))
		return 0;

	/*
	 * Major/minor page fault accounting is only done on the initial
	 * attempt. If we go through a retry, it is extremely likely that the
	 * page will be found in page cache at that point.
	 */

	perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS, 1, regs, addr);
424
	if (mm_flags & FAULT_FLAG_ALLOW_RETRY) {
425 426 427 428 429 430 431 432 433 434 435 436 437 438
		if (fault & VM_FAULT_MAJOR) {
			tsk->maj_flt++;
			perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MAJ, 1, regs,
				      addr);
		} else {
			tsk->min_flt++;
			perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MIN, 1, regs,
				      addr);
		}
		if (fault & VM_FAULT_RETRY) {
			/*
			 * Clear FAULT_FLAG_ALLOW_RETRY to avoid any risk of
			 * starvation.
			 */
439
			mm_flags &= ~FAULT_FLAG_ALLOW_RETRY;
440
			mm_flags |= FAULT_FLAG_TRIED;
441 442 443 444 445 446 447
			goto retry;
		}
	}

	up_read(&mm->mmap_sem);

	/*
J
Jan Kara 已提交
448
	 * Handle the "normal" case first - VM_FAULT_MAJOR
449 450 451 452 453
	 */
	if (likely(!(fault & (VM_FAULT_ERROR | VM_FAULT_BADMAP |
			      VM_FAULT_BADACCESS))))
		return 0;

454 455 456 457 458 459 460
	/*
	 * If we are in kernel mode at this point, we have no context to
	 * handle this fault with.
	 */
	if (!user_mode(regs))
		goto no_context;

461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491
	if (fault & VM_FAULT_OOM) {
		/*
		 * We ran out of memory, call the OOM killer, and return to
		 * userspace (which will retry the fault, or kill us if we got
		 * oom-killed).
		 */
		pagefault_out_of_memory();
		return 0;
	}

	if (fault & VM_FAULT_SIGBUS) {
		/*
		 * We had some memory, but were unable to successfully fix up
		 * this page fault.
		 */
		sig = SIGBUS;
		code = BUS_ADRERR;
	} else {
		/*
		 * Something tried to access memory that isn't in our memory
		 * map.
		 */
		sig = SIGSEGV;
		code = fault == VM_FAULT_BADACCESS ?
			SEGV_ACCERR : SEGV_MAPERR;
	}

	__do_user_fault(tsk, addr, esr, sig, code, regs);
	return 0;

no_context:
492
	__do_kernel_fault(addr, esr, regs);
493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523
	return 0;
}

/*
 * First Level Translation Fault Handler
 *
 * We enter here because the first level page table doesn't contain a valid
 * entry for the address.
 *
 * If the address is in kernel space (>= TASK_SIZE), then we are probably
 * faulting in the vmalloc() area.
 *
 * If the init_task's first level page tables contains the relevant entry, we
 * copy the it to this task.  If not, we send the process a signal, fixup the
 * exception, or oops the kernel.
 *
 * NOTE! We MUST NOT take any locks for this case. We may be in an interrupt
 * or a critical region, and should only copy the information from the master
 * page table, nothing more.
 */
static int __kprobes do_translation_fault(unsigned long addr,
					  unsigned int esr,
					  struct pt_regs *regs)
{
	if (addr < TASK_SIZE)
		return do_page_fault(addr, esr, regs);

	do_bad_area(addr, esr, regs);
	return 0;
}

524 525 526 527 528 529 530
static int do_alignment_fault(unsigned long addr, unsigned int esr,
			      struct pt_regs *regs)
{
	do_bad_area(addr, esr, regs);
	return 0;
}

531 532 533 534 535 536 537 538
/*
 * This abort handler always returns "fault".
 */
static int do_bad(unsigned long addr, unsigned int esr, struct pt_regs *regs)
{
	return 1;
}

539
static const struct fault_info fault_info[] = {
540 541 542 543
	{ do_bad,		SIGBUS,  0,		"ttbr address size fault"	},
	{ do_bad,		SIGBUS,  0,		"level 1 address size fault"	},
	{ do_bad,		SIGBUS,  0,		"level 2 address size fault"	},
	{ do_bad,		SIGBUS,  0,		"level 3 address size fault"	},
544
	{ do_translation_fault,	SIGSEGV, SEGV_MAPERR,	"level 0 translation fault"	},
545 546 547
	{ do_translation_fault,	SIGSEGV, SEGV_MAPERR,	"level 1 translation fault"	},
	{ do_translation_fault,	SIGSEGV, SEGV_MAPERR,	"level 2 translation fault"	},
	{ do_page_fault,	SIGSEGV, SEGV_MAPERR,	"level 3 translation fault"	},
548
	{ do_bad,		SIGBUS,  0,		"unknown 8"			},
S
Steve Capper 已提交
549 550
	{ do_page_fault,	SIGSEGV, SEGV_ACCERR,	"level 1 access flag fault"	},
	{ do_page_fault,	SIGSEGV, SEGV_ACCERR,	"level 2 access flag fault"	},
551
	{ do_page_fault,	SIGSEGV, SEGV_ACCERR,	"level 3 access flag fault"	},
552
	{ do_bad,		SIGBUS,  0,		"unknown 12"			},
S
Steve Capper 已提交
553 554
	{ do_page_fault,	SIGSEGV, SEGV_ACCERR,	"level 1 permission fault"	},
	{ do_page_fault,	SIGSEGV, SEGV_ACCERR,	"level 2 permission fault"	},
555 556
	{ do_page_fault,	SIGSEGV, SEGV_ACCERR,	"level 3 permission fault"	},
	{ do_bad,		SIGBUS,  0,		"synchronous external abort"	},
557
	{ do_bad,		SIGBUS,  0,		"unknown 17"			},
558 559
	{ do_bad,		SIGBUS,  0,		"unknown 18"			},
	{ do_bad,		SIGBUS,  0,		"unknown 19"			},
560 561 562 563
	{ do_bad,		SIGBUS,  0,		"synchronous external abort (translation table walk)" },
	{ do_bad,		SIGBUS,  0,		"synchronous external abort (translation table walk)" },
	{ do_bad,		SIGBUS,  0,		"synchronous external abort (translation table walk)" },
	{ do_bad,		SIGBUS,  0,		"synchronous external abort (translation table walk)" },
564
	{ do_bad,		SIGBUS,  0,		"synchronous parity error"	},
565
	{ do_bad,		SIGBUS,  0,		"unknown 25"			},
566 567
	{ do_bad,		SIGBUS,  0,		"unknown 26"			},
	{ do_bad,		SIGBUS,  0,		"unknown 27"			},
568 569 570 571
	{ do_bad,		SIGBUS,  0,		"synchronous parity error (translation table walk)" },
	{ do_bad,		SIGBUS,  0,		"synchronous parity error (translation table walk)" },
	{ do_bad,		SIGBUS,  0,		"synchronous parity error (translation table walk)" },
	{ do_bad,		SIGBUS,  0,		"synchronous parity error (translation table walk)" },
572
	{ do_bad,		SIGBUS,  0,		"unknown 32"			},
573
	{ do_alignment_fault,	SIGBUS,  BUS_ADRALN,	"alignment fault"		},
574
	{ do_bad,		SIGBUS,  0,		"unknown 34"			},
575 576 577 578 579 580 581 582 583 584 585 586 587
	{ do_bad,		SIGBUS,  0,		"unknown 35"			},
	{ do_bad,		SIGBUS,  0,		"unknown 36"			},
	{ do_bad,		SIGBUS,  0,		"unknown 37"			},
	{ do_bad,		SIGBUS,  0,		"unknown 38"			},
	{ do_bad,		SIGBUS,  0,		"unknown 39"			},
	{ do_bad,		SIGBUS,  0,		"unknown 40"			},
	{ do_bad,		SIGBUS,  0,		"unknown 41"			},
	{ do_bad,		SIGBUS,  0,		"unknown 42"			},
	{ do_bad,		SIGBUS,  0,		"unknown 43"			},
	{ do_bad,		SIGBUS,  0,		"unknown 44"			},
	{ do_bad,		SIGBUS,  0,		"unknown 45"			},
	{ do_bad,		SIGBUS,  0,		"unknown 46"			},
	{ do_bad,		SIGBUS,  0,		"unknown 47"			},
588
	{ do_bad,		SIGBUS,  0,		"TLB conflict abort"		},
589 590 591 592
	{ do_bad,		SIGBUS,  0,		"unknown 49"			},
	{ do_bad,		SIGBUS,  0,		"unknown 50"			},
	{ do_bad,		SIGBUS,  0,		"unknown 51"			},
	{ do_bad,		SIGBUS,  0,		"implementation fault (lockdown abort)" },
593
	{ do_bad,		SIGBUS,  0,		"implementation fault (unsupported exclusive)" },
594 595 596 597
	{ do_bad,		SIGBUS,  0,		"unknown 54"			},
	{ do_bad,		SIGBUS,  0,		"unknown 55"			},
	{ do_bad,		SIGBUS,  0,		"unknown 56"			},
	{ do_bad,		SIGBUS,  0,		"unknown 57"			},
598
	{ do_bad,		SIGBUS,  0,		"unknown 58" 			},
599 600
	{ do_bad,		SIGBUS,  0,		"unknown 59"			},
	{ do_bad,		SIGBUS,  0,		"unknown 60"			},
601 602
	{ do_bad,		SIGBUS,  0,		"section domain fault"		},
	{ do_bad,		SIGBUS,  0,		"page domain fault"		},
603 604 605 606 607 608 609 610 611
	{ do_bad,		SIGBUS,  0,		"unknown 63"			},
};

/*
 * Dispatch a data abort to the relevant handler.
 */
asmlinkage void __exception do_mem_abort(unsigned long addr, unsigned int esr,
					 struct pt_regs *regs)
{
612
	const struct fault_info *inf = esr_to_fault_info(esr);
613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635
	struct siginfo info;

	if (!inf->fn(addr, esr, regs))
		return;

	pr_alert("Unhandled fault: %s (0x%08x) at 0x%016lx\n",
		 inf->name, esr, addr);

	info.si_signo = inf->sig;
	info.si_errno = 0;
	info.si_code  = inf->code;
	info.si_addr  = (void __user *)addr;
	arm64_notify_die("", regs, &info, esr);
}

/*
 * Handle stack alignment exceptions.
 */
asmlinkage void __exception do_sp_pc_abort(unsigned long addr,
					   unsigned int esr,
					   struct pt_regs *regs)
{
	struct siginfo info;
636 637 638 639 640 641 642
	struct task_struct *tsk = current;

	if (show_unhandled_signals && unhandled_signal(tsk, SIGBUS))
		pr_info_ratelimited("%s[%d]: %s exception: pc=%p sp=%p\n",
				    tsk->comm, task_pid_nr(tsk),
				    esr_get_class_string(esr), (void *)regs->pc,
				    (void *)regs->sp);
643 644 645 646 647

	info.si_signo = SIGBUS;
	info.si_errno = 0;
	info.si_code  = BUS_ADRALN;
	info.si_addr  = (void __user *)addr;
648
	arm64_notify_die("Oops - SP/PC alignment exception", regs, &info, esr);
649 650
}

651 652 653 654 655 656 657 658 659
int __init early_brk64(unsigned long addr, unsigned int esr,
		       struct pt_regs *regs);

/*
 * __refdata because early_brk64 is __init, but the reference to it is
 * clobbered at arch_initcall time.
 * See traps.c and debug-monitors.c:debug_traps_init().
 */
static struct fault_info __refdata debug_fault_info[] = {
660 661 662 663 664 665
	{ do_bad,	SIGTRAP,	TRAP_HWBKPT,	"hardware breakpoint"	},
	{ do_bad,	SIGTRAP,	TRAP_HWBKPT,	"hardware single-step"	},
	{ do_bad,	SIGTRAP,	TRAP_HWBKPT,	"hardware watchpoint"	},
	{ do_bad,	SIGBUS,		0,		"unknown 3"		},
	{ do_bad,	SIGTRAP,	TRAP_BRKPT,	"aarch32 BKPT"		},
	{ do_bad,	SIGTRAP,	0,		"aarch32 vector catch"	},
666
	{ early_brk64,	SIGTRAP,	TRAP_BRKPT,	"aarch64 BRK"		},
667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687
	{ do_bad,	SIGBUS,		0,		"unknown 7"		},
};

void __init hook_debug_fault_code(int nr,
				  int (*fn)(unsigned long, unsigned int, struct pt_regs *),
				  int sig, int code, const char *name)
{
	BUG_ON(nr < 0 || nr >= ARRAY_SIZE(debug_fault_info));

	debug_fault_info[nr].fn		= fn;
	debug_fault_info[nr].sig	= sig;
	debug_fault_info[nr].code	= code;
	debug_fault_info[nr].name	= name;
}

asmlinkage int __exception do_debug_exception(unsigned long addr,
					      unsigned int esr,
					      struct pt_regs *regs)
{
	const struct fault_info *inf = debug_fault_info + DBG_ESR_EVT(esr);
	struct siginfo info;
688
	int rv;
689

690 691 692 693 694 695
	/*
	 * Tell lockdep we disabled irqs in entry.S. Do nothing if they were
	 * already disabled to preserve the last enabled/disabled addresses.
	 */
	if (interrupts_enabled(regs))
		trace_hardirqs_off();
696

697 698 699 700 701 702 703 704 705 706 707 708 709
	if (!inf->fn(addr, esr, regs)) {
		rv = 1;
	} else {
		pr_alert("Unhandled debug exception: %s (0x%08x) at 0x%016lx\n",
			 inf->name, esr, addr);

		info.si_signo = inf->sig;
		info.si_errno = 0;
		info.si_code  = inf->code;
		info.si_addr  = (void __user *)addr;
		arm64_notify_die("", regs, &info, 0);
		rv = 0;
	}
710

711 712
	if (interrupts_enabled(regs))
		trace_hardirqs_on();
713

714
	return rv;
715
}
716
NOKPROBE_SYMBOL(do_debug_exception);
717 718

#ifdef CONFIG_ARM64_PAN
719
int cpu_enable_pan(void *__unused)
720
{
721 722 723 724 725 726
	/*
	 * We modify PSTATE. This won't work from irq context as the PSTATE
	 * is discarded once we return from the exception.
	 */
	WARN_ON_ONCE(in_interrupt());

727
	config_sctlr_el1(SCTLR_EL1_SPAN, 0);
728
	asm(SET_PSTATE_PAN(1));
729
	return 0;
730 731
}
#endif /* CONFIG_ARM64_PAN */