vgic-v3.c 18.0 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
/*
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License version 2 as
 * published by the Free Software Foundation.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program. If not, see <http://www.gnu.org/licenses/>.
 */

#include <linux/irqchip/arm-gic-v3.h>
#include <linux/kvm.h>
#include <linux/kvm_host.h>
18
#include <kvm/arm_vgic.h>
19
#include <asm/kvm_hyp.h>
20 21
#include <asm/kvm_mmu.h>
#include <asm/kvm_asm.h>
22 23 24

#include "vgic.h"

25
static bool group0_trap;
26
static bool group1_trap;
27
static bool common_trap;
28
static bool gicv4_enable;
29

30
void vgic_v3_set_underflow(struct kvm_vcpu *vcpu)
31 32 33
{
	struct vgic_v3_cpu_if *cpuif = &vcpu->arch.vgic_cpu.vgic_v3;

34
	cpuif->vgic_hcr |= ICH_HCR_UIE;
35 36
}

37
static bool lr_signals_eoi_mi(u64 lr_val)
38
{
39 40
	return !(lr_val & ICH_LR_STATE) && (lr_val & ICH_LR_EOI) &&
	       !(lr_val & ICH_LR_HW);
41 42 43 44
}

void vgic_v3_fold_lr_state(struct kvm_vcpu *vcpu)
{
45 46
	struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
	struct vgic_v3_cpu_if *cpuif = &vgic_cpu->vgic_v3;
47 48
	u32 model = vcpu->kvm->arch.vgic.vgic_model;
	int lr;
49 50

	DEBUG_SPINLOCK_BUG_ON(!irqs_disabled());
51

52
	cpuif->vgic_hcr &= ~ICH_HCR_UIE;
53

54
	for (lr = 0; lr < vgic_cpu->used_lrs; lr++) {
55
		u64 val = cpuif->vgic_lr[lr];
56
		u32 intid, cpuid;
57
		struct vgic_irq *irq;
58 59 60 61
		bool is_v2_sgi = false;

		cpuid = val & GICH_LR_PHYSID_CPUID;
		cpuid >>= GICH_LR_PHYSID_CPUID_SHIFT;
62

63
		if (model == KVM_DEV_TYPE_ARM_VGIC_V3) {
64
			intid = val & ICH_LR_VIRTUAL_ID_MASK;
65
		} else {
66
			intid = val & GICH_LR_VIRTUALID;
67 68
			is_v2_sgi = vgic_irq_is_sgi(intid);
		}
69 70 71 72 73 74

		/* Notify fds when the guest EOI'ed a level-triggered IRQ */
		if (lr_signals_eoi_mi(val) && vgic_valid_spi(vcpu->kvm, intid))
			kvm_notify_acked_irq(vcpu->kvm, 0,
					     intid - VGIC_NR_PRIVATE_IRQS);

75
		irq = vgic_get_irq(vcpu->kvm, vcpu, intid);
76 77
		if (!irq)	/* An LPI could have been unmapped. */
			continue;
78

79
		spin_lock(&irq->irq_lock);
80 81 82 83

		/* Always preserve the active bit */
		irq->active = !!(val & ICH_LR_ACTIVE_BIT);

84 85 86
		if (irq->active && is_v2_sgi)
			irq->active_source = cpuid;

87 88 89
		/* Edge is the only case where we preserve the pending bit */
		if (irq->config == VGIC_CONFIG_EDGE &&
		    (val & ICH_LR_PENDING_BIT)) {
90
			irq->pending_latch = true;
91

92
			if (is_v2_sgi)
93 94 95
				irq->source |= (1 << cpuid);
		}

96 97 98
		/*
		 * Clear soft pending state when level irqs have been acked.
		 */
99 100
		if (irq->config == VGIC_CONFIG_LEVEL && !(val & ICH_LR_STATE))
			irq->pending_latch = false;
101

102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121
		/*
		 * Level-triggered mapped IRQs are special because we only
		 * observe rising edges as input to the VGIC.
		 *
		 * If the guest never acked the interrupt we have to sample
		 * the physical line and set the line level, because the
		 * device state could have changed or we simply need to
		 * process the still pending interrupt later.
		 *
		 * If this causes us to lower the level, we have to also clear
		 * the physical active state, since we will otherwise never be
		 * told when the interrupt becomes asserted again.
		 */
		if (vgic_irq_is_mapped_level(irq) && (val & ICH_LR_PENDING_BIT)) {
			irq->line_level = vgic_get_phys_line_level(irq);

			if (!irq->line_level)
				vgic_irq_set_phys_active(irq, false);
		}

122
		spin_unlock(&irq->irq_lock);
123
		vgic_put_irq(vcpu->kvm, irq);
124
	}
125 126

	vgic_cpu->used_lrs = 0;
127 128 129 130 131 132 133
}

/* Requires the irq to be locked already */
void vgic_v3_populate_lr(struct kvm_vcpu *vcpu, struct vgic_irq *irq, int lr)
{
	u32 model = vcpu->kvm->arch.vgic.vgic_model;
	u64 val = irq->intid;
134
	bool allow_pending = true, is_v2_sgi;
135

136 137 138 139
	is_v2_sgi = (vgic_irq_is_sgi(irq->intid) &&
		     model == KVM_DEV_TYPE_ARM_VGIC_V2);

	if (irq->active) {
140
		val |= ICH_LR_ACTIVE_BIT;
141 142 143 144 145 146 147
		if (is_v2_sgi)
			val |= irq->active_source << GICH_LR_PHYSID_CPUID_SHIFT;
		if (vgic_irq_is_multi_sgi(irq)) {
			allow_pending = false;
			val |= ICH_LR_EOI;
		}
	}
148 149 150 151 152 153 154 155 156 157 158 159 160 161

	if (irq->hw) {
		val |= ICH_LR_HW;
		val |= ((u64)irq->hwintid) << ICH_LR_PHYS_ID_SHIFT;
		/*
		 * Never set pending+active on a HW interrupt, as the
		 * pending state is kept at the physical distributor
		 * level.
		 */
		if (irq->active)
			allow_pending = false;
	} else {
		if (irq->config == VGIC_CONFIG_LEVEL) {
			val |= ICH_LR_EOI;
162

163 164 165 166 167 168 169 170 171 172
			/*
			 * Software resampling doesn't work very well
			 * if we allow P+A, so let's not do that.
			 */
			if (irq->active)
				allow_pending = false;
		}
	}

	if (allow_pending && irq_is_pending(irq)) {
173 174 175
		val |= ICH_LR_PENDING_BIT;

		if (irq->config == VGIC_CONFIG_EDGE)
176
			irq->pending_latch = false;
177 178 179 180 181

		if (vgic_irq_is_sgi(irq->intid) &&
		    model == KVM_DEV_TYPE_ARM_VGIC_V2) {
			u32 src = ffs(irq->source);

182 183 184 185
			if (WARN_RATELIMIT(!src, "No SGI source for INTID %d\n",
					   irq->intid))
				return;

186 187
			val |= (src - 1) << GICH_LR_PHYSID_CPUID_SHIFT;
			irq->source &= ~(1 << (src - 1));
188
			if (irq->source) {
189
				irq->pending_latch = true;
190 191
				val |= ICH_LR_EOI;
			}
192 193 194
		}
	}

195 196 197 198 199 200 201 202 203
	/*
	 * Level-triggered mapped IRQs are special because we only observe
	 * rising edges as input to the VGIC.  We therefore lower the line
	 * level here, so that we can take new virtual IRQs.  See
	 * vgic_v3_fold_lr_state for more info.
	 */
	if (vgic_irq_is_mapped_level(irq) && (val & ICH_LR_PENDING_BIT))
		irq->line_level = false;

204
	if (irq->group)
205 206 207 208 209 210 211 212 213 214 215
		val |= ICH_LR_GROUP;

	val |= (u64)irq->priority << ICH_LR_PRIORITY_SHIFT;

	vcpu->arch.vgic_cpu.vgic_v3.vgic_lr[lr] = val;
}

void vgic_v3_clear_lr(struct kvm_vcpu *vcpu, int lr)
{
	vcpu->arch.vgic_cpu.vgic_v3.vgic_lr[lr] = 0;
}
216 217 218

void vgic_v3_set_vmcr(struct kvm_vcpu *vcpu, struct vgic_vmcr *vmcrp)
{
219
	struct vgic_v3_cpu_if *cpu_if = &vcpu->arch.vgic_cpu.vgic_v3;
220
	u32 model = vcpu->kvm->arch.vgic.vgic_model;
221 222
	u32 vmcr;

223 224 225 226 227 228 229 230 231 232 233 234 235 236 237
	if (model == KVM_DEV_TYPE_ARM_VGIC_V2) {
		vmcr = (vmcrp->ackctl << ICH_VMCR_ACK_CTL_SHIFT) &
			ICH_VMCR_ACK_CTL_MASK;
		vmcr |= (vmcrp->fiqen << ICH_VMCR_FIQ_EN_SHIFT) &
			ICH_VMCR_FIQ_EN_MASK;
	} else {
		/*
		 * When emulating GICv3 on GICv3 with SRE=1 on the
		 * VFIQEn bit is RES1 and the VAckCtl bit is RES0.
		 */
		vmcr = ICH_VMCR_FIQ_EN_MASK;
	}

	vmcr |= (vmcrp->cbpr << ICH_VMCR_CBPR_SHIFT) & ICH_VMCR_CBPR_MASK;
	vmcr |= (vmcrp->eoim << ICH_VMCR_EOIM_SHIFT) & ICH_VMCR_EOIM_MASK;
238 239 240
	vmcr |= (vmcrp->abpr << ICH_VMCR_BPR1_SHIFT) & ICH_VMCR_BPR1_MASK;
	vmcr |= (vmcrp->bpr << ICH_VMCR_BPR0_SHIFT) & ICH_VMCR_BPR0_MASK;
	vmcr |= (vmcrp->pmr << ICH_VMCR_PMR_SHIFT) & ICH_VMCR_PMR_MASK;
241 242
	vmcr |= (vmcrp->grpen0 << ICH_VMCR_ENG0_SHIFT) & ICH_VMCR_ENG0_MASK;
	vmcr |= (vmcrp->grpen1 << ICH_VMCR_ENG1_SHIFT) & ICH_VMCR_ENG1_MASK;
243

244
	cpu_if->vgic_vmcr = vmcr;
245 246 247 248
}

void vgic_v3_get_vmcr(struct kvm_vcpu *vcpu, struct vgic_vmcr *vmcrp)
{
249
	struct vgic_v3_cpu_if *cpu_if = &vcpu->arch.vgic_cpu.vgic_v3;
250
	u32 model = vcpu->kvm->arch.vgic.vgic_model;
251 252 253
	u32 vmcr;

	vmcr = cpu_if->vgic_vmcr;
254

255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270
	if (model == KVM_DEV_TYPE_ARM_VGIC_V2) {
		vmcrp->ackctl = (vmcr & ICH_VMCR_ACK_CTL_MASK) >>
			ICH_VMCR_ACK_CTL_SHIFT;
		vmcrp->fiqen = (vmcr & ICH_VMCR_FIQ_EN_MASK) >>
			ICH_VMCR_FIQ_EN_SHIFT;
	} else {
		/*
		 * When emulating GICv3 on GICv3 with SRE=1 on the
		 * VFIQEn bit is RES1 and the VAckCtl bit is RES0.
		 */
		vmcrp->fiqen = 1;
		vmcrp->ackctl = 0;
	}

	vmcrp->cbpr = (vmcr & ICH_VMCR_CBPR_MASK) >> ICH_VMCR_CBPR_SHIFT;
	vmcrp->eoim = (vmcr & ICH_VMCR_EOIM_MASK) >> ICH_VMCR_EOIM_SHIFT;
271 272 273
	vmcrp->abpr = (vmcr & ICH_VMCR_BPR1_MASK) >> ICH_VMCR_BPR1_SHIFT;
	vmcrp->bpr  = (vmcr & ICH_VMCR_BPR0_MASK) >> ICH_VMCR_BPR0_SHIFT;
	vmcrp->pmr  = (vmcr & ICH_VMCR_PMR_MASK) >> ICH_VMCR_PMR_SHIFT;
274 275
	vmcrp->grpen0 = (vmcr & ICH_VMCR_ENG0_MASK) >> ICH_VMCR_ENG0_SHIFT;
	vmcrp->grpen1 = (vmcr & ICH_VMCR_ENG1_MASK) >> ICH_VMCR_ENG1_SHIFT;
276
}
277

278 279 280 281 282
#define INITIAL_PENDBASER_VALUE						  \
	(GIC_BASER_CACHEABILITY(GICR_PENDBASER, INNER, RaWb)		| \
	GIC_BASER_CACHEABILITY(GICR_PENDBASER, OUTER, SameAsInner)	| \
	GIC_BASER_SHAREABILITY(GICR_PENDBASER, InnerShareable))

283 284
void vgic_v3_enable(struct kvm_vcpu *vcpu)
{
285 286 287 288 289 290 291 292 293 294 295 296
	struct vgic_v3_cpu_if *vgic_v3 = &vcpu->arch.vgic_cpu.vgic_v3;

	/*
	 * By forcing VMCR to zero, the GIC will restore the binary
	 * points to their reset values. Anything else resets to zero
	 * anyway.
	 */
	vgic_v3->vgic_vmcr = 0;

	/*
	 * If we are emulating a GICv3, we do it in an non-GICv2-compatible
	 * way, so we force SRE to 1 to demonstrate this to the guest.
297
	 * Also, we don't support any form of IRQ/FIQ bypass.
298 299
	 * This goes with the spec allowing the value to be RAO/WI.
	 */
300
	if (vcpu->kvm->arch.vgic.vgic_model == KVM_DEV_TYPE_ARM_VGIC_V3) {
301 302 303
		vgic_v3->vgic_sre = (ICC_SRE_EL1_DIB |
				     ICC_SRE_EL1_DFB |
				     ICC_SRE_EL1_SRE);
304 305
		vcpu->arch.vgic_cpu.pendbaser = INITIAL_PENDBASER_VALUE;
	} else {
306
		vgic_v3->vgic_sre = 0;
307
	}
308

309 310 311 312 313 314 315
	vcpu->arch.vgic_cpu.num_id_bits = (kvm_vgic_global_state.ich_vtr_el2 &
					   ICH_VTR_ID_BITS_MASK) >>
					   ICH_VTR_ID_BITS_SHIFT;
	vcpu->arch.vgic_cpu.num_pri_bits = ((kvm_vgic_global_state.ich_vtr_el2 &
					    ICH_VTR_PRI_BITS_MASK) >>
					    ICH_VTR_PRI_BITS_SHIFT) + 1;

316 317
	/* Get the show on the road... */
	vgic_v3->vgic_hcr = ICH_HCR_EN;
318 319
	if (group0_trap)
		vgic_v3->vgic_hcr |= ICH_HCR_TALL0;
320 321
	if (group1_trap)
		vgic_v3->vgic_hcr |= ICH_HCR_TALL1;
322 323
	if (common_trap)
		vgic_v3->vgic_hcr |= ICH_HCR_TC;
324 325
}

326 327 328 329 330 331 332 333
int vgic_v3_lpi_sync_pending_status(struct kvm *kvm, struct vgic_irq *irq)
{
	struct kvm_vcpu *vcpu;
	int byte_offset, bit_nr;
	gpa_t pendbase, ptr;
	bool status;
	u8 val;
	int ret;
334
	unsigned long flags;
335 336 337 338 339 340 341 342 343 344 345 346

retry:
	vcpu = irq->target_vcpu;
	if (!vcpu)
		return 0;

	pendbase = GICR_PENDBASER_ADDRESS(vcpu->arch.vgic_cpu.pendbaser);

	byte_offset = irq->intid / BITS_PER_BYTE;
	bit_nr = irq->intid % BITS_PER_BYTE;
	ptr = pendbase + byte_offset;

347
	ret = kvm_read_guest_lock(kvm, ptr, &val, 1);
348 349 350 351 352
	if (ret)
		return ret;

	status = val & (1 << bit_nr);

353
	spin_lock_irqsave(&irq->irq_lock, flags);
354
	if (irq->target_vcpu != vcpu) {
355
		spin_unlock_irqrestore(&irq->irq_lock, flags);
356 357 358
		goto retry;
	}
	irq->pending_latch = status;
359
	vgic_queue_irq_unlock(vcpu->kvm, irq, flags);
360 361 362 363

	if (status) {
		/* clear consumed data */
		val &= ~(1 << bit_nr);
364
		ret = kvm_write_guest_lock(kvm, ptr, &val, 1);
365 366 367 368 369 370
		if (ret)
			return ret;
	}
	return 0;
}

371 372 373 374 375 376 377 378
/**
 * vgic_its_save_pending_tables - Save the pending tables into guest RAM
 * kvm lock and all vcpu lock must be held
 */
int vgic_v3_save_pending_tables(struct kvm *kvm)
{
	struct vgic_dist *dist = &kvm->arch.vgic;
	struct vgic_irq *irq;
379
	gpa_t last_ptr = ~(gpa_t)0;
380
	int ret;
381
	u8 val;
382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398

	list_for_each_entry(irq, &dist->lpi_list_head, lpi_list) {
		int byte_offset, bit_nr;
		struct kvm_vcpu *vcpu;
		gpa_t pendbase, ptr;
		bool stored;

		vcpu = irq->target_vcpu;
		if (!vcpu)
			continue;

		pendbase = GICR_PENDBASER_ADDRESS(vcpu->arch.vgic_cpu.pendbaser);

		byte_offset = irq->intid / BITS_PER_BYTE;
		bit_nr = irq->intid % BITS_PER_BYTE;
		ptr = pendbase + byte_offset;

399
		if (ptr != last_ptr) {
400
			ret = kvm_read_guest_lock(kvm, ptr, &val, 1);
401 402
			if (ret)
				return ret;
403
			last_ptr = ptr;
404 405 406 407 408 409 410 411 412 413 414
		}

		stored = val & (1U << bit_nr);
		if (stored == irq->pending_latch)
			continue;

		if (irq->pending_latch)
			val |= 1 << bit_nr;
		else
			val &= ~(1 << bit_nr);

415
		ret = kvm_write_guest_lock(kvm, ptr, &val, 1);
416 417 418 419 420 421
		if (ret)
			return ret;
	}
	return 0;
}

422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444
/**
 * vgic_v3_rdist_overlap - check if a region overlaps with any
 * existing redistributor region
 *
 * @kvm: kvm handle
 * @base: base of the region
 * @size: size of region
 *
 * Return: true if there is an overlap
 */
bool vgic_v3_rdist_overlap(struct kvm *kvm, gpa_t base, size_t size)
{
	struct vgic_dist *d = &kvm->arch.vgic;
	struct vgic_redist_region *rdreg;

	list_for_each_entry(rdreg, &d->rd_regions, list) {
		if ((base + size > rdreg->base) &&
			(base < rdreg->base + vgic_v3_rd_region_size(kvm, rdreg)))
			return true;
	}
	return false;
}

445 446 447 448 449
/*
 * Check for overlapping regions and for regions crossing the end of memory
 * for base addresses which have already been set.
 */
bool vgic_v3_check_base(struct kvm *kvm)
450 451
{
	struct vgic_dist *d = &kvm->arch.vgic;
452
	struct vgic_redist_region *rdreg;
453

454 455
	if (!IS_VGIC_ADDR_UNDEF(d->vgic_dist_base) &&
	    d->vgic_dist_base + KVM_VGIC_V3_DIST_SIZE < d->vgic_dist_base)
456
		return false;
457

458 459 460 461 462
	list_for_each_entry(rdreg, &d->rd_regions, list) {
		if (rdreg->base + vgic_v3_rd_region_size(kvm, rdreg) <
			rdreg->base)
			return false;
	}
463

464
	if (IS_VGIC_ADDR_UNDEF(d->vgic_dist_base))
465 466
		return true;

467 468
	return !vgic_v3_rdist_overlap(kvm, d->vgic_dist_base,
				      KVM_VGIC_V3_DIST_SIZE);
469 470
}

471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491
/**
 * vgic_v3_rdist_free_slot - Look up registered rdist regions and identify one
 * which has free space to put a new rdist region.
 *
 * @rd_regions: redistributor region list head
 *
 * A redistributor regions maps n redistributors, n = region size / (2 x 64kB).
 * Stride between redistributors is 0 and regions are filled in the index order.
 *
 * Return: the redist region handle, if any, that has space to map a new rdist
 * region.
 */
struct vgic_redist_region *vgic_v3_rdist_free_slot(struct list_head *rd_regions)
{
	struct vgic_redist_region *rdreg;

	list_for_each_entry(rdreg, rd_regions, list) {
		if (!vgic_v3_redist_region_full(rdreg))
			return rdreg;
	}
	return NULL;
492 493
}

494 495 496 497 498 499 500 501 502 503 504 505 506 507
struct vgic_redist_region *vgic_v3_rdist_region_from_index(struct kvm *kvm,
							   u32 index)
{
	struct list_head *rd_regions = &kvm->arch.vgic.rd_regions;
	struct vgic_redist_region *rdreg;

	list_for_each_entry(rdreg, rd_regions, list) {
		if (rdreg->index == index)
			return rdreg;
	}
	return NULL;
}


508 509 510
int vgic_v3_map_resources(struct kvm *kvm)
{
	struct vgic_dist *dist = &kvm->arch.vgic;
511 512 513
	struct kvm_vcpu *vcpu;
	int ret = 0;
	int c;
514 515 516 517

	if (vgic_ready(kvm))
		goto out;

518 519 520 521 522 523 524 525 526 527 528
	kvm_for_each_vcpu(c, vcpu, kvm) {
		struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;

		if (IS_VGIC_ADDR_UNDEF(vgic_cpu->rd_iodev.base_addr)) {
			kvm_debug("vcpu %d redistributor base not set\n", c);
			ret = -ENXIO;
			goto out;
		}
	}

	if (IS_VGIC_ADDR_UNDEF(dist->vgic_dist_base)) {
529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560
		kvm_err("Need to set vgic distributor addresses first\n");
		ret = -ENXIO;
		goto out;
	}

	if (!vgic_v3_check_base(kvm)) {
		kvm_err("VGIC redist and dist frames overlap\n");
		ret = -EINVAL;
		goto out;
	}

	/*
	 * For a VGICv3 we require the userland to explicitly initialize
	 * the VGIC before we need to use it.
	 */
	if (!vgic_initialized(kvm)) {
		ret = -EBUSY;
		goto out;
	}

	ret = vgic_register_dist_iodev(kvm, dist->vgic_dist_base, VGIC_V3);
	if (ret) {
		kvm_err("Unable to register VGICv3 dist MMIO regions\n");
		goto out;
	}

	dist->ready = true;

out:
	return ret;
}

561 562
DEFINE_STATIC_KEY_FALSE(vgic_v3_cpuif_trap);

563 564 565 566 567 568
static int __init early_group0_trap_cfg(char *buf)
{
	return strtobool(buf, &group0_trap);
}
early_param("kvm-arm.vgic_v3_group0_trap", early_group0_trap_cfg);

569 570 571 572 573 574
static int __init early_group1_trap_cfg(char *buf)
{
	return strtobool(buf, &group1_trap);
}
early_param("kvm-arm.vgic_v3_group1_trap", early_group1_trap_cfg);

575 576 577 578 579 580
static int __init early_common_trap_cfg(char *buf)
{
	return strtobool(buf, &common_trap);
}
early_param("kvm-arm.vgic_v3_common_trap", early_common_trap_cfg);

581 582 583 584 585 586
static int __init early_gicv4_enable(char *buf)
{
	return strtobool(buf, &gicv4_enable);
}
early_param("kvm-arm.vgic_v4_enable", early_gicv4_enable);

587 588 589 590 591 592 593 594 595
/**
 * vgic_v3_probe - probe for a GICv3 compatible interrupt controller in DT
 * @node:	pointer to the DT node
 *
 * Returns 0 if a GICv3 has been found, returns an error code otherwise
 */
int vgic_v3_probe(const struct gic_kvm_info *info)
{
	u32 ich_vtr_el2 = kvm_call_hyp(__vgic_v3_get_ich_vtr_el2);
596
	int ret;
597 598 599 600 601 602 603

	/*
	 * The ListRegs field is 5 bits, but there is a architectural
	 * maximum of 16 list registers. Just ignore bit 4...
	 */
	kvm_vgic_global_state.nr_lr = (ich_vtr_el2 & 0xf) + 1;
	kvm_vgic_global_state.can_emulate_gicv2 = false;
604
	kvm_vgic_global_state.ich_vtr_el2 = ich_vtr_el2;
605

606 607 608 609 610 611 612
	/* GICv4 support? */
	if (info->has_v4) {
		kvm_vgic_global_state.has_gicv4 = gicv4_enable;
		kvm_info("GICv4 support %sabled\n",
			 gicv4_enable ? "en" : "dis");
	}

613 614 615 616 617 618 619 620 621 622
	if (!info->vcpu.start) {
		kvm_info("GICv3: no GICV resource entry\n");
		kvm_vgic_global_state.vcpu_base = 0;
	} else if (!PAGE_ALIGNED(info->vcpu.start)) {
		pr_warn("GICV physical address 0x%llx not page aligned\n",
			(unsigned long long)info->vcpu.start);
		kvm_vgic_global_state.vcpu_base = 0;
	} else {
		kvm_vgic_global_state.vcpu_base = info->vcpu.start;
		kvm_vgic_global_state.can_emulate_gicv2 = true;
623 624 625 626 627
		ret = kvm_register_vgic_device(KVM_DEV_TYPE_ARM_VGIC_V2);
		if (ret) {
			kvm_err("Cannot register GICv2 KVM device.\n");
			return ret;
		}
628 629
		kvm_info("vgic-v2@%llx\n", info->vcpu.start);
	}
630 631 632 633 634 635 636
	ret = kvm_register_vgic_device(KVM_DEV_TYPE_ARM_VGIC_V3);
	if (ret) {
		kvm_err("Cannot register GICv3 KVM device.\n");
		kvm_unregister_device_ops(KVM_DEV_TYPE_ARM_VGIC_V2);
		return ret;
	}

637 638 639
	if (kvm_vgic_global_state.vcpu_base == 0)
		kvm_info("disabling GICv2 emulation\n");

640 641 642 643 644 645 646
#ifdef CONFIG_ARM64
	if (cpus_have_const_cap(ARM64_WORKAROUND_CAVIUM_30115)) {
		group0_trap = true;
		group1_trap = true;
	}
#endif

647
	if (group0_trap || group1_trap || common_trap) {
648 649 650 651
		kvm_info("GICv3 sysreg trapping enabled ([%s%s%s], reduced performance)\n",
			 group0_trap ? "G0" : "",
			 group1_trap ? "G1" : "",
			 common_trap ? "C"  : "");
652 653 654
		static_branch_enable(&vgic_v3_cpuif_trap);
	}

655 656 657 658 659 660
	kvm_vgic_global_state.vctrl_base = NULL;
	kvm_vgic_global_state.type = VGIC_V3;
	kvm_vgic_global_state.max_gic_vcpus = VGIC_V3_MAX_CPUS;

	return 0;
}
661 662 663 664 665

void vgic_v3_load(struct kvm_vcpu *vcpu)
{
	struct vgic_v3_cpu_if *cpu_if = &vcpu->arch.vgic_cpu.vgic_v3;

666 667 668 669 670 671 672
	/*
	 * If dealing with a GICv2 emulation on GICv3, VMCR_EL2.VFIQen
	 * is dependent on ICC_SRE_EL1.SRE, and we have to perform the
	 * VMCR_EL2 save/restore in the world switch.
	 */
	if (likely(cpu_if->vgic_sre))
		kvm_call_hyp(__vgic_v3_write_vmcr, cpu_if->vgic_vmcr);
673 674

	kvm_call_hyp(__vgic_v3_restore_aprs, vcpu);
675 676 677

	if (has_vhe())
		__vgic_v3_activate_traps(vcpu);
678 679
}

680
void vgic_v3_vmcr_sync(struct kvm_vcpu *vcpu)
681 682 683
{
	struct vgic_v3_cpu_if *cpu_if = &vcpu->arch.vgic_cpu.vgic_v3;

684 685
	if (likely(cpu_if->vgic_sre))
		cpu_if->vgic_vmcr = kvm_call_hyp(__vgic_v3_read_vmcr);
686 687 688 689 690
}

void vgic_v3_put(struct kvm_vcpu *vcpu)
{
	vgic_v3_vmcr_sync(vcpu);
691 692

	kvm_call_hyp(__vgic_v3_save_aprs, vcpu);
693 694 695

	if (has_vhe())
		__vgic_v3_deactivate_traps(vcpu);
696
}