tree.c 116.2 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
/*
 * Read-Copy Update mechanism for mutual exclusion
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
15 16
 * along with this program; if not, you can access it online at
 * http://www.gnu.org/licenses/gpl-2.0.html.
17 18 19 20 21 22 23 24 25 26 27
 *
 * Copyright IBM Corporation, 2008
 *
 * Authors: Dipankar Sarma <dipankar@in.ibm.com>
 *	    Manfred Spraul <manfred@colorfullife.com>
 *	    Paul E. McKenney <paulmck@linux.vnet.ibm.com> Hierarchical version
 *
 * Based on the original work by Paul McKenney <paulmck@us.ibm.com>
 * and inputs from Rusty Russell, Andrea Arcangeli and Andi Kleen.
 *
 * For detailed explanation of Read-Copy Update mechanism see -
28
 *	Documentation/RCU
29 30 31 32 33 34 35 36 37
 */
#include <linux/types.h>
#include <linux/kernel.h>
#include <linux/init.h>
#include <linux/spinlock.h>
#include <linux/smp.h>
#include <linux/rcupdate.h>
#include <linux/interrupt.h>
#include <linux/sched.h>
38
#include <linux/nmi.h>
39
#include <linux/atomic.h>
40
#include <linux/bitops.h>
41
#include <linux/export.h>
42 43
#include <linux/completion.h>
#include <linux/moduleparam.h>
44
#include <linux/module.h>
45 46 47 48 49
#include <linux/percpu.h>
#include <linux/notifier.h>
#include <linux/cpu.h>
#include <linux/mutex.h>
#include <linux/time.h>
50
#include <linux/kernel_stat.h>
51 52
#include <linux/wait.h>
#include <linux/kthread.h>
53
#include <linux/prefetch.h>
54 55
#include <linux/delay.h>
#include <linux/stop_machine.h>
56
#include <linux/random.h>
57
#include <linux/ftrace_event.h>
58
#include <linux/suspend.h>
59

60
#include "tree.h"
61
#include "rcu.h"
62

63 64 65 66 67 68
MODULE_ALIAS("rcutree");
#ifdef MODULE_PARAM_PREFIX
#undef MODULE_PARAM_PREFIX
#endif
#define MODULE_PARAM_PREFIX "rcutree."

69 70
/* Data structures. */

71
static struct lock_class_key rcu_node_class[RCU_NUM_LVLS];
72
static struct lock_class_key rcu_fqs_class[RCU_NUM_LVLS];
73

74 75 76 77 78 79 80 81
/*
 * In order to export the rcu_state name to the tracing tools, it
 * needs to be added in the __tracepoint_string section.
 * This requires defining a separate variable tp_<sname>_varname
 * that points to the string being used, and this will allow
 * the tracing userspace tools to be able to decipher the string
 * address to the matching string.
 */
82 83
#ifdef CONFIG_TRACING
# define DEFINE_RCU_TPS(sname) \
84
static char sname##_varname[] = #sname; \
85 86 87 88 89 90 91 92 93
static const char *tp_##sname##_varname __used __tracepoint_string = sname##_varname;
# define RCU_STATE_NAME(sname) sname##_varname
#else
# define DEFINE_RCU_TPS(sname)
# define RCU_STATE_NAME(sname) __stringify(sname)
#endif

#define RCU_STATE_INITIALIZER(sname, sabbr, cr) \
DEFINE_RCU_TPS(sname) \
94
struct rcu_state sname##_state = { \
95
	.level = { &sname##_state.node[0] }, \
96
	.call = cr, \
97
	.fqs_state = RCU_GP_IDLE, \
P
Paul E. McKenney 已提交
98 99
	.gpnum = 0UL - 300UL, \
	.completed = 0UL - 300UL, \
100
	.orphan_lock = __RAW_SPIN_LOCK_UNLOCKED(&sname##_state.orphan_lock), \
101 102
	.orphan_nxttail = &sname##_state.orphan_nxtlist, \
	.orphan_donetail = &sname##_state.orphan_donelist, \
103
	.barrier_mutex = __MUTEX_INITIALIZER(sname##_state.barrier_mutex), \
104
	.onoff_mutex = __MUTEX_INITIALIZER(sname##_state.onoff_mutex), \
105
	.name = RCU_STATE_NAME(sname), \
106
	.abbr = sabbr, \
107 108
}; \
DEFINE_PER_CPU(struct rcu_data, sname##_data)
109

110 111
RCU_STATE_INITIALIZER(rcu_sched, 's', call_rcu_sched);
RCU_STATE_INITIALIZER(rcu_bh, 'b', call_rcu_bh);
112

113
static struct rcu_state *rcu_state_p;
114
LIST_HEAD(rcu_struct_flavors);
115

116 117
/* Increase (but not decrease) the CONFIG_RCU_FANOUT_LEAF at boot time. */
static int rcu_fanout_leaf = CONFIG_RCU_FANOUT_LEAF;
118
module_param(rcu_fanout_leaf, int, 0444);
119 120 121 122 123 124 125 126 127 128
int rcu_num_lvls __read_mostly = RCU_NUM_LVLS;
static int num_rcu_lvl[] = {  /* Number of rcu_nodes at specified level. */
	NUM_RCU_LVL_0,
	NUM_RCU_LVL_1,
	NUM_RCU_LVL_2,
	NUM_RCU_LVL_3,
	NUM_RCU_LVL_4,
};
int rcu_num_nodes __read_mostly = NUM_RCU_NODES; /* Total # rcu_nodes in use. */

129 130 131 132
/*
 * The rcu_scheduler_active variable transitions from zero to one just
 * before the first task is spawned.  So when this variable is zero, RCU
 * can assume that there is but one task, allowing RCU to (for example)
133
 * optimize synchronize_sched() to a simple barrier().  When this variable
134 135 136 137
 * is one, RCU must actually do all the hard work required to detect real
 * grace periods.  This variable is also used to suppress boot-time false
 * positives from lockdep-RCU error checking.
 */
138 139 140
int rcu_scheduler_active __read_mostly;
EXPORT_SYMBOL_GPL(rcu_scheduler_active);

141 142 143 144 145 146 147 148 149 150 151 152 153 154
/*
 * The rcu_scheduler_fully_active variable transitions from zero to one
 * during the early_initcall() processing, which is after the scheduler
 * is capable of creating new tasks.  So RCU processing (for example,
 * creating tasks for RCU priority boosting) must be delayed until after
 * rcu_scheduler_fully_active transitions from zero to one.  We also
 * currently delay invocation of any RCU callbacks until after this point.
 *
 * It might later prove better for people registering RCU callbacks during
 * early boot to take responsibility for these callbacks, but one step at
 * a time.
 */
static int rcu_scheduler_fully_active __read_mostly;

155 156
#ifdef CONFIG_RCU_BOOST

157 158 159 160 161
/*
 * Control variables for per-CPU and per-rcu_node kthreads.  These
 * handle all flavors of RCU.
 */
static DEFINE_PER_CPU(struct task_struct *, rcu_cpu_kthread_task);
162
DEFINE_PER_CPU(unsigned int, rcu_cpu_kthread_status);
163
DEFINE_PER_CPU(unsigned int, rcu_cpu_kthread_loops);
164
DEFINE_PER_CPU(char, rcu_cpu_has_work);
165

166 167
#endif /* #ifdef CONFIG_RCU_BOOST */

T
Thomas Gleixner 已提交
168
static void rcu_boost_kthread_setaffinity(struct rcu_node *rnp, int outgoingcpu);
169 170
static void invoke_rcu_core(void);
static void invoke_rcu_callbacks(struct rcu_state *rsp, struct rcu_data *rdp);
171

172 173 174 175 176 177 178 179 180 181 182 183
/*
 * Track the rcutorture test sequence number and the update version
 * number within a given test.  The rcutorture_testseq is incremented
 * on every rcutorture module load and unload, so has an odd value
 * when a test is running.  The rcutorture_vernum is set to zero
 * when rcutorture starts and is incremented on each rcutorture update.
 * These variables enable correlating rcutorture output with the
 * RCU tracing information.
 */
unsigned long rcutorture_testseq;
unsigned long rcutorture_vernum;

184 185 186 187 188 189 190 191 192 193
/*
 * Return true if an RCU grace period is in progress.  The ACCESS_ONCE()s
 * permit this function to be invoked without holding the root rcu_node
 * structure's ->lock, but of course results can be subject to change.
 */
static int rcu_gp_in_progress(struct rcu_state *rsp)
{
	return ACCESS_ONCE(rsp->completed) != ACCESS_ONCE(rsp->gpnum);
}

194
/*
195
 * Note a quiescent state.  Because we do not need to know
196
 * how many quiescent states passed, just if there was at least
197
 * one since the start of the grace period, this just sets a flag.
198
 * The caller must have disabled preemption.
199
 */
200
void rcu_sched_qs(int cpu)
201
{
202
	struct rcu_data *rdp = &per_cpu(rcu_sched_data, cpu);
203

204
	if (rdp->passed_quiesce == 0)
205
		trace_rcu_grace_period(TPS("rcu_sched"), rdp->gpnum, TPS("cpuqs"));
206
	rdp->passed_quiesce = 1;
207 208
}

209
void rcu_bh_qs(int cpu)
210
{
211
	struct rcu_data *rdp = &per_cpu(rcu_bh_data, cpu);
212

213
	if (rdp->passed_quiesce == 0)
214
		trace_rcu_grace_period(TPS("rcu_bh"), rdp->gpnum, TPS("cpuqs"));
215
	rdp->passed_quiesce = 1;
216
}
217

218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281
static DEFINE_PER_CPU(int, rcu_sched_qs_mask);

static DEFINE_PER_CPU(struct rcu_dynticks, rcu_dynticks) = {
	.dynticks_nesting = DYNTICK_TASK_EXIT_IDLE,
	.dynticks = ATOMIC_INIT(1),
#ifdef CONFIG_NO_HZ_FULL_SYSIDLE
	.dynticks_idle_nesting = DYNTICK_TASK_NEST_VALUE,
	.dynticks_idle = ATOMIC_INIT(1),
#endif /* #ifdef CONFIG_NO_HZ_FULL_SYSIDLE */
};

/*
 * Let the RCU core know that this CPU has gone through the scheduler,
 * which is a quiescent state.  This is called when the need for a
 * quiescent state is urgent, so we burn an atomic operation and full
 * memory barriers to let the RCU core know about it, regardless of what
 * this CPU might (or might not) do in the near future.
 *
 * We inform the RCU core by emulating a zero-duration dyntick-idle
 * period, which we in turn do by incrementing the ->dynticks counter
 * by two.
 */
static void rcu_momentary_dyntick_idle(void)
{
	unsigned long flags;
	struct rcu_data *rdp;
	struct rcu_dynticks *rdtp;
	int resched_mask;
	struct rcu_state *rsp;

	local_irq_save(flags);

	/*
	 * Yes, we can lose flag-setting operations.  This is OK, because
	 * the flag will be set again after some delay.
	 */
	resched_mask = raw_cpu_read(rcu_sched_qs_mask);
	raw_cpu_write(rcu_sched_qs_mask, 0);

	/* Find the flavor that needs a quiescent state. */
	for_each_rcu_flavor(rsp) {
		rdp = raw_cpu_ptr(rsp->rda);
		if (!(resched_mask & rsp->flavor_mask))
			continue;
		smp_mb(); /* rcu_sched_qs_mask before cond_resched_completed. */
		if (ACCESS_ONCE(rdp->mynode->completed) !=
		    ACCESS_ONCE(rdp->cond_resched_completed))
			continue;

		/*
		 * Pretend to be momentarily idle for the quiescent state.
		 * This allows the grace-period kthread to record the
		 * quiescent state, with no need for this CPU to do anything
		 * further.
		 */
		rdtp = this_cpu_ptr(&rcu_dynticks);
		smp_mb__before_atomic(); /* Earlier stuff before QS. */
		atomic_add(2, &rdtp->dynticks);  /* QS. */
		smp_mb__after_atomic(); /* Later stuff after QS. */
		break;
	}
	local_irq_restore(flags);
}

282 283 284
/*
 * Note a context switch.  This is a quiescent state for RCU-sched,
 * and requires special handling for preemptible RCU.
285
 * The caller must have disabled preemption.
286 287 288
 */
void rcu_note_context_switch(int cpu)
{
289
	trace_rcu_utilization(TPS("Start context switch"));
290
	rcu_sched_qs(cpu);
291
	rcu_preempt_note_context_switch(cpu);
292 293
	if (unlikely(raw_cpu_read(rcu_sched_qs_mask)))
		rcu_momentary_dyntick_idle();
294
	trace_rcu_utilization(TPS("End context switch"));
295
}
296
EXPORT_SYMBOL_GPL(rcu_note_context_switch);
297

E
Eric Dumazet 已提交
298 299 300
static long blimit = 10;	/* Maximum callbacks per rcu_do_batch. */
static long qhimark = 10000;	/* If this many pending, ignore blimit. */
static long qlowmark = 100;	/* Once only this many pending, use blimit. */
301

E
Eric Dumazet 已提交
302 303 304
module_param(blimit, long, 0444);
module_param(qhimark, long, 0444);
module_param(qlowmark, long, 0444);
305

306 307
static ulong jiffies_till_first_fqs = ULONG_MAX;
static ulong jiffies_till_next_fqs = ULONG_MAX;
308 309 310 311

module_param(jiffies_till_first_fqs, ulong, 0644);
module_param(jiffies_till_next_fqs, ulong, 0644);

312 313 314 315 316 317 318
/*
 * How long the grace period must be before we start recruiting
 * quiescent-state help from rcu_note_context_switch().
 */
static ulong jiffies_till_sched_qs = HZ / 20;
module_param(jiffies_till_sched_qs, ulong, 0644);

319
static bool rcu_start_gp_advanced(struct rcu_state *rsp, struct rcu_node *rnp,
320
				  struct rcu_data *rdp);
321 322 323 324
static void force_qs_rnp(struct rcu_state *rsp,
			 int (*f)(struct rcu_data *rsp, bool *isidle,
				  unsigned long *maxj),
			 bool *isidle, unsigned long *maxj);
325
static void force_quiescent_state(struct rcu_state *rsp);
326
static int rcu_pending(int cpu);
327 328

/*
329
 * Return the number of RCU-sched batches processed thus far for debug & stats.
330
 */
331
long rcu_batches_completed_sched(void)
332
{
333
	return rcu_sched_state.completed;
334
}
335
EXPORT_SYMBOL_GPL(rcu_batches_completed_sched);
336 337 338 339 340 341 342 343 344 345

/*
 * Return the number of RCU BH batches processed thus far for debug & stats.
 */
long rcu_batches_completed_bh(void)
{
	return rcu_bh_state.completed;
}
EXPORT_SYMBOL_GPL(rcu_batches_completed_bh);

346 347 348 349 350
/*
 * Force a quiescent state.
 */
void rcu_force_quiescent_state(void)
{
351
	force_quiescent_state(rcu_state_p);
352 353 354
}
EXPORT_SYMBOL_GPL(rcu_force_quiescent_state);

355 356 357 358 359
/*
 * Force a quiescent state for RCU BH.
 */
void rcu_bh_force_quiescent_state(void)
{
360
	force_quiescent_state(&rcu_bh_state);
361 362 363
}
EXPORT_SYMBOL_GPL(rcu_bh_force_quiescent_state);

364 365 366 367 368 369 370 371 372 373 374 375 376 377 378
/*
 * Show the state of the grace-period kthreads.
 */
void show_rcu_gp_kthreads(void)
{
	struct rcu_state *rsp;

	for_each_rcu_flavor(rsp) {
		pr_info("%s: wait state: %d ->state: %#lx\n",
			rsp->name, rsp->gp_state, rsp->gp_kthread->state);
		/* sched_show_task(rsp->gp_kthread); */
	}
}
EXPORT_SYMBOL_GPL(show_rcu_gp_kthreads);

379 380 381 382 383 384 385 386 387 388 389 390 391 392
/*
 * Record the number of times rcutorture tests have been initiated and
 * terminated.  This information allows the debugfs tracing stats to be
 * correlated to the rcutorture messages, even when the rcutorture module
 * is being repeatedly loaded and unloaded.  In other words, we cannot
 * store this state in rcutorture itself.
 */
void rcutorture_record_test_transition(void)
{
	rcutorture_testseq++;
	rcutorture_vernum = 0;
}
EXPORT_SYMBOL_GPL(rcutorture_record_test_transition);

393 394 395 396 397 398 399 400 401 402
/*
 * Send along grace-period-related data for rcutorture diagnostics.
 */
void rcutorture_get_gp_data(enum rcutorture_type test_type, int *flags,
			    unsigned long *gpnum, unsigned long *completed)
{
	struct rcu_state *rsp = NULL;

	switch (test_type) {
	case RCU_FLAVOR:
403
		rsp = rcu_state_p;
404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425
		break;
	case RCU_BH_FLAVOR:
		rsp = &rcu_bh_state;
		break;
	case RCU_SCHED_FLAVOR:
		rsp = &rcu_sched_state;
		break;
	default:
		break;
	}
	if (rsp != NULL) {
		*flags = ACCESS_ONCE(rsp->gp_flags);
		*gpnum = ACCESS_ONCE(rsp->gpnum);
		*completed = ACCESS_ONCE(rsp->completed);
		return;
	}
	*flags = 0;
	*gpnum = 0;
	*completed = 0;
}
EXPORT_SYMBOL_GPL(rcutorture_get_gp_data);

426 427 428 429 430 431 432 433 434 435 436
/*
 * Record the number of writer passes through the current rcutorture test.
 * This is also used to correlate debugfs tracing stats with the rcutorture
 * messages.
 */
void rcutorture_record_progress(unsigned long vernum)
{
	rcutorture_vernum++;
}
EXPORT_SYMBOL_GPL(rcutorture_record_progress);

437 438 439 440 441
/*
 * Force a quiescent state for RCU-sched.
 */
void rcu_sched_force_quiescent_state(void)
{
442
	force_quiescent_state(&rcu_sched_state);
443 444 445
}
EXPORT_SYMBOL_GPL(rcu_sched_force_quiescent_state);

446 447 448 449 450 451
/*
 * Does the CPU have callbacks ready to be invoked?
 */
static int
cpu_has_callbacks_ready_to_invoke(struct rcu_data *rdp)
{
P
Paul E. McKenney 已提交
452 453
	return &rdp->nxtlist != rdp->nxttail[RCU_DONE_TAIL] &&
	       rdp->nxttail[RCU_DONE_TAIL] != NULL;
454 455
}

456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477
/*
 * Return the root node of the specified rcu_state structure.
 */
static struct rcu_node *rcu_get_root(struct rcu_state *rsp)
{
	return &rsp->node[0];
}

/*
 * Is there any need for future grace periods?
 * Interrupts must be disabled.  If the caller does not hold the root
 * rnp_node structure's ->lock, the results are advisory only.
 */
static int rcu_future_needs_gp(struct rcu_state *rsp)
{
	struct rcu_node *rnp = rcu_get_root(rsp);
	int idx = (ACCESS_ONCE(rnp->completed) + 1) & 0x1;
	int *fp = &rnp->need_future_gp[idx];

	return ACCESS_ONCE(*fp);
}

478
/*
479 480 481
 * Does the current CPU require a not-yet-started grace period?
 * The caller must have disabled interrupts to prevent races with
 * normal callback registry.
482 483 484 485
 */
static int
cpu_needs_another_gp(struct rcu_state *rsp, struct rcu_data *rdp)
{
486
	int i;
P
Paul E. McKenney 已提交
487

488 489
	if (rcu_gp_in_progress(rsp))
		return 0;  /* No, a grace period is already in progress. */
490
	if (rcu_future_needs_gp(rsp))
491
		return 1;  /* Yes, a no-CBs CPU needs one. */
492 493 494 495 496 497 498 499 500 501
	if (!rdp->nxttail[RCU_NEXT_TAIL])
		return 0;  /* No, this is a no-CBs (or offline) CPU. */
	if (*rdp->nxttail[RCU_NEXT_READY_TAIL])
		return 1;  /* Yes, this CPU has newly registered callbacks. */
	for (i = RCU_WAIT_TAIL; i < RCU_NEXT_TAIL; i++)
		if (rdp->nxttail[i - 1] != rdp->nxttail[i] &&
		    ULONG_CMP_LT(ACCESS_ONCE(rsp->completed),
				 rdp->nxtcompleted[i]))
			return 1;  /* Yes, CBs for future grace period. */
	return 0; /* No grace period needed. */
502 503
}

504
/*
505
 * rcu_eqs_enter_common - current CPU is moving towards extended quiescent state
506 507 508 509 510
 *
 * If the new value of the ->dynticks_nesting counter now is zero,
 * we really have entered idle, and must do the appropriate accounting.
 * The caller must have disabled interrupts.
 */
511 512
static void rcu_eqs_enter_common(struct rcu_dynticks *rdtp, long long oldval,
				bool user)
513
{
514 515 516
	struct rcu_state *rsp;
	struct rcu_data *rdp;

517
	trace_rcu_dyntick(TPS("Start"), oldval, rdtp->dynticks_nesting);
518
	if (!user && !is_idle_task(current)) {
519 520
		struct task_struct *idle __maybe_unused =
			idle_task(smp_processor_id());
521

522
		trace_rcu_dyntick(TPS("Error on entry: not idle task"), oldval, 0);
523
		ftrace_dump(DUMP_ORIG);
524 525 526
		WARN_ONCE(1, "Current pid: %d comm: %s / Idle pid: %d comm: %s",
			  current->pid, current->comm,
			  idle->pid, idle->comm); /* must be idle task! */
527
	}
528 529 530 531
	for_each_rcu_flavor(rsp) {
		rdp = this_cpu_ptr(rsp->rda);
		do_nocb_deferred_wakeup(rdp);
	}
532
	rcu_prepare_for_idle(smp_processor_id());
533
	/* CPUs seeing atomic_inc() must see prior RCU read-side crit sects */
534
	smp_mb__before_atomic();  /* See above. */
535
	atomic_inc(&rdtp->dynticks);
536
	smp_mb__after_atomic();  /* Force ordering with next sojourn. */
537
	WARN_ON_ONCE(atomic_read(&rdtp->dynticks) & 0x1);
538 539

	/*
540
	 * It is illegal to enter an extended quiescent state while
541 542 543 544 545 546 547 548
	 * in an RCU read-side critical section.
	 */
	rcu_lockdep_assert(!lock_is_held(&rcu_lock_map),
			   "Illegal idle entry in RCU read-side critical section.");
	rcu_lockdep_assert(!lock_is_held(&rcu_bh_lock_map),
			   "Illegal idle entry in RCU-bh read-side critical section.");
	rcu_lockdep_assert(!lock_is_held(&rcu_sched_lock_map),
			   "Illegal idle entry in RCU-sched read-side critical section.");
549
}
550

551 552 553
/*
 * Enter an RCU extended quiescent state, which can be either the
 * idle loop or adaptive-tickless usermode execution.
554
 */
555
static void rcu_eqs_enter(bool user)
556
{
557
	long long oldval;
558 559
	struct rcu_dynticks *rdtp;

560
	rdtp = this_cpu_ptr(&rcu_dynticks);
561
	oldval = rdtp->dynticks_nesting;
562
	WARN_ON_ONCE((oldval & DYNTICK_TASK_NEST_MASK) == 0);
563
	if ((oldval & DYNTICK_TASK_NEST_MASK) == DYNTICK_TASK_NEST_VALUE) {
564
		rdtp->dynticks_nesting = 0;
565 566
		rcu_eqs_enter_common(rdtp, oldval, user);
	} else {
567
		rdtp->dynticks_nesting -= DYNTICK_TASK_NEST_VALUE;
568
	}
569
}
570 571 572 573 574 575 576 577 578 579 580 581 582 583 584

/**
 * rcu_idle_enter - inform RCU that current CPU is entering idle
 *
 * Enter idle mode, in other words, -leave- the mode in which RCU
 * read-side critical sections can occur.  (Though RCU read-side
 * critical sections can occur in irq handlers in idle, a possibility
 * handled by irq_enter() and irq_exit().)
 *
 * We crowbar the ->dynticks_nesting field to zero to allow for
 * the possibility of usermode upcalls having messed up our count
 * of interrupt nesting level during the prior busy period.
 */
void rcu_idle_enter(void)
{
585 586 587
	unsigned long flags;

	local_irq_save(flags);
588
	rcu_eqs_enter(false);
589
	rcu_sysidle_enter(this_cpu_ptr(&rcu_dynticks), 0);
590
	local_irq_restore(flags);
591
}
592
EXPORT_SYMBOL_GPL(rcu_idle_enter);
593

594
#ifdef CONFIG_RCU_USER_QS
595 596 597 598 599 600 601 602 603 604
/**
 * rcu_user_enter - inform RCU that we are resuming userspace.
 *
 * Enter RCU idle mode right before resuming userspace.  No use of RCU
 * is permitted between this call and rcu_user_exit(). This way the
 * CPU doesn't need to maintain the tick for RCU maintenance purposes
 * when the CPU runs in userspace.
 */
void rcu_user_enter(void)
{
605
	rcu_eqs_enter(1);
606
}
607
#endif /* CONFIG_RCU_USER_QS */
608

609 610 611 612 613 614
/**
 * rcu_irq_exit - inform RCU that current CPU is exiting irq towards idle
 *
 * Exit from an interrupt handler, which might possibly result in entering
 * idle mode, in other words, leaving the mode in which read-side critical
 * sections can occur.
615
 *
616 617 618 619 620 621 622 623
 * This code assumes that the idle loop never does anything that might
 * result in unbalanced calls to irq_enter() and irq_exit().  If your
 * architecture violates this assumption, RCU will give you what you
 * deserve, good and hard.  But very infrequently and irreproducibly.
 *
 * Use things like work queues to work around this limitation.
 *
 * You have been warned.
624
 */
625
void rcu_irq_exit(void)
626 627
{
	unsigned long flags;
628
	long long oldval;
629 630 631
	struct rcu_dynticks *rdtp;

	local_irq_save(flags);
632
	rdtp = this_cpu_ptr(&rcu_dynticks);
633
	oldval = rdtp->dynticks_nesting;
634 635
	rdtp->dynticks_nesting--;
	WARN_ON_ONCE(rdtp->dynticks_nesting < 0);
636
	if (rdtp->dynticks_nesting)
637
		trace_rcu_dyntick(TPS("--="), oldval, rdtp->dynticks_nesting);
638
	else
639
		rcu_eqs_enter_common(rdtp, oldval, true);
640
	rcu_sysidle_enter(rdtp, 1);
641 642 643 644
	local_irq_restore(flags);
}

/*
645
 * rcu_eqs_exit_common - current CPU moving away from extended quiescent state
646 647 648 649 650
 *
 * If the new value of the ->dynticks_nesting counter was previously zero,
 * we really have exited idle, and must do the appropriate accounting.
 * The caller must have disabled interrupts.
 */
651 652
static void rcu_eqs_exit_common(struct rcu_dynticks *rdtp, long long oldval,
			       int user)
653
{
654
	smp_mb__before_atomic();  /* Force ordering w/previous sojourn. */
655 656
	atomic_inc(&rdtp->dynticks);
	/* CPUs seeing atomic_inc() must see later RCU read-side crit sects */
657
	smp_mb__after_atomic();  /* See above. */
658
	WARN_ON_ONCE(!(atomic_read(&rdtp->dynticks) & 0x1));
659
	rcu_cleanup_after_idle(smp_processor_id());
660
	trace_rcu_dyntick(TPS("End"), oldval, rdtp->dynticks_nesting);
661
	if (!user && !is_idle_task(current)) {
662 663
		struct task_struct *idle __maybe_unused =
			idle_task(smp_processor_id());
664

665
		trace_rcu_dyntick(TPS("Error on exit: not idle task"),
666
				  oldval, rdtp->dynticks_nesting);
667
		ftrace_dump(DUMP_ORIG);
668 669 670
		WARN_ONCE(1, "Current pid: %d comm: %s / Idle pid: %d comm: %s",
			  current->pid, current->comm,
			  idle->pid, idle->comm); /* must be idle task! */
671 672 673
	}
}

674 675 676
/*
 * Exit an RCU extended quiescent state, which can be either the
 * idle loop or adaptive-tickless usermode execution.
677
 */
678
static void rcu_eqs_exit(bool user)
679 680 681 682
{
	struct rcu_dynticks *rdtp;
	long long oldval;

683
	rdtp = this_cpu_ptr(&rcu_dynticks);
684
	oldval = rdtp->dynticks_nesting;
685
	WARN_ON_ONCE(oldval < 0);
686
	if (oldval & DYNTICK_TASK_NEST_MASK) {
687
		rdtp->dynticks_nesting += DYNTICK_TASK_NEST_VALUE;
688
	} else {
689
		rdtp->dynticks_nesting = DYNTICK_TASK_EXIT_IDLE;
690 691
		rcu_eqs_exit_common(rdtp, oldval, user);
	}
692
}
693 694 695 696 697 698 699 700 701 702 703 704 705 706

/**
 * rcu_idle_exit - inform RCU that current CPU is leaving idle
 *
 * Exit idle mode, in other words, -enter- the mode in which RCU
 * read-side critical sections can occur.
 *
 * We crowbar the ->dynticks_nesting field to DYNTICK_TASK_NEST to
 * allow for the possibility of usermode upcalls messing up our count
 * of interrupt nesting level during the busy period that is just
 * now starting.
 */
void rcu_idle_exit(void)
{
707 708 709
	unsigned long flags;

	local_irq_save(flags);
710
	rcu_eqs_exit(false);
711
	rcu_sysidle_exit(this_cpu_ptr(&rcu_dynticks), 0);
712
	local_irq_restore(flags);
713
}
714
EXPORT_SYMBOL_GPL(rcu_idle_exit);
715

716
#ifdef CONFIG_RCU_USER_QS
717 718 719 720 721 722 723 724
/**
 * rcu_user_exit - inform RCU that we are exiting userspace.
 *
 * Exit RCU idle mode while entering the kernel because it can
 * run a RCU read side critical section anytime.
 */
void rcu_user_exit(void)
{
725
	rcu_eqs_exit(1);
726
}
727
#endif /* CONFIG_RCU_USER_QS */
728

729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754
/**
 * rcu_irq_enter - inform RCU that current CPU is entering irq away from idle
 *
 * Enter an interrupt handler, which might possibly result in exiting
 * idle mode, in other words, entering the mode in which read-side critical
 * sections can occur.
 *
 * Note that the Linux kernel is fully capable of entering an interrupt
 * handler that it never exits, for example when doing upcalls to
 * user mode!  This code assumes that the idle loop never does upcalls to
 * user mode.  If your architecture does do upcalls from the idle loop (or
 * does anything else that results in unbalanced calls to the irq_enter()
 * and irq_exit() functions), RCU will give you what you deserve, good
 * and hard.  But very infrequently and irreproducibly.
 *
 * Use things like work queues to work around this limitation.
 *
 * You have been warned.
 */
void rcu_irq_enter(void)
{
	unsigned long flags;
	struct rcu_dynticks *rdtp;
	long long oldval;

	local_irq_save(flags);
755
	rdtp = this_cpu_ptr(&rcu_dynticks);
756 757 758
	oldval = rdtp->dynticks_nesting;
	rdtp->dynticks_nesting++;
	WARN_ON_ONCE(rdtp->dynticks_nesting == 0);
759
	if (oldval)
760
		trace_rcu_dyntick(TPS("++="), oldval, rdtp->dynticks_nesting);
761
	else
762
		rcu_eqs_exit_common(rdtp, oldval, true);
763
	rcu_sysidle_exit(rdtp, 1);
764 765 766 767 768 769 770 771 772 773 774 775
	local_irq_restore(flags);
}

/**
 * rcu_nmi_enter - inform RCU of entry to NMI context
 *
 * If the CPU was idle with dynamic ticks active, and there is no
 * irq handler running, this updates rdtp->dynticks_nmi to let the
 * RCU grace-period handling know that the CPU is active.
 */
void rcu_nmi_enter(void)
{
776
	struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
777

778 779
	if (rdtp->dynticks_nmi_nesting == 0 &&
	    (atomic_read(&rdtp->dynticks) & 0x1))
780
		return;
781
	rdtp->dynticks_nmi_nesting++;
782
	smp_mb__before_atomic();  /* Force delay from prior write. */
783 784
	atomic_inc(&rdtp->dynticks);
	/* CPUs seeing atomic_inc() must see later RCU read-side crit sects */
785
	smp_mb__after_atomic();  /* See above. */
786
	WARN_ON_ONCE(!(atomic_read(&rdtp->dynticks) & 0x1));
787 788 789 790 791 792 793 794 795 796 797
}

/**
 * rcu_nmi_exit - inform RCU of exit from NMI context
 *
 * If the CPU was idle with dynamic ticks active, and there is no
 * irq handler running, this updates rdtp->dynticks_nmi to let the
 * RCU grace-period handling know that the CPU is no longer active.
 */
void rcu_nmi_exit(void)
{
798
	struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
799

800 801
	if (rdtp->dynticks_nmi_nesting == 0 ||
	    --rdtp->dynticks_nmi_nesting != 0)
802
		return;
803
	/* CPUs seeing atomic_inc() must see prior RCU read-side crit sects */
804
	smp_mb__before_atomic();  /* See above. */
805
	atomic_inc(&rdtp->dynticks);
806
	smp_mb__after_atomic();  /* Force delay to next write. */
807
	WARN_ON_ONCE(atomic_read(&rdtp->dynticks) & 0x1);
808 809 810
}

/**
811 812 813 814 815 816 817
 * __rcu_is_watching - are RCU read-side critical sections safe?
 *
 * Return true if RCU is watching the running CPU, which means that
 * this CPU can safely enter RCU read-side critical sections.  Unlike
 * rcu_is_watching(), the caller of __rcu_is_watching() must have at
 * least disabled preemption.
 */
818
bool notrace __rcu_is_watching(void)
819 820 821 822 823 824
{
	return atomic_read(this_cpu_ptr(&rcu_dynticks.dynticks)) & 0x1;
}

/**
 * rcu_is_watching - see if RCU thinks that the current CPU is idle
825
 *
826
 * If the current CPU is in its idle loop and is neither in an interrupt
827
 * or NMI handler, return true.
828
 */
829
bool notrace rcu_is_watching(void)
830
{
831
	bool ret;
832 833

	preempt_disable();
834
	ret = __rcu_is_watching();
835 836
	preempt_enable();
	return ret;
837
}
838
EXPORT_SYMBOL_GPL(rcu_is_watching);
839

840
#if defined(CONFIG_PROVE_RCU) && defined(CONFIG_HOTPLUG_CPU)
841 842 843 844 845 846 847

/*
 * Is the current CPU online?  Disable preemption to avoid false positives
 * that could otherwise happen due to the current CPU number being sampled,
 * this task being preempted, its old CPU being taken offline, resuming
 * on some other CPU, then determining that its old CPU is now offline.
 * It is OK to use RCU on an offline processor during initial boot, hence
848 849 850 851 852 853 854 855 856 857 858
 * the check for rcu_scheduler_fully_active.  Note also that it is OK
 * for a CPU coming online to use RCU for one jiffy prior to marking itself
 * online in the cpu_online_mask.  Similarly, it is OK for a CPU going
 * offline to continue to use RCU for one jiffy after marking itself
 * offline in the cpu_online_mask.  This leniency is necessary given the
 * non-atomic nature of the online and offline processing, for example,
 * the fact that a CPU enters the scheduler after completing the CPU_DYING
 * notifiers.
 *
 * This is also why RCU internally marks CPUs online during the
 * CPU_UP_PREPARE phase and offline during the CPU_DEAD phase.
859 860 861 862 863 864
 *
 * Disable checking if in an NMI handler because we cannot safely report
 * errors from NMI handlers anyway.
 */
bool rcu_lockdep_current_cpu_online(void)
{
865 866
	struct rcu_data *rdp;
	struct rcu_node *rnp;
867 868 869
	bool ret;

	if (in_nmi())
F
Fengguang Wu 已提交
870
		return true;
871
	preempt_disable();
872
	rdp = this_cpu_ptr(&rcu_sched_data);
873 874
	rnp = rdp->mynode;
	ret = (rdp->grpmask & rnp->qsmaskinit) ||
875 876 877 878 879 880
	      !rcu_scheduler_fully_active;
	preempt_enable();
	return ret;
}
EXPORT_SYMBOL_GPL(rcu_lockdep_current_cpu_online);

881
#endif /* #if defined(CONFIG_PROVE_RCU) && defined(CONFIG_HOTPLUG_CPU) */
882

883
/**
884
 * rcu_is_cpu_rrupt_from_idle - see if idle or immediately interrupted from idle
885
 *
886 887 888
 * If the current CPU is idle or running at a first-level (not nested)
 * interrupt from idle, return true.  The caller must have at least
 * disabled preemption.
889
 */
890
static int rcu_is_cpu_rrupt_from_idle(void)
891
{
892
	return __this_cpu_read(rcu_dynticks.dynticks_nesting) <= 1;
893 894 895 896 897
}

/*
 * Snapshot the specified CPU's dynticks counter so that we can later
 * credit them with an implicit quiescent state.  Return 1 if this CPU
898
 * is in dynticks idle mode, which is an extended quiescent state.
899
 */
900 901
static int dyntick_save_progress_counter(struct rcu_data *rdp,
					 bool *isidle, unsigned long *maxj)
902
{
903
	rdp->dynticks_snap = atomic_add_return(0, &rdp->dynticks->dynticks);
904
	rcu_sysidle_check_cpu(rdp, isidle, maxj);
905 906 907 908 909 910
	if ((rdp->dynticks_snap & 0x1) == 0) {
		trace_rcu_fqs(rdp->rsp->name, rdp->gpnum, rdp->cpu, TPS("dti"));
		return 1;
	} else {
		return 0;
	}
911 912
}

913 914 915 916 917 918
/*
 * This function really isn't for public consumption, but RCU is special in
 * that context switches can allow the state machine to make progress.
 */
extern void resched_cpu(int cpu);

919 920 921 922
/*
 * Return true if the specified CPU has passed through a quiescent
 * state by virtue of being in or having passed through an dynticks
 * idle state since the last call to dyntick_save_progress_counter()
923
 * for this same CPU, or by virtue of having been offline.
924
 */
925 926
static int rcu_implicit_dynticks_qs(struct rcu_data *rdp,
				    bool *isidle, unsigned long *maxj)
927
{
928
	unsigned int curr;
929
	int *rcrmp;
930
	unsigned int snap;
931

932 933
	curr = (unsigned int)atomic_add_return(0, &rdp->dynticks->dynticks);
	snap = (unsigned int)rdp->dynticks_snap;
934 935 936 937 938 939 940 941 942

	/*
	 * If the CPU passed through or entered a dynticks idle phase with
	 * no active irq/NMI handlers, then we can safely pretend that the CPU
	 * already acknowledged the request to pass through a quiescent
	 * state.  Either way, that CPU cannot possibly be in an RCU
	 * read-side critical section that started before the beginning
	 * of the current RCU grace period.
	 */
943
	if ((curr & 0x1) == 0 || UINT_CMP_GE(curr, snap + 2)) {
944
		trace_rcu_fqs(rdp->rsp->name, rdp->gpnum, rdp->cpu, TPS("dti"));
945 946 947 948
		rdp->dynticks_fqs++;
		return 1;
	}

949 950 951 952 953 954 955 956 957 958 959 960 961 962 963
	/*
	 * Check for the CPU being offline, but only if the grace period
	 * is old enough.  We don't need to worry about the CPU changing
	 * state: If we see it offline even once, it has been through a
	 * quiescent state.
	 *
	 * The reason for insisting that the grace period be at least
	 * one jiffy old is that CPUs that are not quite online and that
	 * have just gone offline can still execute RCU read-side critical
	 * sections.
	 */
	if (ULONG_CMP_GE(rdp->rsp->gp_start + 2, jiffies))
		return 0;  /* Grace period is not old enough. */
	barrier();
	if (cpu_is_offline(rdp->cpu)) {
964
		trace_rcu_fqs(rdp->rsp->name, rdp->gpnum, rdp->cpu, TPS("ofl"));
965 966 967
		rdp->offline_fqs++;
		return 1;
	}
968 969

	/*
970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988
	 * A CPU running for an extended time within the kernel can
	 * delay RCU grace periods.  When the CPU is in NO_HZ_FULL mode,
	 * even context-switching back and forth between a pair of
	 * in-kernel CPU-bound tasks cannot advance grace periods.
	 * So if the grace period is old enough, make the CPU pay attention.
	 * Note that the unsynchronized assignments to the per-CPU
	 * rcu_sched_qs_mask variable are safe.  Yes, setting of
	 * bits can be lost, but they will be set again on the next
	 * force-quiescent-state pass.  So lost bit sets do not result
	 * in incorrect behavior, merely in a grace period lasting
	 * a few jiffies longer than it might otherwise.  Because
	 * there are at most four threads involved, and because the
	 * updates are only once every few jiffies, the probability of
	 * lossage (and thus of slight grace-period extension) is
	 * quite low.
	 *
	 * Note that if the jiffies_till_sched_qs boot/sysfs parameter
	 * is set too high, we override with half of the RCU CPU stall
	 * warning delay.
989
	 */
990 991 992
	rcrmp = &per_cpu(rcu_sched_qs_mask, rdp->cpu);
	if (ULONG_CMP_GE(jiffies,
			 rdp->rsp->gp_start + jiffies_till_sched_qs) ||
993
	    ULONG_CMP_GE(jiffies, rdp->rsp->jiffies_resched)) {
994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006
		if (!(ACCESS_ONCE(*rcrmp) & rdp->rsp->flavor_mask)) {
			ACCESS_ONCE(rdp->cond_resched_completed) =
				ACCESS_ONCE(rdp->mynode->completed);
			smp_mb(); /* ->cond_resched_completed before *rcrmp. */
			ACCESS_ONCE(*rcrmp) =
				ACCESS_ONCE(*rcrmp) + rdp->rsp->flavor_mask;
			resched_cpu(rdp->cpu);  /* Force CPU into scheduler. */
			rdp->rsp->jiffies_resched += 5; /* Enable beating. */
		} else if (ULONG_CMP_GE(jiffies, rdp->rsp->jiffies_resched)) {
			/* Time to beat on that CPU again! */
			resched_cpu(rdp->cpu);  /* Force CPU into scheduler. */
			rdp->rsp->jiffies_resched += 5; /* Re-enable beating. */
		}
1007 1008
	}

1009
	return 0;
1010 1011 1012 1013
}

static void record_gp_stall_check_time(struct rcu_state *rsp)
{
1014
	unsigned long j = jiffies;
1015
	unsigned long j1;
1016 1017 1018

	rsp->gp_start = j;
	smp_wmb(); /* Record start time before stall time. */
1019
	j1 = rcu_jiffies_till_stall_check();
1020
	ACCESS_ONCE(rsp->jiffies_stall) = j + j1;
1021
	rsp->jiffies_resched = j + j1 / 2;
1022 1023
}

1024
/*
1025
 * Dump stacks of all tasks running on stalled CPUs.
1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043
 */
static void rcu_dump_cpu_stacks(struct rcu_state *rsp)
{
	int cpu;
	unsigned long flags;
	struct rcu_node *rnp;

	rcu_for_each_leaf_node(rsp, rnp) {
		raw_spin_lock_irqsave(&rnp->lock, flags);
		if (rnp->qsmask != 0) {
			for (cpu = 0; cpu <= rnp->grphi - rnp->grplo; cpu++)
				if (rnp->qsmask & (1UL << cpu))
					dump_cpu_task(rnp->grplo + cpu);
		}
		raw_spin_unlock_irqrestore(&rnp->lock, flags);
	}
}

1044 1045 1046 1047 1048
static void print_other_cpu_stall(struct rcu_state *rsp)
{
	int cpu;
	long delta;
	unsigned long flags;
1049
	int ndetected = 0;
1050
	struct rcu_node *rnp = rcu_get_root(rsp);
1051
	long totqlen = 0;
1052 1053 1054

	/* Only let one CPU complain about others per time interval. */

P
Paul E. McKenney 已提交
1055
	raw_spin_lock_irqsave(&rnp->lock, flags);
1056
	delta = jiffies - ACCESS_ONCE(rsp->jiffies_stall);
1057
	if (delta < RCU_STALL_RAT_DELAY || !rcu_gp_in_progress(rsp)) {
P
Paul E. McKenney 已提交
1058
		raw_spin_unlock_irqrestore(&rnp->lock, flags);
1059 1060
		return;
	}
1061
	ACCESS_ONCE(rsp->jiffies_stall) = jiffies + 3 * rcu_jiffies_till_stall_check() + 3;
P
Paul E. McKenney 已提交
1062
	raw_spin_unlock_irqrestore(&rnp->lock, flags);
1063

1064 1065 1066 1067 1068
	/*
	 * OK, time to rat on our buddy...
	 * See Documentation/RCU/stallwarn.txt for info on how to debug
	 * RCU CPU stall warnings.
	 */
1069
	pr_err("INFO: %s detected stalls on CPUs/tasks:",
1070
	       rsp->name);
1071
	print_cpu_stall_info_begin();
1072
	rcu_for_each_leaf_node(rsp, rnp) {
1073
		raw_spin_lock_irqsave(&rnp->lock, flags);
1074
		ndetected += rcu_print_task_stall(rnp);
1075 1076 1077 1078 1079 1080 1081 1082
		if (rnp->qsmask != 0) {
			for (cpu = 0; cpu <= rnp->grphi - rnp->grplo; cpu++)
				if (rnp->qsmask & (1UL << cpu)) {
					print_cpu_stall_info(rsp,
							     rnp->grplo + cpu);
					ndetected++;
				}
		}
1083
		raw_spin_unlock_irqrestore(&rnp->lock, flags);
1084
	}
1085 1086 1087 1088 1089 1090 1091

	/*
	 * Now rat on any tasks that got kicked up to the root rcu_node
	 * due to CPU offlining.
	 */
	rnp = rcu_get_root(rsp);
	raw_spin_lock_irqsave(&rnp->lock, flags);
1092
	ndetected += rcu_print_task_stall(rnp);
1093 1094 1095
	raw_spin_unlock_irqrestore(&rnp->lock, flags);

	print_cpu_stall_info_end();
1096 1097
	for_each_possible_cpu(cpu)
		totqlen += per_cpu_ptr(rsp->rda, cpu)->qlen;
1098
	pr_cont("(detected by %d, t=%ld jiffies, g=%ld, c=%ld, q=%lu)\n",
1099
	       smp_processor_id(), (long)(jiffies - rsp->gp_start),
1100
	       (long)rsp->gpnum, (long)rsp->completed, totqlen);
1101
	if (ndetected == 0)
1102
		pr_err("INFO: Stall ended before state dump start\n");
1103
	else
1104
		rcu_dump_cpu_stacks(rsp);
1105

1106
	/* Complain about tasks blocking the grace period. */
1107 1108 1109

	rcu_print_detail_task_stall(rsp);

1110
	force_quiescent_state(rsp);  /* Kick them all. */
1111 1112 1113 1114
}

static void print_cpu_stall(struct rcu_state *rsp)
{
1115
	int cpu;
1116 1117
	unsigned long flags;
	struct rcu_node *rnp = rcu_get_root(rsp);
1118
	long totqlen = 0;
1119

1120 1121 1122 1123 1124
	/*
	 * OK, time to rat on ourselves...
	 * See Documentation/RCU/stallwarn.txt for info on how to debug
	 * RCU CPU stall warnings.
	 */
1125
	pr_err("INFO: %s self-detected stall on CPU", rsp->name);
1126 1127 1128
	print_cpu_stall_info_begin();
	print_cpu_stall_info(rsp, smp_processor_id());
	print_cpu_stall_info_end();
1129 1130
	for_each_possible_cpu(cpu)
		totqlen += per_cpu_ptr(rsp->rda, cpu)->qlen;
1131 1132 1133
	pr_cont(" (t=%lu jiffies g=%ld c=%ld q=%lu)\n",
		jiffies - rsp->gp_start,
		(long)rsp->gpnum, (long)rsp->completed, totqlen);
1134
	rcu_dump_cpu_stacks(rsp);
1135

P
Paul E. McKenney 已提交
1136
	raw_spin_lock_irqsave(&rnp->lock, flags);
1137 1138
	if (ULONG_CMP_GE(jiffies, ACCESS_ONCE(rsp->jiffies_stall)))
		ACCESS_ONCE(rsp->jiffies_stall) = jiffies +
1139
				     3 * rcu_jiffies_till_stall_check() + 3;
P
Paul E. McKenney 已提交
1140
	raw_spin_unlock_irqrestore(&rnp->lock, flags);
1141

1142 1143 1144 1145 1146 1147 1148 1149
	/*
	 * Attempt to revive the RCU machinery by forcing a context switch.
	 *
	 * A context switch would normally allow the RCU state machine to make
	 * progress and it could be we're stuck in kernel space without context
	 * switches for an entirely unreasonable amount of time.
	 */
	resched_cpu(smp_processor_id());
1150 1151 1152 1153
}

static void check_cpu_stall(struct rcu_state *rsp, struct rcu_data *rdp)
{
1154 1155 1156
	unsigned long completed;
	unsigned long gpnum;
	unsigned long gps;
1157 1158
	unsigned long j;
	unsigned long js;
1159 1160
	struct rcu_node *rnp;

1161
	if (rcu_cpu_stall_suppress || !rcu_gp_in_progress(rsp))
1162
		return;
1163
	j = jiffies;
1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183

	/*
	 * Lots of memory barriers to reject false positives.
	 *
	 * The idea is to pick up rsp->gpnum, then rsp->jiffies_stall,
	 * then rsp->gp_start, and finally rsp->completed.  These values
	 * are updated in the opposite order with memory barriers (or
	 * equivalent) during grace-period initialization and cleanup.
	 * Now, a false positive can occur if we get an new value of
	 * rsp->gp_start and a old value of rsp->jiffies_stall.  But given
	 * the memory barriers, the only way that this can happen is if one
	 * grace period ends and another starts between these two fetches.
	 * Detect this by comparing rsp->completed with the previous fetch
	 * from rsp->gpnum.
	 *
	 * Given this check, comparisons of jiffies, rsp->jiffies_stall,
	 * and rsp->gp_start suffice to forestall false positives.
	 */
	gpnum = ACCESS_ONCE(rsp->gpnum);
	smp_rmb(); /* Pick up ->gpnum first... */
1184
	js = ACCESS_ONCE(rsp->jiffies_stall);
1185 1186 1187 1188 1189 1190 1191 1192
	smp_rmb(); /* ...then ->jiffies_stall before the rest... */
	gps = ACCESS_ONCE(rsp->gp_start);
	smp_rmb(); /* ...and finally ->gp_start before ->completed. */
	completed = ACCESS_ONCE(rsp->completed);
	if (ULONG_CMP_GE(completed, gpnum) ||
	    ULONG_CMP_LT(j, js) ||
	    ULONG_CMP_GE(gps, js))
		return; /* No stall or GP completed since entering function. */
1193
	rnp = rdp->mynode;
1194
	if (rcu_gp_in_progress(rsp) &&
1195
	    (ACCESS_ONCE(rnp->qsmask) & rdp->grpmask)) {
1196 1197 1198 1199

		/* We haven't checked in, so go dump stack. */
		print_cpu_stall(rsp);

1200 1201
	} else if (rcu_gp_in_progress(rsp) &&
		   ULONG_CMP_GE(j, js + RCU_STALL_RAT_DELAY)) {
1202

1203
		/* They had a few time units to dump stack, so complain. */
1204 1205 1206 1207
		print_other_cpu_stall(rsp);
	}
}

1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218
/**
 * rcu_cpu_stall_reset - prevent further stall warnings in current grace period
 *
 * Set the stall-warning timeout way off into the future, thus preventing
 * any RCU CPU stall-warning messages from appearing in the current set of
 * RCU grace periods.
 *
 * The caller must disable hard irqs.
 */
void rcu_cpu_stall_reset(void)
{
1219 1220 1221
	struct rcu_state *rsp;

	for_each_rcu_flavor(rsp)
1222
		ACCESS_ONCE(rsp->jiffies_stall) = jiffies + ULONG_MAX / 2;
1223 1224
}

1225 1226 1227 1228 1229 1230 1231
/*
 * Initialize the specified rcu_data structure's callback list to empty.
 */
static void init_callback_list(struct rcu_data *rdp)
{
	int i;

1232 1233
	if (init_nocb_callback_list(rdp))
		return;
1234 1235 1236 1237 1238
	rdp->nxtlist = NULL;
	for (i = 0; i < RCU_NEXT_SIZE; i++)
		rdp->nxttail[i] = &rdp->nxtlist;
}

1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267
/*
 * Determine the value that ->completed will have at the end of the
 * next subsequent grace period.  This is used to tag callbacks so that
 * a CPU can invoke callbacks in a timely fashion even if that CPU has
 * been dyntick-idle for an extended period with callbacks under the
 * influence of RCU_FAST_NO_HZ.
 *
 * The caller must hold rnp->lock with interrupts disabled.
 */
static unsigned long rcu_cbs_completed(struct rcu_state *rsp,
				       struct rcu_node *rnp)
{
	/*
	 * If RCU is idle, we just wait for the next grace period.
	 * But we can only be sure that RCU is idle if we are looking
	 * at the root rcu_node structure -- otherwise, a new grace
	 * period might have started, but just not yet gotten around
	 * to initializing the current non-root rcu_node structure.
	 */
	if (rcu_get_root(rsp) == rnp && rnp->gpnum == rnp->completed)
		return rnp->completed + 1;

	/*
	 * Otherwise, wait for a possible partial grace period and
	 * then the subsequent full grace period.
	 */
	return rnp->completed + 2;
}

1268 1269 1270 1271 1272
/*
 * Trace-event helper function for rcu_start_future_gp() and
 * rcu_nocb_wait_gp().
 */
static void trace_rcu_future_gp(struct rcu_node *rnp, struct rcu_data *rdp,
1273
				unsigned long c, const char *s)
1274 1275 1276 1277 1278 1279 1280 1281 1282
{
	trace_rcu_future_grace_period(rdp->rsp->name, rnp->gpnum,
				      rnp->completed, c, rnp->level,
				      rnp->grplo, rnp->grphi, s);
}

/*
 * Start some future grace period, as needed to handle newly arrived
 * callbacks.  The required future grace periods are recorded in each
1283 1284
 * rcu_node structure's ->need_future_gp field.  Returns true if there
 * is reason to awaken the grace-period kthread.
1285 1286 1287
 *
 * The caller must hold the specified rcu_node structure's ->lock.
 */
1288 1289 1290
static bool __maybe_unused
rcu_start_future_gp(struct rcu_node *rnp, struct rcu_data *rdp,
		    unsigned long *c_out)
1291 1292 1293
{
	unsigned long c;
	int i;
1294
	bool ret = false;
1295 1296 1297 1298 1299 1300 1301
	struct rcu_node *rnp_root = rcu_get_root(rdp->rsp);

	/*
	 * Pick up grace-period number for new callbacks.  If this
	 * grace period is already marked as needed, return to the caller.
	 */
	c = rcu_cbs_completed(rdp->rsp, rnp);
1302
	trace_rcu_future_gp(rnp, rdp, c, TPS("Startleaf"));
1303
	if (rnp->need_future_gp[c & 0x1]) {
1304
		trace_rcu_future_gp(rnp, rdp, c, TPS("Prestartleaf"));
1305
		goto out;
1306 1307 1308 1309 1310 1311 1312
	}

	/*
	 * If either this rcu_node structure or the root rcu_node structure
	 * believe that a grace period is in progress, then we must wait
	 * for the one following, which is in "c".  Because our request
	 * will be noticed at the end of the current grace period, we don't
1313 1314 1315 1316 1317 1318 1319
	 * need to explicitly start one.  We only do the lockless check
	 * of rnp_root's fields if the current rcu_node structure thinks
	 * there is no grace period in flight, and because we hold rnp->lock,
	 * the only possible change is when rnp_root's two fields are
	 * equal, in which case rnp_root->gpnum might be concurrently
	 * incremented.  But that is OK, as it will just result in our
	 * doing some extra useless work.
1320 1321
	 */
	if (rnp->gpnum != rnp->completed ||
1322
	    ACCESS_ONCE(rnp_root->gpnum) != ACCESS_ONCE(rnp_root->completed)) {
1323
		rnp->need_future_gp[c & 0x1]++;
1324
		trace_rcu_future_gp(rnp, rdp, c, TPS("Startedleaf"));
1325
		goto out;
1326 1327 1328 1329 1330 1331 1332
	}

	/*
	 * There might be no grace period in progress.  If we don't already
	 * hold it, acquire the root rcu_node structure's lock in order to
	 * start one (if needed).
	 */
1333
	if (rnp != rnp_root) {
1334
		raw_spin_lock(&rnp_root->lock);
1335 1336
		smp_mb__after_unlock_lock();
	}
1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353

	/*
	 * Get a new grace-period number.  If there really is no grace
	 * period in progress, it will be smaller than the one we obtained
	 * earlier.  Adjust callbacks as needed.  Note that even no-CBs
	 * CPUs have a ->nxtcompleted[] array, so no no-CBs checks needed.
	 */
	c = rcu_cbs_completed(rdp->rsp, rnp_root);
	for (i = RCU_DONE_TAIL; i < RCU_NEXT_TAIL; i++)
		if (ULONG_CMP_LT(c, rdp->nxtcompleted[i]))
			rdp->nxtcompleted[i] = c;

	/*
	 * If the needed for the required grace period is already
	 * recorded, trace and leave.
	 */
	if (rnp_root->need_future_gp[c & 0x1]) {
1354
		trace_rcu_future_gp(rnp, rdp, c, TPS("Prestartedroot"));
1355 1356 1357 1358 1359 1360 1361 1362
		goto unlock_out;
	}

	/* Record the need for the future grace period. */
	rnp_root->need_future_gp[c & 0x1]++;

	/* If a grace period is not already in progress, start one. */
	if (rnp_root->gpnum != rnp_root->completed) {
1363
		trace_rcu_future_gp(rnp, rdp, c, TPS("Startedleafroot"));
1364
	} else {
1365
		trace_rcu_future_gp(rnp, rdp, c, TPS("Startedroot"));
1366
		ret = rcu_start_gp_advanced(rdp->rsp, rnp_root, rdp);
1367 1368 1369 1370
	}
unlock_out:
	if (rnp != rnp_root)
		raw_spin_unlock(&rnp_root->lock);
1371 1372 1373 1374
out:
	if (c_out != NULL)
		*c_out = c;
	return ret;
1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391
}

/*
 * Clean up any old requests for the just-ended grace period.  Also return
 * whether any additional grace periods have been requested.  Also invoke
 * rcu_nocb_gp_cleanup() in order to wake up any no-callbacks kthreads
 * waiting for this grace period to complete.
 */
static int rcu_future_gp_cleanup(struct rcu_state *rsp, struct rcu_node *rnp)
{
	int c = rnp->completed;
	int needmore;
	struct rcu_data *rdp = this_cpu_ptr(rsp->rda);

	rcu_nocb_gp_cleanup(rsp, rnp);
	rnp->need_future_gp[c & 0x1] = 0;
	needmore = rnp->need_future_gp[(c + 1) & 0x1];
1392 1393
	trace_rcu_future_gp(rnp, rdp, c,
			    needmore ? TPS("CleanupMore") : TPS("Cleanup"));
1394 1395 1396
	return needmore;
}

1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412
/*
 * Awaken the grace-period kthread for the specified flavor of RCU.
 * Don't do a self-awaken, and don't bother awakening when there is
 * nothing for the grace-period kthread to do (as in several CPUs
 * raced to awaken, and we lost), and finally don't try to awaken
 * a kthread that has not yet been created.
 */
static void rcu_gp_kthread_wake(struct rcu_state *rsp)
{
	if (current == rsp->gp_kthread ||
	    !ACCESS_ONCE(rsp->gp_flags) ||
	    !rsp->gp_kthread)
		return;
	wake_up(&rsp->gp_wq);
}

1413 1414 1415 1416 1417 1418 1419
/*
 * If there is room, assign a ->completed number to any callbacks on
 * this CPU that have not already been assigned.  Also accelerate any
 * callbacks that were previously assigned a ->completed number that has
 * since proven to be too conservative, which can happen if callbacks get
 * assigned a ->completed number while RCU is idle, but with reference to
 * a non-root rcu_node structure.  This function is idempotent, so it does
1420 1421
 * not hurt to call it repeatedly.  Returns an flag saying that we should
 * awaken the RCU grace-period kthread.
1422 1423 1424
 *
 * The caller must hold rnp->lock with interrupts disabled.
 */
1425
static bool rcu_accelerate_cbs(struct rcu_state *rsp, struct rcu_node *rnp,
1426 1427 1428 1429
			       struct rcu_data *rdp)
{
	unsigned long c;
	int i;
1430
	bool ret;
1431 1432 1433

	/* If the CPU has no callbacks, nothing to do. */
	if (!rdp->nxttail[RCU_NEXT_TAIL] || !*rdp->nxttail[RCU_DONE_TAIL])
1434
		return false;
1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462

	/*
	 * Starting from the sublist containing the callbacks most
	 * recently assigned a ->completed number and working down, find the
	 * first sublist that is not assignable to an upcoming grace period.
	 * Such a sublist has something in it (first two tests) and has
	 * a ->completed number assigned that will complete sooner than
	 * the ->completed number for newly arrived callbacks (last test).
	 *
	 * The key point is that any later sublist can be assigned the
	 * same ->completed number as the newly arrived callbacks, which
	 * means that the callbacks in any of these later sublist can be
	 * grouped into a single sublist, whether or not they have already
	 * been assigned a ->completed number.
	 */
	c = rcu_cbs_completed(rsp, rnp);
	for (i = RCU_NEXT_TAIL - 1; i > RCU_DONE_TAIL; i--)
		if (rdp->nxttail[i] != rdp->nxttail[i - 1] &&
		    !ULONG_CMP_GE(rdp->nxtcompleted[i], c))
			break;

	/*
	 * If there are no sublist for unassigned callbacks, leave.
	 * At the same time, advance "i" one sublist, so that "i" will
	 * index into the sublist where all the remaining callbacks should
	 * be grouped into.
	 */
	if (++i >= RCU_NEXT_TAIL)
1463
		return false;
1464 1465 1466 1467 1468 1469 1470 1471 1472 1473

	/*
	 * Assign all subsequent callbacks' ->completed number to the next
	 * full grace period and group them all in the sublist initially
	 * indexed by "i".
	 */
	for (; i <= RCU_NEXT_TAIL; i++) {
		rdp->nxttail[i] = rdp->nxttail[RCU_NEXT_TAIL];
		rdp->nxtcompleted[i] = c;
	}
1474
	/* Record any needed additional grace periods. */
1475
	ret = rcu_start_future_gp(rnp, rdp, NULL);
1476 1477 1478

	/* Trace depending on how much we were able to accelerate. */
	if (!*rdp->nxttail[RCU_WAIT_TAIL])
1479
		trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("AccWaitCB"));
1480
	else
1481
		trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("AccReadyCB"));
1482
	return ret;
1483 1484 1485 1486 1487 1488 1489 1490
}

/*
 * Move any callbacks whose grace period has completed to the
 * RCU_DONE_TAIL sublist, then compact the remaining sublists and
 * assign ->completed numbers to any callbacks in the RCU_NEXT_TAIL
 * sublist.  This function is idempotent, so it does not hurt to
 * invoke it repeatedly.  As long as it is not invoked -too- often...
1491
 * Returns true if the RCU grace-period kthread needs to be awakened.
1492 1493 1494
 *
 * The caller must hold rnp->lock with interrupts disabled.
 */
1495
static bool rcu_advance_cbs(struct rcu_state *rsp, struct rcu_node *rnp,
1496 1497 1498 1499 1500 1501
			    struct rcu_data *rdp)
{
	int i, j;

	/* If the CPU has no callbacks, nothing to do. */
	if (!rdp->nxttail[RCU_NEXT_TAIL] || !*rdp->nxttail[RCU_DONE_TAIL])
1502
		return false;
1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525

	/*
	 * Find all callbacks whose ->completed numbers indicate that they
	 * are ready to invoke, and put them into the RCU_DONE_TAIL sublist.
	 */
	for (i = RCU_WAIT_TAIL; i < RCU_NEXT_TAIL; i++) {
		if (ULONG_CMP_LT(rnp->completed, rdp->nxtcompleted[i]))
			break;
		rdp->nxttail[RCU_DONE_TAIL] = rdp->nxttail[i];
	}
	/* Clean up any sublist tail pointers that were misordered above. */
	for (j = RCU_WAIT_TAIL; j < i; j++)
		rdp->nxttail[j] = rdp->nxttail[RCU_DONE_TAIL];

	/* Copy down callbacks to fill in empty sublists. */
	for (j = RCU_WAIT_TAIL; i < RCU_NEXT_TAIL; i++, j++) {
		if (rdp->nxttail[j] == rdp->nxttail[RCU_NEXT_TAIL])
			break;
		rdp->nxttail[j] = rdp->nxttail[i];
		rdp->nxtcompleted[j] = rdp->nxtcompleted[i];
	}

	/* Classify any remaining callbacks. */
1526
	return rcu_accelerate_cbs(rsp, rnp, rdp);
1527 1528
}

1529
/*
1530 1531 1532
 * Update CPU-local rcu_data state to record the beginnings and ends of
 * grace periods.  The caller must hold the ->lock of the leaf rcu_node
 * structure corresponding to the current CPU, and must have irqs disabled.
1533
 * Returns true if the grace-period kthread needs to be awakened.
1534
 */
1535 1536
static bool __note_gp_changes(struct rcu_state *rsp, struct rcu_node *rnp,
			      struct rcu_data *rdp)
1537
{
1538 1539
	bool ret;

1540
	/* Handle the ends of any preceding grace periods first. */
1541
	if (rdp->completed == rnp->completed) {
1542

1543
		/* No grace period end, so just accelerate recent callbacks. */
1544
		ret = rcu_accelerate_cbs(rsp, rnp, rdp);
1545

1546 1547 1548
	} else {

		/* Advance callbacks. */
1549
		ret = rcu_advance_cbs(rsp, rnp, rdp);
1550 1551 1552

		/* Remember that we saw this grace-period completion. */
		rdp->completed = rnp->completed;
1553
		trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("cpuend"));
1554
	}
1555

1556 1557 1558 1559 1560 1561 1562
	if (rdp->gpnum != rnp->gpnum) {
		/*
		 * If the current grace period is waiting for this CPU,
		 * set up to detect a quiescent state, otherwise don't
		 * go looking for one.
		 */
		rdp->gpnum = rnp->gpnum;
1563
		trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("cpustart"));
1564 1565 1566 1567
		rdp->passed_quiesce = 0;
		rdp->qs_pending = !!(rnp->qsmask & rdp->grpmask);
		zero_cpu_stall_ticks(rdp);
	}
1568
	return ret;
1569 1570
}

1571
static void note_gp_changes(struct rcu_state *rsp, struct rcu_data *rdp)
1572 1573
{
	unsigned long flags;
1574
	bool needwake;
1575 1576 1577 1578
	struct rcu_node *rnp;

	local_irq_save(flags);
	rnp = rdp->mynode;
1579 1580
	if ((rdp->gpnum == ACCESS_ONCE(rnp->gpnum) &&
	     rdp->completed == ACCESS_ONCE(rnp->completed)) || /* w/out lock. */
1581 1582 1583 1584
	    !raw_spin_trylock(&rnp->lock)) { /* irqs already off, so later. */
		local_irq_restore(flags);
		return;
	}
1585
	smp_mb__after_unlock_lock();
1586
	needwake = __note_gp_changes(rsp, rnp, rdp);
1587
	raw_spin_unlock_irqrestore(&rnp->lock, flags);
1588 1589
	if (needwake)
		rcu_gp_kthread_wake(rsp);
1590 1591
}

1592
/*
1593
 * Initialize a new grace period.  Return 0 if no grace period required.
1594
 */
1595
static int rcu_gp_init(struct rcu_state *rsp)
1596 1597
{
	struct rcu_data *rdp;
1598
	struct rcu_node *rnp = rcu_get_root(rsp);
1599

1600
	rcu_bind_gp_kthread();
1601
	raw_spin_lock_irq(&rnp->lock);
1602
	smp_mb__after_unlock_lock();
1603
	if (!ACCESS_ONCE(rsp->gp_flags)) {
1604 1605 1606 1607
		/* Spurious wakeup, tell caller to go back to sleep.  */
		raw_spin_unlock_irq(&rnp->lock);
		return 0;
	}
1608
	ACCESS_ONCE(rsp->gp_flags) = 0; /* Clear all flags: New grace period. */
1609

1610 1611 1612 1613 1614
	if (WARN_ON_ONCE(rcu_gp_in_progress(rsp))) {
		/*
		 * Grace period already in progress, don't start another.
		 * Not supposed to be able to happen.
		 */
1615 1616 1617 1618 1619
		raw_spin_unlock_irq(&rnp->lock);
		return 0;
	}

	/* Advance to a new grace period and initialize state. */
1620
	record_gp_stall_check_time(rsp);
1621 1622
	/* Record GP times before starting GP, hence smp_store_release(). */
	smp_store_release(&rsp->gpnum, rsp->gpnum + 1);
1623
	trace_rcu_grace_period(rsp->name, rsp->gpnum, TPS("start"));
1624 1625 1626
	raw_spin_unlock_irq(&rnp->lock);

	/* Exclude any concurrent CPU-hotplug operations. */
1627
	mutex_lock(&rsp->onoff_mutex);
1628
	smp_mb__after_unlock_lock(); /* ->gpnum increment before GP! */
1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643

	/*
	 * Set the quiescent-state-needed bits in all the rcu_node
	 * structures for all currently online CPUs in breadth-first order,
	 * starting from the root rcu_node structure, relying on the layout
	 * of the tree within the rsp->node[] array.  Note that other CPUs
	 * will access only the leaves of the hierarchy, thus seeing that no
	 * grace period is in progress, at least until the corresponding
	 * leaf node has been initialized.  In addition, we have excluded
	 * CPU-hotplug operations.
	 *
	 * The grace period cannot complete until the initialization
	 * process finishes, because this kthread handles both.
	 */
	rcu_for_each_node_breadth_first(rsp, rnp) {
1644
		raw_spin_lock_irq(&rnp->lock);
1645
		smp_mb__after_unlock_lock();
1646
		rdp = this_cpu_ptr(rsp->rda);
1647 1648
		rcu_preempt_check_blocked_tasks(rnp);
		rnp->qsmask = rnp->qsmaskinit;
1649
		ACCESS_ONCE(rnp->gpnum) = rsp->gpnum;
1650
		WARN_ON_ONCE(rnp->completed != rsp->completed);
1651
		ACCESS_ONCE(rnp->completed) = rsp->completed;
1652
		if (rnp == rdp->mynode)
1653
			(void)__note_gp_changes(rsp, rnp, rdp);
1654 1655 1656 1657 1658 1659 1660
		rcu_preempt_boost_start_gp(rnp);
		trace_rcu_grace_period_init(rsp->name, rnp->gpnum,
					    rnp->level, rnp->grplo,
					    rnp->grphi, rnp->qsmask);
		raw_spin_unlock_irq(&rnp->lock);
		cond_resched();
	}
1661

1662
	mutex_unlock(&rsp->onoff_mutex);
1663 1664
	return 1;
}
1665

1666 1667 1668
/*
 * Do one round of quiescent-state forcing.
 */
1669
static int rcu_gp_fqs(struct rcu_state *rsp, int fqs_state_in)
1670 1671
{
	int fqs_state = fqs_state_in;
1672 1673
	bool isidle = false;
	unsigned long maxj;
1674 1675 1676 1677 1678
	struct rcu_node *rnp = rcu_get_root(rsp);

	rsp->n_force_qs++;
	if (fqs_state == RCU_SAVE_DYNTICK) {
		/* Collect dyntick-idle snapshots. */
1679
		if (is_sysidle_rcu_state(rsp)) {
1680
			isidle = true;
1681 1682
			maxj = jiffies - ULONG_MAX / 4;
		}
1683 1684
		force_qs_rnp(rsp, dyntick_save_progress_counter,
			     &isidle, &maxj);
1685
		rcu_sysidle_report_gp(rsp, isidle, maxj);
1686 1687 1688
		fqs_state = RCU_FORCE_QS;
	} else {
		/* Handle dyntick-idle and offline CPUs. */
1689
		isidle = false;
1690
		force_qs_rnp(rsp, rcu_implicit_dynticks_qs, &isidle, &maxj);
1691 1692 1693 1694
	}
	/* Clear flag to prevent immediate re-entry. */
	if (ACCESS_ONCE(rsp->gp_flags) & RCU_GP_FLAG_FQS) {
		raw_spin_lock_irq(&rnp->lock);
1695
		smp_mb__after_unlock_lock();
1696 1697
		ACCESS_ONCE(rsp->gp_flags) =
			ACCESS_ONCE(rsp->gp_flags) & ~RCU_GP_FLAG_FQS;
1698 1699 1700 1701 1702
		raw_spin_unlock_irq(&rnp->lock);
	}
	return fqs_state;
}

1703 1704 1705
/*
 * Clean up after the old grace period.
 */
1706
static void rcu_gp_cleanup(struct rcu_state *rsp)
1707 1708
{
	unsigned long gp_duration;
1709
	bool needgp = false;
1710
	int nocb = 0;
1711 1712
	struct rcu_data *rdp;
	struct rcu_node *rnp = rcu_get_root(rsp);
1713

1714
	raw_spin_lock_irq(&rnp->lock);
1715
	smp_mb__after_unlock_lock();
1716 1717 1718
	gp_duration = jiffies - rsp->gp_start;
	if (gp_duration > rsp->gp_max)
		rsp->gp_max = gp_duration;
1719

1720 1721 1722 1723 1724 1725 1726 1727
	/*
	 * We know the grace period is complete, but to everyone else
	 * it appears to still be ongoing.  But it is also the case
	 * that to everyone else it looks like there is nothing that
	 * they can do to advance the grace period.  It is therefore
	 * safe for us to drop the lock in order to mark the grace
	 * period as completed in all of the rcu_node structures.
	 */
1728
	raw_spin_unlock_irq(&rnp->lock);
1729

1730 1731 1732 1733 1734 1735 1736 1737 1738 1739
	/*
	 * Propagate new ->completed value to rcu_node structures so
	 * that other CPUs don't have to wait until the start of the next
	 * grace period to process their callbacks.  This also avoids
	 * some nasty RCU grace-period initialization races by forcing
	 * the end of the current grace period to be completely recorded in
	 * all of the rcu_node structures before the beginning of the next
	 * grace period is recorded in any of the rcu_node structures.
	 */
	rcu_for_each_node_breadth_first(rsp, rnp) {
1740
		raw_spin_lock_irq(&rnp->lock);
1741
		smp_mb__after_unlock_lock();
1742
		ACCESS_ONCE(rnp->completed) = rsp->gpnum;
1743 1744
		rdp = this_cpu_ptr(rsp->rda);
		if (rnp == rdp->mynode)
1745
			needgp = __note_gp_changes(rsp, rnp, rdp) || needgp;
1746
		/* smp_mb() provided by prior unlock-lock pair. */
1747
		nocb += rcu_future_gp_cleanup(rsp, rnp);
1748 1749
		raw_spin_unlock_irq(&rnp->lock);
		cond_resched();
1750
	}
1751 1752
	rnp = rcu_get_root(rsp);
	raw_spin_lock_irq(&rnp->lock);
1753
	smp_mb__after_unlock_lock(); /* Order GP before ->completed update. */
1754
	rcu_nocb_gp_set(rnp, nocb);
1755

1756 1757
	/* Declare grace period done. */
	ACCESS_ONCE(rsp->completed) = rsp->gpnum;
1758
	trace_rcu_grace_period(rsp->name, rsp->completed, TPS("end"));
1759
	rsp->fqs_state = RCU_GP_IDLE;
1760
	rdp = this_cpu_ptr(rsp->rda);
1761 1762 1763
	/* Advance CBs to reduce false positives below. */
	needgp = rcu_advance_cbs(rsp, rnp, rdp) || needgp;
	if (needgp || cpu_needs_another_gp(rsp, rdp)) {
1764
		ACCESS_ONCE(rsp->gp_flags) = RCU_GP_FLAG_INIT;
1765 1766 1767 1768
		trace_rcu_grace_period(rsp->name,
				       ACCESS_ONCE(rsp->gpnum),
				       TPS("newreq"));
	}
1769 1770 1771 1772 1773 1774 1775 1776
	raw_spin_unlock_irq(&rnp->lock);
}

/*
 * Body of kthread that handles grace periods.
 */
static int __noreturn rcu_gp_kthread(void *arg)
{
1777
	int fqs_state;
1778
	int gf;
1779
	unsigned long j;
1780
	int ret;
1781 1782 1783 1784 1785 1786 1787
	struct rcu_state *rsp = arg;
	struct rcu_node *rnp = rcu_get_root(rsp);

	for (;;) {

		/* Handle grace-period start. */
		for (;;) {
1788 1789 1790
			trace_rcu_grace_period(rsp->name,
					       ACCESS_ONCE(rsp->gpnum),
					       TPS("reqwait"));
1791
			rsp->gp_state = RCU_GP_WAIT_GPS;
1792
			wait_event_interruptible(rsp->gp_wq,
1793
						 ACCESS_ONCE(rsp->gp_flags) &
1794
						 RCU_GP_FLAG_INIT);
1795
			/* Locking provides needed memory barrier. */
1796
			if (rcu_gp_init(rsp))
1797 1798 1799
				break;
			cond_resched();
			flush_signals(current);
1800 1801 1802
			trace_rcu_grace_period(rsp->name,
					       ACCESS_ONCE(rsp->gpnum),
					       TPS("reqwaitsig"));
1803
		}
1804

1805 1806
		/* Handle quiescent-state forcing. */
		fqs_state = RCU_SAVE_DYNTICK;
1807 1808 1809 1810 1811
		j = jiffies_till_first_fqs;
		if (j > HZ) {
			j = HZ;
			jiffies_till_first_fqs = HZ;
		}
1812
		ret = 0;
1813
		for (;;) {
1814 1815
			if (!ret)
				rsp->jiffies_force_qs = jiffies + j;
1816 1817 1818
			trace_rcu_grace_period(rsp->name,
					       ACCESS_ONCE(rsp->gpnum),
					       TPS("fqswait"));
1819
			rsp->gp_state = RCU_GP_WAIT_FQS;
1820
			ret = wait_event_interruptible_timeout(rsp->gp_wq,
1821 1822
					((gf = ACCESS_ONCE(rsp->gp_flags)) &
					 RCU_GP_FLAG_FQS) ||
1823 1824
					(!ACCESS_ONCE(rnp->qsmask) &&
					 !rcu_preempt_blocked_readers_cgp(rnp)),
1825
					j);
1826
			/* Locking provides needed memory barriers. */
1827
			/* If grace period done, leave loop. */
1828
			if (!ACCESS_ONCE(rnp->qsmask) &&
1829
			    !rcu_preempt_blocked_readers_cgp(rnp))
1830
				break;
1831
			/* If time for quiescent-state forcing, do it. */
1832 1833
			if (ULONG_CMP_GE(jiffies, rsp->jiffies_force_qs) ||
			    (gf & RCU_GP_FLAG_FQS)) {
1834 1835 1836
				trace_rcu_grace_period(rsp->name,
						       ACCESS_ONCE(rsp->gpnum),
						       TPS("fqsstart"));
1837
				fqs_state = rcu_gp_fqs(rsp, fqs_state);
1838 1839 1840
				trace_rcu_grace_period(rsp->name,
						       ACCESS_ONCE(rsp->gpnum),
						       TPS("fqsend"));
1841 1842 1843 1844 1845
				cond_resched();
			} else {
				/* Deal with stray signal. */
				cond_resched();
				flush_signals(current);
1846 1847 1848
				trace_rcu_grace_period(rsp->name,
						       ACCESS_ONCE(rsp->gpnum),
						       TPS("fqswaitsig"));
1849
			}
1850 1851 1852 1853 1854 1855 1856 1857
			j = jiffies_till_next_fqs;
			if (j > HZ) {
				j = HZ;
				jiffies_till_next_fqs = HZ;
			} else if (j < 1) {
				j = 1;
				jiffies_till_next_fqs = 1;
			}
1858
		}
1859 1860 1861

		/* Handle grace-period end. */
		rcu_gp_cleanup(rsp);
1862 1863 1864
	}
}

1865 1866 1867
/*
 * Start a new RCU grace period if warranted, re-initializing the hierarchy
 * in preparation for detecting the next grace period.  The caller must hold
1868
 * the root node's ->lock and hard irqs must be disabled.
1869 1870 1871 1872
 *
 * Note that it is legal for a dying CPU (which is marked as offline) to
 * invoke this function.  This can happen when the dying CPU reports its
 * quiescent state.
1873 1874
 *
 * Returns true if the grace-period kthread must be awakened.
1875
 */
1876
static bool
1877 1878
rcu_start_gp_advanced(struct rcu_state *rsp, struct rcu_node *rnp,
		      struct rcu_data *rdp)
1879
{
1880
	if (!rsp->gp_kthread || !cpu_needs_another_gp(rsp, rdp)) {
1881
		/*
1882
		 * Either we have not yet spawned the grace-period
1883 1884
		 * task, this CPU does not need another grace period,
		 * or a grace period is already in progress.
1885
		 * Either way, don't start a new grace period.
1886
		 */
1887
		return false;
1888
	}
1889
	ACCESS_ONCE(rsp->gp_flags) = RCU_GP_FLAG_INIT;
1890 1891
	trace_rcu_grace_period(rsp->name, ACCESS_ONCE(rsp->gpnum),
			       TPS("newreq"));
1892

1893 1894
	/*
	 * We can't do wakeups while holding the rnp->lock, as that
1895
	 * could cause possible deadlocks with the rq->lock. Defer
1896
	 * the wakeup to our caller.
1897
	 */
1898
	return true;
1899 1900
}

1901 1902 1903 1904 1905 1906
/*
 * Similar to rcu_start_gp_advanced(), but also advance the calling CPU's
 * callbacks.  Note that rcu_start_gp_advanced() cannot do this because it
 * is invoked indirectly from rcu_advance_cbs(), which would result in
 * endless recursion -- or would do so if it wasn't for the self-deadlock
 * that is encountered beforehand.
1907 1908
 *
 * Returns true if the grace-period kthread needs to be awakened.
1909
 */
1910
static bool rcu_start_gp(struct rcu_state *rsp)
1911 1912 1913
{
	struct rcu_data *rdp = this_cpu_ptr(rsp->rda);
	struct rcu_node *rnp = rcu_get_root(rsp);
1914
	bool ret = false;
1915 1916 1917 1918 1919 1920 1921 1922 1923

	/*
	 * If there is no grace period in progress right now, any
	 * callbacks we have up to this point will be satisfied by the
	 * next grace period.  Also, advancing the callbacks reduces the
	 * probability of false positives from cpu_needs_another_gp()
	 * resulting in pointless grace periods.  So, advance callbacks
	 * then start the grace period!
	 */
1924 1925 1926
	ret = rcu_advance_cbs(rsp, rnp, rdp) || ret;
	ret = rcu_start_gp_advanced(rsp, rnp, rdp) || ret;
	return ret;
1927 1928
}

1929
/*
P
Paul E. McKenney 已提交
1930 1931 1932
 * Report a full set of quiescent states to the specified rcu_state
 * data structure.  This involves cleaning up after the prior grace
 * period and letting rcu_start_gp() start up the next grace period
1933 1934
 * if one is needed.  Note that the caller must hold rnp->lock, which
 * is released before return.
1935
 */
P
Paul E. McKenney 已提交
1936
static void rcu_report_qs_rsp(struct rcu_state *rsp, unsigned long flags)
1937
	__releases(rcu_get_root(rsp)->lock)
1938
{
1939
	WARN_ON_ONCE(!rcu_gp_in_progress(rsp));
1940 1941
	raw_spin_unlock_irqrestore(&rcu_get_root(rsp)->lock, flags);
	wake_up(&rsp->gp_wq);  /* Memory barrier implied by wake_up() path. */
1942 1943
}

1944
/*
P
Paul E. McKenney 已提交
1945 1946 1947 1948 1949 1950
 * Similar to rcu_report_qs_rdp(), for which it is a helper function.
 * Allows quiescent states for a group of CPUs to be reported at one go
 * to the specified rcu_node structure, though all the CPUs in the group
 * must be represented by the same rcu_node structure (which need not be
 * a leaf rcu_node structure, though it often will be).  That structure's
 * lock must be held upon entry, and it is released before return.
1951 1952
 */
static void
P
Paul E. McKenney 已提交
1953 1954
rcu_report_qs_rnp(unsigned long mask, struct rcu_state *rsp,
		  struct rcu_node *rnp, unsigned long flags)
1955 1956
	__releases(rnp->lock)
{
1957 1958
	struct rcu_node *rnp_c;

1959 1960 1961 1962 1963
	/* Walk up the rcu_node hierarchy. */
	for (;;) {
		if (!(rnp->qsmask & mask)) {

			/* Our bit has already been cleared, so done. */
P
Paul E. McKenney 已提交
1964
			raw_spin_unlock_irqrestore(&rnp->lock, flags);
1965 1966 1967
			return;
		}
		rnp->qsmask &= ~mask;
1968 1969 1970 1971
		trace_rcu_quiescent_state_report(rsp->name, rnp->gpnum,
						 mask, rnp->qsmask, rnp->level,
						 rnp->grplo, rnp->grphi,
						 !!rnp->gp_tasks);
1972
		if (rnp->qsmask != 0 || rcu_preempt_blocked_readers_cgp(rnp)) {
1973 1974

			/* Other bits still set at this level, so done. */
P
Paul E. McKenney 已提交
1975
			raw_spin_unlock_irqrestore(&rnp->lock, flags);
1976 1977 1978 1979 1980 1981 1982 1983 1984
			return;
		}
		mask = rnp->grpmask;
		if (rnp->parent == NULL) {

			/* No more levels.  Exit loop holding root lock. */

			break;
		}
P
Paul E. McKenney 已提交
1985
		raw_spin_unlock_irqrestore(&rnp->lock, flags);
1986
		rnp_c = rnp;
1987
		rnp = rnp->parent;
P
Paul E. McKenney 已提交
1988
		raw_spin_lock_irqsave(&rnp->lock, flags);
1989
		smp_mb__after_unlock_lock();
1990
		WARN_ON_ONCE(rnp_c->qsmask);
1991 1992 1993 1994
	}

	/*
	 * Get here if we are the last CPU to pass through a quiescent
P
Paul E. McKenney 已提交
1995
	 * state for this grace period.  Invoke rcu_report_qs_rsp()
1996
	 * to clean up and start the next grace period if one is needed.
1997
	 */
P
Paul E. McKenney 已提交
1998
	rcu_report_qs_rsp(rsp, flags); /* releases rnp->lock. */
1999 2000 2001
}

/*
P
Paul E. McKenney 已提交
2002 2003 2004 2005 2006 2007 2008
 * Record a quiescent state for the specified CPU to that CPU's rcu_data
 * structure.  This must be either called from the specified CPU, or
 * called when the specified CPU is known to be offline (and when it is
 * also known that no other CPU is concurrently trying to help the offline
 * CPU).  The lastcomp argument is used to make sure we are still in the
 * grace period of interest.  We don't want to end the current grace period
 * based on quiescent states detected in an earlier grace period!
2009 2010
 */
static void
2011
rcu_report_qs_rdp(int cpu, struct rcu_state *rsp, struct rcu_data *rdp)
2012 2013 2014
{
	unsigned long flags;
	unsigned long mask;
2015
	bool needwake;
2016 2017 2018
	struct rcu_node *rnp;

	rnp = rdp->mynode;
P
Paul E. McKenney 已提交
2019
	raw_spin_lock_irqsave(&rnp->lock, flags);
2020
	smp_mb__after_unlock_lock();
2021 2022
	if (rdp->passed_quiesce == 0 || rdp->gpnum != rnp->gpnum ||
	    rnp->completed == rnp->gpnum) {
2023 2024

		/*
2025 2026 2027 2028
		 * The grace period in which this quiescent state was
		 * recorded has ended, so don't report it upwards.
		 * We will instead need a new quiescent state that lies
		 * within the current grace period.
2029
		 */
2030
		rdp->passed_quiesce = 0;	/* need qs for new gp. */
P
Paul E. McKenney 已提交
2031
		raw_spin_unlock_irqrestore(&rnp->lock, flags);
2032 2033 2034 2035
		return;
	}
	mask = rdp->grpmask;
	if ((rnp->qsmask & mask) == 0) {
P
Paul E. McKenney 已提交
2036
		raw_spin_unlock_irqrestore(&rnp->lock, flags);
2037 2038 2039 2040 2041 2042 2043
	} else {
		rdp->qs_pending = 0;

		/*
		 * This GP can't end until cpu checks in, so all of our
		 * callbacks can be processed during the next GP.
		 */
2044
		needwake = rcu_accelerate_cbs(rsp, rnp, rdp);
2045

P
Paul E. McKenney 已提交
2046
		rcu_report_qs_rnp(mask, rsp, rnp, flags); /* rlses rnp->lock */
2047 2048
		if (needwake)
			rcu_gp_kthread_wake(rsp);
2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060
	}
}

/*
 * Check to see if there is a new grace period of which this CPU
 * is not yet aware, and if so, set up local rcu_data state for it.
 * Otherwise, see if this CPU has just passed through its first
 * quiescent state for this grace period, and record that fact if so.
 */
static void
rcu_check_quiescent_state(struct rcu_state *rsp, struct rcu_data *rdp)
{
2061 2062
	/* Check for grace-period ends and beginnings. */
	note_gp_changes(rsp, rdp);
2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074

	/*
	 * Does this CPU still need to do its part for current grace period?
	 * If no, return and let the other CPUs do their part as well.
	 */
	if (!rdp->qs_pending)
		return;

	/*
	 * Was there a quiescent state since the beginning of the grace
	 * period? If no, then exit and wait for the next call.
	 */
2075
	if (!rdp->passed_quiesce)
2076 2077
		return;

P
Paul E. McKenney 已提交
2078 2079 2080 2081
	/*
	 * Tell RCU we are done (but rcu_report_qs_rdp() will be the
	 * judge of that).
	 */
2082
	rcu_report_qs_rdp(rdp->cpu, rsp, rdp);
2083 2084 2085 2086
}

#ifdef CONFIG_HOTPLUG_CPU

2087
/*
2088 2089
 * Send the specified CPU's RCU callbacks to the orphanage.  The
 * specified CPU must be offline, and the caller must hold the
2090
 * ->orphan_lock.
2091
 */
2092 2093 2094
static void
rcu_send_cbs_to_orphanage(int cpu, struct rcu_state *rsp,
			  struct rcu_node *rnp, struct rcu_data *rdp)
2095
{
P
Paul E. McKenney 已提交
2096
	/* No-CBs CPUs do not have orphanable callbacks. */
2097
	if (rcu_is_nocb_cpu(rdp->cpu))
P
Paul E. McKenney 已提交
2098 2099
		return;

2100 2101
	/*
	 * Orphan the callbacks.  First adjust the counts.  This is safe
2102 2103
	 * because _rcu_barrier() excludes CPU-hotplug operations, so it
	 * cannot be running now.  Thus no memory barrier is required.
2104
	 */
2105
	if (rdp->nxtlist != NULL) {
2106 2107 2108
		rsp->qlen_lazy += rdp->qlen_lazy;
		rsp->qlen += rdp->qlen;
		rdp->n_cbs_orphaned += rdp->qlen;
2109
		rdp->qlen_lazy = 0;
2110
		ACCESS_ONCE(rdp->qlen) = 0;
2111 2112 2113
	}

	/*
2114 2115 2116 2117 2118 2119 2120
	 * Next, move those callbacks still needing a grace period to
	 * the orphanage, where some other CPU will pick them up.
	 * Some of the callbacks might have gone partway through a grace
	 * period, but that is too bad.  They get to start over because we
	 * cannot assume that grace periods are synchronized across CPUs.
	 * We don't bother updating the ->nxttail[] array yet, instead
	 * we just reset the whole thing later on.
2121
	 */
2122 2123 2124 2125
	if (*rdp->nxttail[RCU_DONE_TAIL] != NULL) {
		*rsp->orphan_nxttail = *rdp->nxttail[RCU_DONE_TAIL];
		rsp->orphan_nxttail = rdp->nxttail[RCU_NEXT_TAIL];
		*rdp->nxttail[RCU_DONE_TAIL] = NULL;
2126 2127 2128
	}

	/*
2129 2130 2131
	 * Then move the ready-to-invoke callbacks to the orphanage,
	 * where some other CPU will pick them up.  These will not be
	 * required to pass though another grace period: They are done.
2132
	 */
2133
	if (rdp->nxtlist != NULL) {
2134 2135
		*rsp->orphan_donetail = rdp->nxtlist;
		rsp->orphan_donetail = rdp->nxttail[RCU_DONE_TAIL];
2136
	}
2137

2138
	/* Finally, initialize the rcu_data structure's list to empty.  */
2139
	init_callback_list(rdp);
2140 2141 2142 2143
}

/*
 * Adopt the RCU callbacks from the specified rcu_state structure's
2144
 * orphanage.  The caller must hold the ->orphan_lock.
2145
 */
2146
static void rcu_adopt_orphan_cbs(struct rcu_state *rsp, unsigned long flags)
2147 2148
{
	int i;
2149
	struct rcu_data *rdp = raw_cpu_ptr(rsp->rda);
2150

P
Paul E. McKenney 已提交
2151
	/* No-CBs CPUs are handled specially. */
2152
	if (rcu_nocb_adopt_orphan_cbs(rsp, rdp, flags))
P
Paul E. McKenney 已提交
2153 2154
		return;

2155 2156 2157 2158
	/* Do the accounting first. */
	rdp->qlen_lazy += rsp->qlen_lazy;
	rdp->qlen += rsp->qlen;
	rdp->n_cbs_adopted += rsp->qlen;
2159 2160
	if (rsp->qlen_lazy != rsp->qlen)
		rcu_idle_count_callbacks_posted();
2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199
	rsp->qlen_lazy = 0;
	rsp->qlen = 0;

	/*
	 * We do not need a memory barrier here because the only way we
	 * can get here if there is an rcu_barrier() in flight is if
	 * we are the task doing the rcu_barrier().
	 */

	/* First adopt the ready-to-invoke callbacks. */
	if (rsp->orphan_donelist != NULL) {
		*rsp->orphan_donetail = *rdp->nxttail[RCU_DONE_TAIL];
		*rdp->nxttail[RCU_DONE_TAIL] = rsp->orphan_donelist;
		for (i = RCU_NEXT_SIZE - 1; i >= RCU_DONE_TAIL; i--)
			if (rdp->nxttail[i] == rdp->nxttail[RCU_DONE_TAIL])
				rdp->nxttail[i] = rsp->orphan_donetail;
		rsp->orphan_donelist = NULL;
		rsp->orphan_donetail = &rsp->orphan_donelist;
	}

	/* And then adopt the callbacks that still need a grace period. */
	if (rsp->orphan_nxtlist != NULL) {
		*rdp->nxttail[RCU_NEXT_TAIL] = rsp->orphan_nxtlist;
		rdp->nxttail[RCU_NEXT_TAIL] = rsp->orphan_nxttail;
		rsp->orphan_nxtlist = NULL;
		rsp->orphan_nxttail = &rsp->orphan_nxtlist;
	}
}

/*
 * Trace the fact that this CPU is going offline.
 */
static void rcu_cleanup_dying_cpu(struct rcu_state *rsp)
{
	RCU_TRACE(unsigned long mask);
	RCU_TRACE(struct rcu_data *rdp = this_cpu_ptr(rsp->rda));
	RCU_TRACE(struct rcu_node *rnp = rdp->mynode);

	RCU_TRACE(mask = rdp->grpmask);
2200 2201
	trace_rcu_grace_period(rsp->name,
			       rnp->gpnum + 1 - !!(rnp->qsmask & mask),
2202
			       TPS("cpuofl"));
2203 2204 2205
}

/*
2206
 * The CPU has been completely removed, and some other CPU is reporting
2207 2208
 * this fact from process context.  Do the remainder of the cleanup,
 * including orphaning the outgoing CPU's RCU callbacks, and also
2209 2210
 * adopting them.  There can only be one CPU hotplug operation at a time,
 * so no other CPU can be attempting to update rcu_cpu_kthread_task.
2211
 */
2212
static void rcu_cleanup_dead_cpu(int cpu, struct rcu_state *rsp)
2213
{
2214 2215 2216
	unsigned long flags;
	unsigned long mask;
	int need_report = 0;
2217
	struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
2218
	struct rcu_node *rnp = rdp->mynode;  /* Outgoing CPU's rdp & rnp. */
2219

2220
	/* Adjust any no-longer-needed kthreads. */
T
Thomas Gleixner 已提交
2221
	rcu_boost_kthread_setaffinity(rnp, -1);
2222 2223

	/* Exclude any attempts to start a new grace period. */
2224
	mutex_lock(&rsp->onoff_mutex);
2225
	raw_spin_lock_irqsave(&rsp->orphan_lock, flags);
2226

2227 2228
	/* Orphan the dead CPU's callbacks, and adopt them if appropriate. */
	rcu_send_cbs_to_orphanage(cpu, rsp, rnp, rdp);
2229
	rcu_adopt_orphan_cbs(rsp, flags);
2230

2231 2232 2233 2234
	/* Remove the outgoing CPU from the masks in the rcu_node hierarchy. */
	mask = rdp->grpmask;	/* rnp->grplo is constant. */
	do {
		raw_spin_lock(&rnp->lock);	/* irqs already disabled. */
2235
		smp_mb__after_unlock_lock();
2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252
		rnp->qsmaskinit &= ~mask;
		if (rnp->qsmaskinit != 0) {
			if (rnp != rdp->mynode)
				raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
			break;
		}
		if (rnp == rdp->mynode)
			need_report = rcu_preempt_offline_tasks(rsp, rnp, rdp);
		else
			raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
		mask = rnp->grpmask;
		rnp = rnp->parent;
	} while (rnp != NULL);

	/*
	 * We still hold the leaf rcu_node structure lock here, and
	 * irqs are still disabled.  The reason for this subterfuge is
2253
	 * because invoking rcu_report_unblock_qs_rnp() with ->orphan_lock
2254 2255
	 * held leads to deadlock.
	 */
2256
	raw_spin_unlock(&rsp->orphan_lock); /* irqs remain disabled. */
2257 2258 2259 2260 2261 2262 2263
	rnp = rdp->mynode;
	if (need_report & RCU_OFL_TASKS_NORM_GP)
		rcu_report_unblock_qs_rnp(rnp, flags);
	else
		raw_spin_unlock_irqrestore(&rnp->lock, flags);
	if (need_report & RCU_OFL_TASKS_EXP_GP)
		rcu_report_exp_rnp(rsp, rnp, true);
2264 2265 2266
	WARN_ONCE(rdp->qlen != 0 || rdp->nxtlist != NULL,
		  "rcu_cleanup_dead_cpu: Callbacks on offline CPU %d: qlen=%lu, nxtlist=%p\n",
		  cpu, rdp->qlen, rdp->nxtlist);
2267 2268 2269
	init_callback_list(rdp);
	/* Disallow further callbacks on this CPU. */
	rdp->nxttail[RCU_NEXT_TAIL] = NULL;
2270
	mutex_unlock(&rsp->onoff_mutex);
2271 2272 2273 2274
}

#else /* #ifdef CONFIG_HOTPLUG_CPU */

2275
static void rcu_cleanup_dying_cpu(struct rcu_state *rsp)
2276 2277 2278
{
}

2279
static void rcu_cleanup_dead_cpu(int cpu, struct rcu_state *rsp)
2280 2281 2282 2283 2284 2285 2286 2287 2288
{
}

#endif /* #else #ifdef CONFIG_HOTPLUG_CPU */

/*
 * Invoke any RCU callbacks that have made it to the end of their grace
 * period.  Thottle as specified by rdp->blimit.
 */
2289
static void rcu_do_batch(struct rcu_state *rsp, struct rcu_data *rdp)
2290 2291 2292
{
	unsigned long flags;
	struct rcu_head *next, *list, **tail;
E
Eric Dumazet 已提交
2293 2294
	long bl, count, count_lazy;
	int i;
2295

2296
	/* If no callbacks are ready, just return. */
2297
	if (!cpu_has_callbacks_ready_to_invoke(rdp)) {
2298
		trace_rcu_batch_start(rsp->name, rdp->qlen_lazy, rdp->qlen, 0);
2299 2300 2301
		trace_rcu_batch_end(rsp->name, 0, !!ACCESS_ONCE(rdp->nxtlist),
				    need_resched(), is_idle_task(current),
				    rcu_is_callbacks_kthread());
2302
		return;
2303
	}
2304 2305 2306 2307 2308 2309

	/*
	 * Extract the list of ready callbacks, disabling to prevent
	 * races with call_rcu() from interrupt handlers.
	 */
	local_irq_save(flags);
2310
	WARN_ON_ONCE(cpu_is_offline(smp_processor_id()));
2311
	bl = rdp->blimit;
2312
	trace_rcu_batch_start(rsp->name, rdp->qlen_lazy, rdp->qlen, bl);
2313 2314 2315 2316
	list = rdp->nxtlist;
	rdp->nxtlist = *rdp->nxttail[RCU_DONE_TAIL];
	*rdp->nxttail[RCU_DONE_TAIL] = NULL;
	tail = rdp->nxttail[RCU_DONE_TAIL];
2317 2318 2319
	for (i = RCU_NEXT_SIZE - 1; i >= 0; i--)
		if (rdp->nxttail[i] == rdp->nxttail[RCU_DONE_TAIL])
			rdp->nxttail[i] = &rdp->nxtlist;
2320 2321 2322
	local_irq_restore(flags);

	/* Invoke callbacks. */
2323
	count = count_lazy = 0;
2324 2325 2326
	while (list) {
		next = list->next;
		prefetch(next);
2327
		debug_rcu_head_unqueue(list);
2328 2329
		if (__rcu_reclaim(rsp->name, list))
			count_lazy++;
2330
		list = next;
2331 2332 2333 2334
		/* Stop only if limit reached and CPU has something to do. */
		if (++count >= bl &&
		    (need_resched() ||
		     (!is_idle_task(current) && !rcu_is_callbacks_kthread())))
2335 2336 2337 2338
			break;
	}

	local_irq_save(flags);
2339 2340 2341
	trace_rcu_batch_end(rsp->name, count, !!list, need_resched(),
			    is_idle_task(current),
			    rcu_is_callbacks_kthread());
2342 2343 2344 2345 2346

	/* Update count, and requeue any remaining callbacks. */
	if (list != NULL) {
		*tail = rdp->nxtlist;
		rdp->nxtlist = list;
2347 2348 2349
		for (i = 0; i < RCU_NEXT_SIZE; i++)
			if (&rdp->nxtlist == rdp->nxttail[i])
				rdp->nxttail[i] = tail;
2350 2351 2352
			else
				break;
	}
2353 2354
	smp_mb(); /* List handling before counting for rcu_barrier(). */
	rdp->qlen_lazy -= count_lazy;
2355
	ACCESS_ONCE(rdp->qlen) = rdp->qlen - count;
2356
	rdp->n_cbs_invoked += count;
2357 2358 2359 2360 2361

	/* Reinstate batch limit if we have worked down the excess. */
	if (rdp->blimit == LONG_MAX && rdp->qlen <= qlowmark)
		rdp->blimit = blimit;

2362 2363 2364 2365 2366 2367
	/* Reset ->qlen_last_fqs_check trigger if enough CBs have drained. */
	if (rdp->qlen == 0 && rdp->qlen_last_fqs_check != 0) {
		rdp->qlen_last_fqs_check = 0;
		rdp->n_force_qs_snap = rsp->n_force_qs;
	} else if (rdp->qlen < rdp->qlen_last_fqs_check - qhimark)
		rdp->qlen_last_fqs_check = rdp->qlen;
2368
	WARN_ON_ONCE((rdp->nxtlist == NULL) != (rdp->qlen == 0));
2369

2370 2371
	local_irq_restore(flags);

2372
	/* Re-invoke RCU core processing if there are callbacks remaining. */
2373
	if (cpu_has_callbacks_ready_to_invoke(rdp))
2374
		invoke_rcu_core();
2375 2376 2377 2378 2379
}

/*
 * Check to see if this CPU is in a non-context-switch quiescent state
 * (user mode or idle loop for rcu, non-softirq execution for rcu_bh).
2380
 * Also schedule RCU core processing.
2381
 *
2382
 * This function must be called from hardirq context.  It is normally
2383 2384 2385 2386 2387
 * invoked from the scheduling-clock interrupt.  If rcu_pending returns
 * false, there is no point in invoking rcu_check_callbacks().
 */
void rcu_check_callbacks(int cpu, int user)
{
2388
	trace_rcu_utilization(TPS("Start scheduler-tick"));
2389
	increment_cpu_stall_ticks();
2390
	if (user || rcu_is_cpu_rrupt_from_idle()) {
2391 2392 2393 2394 2395

		/*
		 * Get here if this CPU took its interrupt from user
		 * mode or from the idle loop, and if this is not a
		 * nested interrupt.  In this case, the CPU is in
2396
		 * a quiescent state, so note it.
2397 2398
		 *
		 * No memory barrier is required here because both
2399 2400 2401
		 * rcu_sched_qs() and rcu_bh_qs() reference only CPU-local
		 * variables that other CPUs neither access nor modify,
		 * at least not while the corresponding CPU is online.
2402 2403
		 */

2404 2405
		rcu_sched_qs(cpu);
		rcu_bh_qs(cpu);
2406 2407 2408 2409 2410 2411 2412

	} else if (!in_softirq()) {

		/*
		 * Get here if this CPU did not take its interrupt from
		 * softirq, in other words, if it is not interrupting
		 * a rcu_bh read-side critical section.  This is an _bh
2413
		 * critical section, so note it.
2414 2415
		 */

2416
		rcu_bh_qs(cpu);
2417
	}
2418
	rcu_preempt_check_callbacks(cpu);
2419
	if (rcu_pending(cpu))
2420
		invoke_rcu_core();
2421
	trace_rcu_utilization(TPS("End scheduler-tick"));
2422 2423 2424 2425 2426
}

/*
 * Scan the leaf rcu_node structures, processing dyntick state for any that
 * have not yet encountered a quiescent state, using the function specified.
2427 2428
 * Also initiate boosting for any threads blocked on the root rcu_node.
 *
2429
 * The caller must have suppressed start of new grace periods.
2430
 */
2431 2432 2433 2434
static void force_qs_rnp(struct rcu_state *rsp,
			 int (*f)(struct rcu_data *rsp, bool *isidle,
				  unsigned long *maxj),
			 bool *isidle, unsigned long *maxj)
2435 2436 2437 2438 2439
{
	unsigned long bit;
	int cpu;
	unsigned long flags;
	unsigned long mask;
2440
	struct rcu_node *rnp;
2441

2442
	rcu_for_each_leaf_node(rsp, rnp) {
2443
		cond_resched();
2444
		mask = 0;
P
Paul E. McKenney 已提交
2445
		raw_spin_lock_irqsave(&rnp->lock, flags);
2446
		smp_mb__after_unlock_lock();
2447
		if (!rcu_gp_in_progress(rsp)) {
P
Paul E. McKenney 已提交
2448
			raw_spin_unlock_irqrestore(&rnp->lock, flags);
2449
			return;
2450
		}
2451
		if (rnp->qsmask == 0) {
2452
			rcu_initiate_boost(rnp, flags); /* releases rnp->lock */
2453 2454
			continue;
		}
2455
		cpu = rnp->grplo;
2456
		bit = 1;
2457
		for (; cpu <= rnp->grphi; cpu++, bit <<= 1) {
2458 2459
			if ((rnp->qsmask & bit) != 0) {
				if ((rnp->qsmaskinit & bit) != 0)
2460
					*isidle = false;
2461 2462 2463
				if (f(per_cpu_ptr(rsp->rda, cpu), isidle, maxj))
					mask |= bit;
			}
2464
		}
2465
		if (mask != 0) {
2466

P
Paul E. McKenney 已提交
2467 2468
			/* rcu_report_qs_rnp() releases rnp->lock. */
			rcu_report_qs_rnp(mask, rsp, rnp, flags);
2469 2470
			continue;
		}
P
Paul E. McKenney 已提交
2471
		raw_spin_unlock_irqrestore(&rnp->lock, flags);
2472
	}
2473
	rnp = rcu_get_root(rsp);
2474 2475
	if (rnp->qsmask == 0) {
		raw_spin_lock_irqsave(&rnp->lock, flags);
2476
		smp_mb__after_unlock_lock();
2477 2478
		rcu_initiate_boost(rnp, flags); /* releases rnp->lock. */
	}
2479 2480 2481 2482 2483 2484
}

/*
 * Force quiescent states on reluctant CPUs, and also detect which
 * CPUs are in dyntick-idle mode.
 */
2485
static void force_quiescent_state(struct rcu_state *rsp)
2486 2487
{
	unsigned long flags;
2488 2489 2490 2491 2492
	bool ret;
	struct rcu_node *rnp;
	struct rcu_node *rnp_old = NULL;

	/* Funnel through hierarchy to reduce memory contention. */
2493
	rnp = __this_cpu_read(rsp->rda->mynode);
2494 2495 2496 2497 2498 2499
	for (; rnp != NULL; rnp = rnp->parent) {
		ret = (ACCESS_ONCE(rsp->gp_flags) & RCU_GP_FLAG_FQS) ||
		      !raw_spin_trylock(&rnp->fqslock);
		if (rnp_old != NULL)
			raw_spin_unlock(&rnp_old->fqslock);
		if (ret) {
2500
			rsp->n_force_qs_lh++;
2501 2502 2503 2504 2505
			return;
		}
		rnp_old = rnp;
	}
	/* rnp_old == rcu_get_root(rsp), rnp == NULL. */
2506

2507 2508
	/* Reached the root of the rcu_node tree, acquire lock. */
	raw_spin_lock_irqsave(&rnp_old->lock, flags);
2509
	smp_mb__after_unlock_lock();
2510 2511
	raw_spin_unlock(&rnp_old->fqslock);
	if (ACCESS_ONCE(rsp->gp_flags) & RCU_GP_FLAG_FQS) {
2512
		rsp->n_force_qs_lh++;
2513
		raw_spin_unlock_irqrestore(&rnp_old->lock, flags);
2514
		return;  /* Someone beat us to it. */
2515
	}
2516 2517
	ACCESS_ONCE(rsp->gp_flags) =
		ACCESS_ONCE(rsp->gp_flags) | RCU_GP_FLAG_FQS;
2518
	raw_spin_unlock_irqrestore(&rnp_old->lock, flags);
2519
	wake_up(&rsp->gp_wq);  /* Memory barrier implied by wake_up() path. */
2520 2521 2522
}

/*
2523 2524 2525
 * This does the RCU core processing work for the specified rcu_state
 * and rcu_data structures.  This may be called only from the CPU to
 * whom the rdp belongs.
2526 2527
 */
static void
2528
__rcu_process_callbacks(struct rcu_state *rsp)
2529 2530
{
	unsigned long flags;
2531
	bool needwake;
2532
	struct rcu_data *rdp = raw_cpu_ptr(rsp->rda);
2533

2534 2535
	WARN_ON_ONCE(rdp->beenonline == 0);

2536 2537 2538 2539
	/* Update RCU state based on any recent quiescent states. */
	rcu_check_quiescent_state(rsp, rdp);

	/* Does this CPU require a not-yet-started grace period? */
2540
	local_irq_save(flags);
2541
	if (cpu_needs_another_gp(rsp, rdp)) {
2542
		raw_spin_lock(&rcu_get_root(rsp)->lock); /* irqs disabled. */
2543
		needwake = rcu_start_gp(rsp);
2544
		raw_spin_unlock_irqrestore(&rcu_get_root(rsp)->lock, flags);
2545 2546
		if (needwake)
			rcu_gp_kthread_wake(rsp);
2547 2548
	} else {
		local_irq_restore(flags);
2549 2550 2551
	}

	/* If there are callbacks ready, invoke them. */
2552
	if (cpu_has_callbacks_ready_to_invoke(rdp))
2553
		invoke_rcu_callbacks(rsp, rdp);
2554 2555 2556

	/* Do any needed deferred wakeups of rcuo kthreads. */
	do_nocb_deferred_wakeup(rdp);
2557 2558
}

2559
/*
2560
 * Do RCU core processing for the current CPU.
2561
 */
2562
static void rcu_process_callbacks(struct softirq_action *unused)
2563
{
2564 2565
	struct rcu_state *rsp;

2566 2567
	if (cpu_is_offline(smp_processor_id()))
		return;
2568
	trace_rcu_utilization(TPS("Start RCU core"));
2569 2570
	for_each_rcu_flavor(rsp)
		__rcu_process_callbacks(rsp);
2571
	trace_rcu_utilization(TPS("End RCU core"));
2572 2573
}

2574
/*
2575 2576 2577 2578 2579
 * Schedule RCU callback invocation.  If the specified type of RCU
 * does not support RCU priority boosting, just do a direct call,
 * otherwise wake up the per-CPU kernel kthread.  Note that because we
 * are running on the current CPU with interrupts disabled, the
 * rcu_cpu_kthread_task cannot disappear out from under us.
2580
 */
2581
static void invoke_rcu_callbacks(struct rcu_state *rsp, struct rcu_data *rdp)
2582
{
2583 2584
	if (unlikely(!ACCESS_ONCE(rcu_scheduler_fully_active)))
		return;
2585 2586
	if (likely(!rsp->boost)) {
		rcu_do_batch(rsp, rdp);
2587 2588
		return;
	}
2589
	invoke_rcu_callbacks_kthread();
2590 2591
}

2592
static void invoke_rcu_core(void)
2593
{
2594 2595
	if (cpu_online(smp_processor_id()))
		raise_softirq(RCU_SOFTIRQ);
2596 2597
}

2598 2599 2600 2601 2602
/*
 * Handle any core-RCU processing required by a call_rcu() invocation.
 */
static void __call_rcu_core(struct rcu_state *rsp, struct rcu_data *rdp,
			    struct rcu_head *head, unsigned long flags)
2603
{
2604 2605
	bool needwake;

2606 2607 2608 2609
	/*
	 * If called from an extended quiescent state, invoke the RCU
	 * core in order to force a re-evaluation of RCU's idleness.
	 */
2610
	if (!rcu_is_watching() && cpu_online(smp_processor_id()))
2611 2612
		invoke_rcu_core();

2613
	/* If interrupts were disabled or CPU offline, don't invoke RCU core. */
2614
	if (irqs_disabled_flags(flags) || cpu_is_offline(smp_processor_id()))
2615
		return;
2616

2617 2618 2619 2620 2621 2622 2623
	/*
	 * Force the grace period if too many callbacks or too long waiting.
	 * Enforce hysteresis, and don't invoke force_quiescent_state()
	 * if some other CPU has recently done so.  Also, don't bother
	 * invoking force_quiescent_state() if the newly enqueued callback
	 * is the only one waiting for a grace period to complete.
	 */
2624
	if (unlikely(rdp->qlen > rdp->qlen_last_fqs_check + qhimark)) {
2625 2626

		/* Are we ignoring a completed grace period? */
2627
		note_gp_changes(rsp, rdp);
2628 2629 2630 2631 2632

		/* Start a new grace period if one not already started. */
		if (!rcu_gp_in_progress(rsp)) {
			struct rcu_node *rnp_root = rcu_get_root(rsp);

2633
			raw_spin_lock(&rnp_root->lock);
2634
			smp_mb__after_unlock_lock();
2635
			needwake = rcu_start_gp(rsp);
2636
			raw_spin_unlock(&rnp_root->lock);
2637 2638
			if (needwake)
				rcu_gp_kthread_wake(rsp);
2639 2640 2641 2642 2643
		} else {
			/* Give the grace period a kick. */
			rdp->blimit = LONG_MAX;
			if (rsp->n_force_qs == rdp->n_force_qs_snap &&
			    *rdp->nxttail[RCU_DONE_TAIL] != head)
2644
				force_quiescent_state(rsp);
2645 2646 2647
			rdp->n_force_qs_snap = rsp->n_force_qs;
			rdp->qlen_last_fqs_check = rdp->qlen;
		}
2648
	}
2649 2650
}

2651 2652 2653 2654 2655 2656 2657
/*
 * RCU callback function to leak a callback.
 */
static void rcu_leak_callback(struct rcu_head *rhp)
{
}

P
Paul E. McKenney 已提交
2658 2659 2660 2661 2662 2663
/*
 * Helper function for call_rcu() and friends.  The cpu argument will
 * normally be -1, indicating "currently running CPU".  It may specify
 * a CPU only if that CPU is a no-CBs CPU.  Currently, only _rcu_barrier()
 * is expected to specify a CPU.
 */
2664 2665
static void
__call_rcu(struct rcu_head *head, void (*func)(struct rcu_head *rcu),
P
Paul E. McKenney 已提交
2666
	   struct rcu_state *rsp, int cpu, bool lazy)
2667 2668 2669 2670
{
	unsigned long flags;
	struct rcu_data *rdp;

2671
	WARN_ON_ONCE((unsigned long)head & 0x1); /* Misaligned rcu_head! */
2672 2673 2674 2675 2676 2677
	if (debug_rcu_head_queue(head)) {
		/* Probable double call_rcu(), so leak the callback. */
		ACCESS_ONCE(head->func) = rcu_leak_callback;
		WARN_ONCE(1, "__call_rcu(): Leaked duplicate callback\n");
		return;
	}
2678 2679 2680 2681 2682 2683 2684 2685 2686 2687
	head->func = func;
	head->next = NULL;

	/*
	 * Opportunistically note grace-period endings and beginnings.
	 * Note that we might see a beginning right after we see an
	 * end, but never vice versa, since this CPU has to pass through
	 * a quiescent state betweentimes.
	 */
	local_irq_save(flags);
2688
	rdp = this_cpu_ptr(rsp->rda);
2689 2690

	/* Add the callback to our list. */
P
Paul E. McKenney 已提交
2691 2692 2693 2694 2695
	if (unlikely(rdp->nxttail[RCU_NEXT_TAIL] == NULL) || cpu != -1) {
		int offline;

		if (cpu != -1)
			rdp = per_cpu_ptr(rsp->rda, cpu);
2696
		offline = !__call_rcu_nocb(rdp, head, lazy, flags);
P
Paul E. McKenney 已提交
2697
		WARN_ON_ONCE(offline);
2698 2699 2700 2701
		/* _call_rcu() is illegal on offline CPU; leak the callback. */
		local_irq_restore(flags);
		return;
	}
2702
	ACCESS_ONCE(rdp->qlen) = rdp->qlen + 1;
2703 2704
	if (lazy)
		rdp->qlen_lazy++;
2705 2706
	else
		rcu_idle_count_callbacks_posted();
2707 2708 2709
	smp_mb();  /* Count before adding callback for rcu_barrier(). */
	*rdp->nxttail[RCU_NEXT_TAIL] = head;
	rdp->nxttail[RCU_NEXT_TAIL] = &head->next;
2710

2711 2712
	if (__is_kfree_rcu_offset((unsigned long)func))
		trace_rcu_kfree_callback(rsp->name, head, (unsigned long)func,
2713
					 rdp->qlen_lazy, rdp->qlen);
2714
	else
2715
		trace_rcu_callback(rsp->name, head, rdp->qlen_lazy, rdp->qlen);
2716

2717 2718
	/* Go handle any RCU core processing required. */
	__call_rcu_core(rsp, rdp, head, flags);
2719 2720 2721 2722
	local_irq_restore(flags);
}

/*
2723
 * Queue an RCU-sched callback for invocation after a grace period.
2724
 */
2725
void call_rcu_sched(struct rcu_head *head, void (*func)(struct rcu_head *rcu))
2726
{
P
Paul E. McKenney 已提交
2727
	__call_rcu(head, func, &rcu_sched_state, -1, 0);
2728
}
2729
EXPORT_SYMBOL_GPL(call_rcu_sched);
2730 2731

/*
2732
 * Queue an RCU callback for invocation after a quicker grace period.
2733 2734 2735
 */
void call_rcu_bh(struct rcu_head *head, void (*func)(struct rcu_head *rcu))
{
P
Paul E. McKenney 已提交
2736
	__call_rcu(head, func, &rcu_bh_state, -1, 0);
2737 2738 2739
}
EXPORT_SYMBOL_GPL(call_rcu_bh);

2740 2741 2742 2743 2744 2745 2746 2747 2748 2749
/*
 * Queue an RCU callback for lazy invocation after a grace period.
 * This will likely be later named something like "call_rcu_lazy()",
 * but this change will require some way of tagging the lazy RCU
 * callbacks in the list of pending callbacks. Until then, this
 * function may only be called from __kfree_rcu().
 */
void kfree_call_rcu(struct rcu_head *head,
		    void (*func)(struct rcu_head *rcu))
{
2750
	__call_rcu(head, func, rcu_state_p, -1, 1);
2751 2752 2753
}
EXPORT_SYMBOL_GPL(kfree_call_rcu);

2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764
/*
 * Because a context switch is a grace period for RCU-sched and RCU-bh,
 * any blocking grace-period wait automatically implies a grace period
 * if there is only one CPU online at any point time during execution
 * of either synchronize_sched() or synchronize_rcu_bh().  It is OK to
 * occasionally incorrectly indicate that there are multiple CPUs online
 * when there was in fact only one the whole time, as this just adds
 * some overhead: RCU still operates correctly.
 */
static inline int rcu_blocking_is_gp(void)
{
2765 2766
	int ret;

2767
	might_sleep();  /* Check for RCU read-side critical section. */
2768 2769 2770 2771
	preempt_disable();
	ret = num_online_cpus() <= 1;
	preempt_enable();
	return ret;
2772 2773
}

2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785
/**
 * synchronize_sched - wait until an rcu-sched grace period has elapsed.
 *
 * Control will return to the caller some time after a full rcu-sched
 * grace period has elapsed, in other words after all currently executing
 * rcu-sched read-side critical sections have completed.   These read-side
 * critical sections are delimited by rcu_read_lock_sched() and
 * rcu_read_unlock_sched(), and may be nested.  Note that preempt_disable(),
 * local_irq_disable(), and so on may be used in place of
 * rcu_read_lock_sched().
 *
 * This means that all preempt_disable code sequences, including NMI and
2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807
 * non-threaded hardware-interrupt handlers, in progress on entry will
 * have completed before this primitive returns.  However, this does not
 * guarantee that softirq handlers will have completed, since in some
 * kernels, these handlers can run in process context, and can block.
 *
 * Note that this guarantee implies further memory-ordering guarantees.
 * On systems with more than one CPU, when synchronize_sched() returns,
 * each CPU is guaranteed to have executed a full memory barrier since the
 * end of its last RCU-sched read-side critical section whose beginning
 * preceded the call to synchronize_sched().  In addition, each CPU having
 * an RCU read-side critical section that extends beyond the return from
 * synchronize_sched() is guaranteed to have executed a full memory barrier
 * after the beginning of synchronize_sched() and before the beginning of
 * that RCU read-side critical section.  Note that these guarantees include
 * CPUs that are offline, idle, or executing in user mode, as well as CPUs
 * that are executing in the kernel.
 *
 * Furthermore, if CPU A invoked synchronize_sched(), which returned
 * to its caller on CPU B, then both CPU A and CPU B are guaranteed
 * to have executed a full memory barrier during the execution of
 * synchronize_sched() -- even if CPU A and CPU B are the same CPU (but
 * again only if the system has more than one CPU).
2808 2809 2810 2811 2812 2813 2814 2815 2816
 *
 * This primitive provides the guarantees made by the (now removed)
 * synchronize_kernel() API.  In contrast, synchronize_rcu() only
 * guarantees that rcu_read_lock() sections will have completed.
 * In "classic RCU", these two guarantees happen to be one and
 * the same, but can differ in realtime RCU implementations.
 */
void synchronize_sched(void)
{
2817 2818 2819 2820
	rcu_lockdep_assert(!lock_is_held(&rcu_bh_lock_map) &&
			   !lock_is_held(&rcu_lock_map) &&
			   !lock_is_held(&rcu_sched_lock_map),
			   "Illegal synchronize_sched() in RCU-sched read-side critical section");
2821 2822
	if (rcu_blocking_is_gp())
		return;
2823 2824 2825 2826
	if (rcu_expedited)
		synchronize_sched_expedited();
	else
		wait_rcu_gp(call_rcu_sched);
2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837
}
EXPORT_SYMBOL_GPL(synchronize_sched);

/**
 * synchronize_rcu_bh - wait until an rcu_bh grace period has elapsed.
 *
 * Control will return to the caller some time after a full rcu_bh grace
 * period has elapsed, in other words after all currently executing rcu_bh
 * read-side critical sections have completed.  RCU read-side critical
 * sections are delimited by rcu_read_lock_bh() and rcu_read_unlock_bh(),
 * and may be nested.
2838 2839 2840
 *
 * See the description of synchronize_sched() for more detailed information
 * on memory ordering guarantees.
2841 2842 2843
 */
void synchronize_rcu_bh(void)
{
2844 2845 2846 2847
	rcu_lockdep_assert(!lock_is_held(&rcu_bh_lock_map) &&
			   !lock_is_held(&rcu_lock_map) &&
			   !lock_is_held(&rcu_sched_lock_map),
			   "Illegal synchronize_rcu_bh() in RCU-bh read-side critical section");
2848 2849
	if (rcu_blocking_is_gp())
		return;
2850 2851 2852 2853
	if (rcu_expedited)
		synchronize_rcu_bh_expedited();
	else
		wait_rcu_gp(call_rcu_bh);
2854 2855 2856
}
EXPORT_SYMBOL_GPL(synchronize_rcu_bh);

2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876
/**
 * get_state_synchronize_rcu - Snapshot current RCU state
 *
 * Returns a cookie that is used by a later call to cond_synchronize_rcu()
 * to determine whether or not a full grace period has elapsed in the
 * meantime.
 */
unsigned long get_state_synchronize_rcu(void)
{
	/*
	 * Any prior manipulation of RCU-protected data must happen
	 * before the load from ->gpnum.
	 */
	smp_mb();  /* ^^^ */

	/*
	 * Make sure this load happens before the purportedly
	 * time-consuming work between get_state_synchronize_rcu()
	 * and cond_synchronize_rcu().
	 */
2877
	return smp_load_acquire(&rcu_state_p->gpnum);
2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902
}
EXPORT_SYMBOL_GPL(get_state_synchronize_rcu);

/**
 * cond_synchronize_rcu - Conditionally wait for an RCU grace period
 *
 * @oldstate: return value from earlier call to get_state_synchronize_rcu()
 *
 * If a full RCU grace period has elapsed since the earlier call to
 * get_state_synchronize_rcu(), just return.  Otherwise, invoke
 * synchronize_rcu() to wait for a full grace period.
 *
 * Yes, this function does not take counter wrap into account.  But
 * counter wrap is harmless.  If the counter wraps, we have waited for
 * more than 2 billion grace periods (and way more on a 64-bit system!),
 * so waiting for one additional grace period should be just fine.
 */
void cond_synchronize_rcu(unsigned long oldstate)
{
	unsigned long newstate;

	/*
	 * Ensure that this load happens before any RCU-destructive
	 * actions the caller might carry out after we return.
	 */
2903
	newstate = smp_load_acquire(&rcu_state_p->completed);
2904 2905 2906 2907 2908
	if (ULONG_CMP_GE(oldstate, newstate))
		synchronize_rcu();
}
EXPORT_SYMBOL_GPL(cond_synchronize_rcu);

2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925
static int synchronize_sched_expedited_cpu_stop(void *data)
{
	/*
	 * There must be a full memory barrier on each affected CPU
	 * between the time that try_stop_cpus() is called and the
	 * time that it returns.
	 *
	 * In the current initial implementation of cpu_stop, the
	 * above condition is already met when the control reaches
	 * this point and the following smp_mb() is not strictly
	 * necessary.  Do smp_mb() anyway for documentation and
	 * robustness against future implementation changes.
	 */
	smp_mb(); /* See above comment block. */
	return 0;
}

2926 2927 2928 2929 2930 2931 2932 2933 2934 2935
/**
 * synchronize_sched_expedited - Brute-force RCU-sched grace period
 *
 * Wait for an RCU-sched grace period to elapse, but use a "big hammer"
 * approach to force the grace period to end quickly.  This consumes
 * significant time on all CPUs and is unfriendly to real-time workloads,
 * so is thus not recommended for any sort of common-case code.  In fact,
 * if you are using synchronize_sched_expedited() in a loop, please
 * restructure your code to batch your updates, and then use a single
 * synchronize_sched() instead.
2936
 *
2937 2938 2939 2940
 * Note that it is illegal to call this function while holding any lock
 * that is acquired by a CPU-hotplug notifier.  And yes, it is also illegal
 * to call this function from a CPU-hotplug notifier.  Failing to observe
 * these restriction will result in deadlock.
2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964
 *
 * This implementation can be thought of as an application of ticket
 * locking to RCU, with sync_sched_expedited_started and
 * sync_sched_expedited_done taking on the roles of the halves
 * of the ticket-lock word.  Each task atomically increments
 * sync_sched_expedited_started upon entry, snapshotting the old value,
 * then attempts to stop all the CPUs.  If this succeeds, then each
 * CPU will have executed a context switch, resulting in an RCU-sched
 * grace period.  We are then done, so we use atomic_cmpxchg() to
 * update sync_sched_expedited_done to match our snapshot -- but
 * only if someone else has not already advanced past our snapshot.
 *
 * On the other hand, if try_stop_cpus() fails, we check the value
 * of sync_sched_expedited_done.  If it has advanced past our
 * initial snapshot, then someone else must have forced a grace period
 * some time after we took our snapshot.  In this case, our work is
 * done for us, and we can simply return.  Otherwise, we try again,
 * but keep our initial snapshot for purposes of checking for someone
 * doing our work for us.
 *
 * If we fail too many times in a row, we fall back to synchronize_sched().
 */
void synchronize_sched_expedited(void)
{
2965 2966
	long firstsnap, s, snap;
	int trycount = 0;
2967
	struct rcu_state *rsp = &rcu_sched_state;
2968

2969 2970 2971 2972 2973 2974 2975 2976
	/*
	 * If we are in danger of counter wrap, just do synchronize_sched().
	 * By allowing sync_sched_expedited_started to advance no more than
	 * ULONG_MAX/8 ahead of sync_sched_expedited_done, we are ensuring
	 * that more than 3.5 billion CPUs would be required to force a
	 * counter wrap on a 32-bit system.  Quite a few more CPUs would of
	 * course be required on a 64-bit system.
	 */
2977 2978
	if (ULONG_CMP_GE((ulong)atomic_long_read(&rsp->expedited_start),
			 (ulong)atomic_long_read(&rsp->expedited_done) +
2979 2980
			 ULONG_MAX / 8)) {
		synchronize_sched();
2981
		atomic_long_inc(&rsp->expedited_wrap);
2982 2983
		return;
	}
2984

2985 2986 2987 2988
	/*
	 * Take a ticket.  Note that atomic_inc_return() implies a
	 * full memory barrier.
	 */
2989
	snap = atomic_long_inc_return(&rsp->expedited_start);
2990
	firstsnap = snap;
2991
	get_online_cpus();
2992
	WARN_ON_ONCE(cpu_is_offline(raw_smp_processor_id()));
2993 2994 2995 2996 2997 2998 2999 3000 3001

	/*
	 * Each pass through the following loop attempts to force a
	 * context switch on each CPU.
	 */
	while (try_stop_cpus(cpu_online_mask,
			     synchronize_sched_expedited_cpu_stop,
			     NULL) == -EAGAIN) {
		put_online_cpus();
3002
		atomic_long_inc(&rsp->expedited_tryfail);
3003

3004
		/* Check to see if someone else did our work for us. */
3005
		s = atomic_long_read(&rsp->expedited_done);
3006
		if (ULONG_CMP_GE((ulong)s, (ulong)firstsnap)) {
3007
			/* ensure test happens before caller kfree */
3008
			smp_mb__before_atomic(); /* ^^^ */
3009
			atomic_long_inc(&rsp->expedited_workdone1);
3010 3011
			return;
		}
3012 3013

		/* No joy, try again later.  Or just synchronize_sched(). */
3014
		if (trycount++ < 10) {
3015
			udelay(trycount * num_online_cpus());
3016
		} else {
3017
			wait_rcu_gp(call_rcu_sched);
3018
			atomic_long_inc(&rsp->expedited_normal);
3019 3020 3021
			return;
		}

3022
		/* Recheck to see if someone else did our work for us. */
3023
		s = atomic_long_read(&rsp->expedited_done);
3024
		if (ULONG_CMP_GE((ulong)s, (ulong)firstsnap)) {
3025
			/* ensure test happens before caller kfree */
3026
			smp_mb__before_atomic(); /* ^^^ */
3027
			atomic_long_inc(&rsp->expedited_workdone2);
3028 3029 3030 3031 3032
			return;
		}

		/*
		 * Refetching sync_sched_expedited_started allows later
3033 3034 3035 3036
		 * callers to piggyback on our grace period.  We retry
		 * after they started, so our grace period works for them,
		 * and they started after our first try, so their grace
		 * period works for us.
3037 3038
		 */
		get_online_cpus();
3039
		snap = atomic_long_read(&rsp->expedited_start);
3040 3041
		smp_mb(); /* ensure read is before try_stop_cpus(). */
	}
3042
	atomic_long_inc(&rsp->expedited_stoppedcpus);
3043 3044 3045 3046 3047

	/*
	 * Everyone up to our most recent fetch is covered by our grace
	 * period.  Update the counter, but only if our work is still
	 * relevant -- which it won't be if someone who started later
3048
	 * than we did already did their update.
3049 3050
	 */
	do {
3051
		atomic_long_inc(&rsp->expedited_done_tries);
3052
		s = atomic_long_read(&rsp->expedited_done);
3053
		if (ULONG_CMP_GE((ulong)s, (ulong)snap)) {
3054
			/* ensure test happens before caller kfree */
3055
			smp_mb__before_atomic(); /* ^^^ */
3056
			atomic_long_inc(&rsp->expedited_done_lost);
3057 3058
			break;
		}
3059
	} while (atomic_long_cmpxchg(&rsp->expedited_done, s, snap) != s);
3060
	atomic_long_inc(&rsp->expedited_done_exit);
3061 3062 3063 3064 3065

	put_online_cpus();
}
EXPORT_SYMBOL_GPL(synchronize_sched_expedited);

3066 3067 3068 3069 3070 3071 3072 3073 3074
/*
 * Check to see if there is any immediate RCU-related work to be done
 * by the current CPU, for the specified type of RCU, returning 1 if so.
 * The checks are in order of increasing expense: checks that can be
 * carried out against CPU-local state are performed first.  However,
 * we must check for CPU stalls first, else we might not get a chance.
 */
static int __rcu_pending(struct rcu_state *rsp, struct rcu_data *rdp)
{
3075 3076
	struct rcu_node *rnp = rdp->mynode;

3077 3078 3079 3080 3081
	rdp->n_rcu_pending++;

	/* Check for CPU stalls, if enabled. */
	check_cpu_stall(rsp, rdp);

3082 3083 3084 3085
	/* Is this CPU a NO_HZ_FULL CPU that should ignore RCU? */
	if (rcu_nohz_full_cpu(rsp))
		return 0;

3086
	/* Is the RCU core waiting for a quiescent state from this CPU? */
3087 3088
	if (rcu_scheduler_fully_active &&
	    rdp->qs_pending && !rdp->passed_quiesce) {
3089
		rdp->n_rp_qs_pending++;
3090
	} else if (rdp->qs_pending && rdp->passed_quiesce) {
3091
		rdp->n_rp_report_qs++;
3092
		return 1;
3093
	}
3094 3095

	/* Does this CPU have callbacks ready to invoke? */
3096 3097
	if (cpu_has_callbacks_ready_to_invoke(rdp)) {
		rdp->n_rp_cb_ready++;
3098
		return 1;
3099
	}
3100 3101

	/* Has RCU gone idle with this CPU needing another grace period? */
3102 3103
	if (cpu_needs_another_gp(rsp, rdp)) {
		rdp->n_rp_cpu_needs_gp++;
3104
		return 1;
3105
	}
3106 3107

	/* Has another RCU grace period completed?  */
3108
	if (ACCESS_ONCE(rnp->completed) != rdp->completed) { /* outside lock */
3109
		rdp->n_rp_gp_completed++;
3110
		return 1;
3111
	}
3112 3113

	/* Has a new RCU grace period started? */
3114
	if (ACCESS_ONCE(rnp->gpnum) != rdp->gpnum) { /* outside lock */
3115
		rdp->n_rp_gp_started++;
3116
		return 1;
3117
	}
3118

3119 3120 3121 3122 3123 3124
	/* Does this CPU need a deferred NOCB wakeup? */
	if (rcu_nocb_need_deferred_wakeup(rdp)) {
		rdp->n_rp_nocb_defer_wakeup++;
		return 1;
	}

3125
	/* nothing to do */
3126
	rdp->n_rp_need_nothing++;
3127 3128 3129 3130 3131 3132 3133 3134
	return 0;
}

/*
 * Check to see if there is any immediate RCU-related work to be done
 * by the current CPU, returning 1 if so.  This function is part of the
 * RCU implementation; it is -not- an exported member of the RCU API.
 */
3135
static int rcu_pending(int cpu)
3136
{
3137 3138 3139 3140 3141 3142
	struct rcu_state *rsp;

	for_each_rcu_flavor(rsp)
		if (__rcu_pending(rsp, per_cpu_ptr(rsp->rda, cpu)))
			return 1;
	return 0;
3143 3144 3145
}

/*
3146 3147 3148
 * Return true if the specified CPU has any callback.  If all_lazy is
 * non-NULL, store an indication of whether all callbacks are lazy.
 * (If there are no callbacks, all of them are deemed to be lazy.)
3149
 */
3150
static int __maybe_unused rcu_cpu_has_callbacks(int cpu, bool *all_lazy)
3151
{
3152 3153 3154
	bool al = true;
	bool hc = false;
	struct rcu_data *rdp;
3155 3156
	struct rcu_state *rsp;

3157 3158
	for_each_rcu_flavor(rsp) {
		rdp = per_cpu_ptr(rsp->rda, cpu);
3159 3160 3161 3162
		if (!rdp->nxtlist)
			continue;
		hc = true;
		if (rdp->qlen != rdp->qlen_lazy || !all_lazy) {
3163
			al = false;
3164 3165
			break;
		}
3166 3167 3168 3169
	}
	if (all_lazy)
		*all_lazy = al;
	return hc;
3170 3171
}

3172 3173 3174 3175
/*
 * Helper function for _rcu_barrier() tracing.  If tracing is disabled,
 * the compiler is expected to optimize this away.
 */
3176
static void _rcu_barrier_trace(struct rcu_state *rsp, const char *s,
3177 3178 3179 3180 3181 3182
			       int cpu, unsigned long done)
{
	trace_rcu_barrier(rsp->name, s, cpu,
			  atomic_read(&rsp->barrier_cpu_count), done);
}

3183 3184 3185 3186
/*
 * RCU callback function for _rcu_barrier().  If we are last, wake
 * up the task executing _rcu_barrier().
 */
3187
static void rcu_barrier_callback(struct rcu_head *rhp)
3188
{
3189 3190 3191
	struct rcu_data *rdp = container_of(rhp, struct rcu_data, barrier_head);
	struct rcu_state *rsp = rdp->rsp;

3192 3193
	if (atomic_dec_and_test(&rsp->barrier_cpu_count)) {
		_rcu_barrier_trace(rsp, "LastCB", -1, rsp->n_barrier_done);
3194
		complete(&rsp->barrier_completion);
3195 3196 3197
	} else {
		_rcu_barrier_trace(rsp, "CB", -1, rsp->n_barrier_done);
	}
3198 3199 3200 3201 3202 3203 3204
}

/*
 * Called with preemption disabled, and from cross-cpu IRQ context.
 */
static void rcu_barrier_func(void *type)
{
3205
	struct rcu_state *rsp = type;
3206
	struct rcu_data *rdp = raw_cpu_ptr(rsp->rda);
3207

3208
	_rcu_barrier_trace(rsp, "IRQ", -1, rsp->n_barrier_done);
3209
	atomic_inc(&rsp->barrier_cpu_count);
3210
	rsp->call(&rdp->barrier_head, rcu_barrier_callback);
3211 3212 3213 3214 3215 3216
}

/*
 * Orchestrate the specified type of RCU barrier, waiting for all
 * RCU callbacks of the specified type to complete.
 */
3217
static void _rcu_barrier(struct rcu_state *rsp)
3218
{
3219 3220
	int cpu;
	struct rcu_data *rdp;
3221 3222
	unsigned long snap = ACCESS_ONCE(rsp->n_barrier_done);
	unsigned long snap_done;
3223

3224
	_rcu_barrier_trace(rsp, "Begin", -1, snap);
3225

3226
	/* Take mutex to serialize concurrent rcu_barrier() requests. */
3227
	mutex_lock(&rsp->barrier_mutex);
3228

3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240
	/*
	 * Ensure that all prior references, including to ->n_barrier_done,
	 * are ordered before the _rcu_barrier() machinery.
	 */
	smp_mb();  /* See above block comment. */

	/*
	 * Recheck ->n_barrier_done to see if others did our work for us.
	 * This means checking ->n_barrier_done for an even-to-odd-to-even
	 * transition.  The "if" expression below therefore rounds the old
	 * value up to the next even number and adds two before comparing.
	 */
3241
	snap_done = rsp->n_barrier_done;
3242
	_rcu_barrier_trace(rsp, "Check", -1, snap_done);
3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254

	/*
	 * If the value in snap is odd, we needed to wait for the current
	 * rcu_barrier() to complete, then wait for the next one, in other
	 * words, we need the value of snap_done to be three larger than
	 * the value of snap.  On the other hand, if the value in snap is
	 * even, we only had to wait for the next rcu_barrier() to complete,
	 * in other words, we need the value of snap_done to be only two
	 * greater than the value of snap.  The "(snap + 3) & ~0x1" computes
	 * this for us (thank you, Linus!).
	 */
	if (ULONG_CMP_GE(snap_done, (snap + 3) & ~0x1)) {
3255
		_rcu_barrier_trace(rsp, "EarlyExit", -1, snap_done);
3256 3257 3258 3259 3260 3261 3262 3263 3264 3265
		smp_mb(); /* caller's subsequent code after above check. */
		mutex_unlock(&rsp->barrier_mutex);
		return;
	}

	/*
	 * Increment ->n_barrier_done to avoid duplicate work.  Use
	 * ACCESS_ONCE() to prevent the compiler from speculating
	 * the increment to precede the early-exit check.
	 */
3266
	ACCESS_ONCE(rsp->n_barrier_done) = rsp->n_barrier_done + 1;
3267
	WARN_ON_ONCE((rsp->n_barrier_done & 0x1) != 1);
3268
	_rcu_barrier_trace(rsp, "Inc1", -1, rsp->n_barrier_done);
3269
	smp_mb(); /* Order ->n_barrier_done increment with below mechanism. */
3270

3271
	/*
3272 3273
	 * Initialize the count to one rather than to zero in order to
	 * avoid a too-soon return to zero in case of a short grace period
3274 3275
	 * (or preemption of this task).  Exclude CPU-hotplug operations
	 * to ensure that no offline CPU has callbacks queued.
3276
	 */
3277
	init_completion(&rsp->barrier_completion);
3278
	atomic_set(&rsp->barrier_cpu_count, 1);
3279
	get_online_cpus();
3280 3281

	/*
3282 3283 3284
	 * Force each CPU with callbacks to register a new callback.
	 * When that callback is invoked, we will know that all of the
	 * corresponding CPU's preceding callbacks have been invoked.
3285
	 */
P
Paul E. McKenney 已提交
3286
	for_each_possible_cpu(cpu) {
3287
		if (!cpu_online(cpu) && !rcu_is_nocb_cpu(cpu))
P
Paul E. McKenney 已提交
3288
			continue;
3289
		rdp = per_cpu_ptr(rsp->rda, cpu);
3290
		if (rcu_is_nocb_cpu(cpu)) {
P
Paul E. McKenney 已提交
3291 3292 3293 3294 3295 3296
			_rcu_barrier_trace(rsp, "OnlineNoCB", cpu,
					   rsp->n_barrier_done);
			atomic_inc(&rsp->barrier_cpu_count);
			__call_rcu(&rdp->barrier_head, rcu_barrier_callback,
				   rsp, cpu, 0);
		} else if (ACCESS_ONCE(rdp->qlen)) {
3297 3298
			_rcu_barrier_trace(rsp, "OnlineQ", cpu,
					   rsp->n_barrier_done);
3299
			smp_call_function_single(cpu, rcu_barrier_func, rsp, 1);
3300
		} else {
3301 3302
			_rcu_barrier_trace(rsp, "OnlineNQ", cpu,
					   rsp->n_barrier_done);
3303 3304
		}
	}
3305
	put_online_cpus();
3306 3307 3308 3309 3310

	/*
	 * Now that we have an rcu_barrier_callback() callback on each
	 * CPU, and thus each counted, remove the initial count.
	 */
3311
	if (atomic_dec_and_test(&rsp->barrier_cpu_count))
3312
		complete(&rsp->barrier_completion);
3313

3314 3315
	/* Increment ->n_barrier_done to prevent duplicate work. */
	smp_mb(); /* Keep increment after above mechanism. */
3316
	ACCESS_ONCE(rsp->n_barrier_done) = rsp->n_barrier_done + 1;
3317
	WARN_ON_ONCE((rsp->n_barrier_done & 0x1) != 0);
3318
	_rcu_barrier_trace(rsp, "Inc2", -1, rsp->n_barrier_done);
3319 3320
	smp_mb(); /* Keep increment before caller's subsequent code. */

3321
	/* Wait for all rcu_barrier_callback() callbacks to be invoked. */
3322
	wait_for_completion(&rsp->barrier_completion);
3323 3324

	/* Other rcu_barrier() invocations can now safely proceed. */
3325
	mutex_unlock(&rsp->barrier_mutex);
3326 3327 3328 3329 3330 3331 3332
}

/**
 * rcu_barrier_bh - Wait until all in-flight call_rcu_bh() callbacks complete.
 */
void rcu_barrier_bh(void)
{
3333
	_rcu_barrier(&rcu_bh_state);
3334 3335 3336 3337 3338 3339 3340 3341
}
EXPORT_SYMBOL_GPL(rcu_barrier_bh);

/**
 * rcu_barrier_sched - Wait for in-flight call_rcu_sched() callbacks.
 */
void rcu_barrier_sched(void)
{
3342
	_rcu_barrier(&rcu_sched_state);
3343 3344 3345
}
EXPORT_SYMBOL_GPL(rcu_barrier_sched);

3346
/*
3347
 * Do boot-time initialization of a CPU's per-CPU RCU data.
3348
 */
3349 3350
static void __init
rcu_boot_init_percpu_data(int cpu, struct rcu_state *rsp)
3351 3352
{
	unsigned long flags;
3353
	struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
3354 3355 3356
	struct rcu_node *rnp = rcu_get_root(rsp);

	/* Set up local state, ensuring consistent view of global state. */
P
Paul E. McKenney 已提交
3357
	raw_spin_lock_irqsave(&rnp->lock, flags);
3358
	rdp->grpmask = 1UL << (cpu - rdp->mynode->grplo);
3359
	init_callback_list(rdp);
3360
	rdp->qlen_lazy = 0;
3361
	ACCESS_ONCE(rdp->qlen) = 0;
3362
	rdp->dynticks = &per_cpu(rcu_dynticks, cpu);
3363
	WARN_ON_ONCE(rdp->dynticks->dynticks_nesting != DYNTICK_TASK_EXIT_IDLE);
3364
	WARN_ON_ONCE(atomic_read(&rdp->dynticks->dynticks) != 1);
3365
	rdp->cpu = cpu;
3366
	rdp->rsp = rsp;
P
Paul E. McKenney 已提交
3367
	rcu_boot_init_nocb_percpu_data(rdp);
P
Paul E. McKenney 已提交
3368
	raw_spin_unlock_irqrestore(&rnp->lock, flags);
3369 3370 3371 3372 3373 3374 3375
}

/*
 * Initialize a CPU's per-CPU RCU data.  Note that only one online or
 * offline event can be happening at a given time.  Note also that we
 * can accept some slop in the rsp->completed access due to the fact
 * that this CPU cannot possibly have any RCU callbacks in flight yet.
3376
 */
3377
static void
3378
rcu_init_percpu_data(int cpu, struct rcu_state *rsp)
3379 3380 3381
{
	unsigned long flags;
	unsigned long mask;
3382
	struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
3383 3384
	struct rcu_node *rnp = rcu_get_root(rsp);

3385 3386 3387
	/* Exclude new grace periods. */
	mutex_lock(&rsp->onoff_mutex);

3388
	/* Set up local state, ensuring consistent view of global state. */
P
Paul E. McKenney 已提交
3389
	raw_spin_lock_irqsave(&rnp->lock, flags);
3390
	rdp->beenonline = 1;	 /* We have now been online. */
3391 3392
	rdp->qlen_last_fqs_check = 0;
	rdp->n_force_qs_snap = rsp->n_force_qs;
3393
	rdp->blimit = blimit;
3394
	init_callback_list(rdp);  /* Re-enable callbacks on this CPU. */
3395
	rdp->dynticks->dynticks_nesting = DYNTICK_TASK_EXIT_IDLE;
3396
	rcu_sysidle_init_percpu_data(rdp->dynticks);
3397 3398
	atomic_set(&rdp->dynticks->dynticks,
		   (atomic_read(&rdp->dynticks->dynticks) & ~0x1) + 1);
P
Paul E. McKenney 已提交
3399
	raw_spin_unlock(&rnp->lock);		/* irqs remain disabled. */
3400 3401 3402 3403 3404 3405

	/* Add CPU to rcu_node bitmasks. */
	rnp = rdp->mynode;
	mask = rdp->grpmask;
	do {
		/* Exclude any attempts to start a new GP on small systems. */
P
Paul E. McKenney 已提交
3406
		raw_spin_lock(&rnp->lock);	/* irqs already disabled. */
3407 3408
		rnp->qsmaskinit |= mask;
		mask = rnp->grpmask;
3409
		if (rnp == rdp->mynode) {
3410 3411 3412 3413 3414 3415
			/*
			 * If there is a grace period in progress, we will
			 * set up to wait for it next time we run the
			 * RCU core code.
			 */
			rdp->gpnum = rnp->completed;
3416
			rdp->completed = rnp->completed;
3417 3418
			rdp->passed_quiesce = 0;
			rdp->qs_pending = 0;
3419
			trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("cpuonl"));
3420
		}
P
Paul E. McKenney 已提交
3421
		raw_spin_unlock(&rnp->lock); /* irqs already disabled. */
3422 3423
		rnp = rnp->parent;
	} while (rnp != NULL && !(rnp->qsmaskinit & mask));
3424
	local_irq_restore(flags);
3425

3426
	mutex_unlock(&rsp->onoff_mutex);
3427 3428
}

3429
static void rcu_prepare_cpu(int cpu)
3430
{
3431 3432 3433
	struct rcu_state *rsp;

	for_each_rcu_flavor(rsp)
3434
		rcu_init_percpu_data(cpu, rsp);
3435 3436 3437
}

/*
3438
 * Handle CPU online/offline notification events.
3439
 */
3440
static int rcu_cpu_notify(struct notifier_block *self,
3441
				    unsigned long action, void *hcpu)
3442 3443
{
	long cpu = (long)hcpu;
3444
	struct rcu_data *rdp = per_cpu_ptr(rcu_state_p->rda, cpu);
3445
	struct rcu_node *rnp = rdp->mynode;
3446
	struct rcu_state *rsp;
3447

3448
	trace_rcu_utilization(TPS("Start CPU hotplug"));
3449 3450 3451
	switch (action) {
	case CPU_UP_PREPARE:
	case CPU_UP_PREPARE_FROZEN:
P
Peter Zijlstra 已提交
3452 3453
		rcu_prepare_cpu(cpu);
		rcu_prepare_kthreads(cpu);
3454 3455
		break;
	case CPU_ONLINE:
3456
	case CPU_DOWN_FAILED:
T
Thomas Gleixner 已提交
3457
		rcu_boost_kthread_setaffinity(rnp, -1);
3458 3459
		break;
	case CPU_DOWN_PREPARE:
3460
		rcu_boost_kthread_setaffinity(rnp, cpu);
3461
		break;
3462 3463
	case CPU_DYING:
	case CPU_DYING_FROZEN:
3464 3465
		for_each_rcu_flavor(rsp)
			rcu_cleanup_dying_cpu(rsp);
3466
		break;
3467 3468 3469 3470
	case CPU_DEAD:
	case CPU_DEAD_FROZEN:
	case CPU_UP_CANCELED:
	case CPU_UP_CANCELED_FROZEN:
3471 3472
		for_each_rcu_flavor(rsp)
			rcu_cleanup_dead_cpu(cpu, rsp);
3473 3474 3475 3476
		break;
	default:
		break;
	}
3477
	trace_rcu_utilization(TPS("End CPU hotplug"));
3478
	return NOTIFY_OK;
3479 3480
}

3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499
static int rcu_pm_notify(struct notifier_block *self,
			 unsigned long action, void *hcpu)
{
	switch (action) {
	case PM_HIBERNATION_PREPARE:
	case PM_SUSPEND_PREPARE:
		if (nr_cpu_ids <= 256) /* Expediting bad for large systems. */
			rcu_expedited = 1;
		break;
	case PM_POST_HIBERNATION:
	case PM_POST_SUSPEND:
		rcu_expedited = 0;
		break;
	default:
		break;
	}
	return NOTIFY_OK;
}

3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510
/*
 * Spawn the kthread that handles this RCU flavor's grace periods.
 */
static int __init rcu_spawn_gp_kthread(void)
{
	unsigned long flags;
	struct rcu_node *rnp;
	struct rcu_state *rsp;
	struct task_struct *t;

	for_each_rcu_flavor(rsp) {
3511
		t = kthread_run(rcu_gp_kthread, rsp, "%s", rsp->name);
3512 3513 3514 3515 3516
		BUG_ON(IS_ERR(t));
		rnp = rcu_get_root(rsp);
		raw_spin_lock_irqsave(&rnp->lock, flags);
		rsp->gp_kthread = t;
		raw_spin_unlock_irqrestore(&rnp->lock, flags);
P
Paul E. McKenney 已提交
3517
		rcu_spawn_nocb_kthreads(rsp);
3518 3519 3520 3521 3522
	}
	return 0;
}
early_initcall(rcu_spawn_gp_kthread);

3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537
/*
 * This function is invoked towards the end of the scheduler's initialization
 * process.  Before this is called, the idle task might contain
 * RCU read-side critical sections (during which time, this idle
 * task is booting the system).  After this function is called, the
 * idle tasks are prohibited from containing RCU read-side critical
 * sections.  This function also enables RCU lockdep checking.
 */
void rcu_scheduler_starting(void)
{
	WARN_ON(num_online_cpus() != 1);
	WARN_ON(nr_context_switches() > 0);
	rcu_scheduler_active = 1;
}

3538 3539 3540 3541 3542 3543 3544 3545 3546
/*
 * Compute the per-level fanout, either using the exact fanout specified
 * or balancing the tree, depending on CONFIG_RCU_FANOUT_EXACT.
 */
#ifdef CONFIG_RCU_FANOUT_EXACT
static void __init rcu_init_levelspread(struct rcu_state *rsp)
{
	int i;

3547 3548
	rsp->levelspread[rcu_num_lvls - 1] = rcu_fanout_leaf;
	for (i = rcu_num_lvls - 2; i >= 0; i--)
3549 3550 3551 3552 3553 3554 3555 3556 3557
		rsp->levelspread[i] = CONFIG_RCU_FANOUT;
}
#else /* #ifdef CONFIG_RCU_FANOUT_EXACT */
static void __init rcu_init_levelspread(struct rcu_state *rsp)
{
	int ccur;
	int cprv;
	int i;

3558
	cprv = nr_cpu_ids;
3559
	for (i = rcu_num_lvls - 1; i >= 0; i--) {
3560 3561 3562 3563 3564 3565 3566 3567 3568 3569
		ccur = rsp->levelcnt[i];
		rsp->levelspread[i] = (cprv + ccur - 1) / ccur;
		cprv = ccur;
	}
}
#endif /* #else #ifdef CONFIG_RCU_FANOUT_EXACT */

/*
 * Helper function for rcu_init() that initializes one rcu_state structure.
 */
3570 3571
static void __init rcu_init_one(struct rcu_state *rsp,
		struct rcu_data __percpu *rda)
3572
{
3573 3574 3575 3576 3577 3578 3579 3580 3581 3582
	static const char * const buf[] = {
		"rcu_node_0",
		"rcu_node_1",
		"rcu_node_2",
		"rcu_node_3" };  /* Match MAX_RCU_LVLS */
	static const char * const fqs[] = {
		"rcu_node_fqs_0",
		"rcu_node_fqs_1",
		"rcu_node_fqs_2",
		"rcu_node_fqs_3" };  /* Match MAX_RCU_LVLS */
3583
	static u8 fl_mask = 0x1;
3584 3585 3586 3587 3588
	int cpustride = 1;
	int i;
	int j;
	struct rcu_node *rnp;

3589 3590
	BUILD_BUG_ON(MAX_RCU_LVLS > ARRAY_SIZE(buf));  /* Fix buf[] init! */

3591 3592 3593 3594
	/* Silence gcc 4.8 warning about array index out of range. */
	if (rcu_num_lvls > RCU_NUM_LVLS)
		panic("rcu_init_one: rcu_num_lvls overflow");

3595 3596
	/* Initialize the level-tracking arrays. */

3597 3598 3599
	for (i = 0; i < rcu_num_lvls; i++)
		rsp->levelcnt[i] = num_rcu_lvl[i];
	for (i = 1; i < rcu_num_lvls; i++)
3600 3601
		rsp->level[i] = rsp->level[i - 1] + rsp->levelcnt[i - 1];
	rcu_init_levelspread(rsp);
3602 3603
	rsp->flavor_mask = fl_mask;
	fl_mask <<= 1;
3604 3605 3606

	/* Initialize the elements themselves, starting from the leaves. */

3607
	for (i = rcu_num_lvls - 1; i >= 0; i--) {
3608 3609 3610
		cpustride *= rsp->levelspread[i];
		rnp = rsp->level[i];
		for (j = 0; j < rsp->levelcnt[i]; j++, rnp++) {
P
Paul E. McKenney 已提交
3611
			raw_spin_lock_init(&rnp->lock);
3612 3613
			lockdep_set_class_and_name(&rnp->lock,
						   &rcu_node_class[i], buf[i]);
3614 3615 3616
			raw_spin_lock_init(&rnp->fqslock);
			lockdep_set_class_and_name(&rnp->fqslock,
						   &rcu_fqs_class[i], fqs[i]);
3617 3618
			rnp->gpnum = rsp->gpnum;
			rnp->completed = rsp->completed;
3619 3620 3621 3622
			rnp->qsmask = 0;
			rnp->qsmaskinit = 0;
			rnp->grplo = j * cpustride;
			rnp->grphi = (j + 1) * cpustride - 1;
3623 3624
			if (rnp->grphi >= nr_cpu_ids)
				rnp->grphi = nr_cpu_ids - 1;
3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635
			if (i == 0) {
				rnp->grpnum = 0;
				rnp->grpmask = 0;
				rnp->parent = NULL;
			} else {
				rnp->grpnum = j % rsp->levelspread[i - 1];
				rnp->grpmask = 1UL << rnp->grpnum;
				rnp->parent = rsp->level[i - 1] +
					      j / rsp->levelspread[i - 1];
			}
			rnp->level = i;
3636
			INIT_LIST_HEAD(&rnp->blkd_tasks);
3637
			rcu_init_one_nocb(rnp);
3638 3639
		}
	}
3640

3641
	rsp->rda = rda;
3642
	init_waitqueue_head(&rsp->gp_wq);
3643
	rnp = rsp->level[rcu_num_lvls - 1];
3644
	for_each_possible_cpu(i) {
3645
		while (i > rnp->grphi)
3646
			rnp++;
3647
		per_cpu_ptr(rsp->rda, i)->mynode = rnp;
3648 3649
		rcu_boot_init_percpu_data(i, rsp);
	}
3650
	list_add(&rsp->flavors, &rcu_struct_flavors);
3651 3652
}

3653 3654
/*
 * Compute the rcu_node tree geometry from kernel parameters.  This cannot
3655
 * replace the definitions in tree.h because those are needed to size
3656 3657 3658 3659
 * the ->node array in the rcu_state structure.
 */
static void __init rcu_init_geometry(void)
{
3660
	ulong d;
3661 3662
	int i;
	int j;
3663
	int n = nr_cpu_ids;
3664 3665
	int rcu_capacity[MAX_RCU_LVLS + 1];

3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678
	/*
	 * Initialize any unspecified boot parameters.
	 * The default values of jiffies_till_first_fqs and
	 * jiffies_till_next_fqs are set to the RCU_JIFFIES_TILL_FORCE_QS
	 * value, which is a function of HZ, then adding one for each
	 * RCU_JIFFIES_FQS_DIV CPUs that might be on the system.
	 */
	d = RCU_JIFFIES_TILL_FORCE_QS + nr_cpu_ids / RCU_JIFFIES_FQS_DIV;
	if (jiffies_till_first_fqs == ULONG_MAX)
		jiffies_till_first_fqs = d;
	if (jiffies_till_next_fqs == ULONG_MAX)
		jiffies_till_next_fqs = d;

3679
	/* If the compile-time values are accurate, just leave. */
3680 3681
	if (rcu_fanout_leaf == CONFIG_RCU_FANOUT_LEAF &&
	    nr_cpu_ids == NR_CPUS)
3682
		return;
3683 3684
	pr_info("RCU: Adjusting geometry for rcu_fanout_leaf=%d, nr_cpu_ids=%d\n",
		rcu_fanout_leaf, nr_cpu_ids);
3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729

	/*
	 * Compute number of nodes that can be handled an rcu_node tree
	 * with the given number of levels.  Setting rcu_capacity[0] makes
	 * some of the arithmetic easier.
	 */
	rcu_capacity[0] = 1;
	rcu_capacity[1] = rcu_fanout_leaf;
	for (i = 2; i <= MAX_RCU_LVLS; i++)
		rcu_capacity[i] = rcu_capacity[i - 1] * CONFIG_RCU_FANOUT;

	/*
	 * The boot-time rcu_fanout_leaf parameter is only permitted
	 * to increase the leaf-level fanout, not decrease it.  Of course,
	 * the leaf-level fanout cannot exceed the number of bits in
	 * the rcu_node masks.  Finally, the tree must be able to accommodate
	 * the configured number of CPUs.  Complain and fall back to the
	 * compile-time values if these limits are exceeded.
	 */
	if (rcu_fanout_leaf < CONFIG_RCU_FANOUT_LEAF ||
	    rcu_fanout_leaf > sizeof(unsigned long) * 8 ||
	    n > rcu_capacity[MAX_RCU_LVLS]) {
		WARN_ON(1);
		return;
	}

	/* Calculate the number of rcu_nodes at each level of the tree. */
	for (i = 1; i <= MAX_RCU_LVLS; i++)
		if (n <= rcu_capacity[i]) {
			for (j = 0; j <= i; j++)
				num_rcu_lvl[j] =
					DIV_ROUND_UP(n, rcu_capacity[i - j]);
			rcu_num_lvls = i;
			for (j = i + 1; j <= MAX_RCU_LVLS; j++)
				num_rcu_lvl[j] = 0;
			break;
		}

	/* Calculate the total number of rcu_node structures. */
	rcu_num_nodes = 0;
	for (i = 0; i <= MAX_RCU_LVLS; i++)
		rcu_num_nodes += num_rcu_lvl[i];
	rcu_num_nodes -= n;
}

3730
void __init rcu_init(void)
3731
{
P
Paul E. McKenney 已提交
3732
	int cpu;
3733

3734
	rcu_bootup_announce();
3735
	rcu_init_geometry();
3736
	rcu_init_one(&rcu_bh_state, &rcu_bh_data);
3737
	rcu_init_one(&rcu_sched_state, &rcu_sched_data);
3738
	__rcu_init_preempt();
J
Jiang Fang 已提交
3739
	open_softirq(RCU_SOFTIRQ, rcu_process_callbacks);
3740 3741 3742 3743 3744 3745 3746

	/*
	 * We don't need protection against CPU-hotplug here because
	 * this is called early in boot, before either interrupts
	 * or the scheduler are operational.
	 */
	cpu_notifier(rcu_cpu_notify, 0);
3747
	pm_notifier(rcu_pm_notify, 0);
P
Paul E. McKenney 已提交
3748 3749
	for_each_online_cpu(cpu)
		rcu_cpu_notify(NULL, CPU_UP_PREPARE, (void *)(long)cpu);
3750 3751
}

3752
#include "tree_plugin.h"