core.c 193.8 KB
Newer Older
L
Linus Torvalds 已提交
1
/*
2
 *  kernel/sched/core.c
L
Linus Torvalds 已提交
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
 *
 *  Kernel scheduler and related syscalls
 *
 *  Copyright (C) 1991-2002  Linus Torvalds
 *
 *  1996-12-23  Modified by Dave Grothe to fix bugs in semaphores and
 *		make semaphores SMP safe
 *  1998-11-19	Implemented schedule_timeout() and related stuff
 *		by Andrea Arcangeli
 *  2002-01-04	New ultra-scalable O(1) scheduler by Ingo Molnar:
 *		hybrid priority-list and round-robin design with
 *		an array-switch method of distributing timeslices
 *		and per-CPU runqueues.  Cleanups and useful suggestions
 *		by Davide Libenzi, preemptible kernel bits by Robert Love.
 *  2003-09-03	Interactivity tuning by Con Kolivas.
 *  2004-04-02	Scheduler domains code by Nick Piggin
I
Ingo Molnar 已提交
19 20 21 22 23 24
 *  2007-04-15  Work begun on replacing all interactivity tuning with a
 *              fair scheduling design by Con Kolivas.
 *  2007-05-05  Load balancing (smp-nice) and other improvements
 *              by Peter Williams
 *  2007-05-06  Interactivity improvements to CFS by Mike Galbraith
 *  2007-07-01  Group scheduling enhancements by Srivatsa Vaddagiri
25 26
 *  2007-11-29  RT balancing improvements by Steven Rostedt, Gregory Haskins,
 *              Thomas Gleixner, Mike Kravetz
L
Linus Torvalds 已提交
27 28 29 30 31 32
 */

#include <linux/mm.h>
#include <linux/module.h>
#include <linux/nmi.h>
#include <linux/init.h>
33
#include <linux/uaccess.h>
L
Linus Torvalds 已提交
34 35 36
#include <linux/highmem.h>
#include <asm/mmu_context.h>
#include <linux/interrupt.h>
37
#include <linux/capability.h>
L
Linus Torvalds 已提交
38 39
#include <linux/completion.h>
#include <linux/kernel_stat.h>
40
#include <linux/debug_locks.h>
41
#include <linux/perf_event.h>
L
Linus Torvalds 已提交
42 43 44
#include <linux/security.h>
#include <linux/notifier.h>
#include <linux/profile.h>
45
#include <linux/freezer.h>
46
#include <linux/vmalloc.h>
L
Linus Torvalds 已提交
47 48
#include <linux/blkdev.h>
#include <linux/delay.h>
49
#include <linux/pid_namespace.h>
L
Linus Torvalds 已提交
50 51 52 53 54 55 56
#include <linux/smp.h>
#include <linux/threads.h>
#include <linux/timer.h>
#include <linux/rcupdate.h>
#include <linux/cpu.h>
#include <linux/cpuset.h>
#include <linux/percpu.h>
57
#include <linux/proc_fs.h>
L
Linus Torvalds 已提交
58
#include <linux/seq_file.h>
59
#include <linux/sysctl.h>
L
Linus Torvalds 已提交
60 61
#include <linux/syscalls.h>
#include <linux/times.h>
62
#include <linux/tsacct_kern.h>
63
#include <linux/kprobes.h>
64
#include <linux/delayacct.h>
65
#include <linux/unistd.h>
J
Jens Axboe 已提交
66
#include <linux/pagemap.h>
P
Peter Zijlstra 已提交
67
#include <linux/hrtimer.h>
R
Reynes Philippe 已提交
68
#include <linux/tick.h>
P
Peter Zijlstra 已提交
69 70
#include <linux/debugfs.h>
#include <linux/ctype.h>
71
#include <linux/ftrace.h>
72
#include <linux/slab.h>
73
#include <linux/init_task.h>
L
Linus Torvalds 已提交
74

75
#include <asm/tlb.h>
76
#include <asm/irq_regs.h>
G
Glauber Costa 已提交
77 78 79
#ifdef CONFIG_PARAVIRT
#include <asm/paravirt.h>
#endif
L
Linus Torvalds 已提交
80

81
#include "sched.h"
82
#include "../workqueue_sched.h"
83

84
#define CREATE_TRACE_POINTS
85
#include <trace/events/sched.h>
86

87
void start_bandwidth_timer(struct hrtimer *period_timer, ktime_t period)
88
{
89 90
	unsigned long delta;
	ktime_t soft, hard, now;
91

92 93 94 95 96 97
	for (;;) {
		if (hrtimer_active(period_timer))
			break;

		now = hrtimer_cb_get_time(period_timer);
		hrtimer_forward(period_timer, now, period);
98

99 100 101 102 103 104 105 106
		soft = hrtimer_get_softexpires(period_timer);
		hard = hrtimer_get_expires(period_timer);
		delta = ktime_to_ns(ktime_sub(hard, soft));
		__hrtimer_start_range_ns(period_timer, soft, delta,
					 HRTIMER_MODE_ABS_PINNED, 0);
	}
}

107 108
DEFINE_MUTEX(sched_domains_mutex);
DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
109

110
static void update_rq_clock_task(struct rq *rq, s64 delta);
111

112
void update_rq_clock(struct rq *rq)
113
{
114
	s64 delta;
115

116
	if (rq->skip_clock_update > 0)
117
		return;
118

119 120 121
	delta = sched_clock_cpu(cpu_of(rq)) - rq->clock;
	rq->clock += delta;
	update_rq_clock_task(rq, delta);
122 123
}

I
Ingo Molnar 已提交
124 125 126
/*
 * Debugging: various feature bits
 */
P
Peter Zijlstra 已提交
127 128 129 130

#define SCHED_FEAT(name, enabled)	\
	(1UL << __SCHED_FEAT_##name) * enabled |

I
Ingo Molnar 已提交
131
const_debug unsigned int sysctl_sched_features =
132
#include "features.h"
P
Peter Zijlstra 已提交
133 134 135 136 137 138 139 140
	0;

#undef SCHED_FEAT

#ifdef CONFIG_SCHED_DEBUG
#define SCHED_FEAT(name, enabled)	\
	#name ,

141
static __read_mostly char *sched_feat_names[] = {
142
#include "features.h"
P
Peter Zijlstra 已提交
143 144 145 146 147
	NULL
};

#undef SCHED_FEAT

L
Li Zefan 已提交
148
static int sched_feat_show(struct seq_file *m, void *v)
P
Peter Zijlstra 已提交
149 150 151
{
	int i;

152
	for (i = 0; i < __SCHED_FEAT_NR; i++) {
L
Li Zefan 已提交
153 154 155
		if (!(sysctl_sched_features & (1UL << i)))
			seq_puts(m, "NO_");
		seq_printf(m, "%s ", sched_feat_names[i]);
P
Peter Zijlstra 已提交
156
	}
L
Li Zefan 已提交
157
	seq_puts(m, "\n");
P
Peter Zijlstra 已提交
158

L
Li Zefan 已提交
159
	return 0;
P
Peter Zijlstra 已提交
160 161
}

162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191
#ifdef HAVE_JUMP_LABEL

#define jump_label_key__true  jump_label_key_enabled
#define jump_label_key__false jump_label_key_disabled

#define SCHED_FEAT(name, enabled)	\
	jump_label_key__##enabled ,

struct jump_label_key sched_feat_keys[__SCHED_FEAT_NR] = {
#include "features.h"
};

#undef SCHED_FEAT

static void sched_feat_disable(int i)
{
	if (jump_label_enabled(&sched_feat_keys[i]))
		jump_label_dec(&sched_feat_keys[i]);
}

static void sched_feat_enable(int i)
{
	if (!jump_label_enabled(&sched_feat_keys[i]))
		jump_label_inc(&sched_feat_keys[i]);
}
#else
static void sched_feat_disable(int i) { };
static void sched_feat_enable(int i) { };
#endif /* HAVE_JUMP_LABEL */

P
Peter Zijlstra 已提交
192 193 194 195 196
static ssize_t
sched_feat_write(struct file *filp, const char __user *ubuf,
		size_t cnt, loff_t *ppos)
{
	char buf[64];
197
	char *cmp;
P
Peter Zijlstra 已提交
198 199 200 201 202 203 204 205 206 207
	int neg = 0;
	int i;

	if (cnt > 63)
		cnt = 63;

	if (copy_from_user(&buf, ubuf, cnt))
		return -EFAULT;

	buf[cnt] = 0;
208
	cmp = strstrip(buf);
P
Peter Zijlstra 已提交
209

H
Hillf Danton 已提交
210
	if (strncmp(cmp, "NO_", 3) == 0) {
P
Peter Zijlstra 已提交
211 212 213 214
		neg = 1;
		cmp += 3;
	}

215
	for (i = 0; i < __SCHED_FEAT_NR; i++) {
216
		if (strcmp(cmp, sched_feat_names[i]) == 0) {
217
			if (neg) {
P
Peter Zijlstra 已提交
218
				sysctl_sched_features &= ~(1UL << i);
219 220
				sched_feat_disable(i);
			} else {
P
Peter Zijlstra 已提交
221
				sysctl_sched_features |= (1UL << i);
222 223
				sched_feat_enable(i);
			}
P
Peter Zijlstra 已提交
224 225 226 227
			break;
		}
	}

228
	if (i == __SCHED_FEAT_NR)
P
Peter Zijlstra 已提交
229 230
		return -EINVAL;

231
	*ppos += cnt;
P
Peter Zijlstra 已提交
232 233 234 235

	return cnt;
}

L
Li Zefan 已提交
236 237 238 239 240
static int sched_feat_open(struct inode *inode, struct file *filp)
{
	return single_open(filp, sched_feat_show, NULL);
}

241
static const struct file_operations sched_feat_fops = {
L
Li Zefan 已提交
242 243 244 245 246
	.open		= sched_feat_open,
	.write		= sched_feat_write,
	.read		= seq_read,
	.llseek		= seq_lseek,
	.release	= single_release,
P
Peter Zijlstra 已提交
247 248 249 250 251 252 253 254 255 256
};

static __init int sched_init_debug(void)
{
	debugfs_create_file("sched_features", 0644, NULL, NULL,
			&sched_feat_fops);

	return 0;
}
late_initcall(sched_init_debug);
257
#endif /* CONFIG_SCHED_DEBUG */
I
Ingo Molnar 已提交
258

259 260 261 262 263 264
/*
 * Number of tasks to iterate in a single balance run.
 * Limited because this is done with IRQs disabled.
 */
const_debug unsigned int sysctl_sched_nr_migrate = 32;

265 266 267 268 269 270 271 272
/*
 * period over which we average the RT time consumption, measured
 * in ms.
 *
 * default: 1s
 */
const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC;

P
Peter Zijlstra 已提交
273
/*
P
Peter Zijlstra 已提交
274
 * period over which we measure -rt task cpu usage in us.
P
Peter Zijlstra 已提交
275 276
 * default: 1s
 */
P
Peter Zijlstra 已提交
277
unsigned int sysctl_sched_rt_period = 1000000;
P
Peter Zijlstra 已提交
278

279
__read_mostly int scheduler_running;
280

P
Peter Zijlstra 已提交
281 282 283 284 285
/*
 * part of the period that we allow rt tasks to run in us.
 * default: 0.95s
 */
int sysctl_sched_rt_runtime = 950000;
P
Peter Zijlstra 已提交
286 287


L
Linus Torvalds 已提交
288

289
/*
290
 * __task_rq_lock - lock the rq @p resides on.
291
 */
292
static inline struct rq *__task_rq_lock(struct task_struct *p)
293 294
	__acquires(rq->lock)
{
295 296
	struct rq *rq;

297 298
	lockdep_assert_held(&p->pi_lock);

299
	for (;;) {
300
		rq = task_rq(p);
301
		raw_spin_lock(&rq->lock);
P
Peter Zijlstra 已提交
302
		if (likely(rq == task_rq(p)))
303
			return rq;
304
		raw_spin_unlock(&rq->lock);
305 306 307
	}
}

L
Linus Torvalds 已提交
308
/*
309
 * task_rq_lock - lock p->pi_lock and lock the rq @p resides on.
L
Linus Torvalds 已提交
310
 */
311
static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
312
	__acquires(p->pi_lock)
L
Linus Torvalds 已提交
313 314
	__acquires(rq->lock)
{
315
	struct rq *rq;
L
Linus Torvalds 已提交
316

317
	for (;;) {
318
		raw_spin_lock_irqsave(&p->pi_lock, *flags);
319
		rq = task_rq(p);
320
		raw_spin_lock(&rq->lock);
P
Peter Zijlstra 已提交
321
		if (likely(rq == task_rq(p)))
322
			return rq;
323 324
		raw_spin_unlock(&rq->lock);
		raw_spin_unlock_irqrestore(&p->pi_lock, *flags);
L
Linus Torvalds 已提交
325 326 327
	}
}

A
Alexey Dobriyan 已提交
328
static void __task_rq_unlock(struct rq *rq)
329 330
	__releases(rq->lock)
{
331
	raw_spin_unlock(&rq->lock);
332 333
}

334 335
static inline void
task_rq_unlock(struct rq *rq, struct task_struct *p, unsigned long *flags)
L
Linus Torvalds 已提交
336
	__releases(rq->lock)
337
	__releases(p->pi_lock)
L
Linus Torvalds 已提交
338
{
339 340
	raw_spin_unlock(&rq->lock);
	raw_spin_unlock_irqrestore(&p->pi_lock, *flags);
L
Linus Torvalds 已提交
341 342 343
}

/*
344
 * this_rq_lock - lock this runqueue and disable interrupts.
L
Linus Torvalds 已提交
345
 */
A
Alexey Dobriyan 已提交
346
static struct rq *this_rq_lock(void)
L
Linus Torvalds 已提交
347 348
	__acquires(rq->lock)
{
349
	struct rq *rq;
L
Linus Torvalds 已提交
350 351 352

	local_irq_disable();
	rq = this_rq();
353
	raw_spin_lock(&rq->lock);
L
Linus Torvalds 已提交
354 355 356 357

	return rq;
}

P
Peter Zijlstra 已提交
358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385
#ifdef CONFIG_SCHED_HRTICK
/*
 * Use HR-timers to deliver accurate preemption points.
 *
 * Its all a bit involved since we cannot program an hrt while holding the
 * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a
 * reschedule event.
 *
 * When we get rescheduled we reprogram the hrtick_timer outside of the
 * rq->lock.
 */

static void hrtick_clear(struct rq *rq)
{
	if (hrtimer_active(&rq->hrtick_timer))
		hrtimer_cancel(&rq->hrtick_timer);
}

/*
 * High-resolution timer tick.
 * Runs from hardirq context with interrupts disabled.
 */
static enum hrtimer_restart hrtick(struct hrtimer *timer)
{
	struct rq *rq = container_of(timer, struct rq, hrtick_timer);

	WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());

386
	raw_spin_lock(&rq->lock);
387
	update_rq_clock(rq);
P
Peter Zijlstra 已提交
388
	rq->curr->sched_class->task_tick(rq, rq->curr, 1);
389
	raw_spin_unlock(&rq->lock);
P
Peter Zijlstra 已提交
390 391 392 393

	return HRTIMER_NORESTART;
}

394
#ifdef CONFIG_SMP
395 396 397 398
/*
 * called from hardirq (IPI) context
 */
static void __hrtick_start(void *arg)
399
{
400
	struct rq *rq = arg;
401

402
	raw_spin_lock(&rq->lock);
403 404
	hrtimer_restart(&rq->hrtick_timer);
	rq->hrtick_csd_pending = 0;
405
	raw_spin_unlock(&rq->lock);
406 407
}

408 409 410 411 412
/*
 * Called to set the hrtick timer state.
 *
 * called with rq->lock held and irqs disabled
 */
413
void hrtick_start(struct rq *rq, u64 delay)
414
{
415 416
	struct hrtimer *timer = &rq->hrtick_timer;
	ktime_t time = ktime_add_ns(timer->base->get_time(), delay);
417

418
	hrtimer_set_expires(timer, time);
419 420 421 422

	if (rq == this_rq()) {
		hrtimer_restart(timer);
	} else if (!rq->hrtick_csd_pending) {
423
		__smp_call_function_single(cpu_of(rq), &rq->hrtick_csd, 0);
424 425
		rq->hrtick_csd_pending = 1;
	}
426 427 428 429 430 431 432 433 434 435 436 437 438 439
}

static int
hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
{
	int cpu = (int)(long)hcpu;

	switch (action) {
	case CPU_UP_CANCELED:
	case CPU_UP_CANCELED_FROZEN:
	case CPU_DOWN_PREPARE:
	case CPU_DOWN_PREPARE_FROZEN:
	case CPU_DEAD:
	case CPU_DEAD_FROZEN:
440
		hrtick_clear(cpu_rq(cpu));
441 442 443 444 445 446
		return NOTIFY_OK;
	}

	return NOTIFY_DONE;
}

447
static __init void init_hrtick(void)
448 449 450
{
	hotcpu_notifier(hotplug_hrtick, 0);
}
451 452 453 454 455 456
#else
/*
 * Called to set the hrtick timer state.
 *
 * called with rq->lock held and irqs disabled
 */
457
void hrtick_start(struct rq *rq, u64 delay)
458
{
459
	__hrtimer_start_range_ns(&rq->hrtick_timer, ns_to_ktime(delay), 0,
460
			HRTIMER_MODE_REL_PINNED, 0);
461
}
462

A
Andrew Morton 已提交
463
static inline void init_hrtick(void)
P
Peter Zijlstra 已提交
464 465
{
}
466
#endif /* CONFIG_SMP */
P
Peter Zijlstra 已提交
467

468
static void init_rq_hrtick(struct rq *rq)
P
Peter Zijlstra 已提交
469
{
470 471
#ifdef CONFIG_SMP
	rq->hrtick_csd_pending = 0;
P
Peter Zijlstra 已提交
472

473 474 475 476
	rq->hrtick_csd.flags = 0;
	rq->hrtick_csd.func = __hrtick_start;
	rq->hrtick_csd.info = rq;
#endif
P
Peter Zijlstra 已提交
477

478 479
	hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
	rq->hrtick_timer.function = hrtick;
P
Peter Zijlstra 已提交
480
}
A
Andrew Morton 已提交
481
#else	/* CONFIG_SCHED_HRTICK */
P
Peter Zijlstra 已提交
482 483 484 485 486 487 488 489
static inline void hrtick_clear(struct rq *rq)
{
}

static inline void init_rq_hrtick(struct rq *rq)
{
}

490 491 492
static inline void init_hrtick(void)
{
}
A
Andrew Morton 已提交
493
#endif	/* CONFIG_SCHED_HRTICK */
P
Peter Zijlstra 已提交
494

I
Ingo Molnar 已提交
495 496 497 498 499 500 501 502 503 504 505 506 507
/*
 * resched_task - mark a task 'to be rescheduled now'.
 *
 * On UP this means the setting of the need_resched flag, on SMP it
 * might also involve a cross-CPU call to trigger the scheduler on
 * the target CPU.
 */
#ifdef CONFIG_SMP

#ifndef tsk_is_polling
#define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
#endif

508
void resched_task(struct task_struct *p)
I
Ingo Molnar 已提交
509 510 511
{
	int cpu;

512
	assert_raw_spin_locked(&task_rq(p)->lock);
I
Ingo Molnar 已提交
513

514
	if (test_tsk_need_resched(p))
I
Ingo Molnar 已提交
515 516
		return;

517
	set_tsk_need_resched(p);
I
Ingo Molnar 已提交
518 519 520 521 522 523 524 525 526 527 528

	cpu = task_cpu(p);
	if (cpu == smp_processor_id())
		return;

	/* NEED_RESCHED must be visible before we test polling */
	smp_mb();
	if (!tsk_is_polling(p))
		smp_send_reschedule(cpu);
}

529
void resched_cpu(int cpu)
I
Ingo Molnar 已提交
530 531 532 533
{
	struct rq *rq = cpu_rq(cpu);
	unsigned long flags;

534
	if (!raw_spin_trylock_irqsave(&rq->lock, flags))
I
Ingo Molnar 已提交
535 536
		return;
	resched_task(cpu_curr(cpu));
537
	raw_spin_unlock_irqrestore(&rq->lock, flags);
I
Ingo Molnar 已提交
538
}
539 540

#ifdef CONFIG_NO_HZ
541 542 543 544 545 546 547 548 549 550 551 552 553 554
/*
 * In the semi idle case, use the nearest busy cpu for migrating timers
 * from an idle cpu.  This is good for power-savings.
 *
 * We don't do similar optimization for completely idle system, as
 * selecting an idle cpu will add more delays to the timers than intended
 * (as that cpu's timer base may not be uptodate wrt jiffies etc).
 */
int get_nohz_timer_target(void)
{
	int cpu = smp_processor_id();
	int i;
	struct sched_domain *sd;

555
	rcu_read_lock();
556
	for_each_domain(cpu, sd) {
557 558 559 560 561 562
		for_each_cpu(i, sched_domain_span(sd)) {
			if (!idle_cpu(i)) {
				cpu = i;
				goto unlock;
			}
		}
563
	}
564 565
unlock:
	rcu_read_unlock();
566 567
	return cpu;
}
568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593
/*
 * When add_timer_on() enqueues a timer into the timer wheel of an
 * idle CPU then this timer might expire before the next timer event
 * which is scheduled to wake up that CPU. In case of a completely
 * idle system the next event might even be infinite time into the
 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
 * leaves the inner idle loop so the newly added timer is taken into
 * account when the CPU goes back to idle and evaluates the timer
 * wheel for the next timer event.
 */
void wake_up_idle_cpu(int cpu)
{
	struct rq *rq = cpu_rq(cpu);

	if (cpu == smp_processor_id())
		return;

	/*
	 * This is safe, as this function is called with the timer
	 * wheel base lock of (cpu) held. When the CPU is on the way
	 * to idle and has not yet set rq->curr to idle then it will
	 * be serialized on the timer wheel base lock and take the new
	 * timer into account automatically.
	 */
	if (rq->curr != rq->idle)
		return;
594 595

	/*
596 597 598
	 * We can set TIF_RESCHED on the idle task of the other CPU
	 * lockless. The worst case is that the other CPU runs the
	 * idle task through an additional NOOP schedule()
599
	 */
600
	set_tsk_need_resched(rq->idle);
601

602 603 604 605
	/* NEED_RESCHED must be visible before we test polling */
	smp_mb();
	if (!tsk_is_polling(rq->idle))
		smp_send_reschedule(cpu);
606 607
}

608
static inline bool got_nohz_idle_kick(void)
609
{
610 611
	int cpu = smp_processor_id();
	return idle_cpu(cpu) && test_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu));
612 613
}

614
#else /* CONFIG_NO_HZ */
615

616
static inline bool got_nohz_idle_kick(void)
P
Peter Zijlstra 已提交
617
{
618
	return false;
P
Peter Zijlstra 已提交
619 620
}

621
#endif /* CONFIG_NO_HZ */
622

623
void sched_avg_update(struct rq *rq)
624
{
625 626 627
	s64 period = sched_avg_period();

	while ((s64)(rq->clock - rq->age_stamp) > period) {
628 629 630 631 632 633
		/*
		 * Inline assembly required to prevent the compiler
		 * optimising this loop into a divmod call.
		 * See __iter_div_u64_rem() for another example of this.
		 */
		asm("" : "+rm" (rq->age_stamp));
634 635 636
		rq->age_stamp += period;
		rq->rt_avg /= 2;
	}
637 638
}

639
#else /* !CONFIG_SMP */
640
void resched_task(struct task_struct *p)
641
{
642
	assert_raw_spin_locked(&task_rq(p)->lock);
643
	set_tsk_need_resched(p);
644
}
645
#endif /* CONFIG_SMP */
646

647 648
#if defined(CONFIG_RT_GROUP_SCHED) || (defined(CONFIG_FAIR_GROUP_SCHED) && \
			(defined(CONFIG_SMP) || defined(CONFIG_CFS_BANDWIDTH)))
649
/*
650 651 652 653
 * Iterate task_group tree rooted at *from, calling @down when first entering a
 * node and @up when leaving it for the final time.
 *
 * Caller must hold rcu_lock or sufficient equivalent.
654
 */
655
int walk_tg_tree_from(struct task_group *from,
656
			     tg_visitor down, tg_visitor up, void *data)
657 658
{
	struct task_group *parent, *child;
P
Peter Zijlstra 已提交
659
	int ret;
660

661 662
	parent = from;

663
down:
P
Peter Zijlstra 已提交
664 665
	ret = (*down)(parent, data);
	if (ret)
666
		goto out;
667 668 669 670 671 672 673
	list_for_each_entry_rcu(child, &parent->children, siblings) {
		parent = child;
		goto down;

up:
		continue;
	}
P
Peter Zijlstra 已提交
674
	ret = (*up)(parent, data);
675 676
	if (ret || parent == from)
		goto out;
677 678 679 680 681

	child = parent;
	parent = parent->parent;
	if (parent)
		goto up;
682
out:
P
Peter Zijlstra 已提交
683
	return ret;
684 685
}

686
int tg_nop(struct task_group *tg, void *data)
P
Peter Zijlstra 已提交
687
{
688
	return 0;
P
Peter Zijlstra 已提交
689
}
690 691
#endif

692
void update_cpu_load(struct rq *this_rq);
693

694 695
static void set_load_weight(struct task_struct *p)
{
N
Nikhil Rao 已提交
696 697 698
	int prio = p->static_prio - MAX_RT_PRIO;
	struct load_weight *load = &p->se.load;

I
Ingo Molnar 已提交
699 700 701 702
	/*
	 * SCHED_IDLE tasks get minimal weight:
	 */
	if (p->policy == SCHED_IDLE) {
703
		load->weight = scale_load(WEIGHT_IDLEPRIO);
N
Nikhil Rao 已提交
704
		load->inv_weight = WMULT_IDLEPRIO;
I
Ingo Molnar 已提交
705 706
		return;
	}
707

708
	load->weight = scale_load(prio_to_weight[prio]);
N
Nikhil Rao 已提交
709
	load->inv_weight = prio_to_wmult[prio];
710 711
}

712
static void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
713
{
714
	update_rq_clock(rq);
I
Ingo Molnar 已提交
715
	sched_info_queued(p);
716
	p->sched_class->enqueue_task(rq, p, flags);
717 718
}

719
static void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
720
{
721
	update_rq_clock(rq);
722
	sched_info_dequeued(p);
723
	p->sched_class->dequeue_task(rq, p, flags);
724 725
}

726 727 728
/*
 * activate_task - move a task to the runqueue.
 */
729
void activate_task(struct rq *rq, struct task_struct *p, int flags)
730 731 732 733
{
	if (task_contributes_to_load(p))
		rq->nr_uninterruptible--;

734
	enqueue_task(rq, p, flags);
735 736 737 738 739
}

/*
 * deactivate_task - remove a task from the runqueue.
 */
740
void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
741 742 743 744
{
	if (task_contributes_to_load(p))
		rq->nr_uninterruptible++;

745
	dequeue_task(rq, p, flags);
746 747
}

748 749
#ifdef CONFIG_IRQ_TIME_ACCOUNTING

750 751 752 753 754 755 756
/*
 * There are no locks covering percpu hardirq/softirq time.
 * They are only modified in account_system_vtime, on corresponding CPU
 * with interrupts disabled. So, writes are safe.
 * They are read and saved off onto struct rq in update_rq_clock().
 * This may result in other CPU reading this CPU's irq time and can
 * race with irq/account_system_vtime on this CPU. We would either get old
757 758 759
 * or new value with a side effect of accounting a slice of irq time to wrong
 * task when irq is in progress while we read rq->clock. That is a worthy
 * compromise in place of having locks on each irq in account_system_time.
760
 */
761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776
static DEFINE_PER_CPU(u64, cpu_hardirq_time);
static DEFINE_PER_CPU(u64, cpu_softirq_time);

static DEFINE_PER_CPU(u64, irq_start_time);
static int sched_clock_irqtime;

void enable_sched_clock_irqtime(void)
{
	sched_clock_irqtime = 1;
}

void disable_sched_clock_irqtime(void)
{
	sched_clock_irqtime = 0;
}

777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814
#ifndef CONFIG_64BIT
static DEFINE_PER_CPU(seqcount_t, irq_time_seq);

static inline void irq_time_write_begin(void)
{
	__this_cpu_inc(irq_time_seq.sequence);
	smp_wmb();
}

static inline void irq_time_write_end(void)
{
	smp_wmb();
	__this_cpu_inc(irq_time_seq.sequence);
}

static inline u64 irq_time_read(int cpu)
{
	u64 irq_time;
	unsigned seq;

	do {
		seq = read_seqcount_begin(&per_cpu(irq_time_seq, cpu));
		irq_time = per_cpu(cpu_softirq_time, cpu) +
			   per_cpu(cpu_hardirq_time, cpu);
	} while (read_seqcount_retry(&per_cpu(irq_time_seq, cpu), seq));

	return irq_time;
}
#else /* CONFIG_64BIT */
static inline void irq_time_write_begin(void)
{
}

static inline void irq_time_write_end(void)
{
}

static inline u64 irq_time_read(int cpu)
815 816 817
{
	return per_cpu(cpu_softirq_time, cpu) + per_cpu(cpu_hardirq_time, cpu);
}
818
#endif /* CONFIG_64BIT */
819

820 821 822 823
/*
 * Called before incrementing preempt_count on {soft,}irq_enter
 * and before decrementing preempt_count on {soft,}irq_exit.
 */
824 825 826
void account_system_vtime(struct task_struct *curr)
{
	unsigned long flags;
827
	s64 delta;
828 829 830 831 832 833 834 835
	int cpu;

	if (!sched_clock_irqtime)
		return;

	local_irq_save(flags);

	cpu = smp_processor_id();
836 837 838
	delta = sched_clock_cpu(cpu) - __this_cpu_read(irq_start_time);
	__this_cpu_add(irq_start_time, delta);

839
	irq_time_write_begin();
840 841 842 843 844 845 846
	/*
	 * We do not account for softirq time from ksoftirqd here.
	 * We want to continue accounting softirq time to ksoftirqd thread
	 * in that case, so as not to confuse scheduler with a special task
	 * that do not consume any time, but still wants to run.
	 */
	if (hardirq_count())
847
		__this_cpu_add(cpu_hardirq_time, delta);
848
	else if (in_serving_softirq() && curr != this_cpu_ksoftirqd())
849
		__this_cpu_add(cpu_softirq_time, delta);
850

851
	irq_time_write_end();
852 853
	local_irq_restore(flags);
}
I
Ingo Molnar 已提交
854
EXPORT_SYMBOL_GPL(account_system_vtime);
855

G
Glauber Costa 已提交
856 857 858 859
#endif /* CONFIG_IRQ_TIME_ACCOUNTING */

#ifdef CONFIG_PARAVIRT
static inline u64 steal_ticks(u64 steal)
860
{
G
Glauber Costa 已提交
861 862
	if (unlikely(steal > NSEC_PER_SEC))
		return div_u64(steal, TICK_NSEC);
863

G
Glauber Costa 已提交
864 865 866 867
	return __iter_div_u64_rem(steal, TICK_NSEC, &steal);
}
#endif

868
static void update_rq_clock_task(struct rq *rq, s64 delta)
869
{
870 871 872 873 874 875 876 877
/*
 * In theory, the compile should just see 0 here, and optimize out the call
 * to sched_rt_avg_update. But I don't trust it...
 */
#if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
	s64 steal = 0, irq_delta = 0;
#endif
#ifdef CONFIG_IRQ_TIME_ACCOUNTING
878
	irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time;
879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899

	/*
	 * Since irq_time is only updated on {soft,}irq_exit, we might run into
	 * this case when a previous update_rq_clock() happened inside a
	 * {soft,}irq region.
	 *
	 * When this happens, we stop ->clock_task and only update the
	 * prev_irq_time stamp to account for the part that fit, so that a next
	 * update will consume the rest. This ensures ->clock_task is
	 * monotonic.
	 *
	 * It does however cause some slight miss-attribution of {soft,}irq
	 * time, a more accurate solution would be to update the irq_time using
	 * the current rq->clock timestamp, except that would require using
	 * atomic ops.
	 */
	if (irq_delta > delta)
		irq_delta = delta;

	rq->prev_irq_time += irq_delta;
	delta -= irq_delta;
900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919
#endif
#ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
	if (static_branch((&paravirt_steal_rq_enabled))) {
		u64 st;

		steal = paravirt_steal_clock(cpu_of(rq));
		steal -= rq->prev_steal_time_rq;

		if (unlikely(steal > delta))
			steal = delta;

		st = steal_ticks(steal);
		steal = st * TICK_NSEC;

		rq->prev_steal_time_rq += steal;

		delta -= steal;
	}
#endif

920 921
	rq->clock_task += delta;

922 923 924 925
#if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
	if ((irq_delta + steal) && sched_feat(NONTASK_POWER))
		sched_rt_avg_update(rq, irq_delta + steal);
#endif
926 927
}

928
#ifdef CONFIG_IRQ_TIME_ACCOUNTING
929 930
static int irqtime_account_hi_update(void)
{
931
	u64 *cpustat = kcpustat_this_cpu->cpustat;
932 933 934 935 936 937
	unsigned long flags;
	u64 latest_ns;
	int ret = 0;

	local_irq_save(flags);
	latest_ns = this_cpu_read(cpu_hardirq_time);
938
	if (nsecs_to_cputime64(latest_ns) > cpustat[CPUTIME_IRQ])
939 940 941 942 943 944 945
		ret = 1;
	local_irq_restore(flags);
	return ret;
}

static int irqtime_account_si_update(void)
{
946
	u64 *cpustat = kcpustat_this_cpu->cpustat;
947 948 949 950 951 952
	unsigned long flags;
	u64 latest_ns;
	int ret = 0;

	local_irq_save(flags);
	latest_ns = this_cpu_read(cpu_softirq_time);
953
	if (nsecs_to_cputime64(latest_ns) > cpustat[CPUTIME_SOFTIRQ])
954 955 956 957 958
		ret = 1;
	local_irq_restore(flags);
	return ret;
}

959
#else /* CONFIG_IRQ_TIME_ACCOUNTING */
960

961 962
#define sched_clock_irqtime	(0)

963
#endif
964

965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994
void sched_set_stop_task(int cpu, struct task_struct *stop)
{
	struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
	struct task_struct *old_stop = cpu_rq(cpu)->stop;

	if (stop) {
		/*
		 * Make it appear like a SCHED_FIFO task, its something
		 * userspace knows about and won't get confused about.
		 *
		 * Also, it will make PI more or less work without too
		 * much confusion -- but then, stop work should not
		 * rely on PI working anyway.
		 */
		sched_setscheduler_nocheck(stop, SCHED_FIFO, &param);

		stop->sched_class = &stop_sched_class;
	}

	cpu_rq(cpu)->stop = stop;

	if (old_stop) {
		/*
		 * Reset it back to a normal scheduling class so that
		 * it can die in pieces.
		 */
		old_stop->sched_class = &rt_sched_class;
	}
}

995
/*
I
Ingo Molnar 已提交
996
 * __normal_prio - return the priority that is based on the static prio
997 998 999
 */
static inline int __normal_prio(struct task_struct *p)
{
I
Ingo Molnar 已提交
1000
	return p->static_prio;
1001 1002
}

1003 1004 1005 1006 1007 1008 1009
/*
 * Calculate the expected normal priority: i.e. priority
 * without taking RT-inheritance into account. Might be
 * boosted by interactivity modifiers. Changes upon fork,
 * setprio syscalls, and whenever the interactivity
 * estimator recalculates.
 */
1010
static inline int normal_prio(struct task_struct *p)
1011 1012 1013
{
	int prio;

1014
	if (task_has_rt_policy(p))
1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027
		prio = MAX_RT_PRIO-1 - p->rt_priority;
	else
		prio = __normal_prio(p);
	return prio;
}

/*
 * Calculate the current priority, i.e. the priority
 * taken into account by the scheduler. This value might
 * be boosted by RT tasks, or might be boosted by
 * interactivity modifiers. Will be RT if the task got
 * RT-boosted. If not then it returns p->normal_prio.
 */
1028
static int effective_prio(struct task_struct *p)
1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040
{
	p->normal_prio = normal_prio(p);
	/*
	 * If we are RT tasks or we were boosted to RT priority,
	 * keep the priority unchanged. Otherwise, update priority
	 * to the normal priority:
	 */
	if (!rt_prio(p->prio))
		return p->normal_prio;
	return p->prio;
}

L
Linus Torvalds 已提交
1041 1042 1043 1044
/**
 * task_curr - is this task currently executing on a CPU?
 * @p: the task in question.
 */
1045
inline int task_curr(const struct task_struct *p)
L
Linus Torvalds 已提交
1046 1047 1048 1049
{
	return cpu_curr(task_cpu(p)) == p;
}

1050 1051
static inline void check_class_changed(struct rq *rq, struct task_struct *p,
				       const struct sched_class *prev_class,
P
Peter Zijlstra 已提交
1052
				       int oldprio)
1053 1054 1055
{
	if (prev_class != p->sched_class) {
		if (prev_class->switched_from)
P
Peter Zijlstra 已提交
1056 1057 1058 1059
			prev_class->switched_from(rq, p);
		p->sched_class->switched_to(rq, p);
	} else if (oldprio != p->prio)
		p->sched_class->prio_changed(rq, p, oldprio);
1060 1061
}

1062
void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082
{
	const struct sched_class *class;

	if (p->sched_class == rq->curr->sched_class) {
		rq->curr->sched_class->check_preempt_curr(rq, p, flags);
	} else {
		for_each_class(class) {
			if (class == rq->curr->sched_class)
				break;
			if (class == p->sched_class) {
				resched_task(rq->curr);
				break;
			}
		}
	}

	/*
	 * A queue event has occurred, and we're going to schedule.  In
	 * this case, we can save a useless back to back clock update.
	 */
P
Peter Zijlstra 已提交
1083
	if (rq->curr->on_rq && test_tsk_need_resched(rq->curr))
1084 1085 1086
		rq->skip_clock_update = 1;
}

L
Linus Torvalds 已提交
1087
#ifdef CONFIG_SMP
I
Ingo Molnar 已提交
1088
void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
I
Ingo Molnar 已提交
1089
{
1090 1091 1092 1093 1094
#ifdef CONFIG_SCHED_DEBUG
	/*
	 * We should never call set_task_cpu() on a blocked task,
	 * ttwu() will sort out the placement.
	 */
P
Peter Zijlstra 已提交
1095 1096
	WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING &&
			!(task_thread_info(p)->preempt_count & PREEMPT_ACTIVE));
1097 1098

#ifdef CONFIG_LOCKDEP
1099 1100 1101 1102 1103 1104 1105 1106 1107 1108
	/*
	 * The caller should hold either p->pi_lock or rq->lock, when changing
	 * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks.
	 *
	 * sched_move_task() holds both and thus holding either pins the cgroup,
	 * see set_task_rq().
	 *
	 * Furthermore, all task_rq users should acquire both locks, see
	 * task_rq_lock().
	 */
1109 1110 1111
	WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) ||
				      lockdep_is_held(&task_rq(p)->lock)));
#endif
1112 1113
#endif

1114
	trace_sched_migrate_task(p, new_cpu);
1115

1116 1117
	if (task_cpu(p) != new_cpu) {
		p->se.nr_migrations++;
1118
		perf_sw_event(PERF_COUNT_SW_CPU_MIGRATIONS, 1, NULL, 0);
1119
	}
I
Ingo Molnar 已提交
1120 1121

	__set_task_cpu(p, new_cpu);
I
Ingo Molnar 已提交
1122 1123
}

1124
struct migration_arg {
1125
	struct task_struct *task;
L
Linus Torvalds 已提交
1126
	int dest_cpu;
1127
};
L
Linus Torvalds 已提交
1128

1129 1130
static int migration_cpu_stop(void *data);

L
Linus Torvalds 已提交
1131 1132 1133
/*
 * wait_task_inactive - wait for a thread to unschedule.
 *
R
Roland McGrath 已提交
1134 1135 1136 1137 1138 1139 1140
 * If @match_state is nonzero, it's the @p->state value just checked and
 * not expected to change.  If it changes, i.e. @p might have woken up,
 * then return zero.  When we succeed in waiting for @p to be off its CPU,
 * we return a positive number (its total switch count).  If a second call
 * a short while later returns the same number, the caller can be sure that
 * @p has remained unscheduled the whole time.
 *
L
Linus Torvalds 已提交
1141 1142 1143 1144 1145 1146
 * The caller must ensure that the task *will* unschedule sometime soon,
 * else this function might spin for a *long* time. This function can't
 * be called with interrupts off, or it may introduce deadlock with
 * smp_call_function() if an IPI is sent by the same process we are
 * waiting to become inactive.
 */
R
Roland McGrath 已提交
1147
unsigned long wait_task_inactive(struct task_struct *p, long match_state)
L
Linus Torvalds 已提交
1148 1149
{
	unsigned long flags;
I
Ingo Molnar 已提交
1150
	int running, on_rq;
R
Roland McGrath 已提交
1151
	unsigned long ncsw;
1152
	struct rq *rq;
L
Linus Torvalds 已提交
1153

1154 1155 1156 1157 1158 1159 1160 1161
	for (;;) {
		/*
		 * We do the initial early heuristics without holding
		 * any task-queue locks at all. We'll only try to get
		 * the runqueue lock when things look like they will
		 * work out!
		 */
		rq = task_rq(p);
1162

1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173
		/*
		 * If the task is actively running on another CPU
		 * still, just relax and busy-wait without holding
		 * any locks.
		 *
		 * NOTE! Since we don't hold any locks, it's not
		 * even sure that "rq" stays as the right runqueue!
		 * But we don't care, since "task_running()" will
		 * return false if the runqueue has changed and p
		 * is actually now running somewhere else!
		 */
R
Roland McGrath 已提交
1174 1175 1176
		while (task_running(rq, p)) {
			if (match_state && unlikely(p->state != match_state))
				return 0;
1177
			cpu_relax();
R
Roland McGrath 已提交
1178
		}
1179

1180 1181 1182 1183 1184 1185
		/*
		 * Ok, time to look more closely! We need the rq
		 * lock now, to be *sure*. If we're wrong, we'll
		 * just go back and repeat.
		 */
		rq = task_rq_lock(p, &flags);
1186
		trace_sched_wait_task(p);
1187
		running = task_running(rq, p);
P
Peter Zijlstra 已提交
1188
		on_rq = p->on_rq;
R
Roland McGrath 已提交
1189
		ncsw = 0;
1190
		if (!match_state || p->state == match_state)
1191
			ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
1192
		task_rq_unlock(rq, p, &flags);
1193

R
Roland McGrath 已提交
1194 1195 1196 1197 1198 1199
		/*
		 * If it changed from the expected state, bail out now.
		 */
		if (unlikely(!ncsw))
			break;

1200 1201 1202 1203 1204 1205 1206 1207 1208 1209
		/*
		 * Was it really running after all now that we
		 * checked with the proper locks actually held?
		 *
		 * Oops. Go back and try again..
		 */
		if (unlikely(running)) {
			cpu_relax();
			continue;
		}
1210

1211 1212 1213 1214 1215
		/*
		 * It's not enough that it's not actively running,
		 * it must be off the runqueue _entirely_, and not
		 * preempted!
		 *
1216
		 * So if it was still runnable (but just not actively
1217 1218 1219 1220
		 * running right now), it's preempted, and we should
		 * yield - it could be a while.
		 */
		if (unlikely(on_rq)) {
1221 1222 1223 1224
			ktime_t to = ktime_set(0, NSEC_PER_SEC/HZ);

			set_current_state(TASK_UNINTERRUPTIBLE);
			schedule_hrtimeout(&to, HRTIMER_MODE_REL);
1225 1226
			continue;
		}
1227

1228 1229 1230 1231 1232 1233 1234
		/*
		 * Ahh, all good. It wasn't running, and it wasn't
		 * runnable, which means that it will never become
		 * running in the future either. We're all done!
		 */
		break;
	}
R
Roland McGrath 已提交
1235 1236

	return ncsw;
L
Linus Torvalds 已提交
1237 1238 1239 1240 1241 1242 1243 1244 1245
}

/***
 * kick_process - kick a running thread to enter/exit the kernel
 * @p: the to-be-kicked thread
 *
 * Cause a process which is running on another CPU to enter
 * kernel-mode, without any delay. (to get signals handled.)
 *
L
Lucas De Marchi 已提交
1246
 * NOTE: this function doesn't have to take the runqueue lock,
L
Linus Torvalds 已提交
1247 1248 1249 1250 1251
 * because all it wants to ensure is that the remote task enters
 * the kernel. If the IPI races and the task has been migrated
 * to another CPU then no harm is done and the purpose has been
 * achieved as well.
 */
1252
void kick_process(struct task_struct *p)
L
Linus Torvalds 已提交
1253 1254 1255 1256 1257 1258 1259 1260 1261
{
	int cpu;

	preempt_disable();
	cpu = task_cpu(p);
	if ((cpu != smp_processor_id()) && task_curr(p))
		smp_send_reschedule(cpu);
	preempt_enable();
}
R
Rusty Russell 已提交
1262
EXPORT_SYMBOL_GPL(kick_process);
N
Nick Piggin 已提交
1263
#endif /* CONFIG_SMP */
L
Linus Torvalds 已提交
1264

1265
#ifdef CONFIG_SMP
1266
/*
1267
 * ->cpus_allowed is protected by both rq->lock and p->pi_lock
1268
 */
1269 1270 1271 1272 1273 1274 1275
static int select_fallback_rq(int cpu, struct task_struct *p)
{
	int dest_cpu;
	const struct cpumask *nodemask = cpumask_of_node(cpu_to_node(cpu));

	/* Look for allowed, online CPU in same node. */
	for_each_cpu_and(dest_cpu, nodemask, cpu_active_mask)
1276
		if (cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
1277 1278 1279
			return dest_cpu;

	/* Any allowed, online CPU? */
1280
	dest_cpu = cpumask_any_and(tsk_cpus_allowed(p), cpu_active_mask);
1281 1282 1283 1284
	if (dest_cpu < nr_cpu_ids)
		return dest_cpu;

	/* No more Mr. Nice Guy. */
1285 1286 1287 1288 1289 1290 1291 1292 1293
	dest_cpu = cpuset_cpus_allowed_fallback(p);
	/*
	 * Don't tell them about moving exiting tasks or
	 * kernel threads (both mm NULL), since they never
	 * leave kernel.
	 */
	if (p->mm && printk_ratelimit()) {
		printk(KERN_INFO "process %d (%s) no longer affine to cpu%d\n",
				task_pid_nr(p), p->comm, cpu);
1294 1295 1296 1297 1298
	}

	return dest_cpu;
}

1299
/*
1300
 * The caller (fork, wakeup) owns p->pi_lock, ->cpus_allowed is stable.
1301
 */
1302
static inline
1303
int select_task_rq(struct task_struct *p, int sd_flags, int wake_flags)
1304
{
1305
	int cpu = p->sched_class->select_task_rq(p, sd_flags, wake_flags);
1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316

	/*
	 * In order not to call set_task_cpu() on a blocking task we need
	 * to rely on ttwu() to place the task on a valid ->cpus_allowed
	 * cpu.
	 *
	 * Since this is common to all placement strategies, this lives here.
	 *
	 * [ this allows ->select_task() to simply return task_cpu(p) and
	 *   not worry about this generic constraint ]
	 */
1317
	if (unlikely(!cpumask_test_cpu(cpu, tsk_cpus_allowed(p)) ||
P
Peter Zijlstra 已提交
1318
		     !cpu_online(cpu)))
1319
		cpu = select_fallback_rq(task_cpu(p), p);
1320 1321

	return cpu;
1322
}
1323 1324 1325 1326 1327 1328

static void update_avg(u64 *avg, u64 sample)
{
	s64 diff = sample - *avg;
	*avg += diff >> 3;
}
1329 1330
#endif

P
Peter Zijlstra 已提交
1331
static void
1332
ttwu_stat(struct task_struct *p, int cpu, int wake_flags)
T
Tejun Heo 已提交
1333
{
P
Peter Zijlstra 已提交
1334
#ifdef CONFIG_SCHEDSTATS
1335 1336
	struct rq *rq = this_rq();

P
Peter Zijlstra 已提交
1337 1338 1339 1340 1341 1342 1343 1344 1345 1346
#ifdef CONFIG_SMP
	int this_cpu = smp_processor_id();

	if (cpu == this_cpu) {
		schedstat_inc(rq, ttwu_local);
		schedstat_inc(p, se.statistics.nr_wakeups_local);
	} else {
		struct sched_domain *sd;

		schedstat_inc(p, se.statistics.nr_wakeups_remote);
1347
		rcu_read_lock();
P
Peter Zijlstra 已提交
1348 1349 1350 1351 1352 1353
		for_each_domain(this_cpu, sd) {
			if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
				schedstat_inc(sd, ttwu_wake_remote);
				break;
			}
		}
1354
		rcu_read_unlock();
P
Peter Zijlstra 已提交
1355
	}
1356 1357 1358 1359

	if (wake_flags & WF_MIGRATED)
		schedstat_inc(p, se.statistics.nr_wakeups_migrate);

P
Peter Zijlstra 已提交
1360 1361 1362
#endif /* CONFIG_SMP */

	schedstat_inc(rq, ttwu_count);
T
Tejun Heo 已提交
1363
	schedstat_inc(p, se.statistics.nr_wakeups);
P
Peter Zijlstra 已提交
1364 1365

	if (wake_flags & WF_SYNC)
T
Tejun Heo 已提交
1366
		schedstat_inc(p, se.statistics.nr_wakeups_sync);
P
Peter Zijlstra 已提交
1367 1368 1369 1370 1371 1372

#endif /* CONFIG_SCHEDSTATS */
}

static void ttwu_activate(struct rq *rq, struct task_struct *p, int en_flags)
{
T
Tejun Heo 已提交
1373
	activate_task(rq, p, en_flags);
P
Peter Zijlstra 已提交
1374
	p->on_rq = 1;
1375 1376 1377 1378

	/* if a worker is waking up, notify workqueue */
	if (p->flags & PF_WQ_WORKER)
		wq_worker_waking_up(p, cpu_of(rq));
T
Tejun Heo 已提交
1379 1380
}

1381 1382 1383
/*
 * Mark the task runnable and perform wakeup-preemption.
 */
1384
static void
1385
ttwu_do_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
T
Tejun Heo 已提交
1386
{
1387
	trace_sched_wakeup(p, true);
T
Tejun Heo 已提交
1388 1389 1390 1391 1392 1393 1394
	check_preempt_curr(rq, p, wake_flags);

	p->state = TASK_RUNNING;
#ifdef CONFIG_SMP
	if (p->sched_class->task_woken)
		p->sched_class->task_woken(rq, p);

1395
	if (rq->idle_stamp) {
T
Tejun Heo 已提交
1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407
		u64 delta = rq->clock - rq->idle_stamp;
		u64 max = 2*sysctl_sched_migration_cost;

		if (delta > max)
			rq->avg_idle = max;
		else
			update_avg(&rq->avg_idle, delta);
		rq->idle_stamp = 0;
	}
#endif
}

1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440
static void
ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags)
{
#ifdef CONFIG_SMP
	if (p->sched_contributes_to_load)
		rq->nr_uninterruptible--;
#endif

	ttwu_activate(rq, p, ENQUEUE_WAKEUP | ENQUEUE_WAKING);
	ttwu_do_wakeup(rq, p, wake_flags);
}

/*
 * Called in case the task @p isn't fully descheduled from its runqueue,
 * in this case we must do a remote wakeup. Its a 'light' wakeup though,
 * since all we need to do is flip p->state to TASK_RUNNING, since
 * the task is still ->on_rq.
 */
static int ttwu_remote(struct task_struct *p, int wake_flags)
{
	struct rq *rq;
	int ret = 0;

	rq = __task_rq_lock(p);
	if (p->on_rq) {
		ttwu_do_wakeup(rq, p, wake_flags);
		ret = 1;
	}
	__task_rq_unlock(rq);

	return ret;
}

1441
#ifdef CONFIG_SMP
P
Peter Zijlstra 已提交
1442
static void sched_ttwu_pending(void)
1443 1444
{
	struct rq *rq = this_rq();
P
Peter Zijlstra 已提交
1445 1446
	struct llist_node *llist = llist_del_all(&rq->wake_list);
	struct task_struct *p;
1447 1448 1449

	raw_spin_lock(&rq->lock);

P
Peter Zijlstra 已提交
1450 1451 1452
	while (llist) {
		p = llist_entry(llist, struct task_struct, wake_entry);
		llist = llist_next(llist);
1453 1454 1455 1456 1457 1458 1459 1460
		ttwu_do_activate(rq, p, 0);
	}

	raw_spin_unlock(&rq->lock);
}

void scheduler_ipi(void)
{
1461
	if (llist_empty(&this_rq()->wake_list) && !got_nohz_idle_kick())
1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477
		return;

	/*
	 * Not all reschedule IPI handlers call irq_enter/irq_exit, since
	 * traditionally all their work was done from the interrupt return
	 * path. Now that we actually do some work, we need to make sure
	 * we do call them.
	 *
	 * Some archs already do call them, luckily irq_enter/exit nest
	 * properly.
	 *
	 * Arguably we should visit all archs and update all handlers,
	 * however a fair share of IPIs are still resched only so this would
	 * somewhat pessimize the simple resched case.
	 */
	irq_enter();
P
Peter Zijlstra 已提交
1478
	sched_ttwu_pending();
1479 1480 1481 1482

	/*
	 * Check if someone kicked us for doing the nohz idle load balance.
	 */
1483 1484
	if (unlikely(got_nohz_idle_kick() && !need_resched())) {
		this_rq()->idle_balance = 1;
1485
		raise_softirq_irqoff(SCHED_SOFTIRQ);
1486
	}
1487
	irq_exit();
1488 1489 1490 1491
}

static void ttwu_queue_remote(struct task_struct *p, int cpu)
{
P
Peter Zijlstra 已提交
1492
	if (llist_add(&p->wake_entry, &cpu_rq(cpu)->wake_list))
1493 1494
		smp_send_reschedule(cpu);
}
1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513

#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
static int ttwu_activate_remote(struct task_struct *p, int wake_flags)
{
	struct rq *rq;
	int ret = 0;

	rq = __task_rq_lock(p);
	if (p->on_cpu) {
		ttwu_activate(rq, p, ENQUEUE_WAKEUP);
		ttwu_do_wakeup(rq, p, wake_flags);
		ret = 1;
	}
	__task_rq_unlock(rq);

	return ret;

}
#endif /* __ARCH_WANT_INTERRUPTS_ON_CTXSW */
1514 1515 1516 1517 1518

static inline int ttwu_share_cache(int this_cpu, int that_cpu)
{
	return per_cpu(sd_llc_id, this_cpu) == per_cpu(sd_llc_id, that_cpu);
}
1519
#endif /* CONFIG_SMP */
1520

1521 1522 1523 1524
static void ttwu_queue(struct task_struct *p, int cpu)
{
	struct rq *rq = cpu_rq(cpu);

1525
#if defined(CONFIG_SMP)
1526
	if (sched_feat(TTWU_QUEUE) && !ttwu_share_cache(smp_processor_id(), cpu)) {
1527
		sched_clock_cpu(cpu); /* sync clocks x-cpu */
1528 1529 1530 1531 1532
		ttwu_queue_remote(p, cpu);
		return;
	}
#endif

1533 1534 1535
	raw_spin_lock(&rq->lock);
	ttwu_do_activate(rq, p, 0);
	raw_spin_unlock(&rq->lock);
T
Tejun Heo 已提交
1536 1537 1538
}

/**
L
Linus Torvalds 已提交
1539
 * try_to_wake_up - wake up a thread
T
Tejun Heo 已提交
1540
 * @p: the thread to be awakened
L
Linus Torvalds 已提交
1541
 * @state: the mask of task states that can be woken
T
Tejun Heo 已提交
1542
 * @wake_flags: wake modifier flags (WF_*)
L
Linus Torvalds 已提交
1543 1544 1545 1546 1547 1548 1549
 *
 * Put it on the run-queue if it's not already there. The "current"
 * thread is always on the run-queue (except when the actual
 * re-schedule is in progress), and as such you're allowed to do
 * the simpler "current->state = TASK_RUNNING" to mark yourself
 * runnable without the overhead of this.
 *
T
Tejun Heo 已提交
1550 1551
 * Returns %true if @p was woken up, %false if it was already running
 * or @state didn't match @p's state.
L
Linus Torvalds 已提交
1552
 */
1553 1554
static int
try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags)
L
Linus Torvalds 已提交
1555 1556
{
	unsigned long flags;
1557
	int cpu, success = 0;
P
Peter Zijlstra 已提交
1558

1559
	smp_wmb();
1560
	raw_spin_lock_irqsave(&p->pi_lock, flags);
P
Peter Zijlstra 已提交
1561
	if (!(p->state & state))
L
Linus Torvalds 已提交
1562 1563
		goto out;

1564
	success = 1; /* we're going to change ->state */
L
Linus Torvalds 已提交
1565 1566
	cpu = task_cpu(p);

1567 1568
	if (p->on_rq && ttwu_remote(p, wake_flags))
		goto stat;
L
Linus Torvalds 已提交
1569 1570

#ifdef CONFIG_SMP
P
Peter Zijlstra 已提交
1571
	/*
1572 1573
	 * If the owning (remote) cpu is still in the middle of schedule() with
	 * this task as prev, wait until its done referencing the task.
P
Peter Zijlstra 已提交
1574
	 */
1575 1576 1577
	while (p->on_cpu) {
#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
		/*
1578 1579 1580 1581 1582
		 * In case the architecture enables interrupts in
		 * context_switch(), we cannot busy wait, since that
		 * would lead to deadlocks when an interrupt hits and
		 * tries to wake up @prev. So bail and do a complete
		 * remote wakeup.
1583
		 */
1584
		if (ttwu_activate_remote(p, wake_flags))
1585
			goto stat;
1586
#else
1587
		cpu_relax();
1588
#endif
1589
	}
1590
	/*
1591
	 * Pairs with the smp_wmb() in finish_lock_switch().
1592
	 */
1593
	smp_rmb();
L
Linus Torvalds 已提交
1594

1595
	p->sched_contributes_to_load = !!task_contributes_to_load(p);
P
Peter Zijlstra 已提交
1596
	p->state = TASK_WAKING;
1597

1598
	if (p->sched_class->task_waking)
1599
		p->sched_class->task_waking(p);
1600

1601
	cpu = select_task_rq(p, SD_BALANCE_WAKE, wake_flags);
1602 1603
	if (task_cpu(p) != cpu) {
		wake_flags |= WF_MIGRATED;
1604
		set_task_cpu(p, cpu);
1605
	}
L
Linus Torvalds 已提交
1606 1607
#endif /* CONFIG_SMP */

1608 1609
	ttwu_queue(p, cpu);
stat:
1610
	ttwu_stat(p, cpu, wake_flags);
L
Linus Torvalds 已提交
1611
out:
1612
	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
L
Linus Torvalds 已提交
1613 1614 1615 1616

	return success;
}

T
Tejun Heo 已提交
1617 1618 1619 1620
/**
 * try_to_wake_up_local - try to wake up a local task with rq lock held
 * @p: the thread to be awakened
 *
1621
 * Put @p on the run-queue if it's not already there. The caller must
T
Tejun Heo 已提交
1622
 * ensure that this_rq() is locked, @p is bound to this_rq() and not
1623
 * the current task.
T
Tejun Heo 已提交
1624 1625 1626 1627 1628 1629 1630 1631 1632
 */
static void try_to_wake_up_local(struct task_struct *p)
{
	struct rq *rq = task_rq(p);

	BUG_ON(rq != this_rq());
	BUG_ON(p == current);
	lockdep_assert_held(&rq->lock);

1633 1634 1635 1636 1637 1638
	if (!raw_spin_trylock(&p->pi_lock)) {
		raw_spin_unlock(&rq->lock);
		raw_spin_lock(&p->pi_lock);
		raw_spin_lock(&rq->lock);
	}

T
Tejun Heo 已提交
1639
	if (!(p->state & TASK_NORMAL))
1640
		goto out;
T
Tejun Heo 已提交
1641

P
Peter Zijlstra 已提交
1642
	if (!p->on_rq)
P
Peter Zijlstra 已提交
1643 1644
		ttwu_activate(rq, p, ENQUEUE_WAKEUP);

1645
	ttwu_do_wakeup(rq, p, 0);
1646
	ttwu_stat(p, smp_processor_id(), 0);
1647 1648
out:
	raw_spin_unlock(&p->pi_lock);
T
Tejun Heo 已提交
1649 1650
}

1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661
/**
 * wake_up_process - Wake up a specific process
 * @p: The process to be woken up.
 *
 * Attempt to wake up the nominated process and move it to the set of runnable
 * processes.  Returns 1 if the process was woken up, 0 if it was already
 * running.
 *
 * It may be assumed that this function implies a write memory barrier before
 * changing the task state if and only if any tasks are woken up.
 */
1662
int wake_up_process(struct task_struct *p)
L
Linus Torvalds 已提交
1663
{
1664
	return try_to_wake_up(p, TASK_ALL, 0);
L
Linus Torvalds 已提交
1665 1666 1667
}
EXPORT_SYMBOL(wake_up_process);

1668
int wake_up_state(struct task_struct *p, unsigned int state)
L
Linus Torvalds 已提交
1669 1670 1671 1672 1673 1674 1675
{
	return try_to_wake_up(p, state, 0);
}

/*
 * Perform scheduler related setup for a newly forked process p.
 * p is forked by current.
I
Ingo Molnar 已提交
1676 1677 1678 1679 1680
 *
 * __sched_fork() is basic setup used by init_idle() too:
 */
static void __sched_fork(struct task_struct *p)
{
P
Peter Zijlstra 已提交
1681 1682 1683
	p->on_rq			= 0;

	p->se.on_rq			= 0;
I
Ingo Molnar 已提交
1684 1685
	p->se.exec_start		= 0;
	p->se.sum_exec_runtime		= 0;
1686
	p->se.prev_sum_exec_runtime	= 0;
1687
	p->se.nr_migrations		= 0;
P
Peter Zijlstra 已提交
1688
	p->se.vruntime			= 0;
P
Peter Zijlstra 已提交
1689
	INIT_LIST_HEAD(&p->se.group_node);
I
Ingo Molnar 已提交
1690 1691

#ifdef CONFIG_SCHEDSTATS
1692
	memset(&p->se.statistics, 0, sizeof(p->se.statistics));
I
Ingo Molnar 已提交
1693
#endif
N
Nick Piggin 已提交
1694

P
Peter Zijlstra 已提交
1695
	INIT_LIST_HEAD(&p->rt.run_list);
N
Nick Piggin 已提交
1696

1697 1698 1699
#ifdef CONFIG_PREEMPT_NOTIFIERS
	INIT_HLIST_HEAD(&p->preempt_notifiers);
#endif
I
Ingo Molnar 已提交
1700 1701 1702 1703 1704
}

/*
 * fork()/clone()-time setup:
 */
1705
void sched_fork(struct task_struct *p)
I
Ingo Molnar 已提交
1706
{
1707
	unsigned long flags;
I
Ingo Molnar 已提交
1708 1709 1710
	int cpu = get_cpu();

	__sched_fork(p);
1711
	/*
1712
	 * We mark the process as running here. This guarantees that
1713 1714 1715
	 * nobody will actually run it, and a signal or other external
	 * event cannot wake it up and insert it on the runqueue either.
	 */
1716
	p->state = TASK_RUNNING;
I
Ingo Molnar 已提交
1717

1718 1719 1720 1721 1722
	/*
	 * Make sure we do not leak PI boosting priority to the child.
	 */
	p->prio = current->normal_prio;

1723 1724 1725 1726
	/*
	 * Revert to default priority/policy on fork if requested.
	 */
	if (unlikely(p->sched_reset_on_fork)) {
1727
		if (task_has_rt_policy(p)) {
1728
			p->policy = SCHED_NORMAL;
1729
			p->static_prio = NICE_TO_PRIO(0);
1730 1731 1732 1733 1734 1735
			p->rt_priority = 0;
		} else if (PRIO_TO_NICE(p->static_prio) < 0)
			p->static_prio = NICE_TO_PRIO(0);

		p->prio = p->normal_prio = __normal_prio(p);
		set_load_weight(p);
1736

1737 1738 1739 1740 1741 1742
		/*
		 * We don't need the reset flag anymore after the fork. It has
		 * fulfilled its duty:
		 */
		p->sched_reset_on_fork = 0;
	}
1743

H
Hiroshi Shimamoto 已提交
1744 1745
	if (!rt_prio(p->prio))
		p->sched_class = &fair_sched_class;
1746

P
Peter Zijlstra 已提交
1747 1748 1749
	if (p->sched_class->task_fork)
		p->sched_class->task_fork(p);

1750 1751 1752 1753 1754 1755 1756
	/*
	 * The child is not yet in the pid-hash so no cgroup attach races,
	 * and the cgroup is pinned to this child due to cgroup_fork()
	 * is ran before sched_fork().
	 *
	 * Silence PROVE_RCU.
	 */
1757
	raw_spin_lock_irqsave(&p->pi_lock, flags);
1758
	set_task_cpu(p, cpu);
1759
	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1760

1761
#if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
I
Ingo Molnar 已提交
1762
	if (likely(sched_info_on()))
1763
		memset(&p->sched_info, 0, sizeof(p->sched_info));
L
Linus Torvalds 已提交
1764
#endif
P
Peter Zijlstra 已提交
1765 1766
#if defined(CONFIG_SMP)
	p->on_cpu = 0;
1767
#endif
1768
#ifdef CONFIG_PREEMPT_COUNT
1769
	/* Want to start with kernel preemption disabled. */
A
Al Viro 已提交
1770
	task_thread_info(p)->preempt_count = 1;
L
Linus Torvalds 已提交
1771
#endif
1772
#ifdef CONFIG_SMP
1773
	plist_node_init(&p->pushable_tasks, MAX_PRIO);
1774
#endif
1775

N
Nick Piggin 已提交
1776
	put_cpu();
L
Linus Torvalds 已提交
1777 1778 1779 1780 1781 1782 1783 1784 1785
}

/*
 * wake_up_new_task - wake up a newly created task for the first time.
 *
 * This function will do some initial scheduler statistics housekeeping
 * that must be done for every newly created context, then puts the task
 * on the runqueue and wakes it.
 */
1786
void wake_up_new_task(struct task_struct *p)
L
Linus Torvalds 已提交
1787 1788
{
	unsigned long flags;
I
Ingo Molnar 已提交
1789
	struct rq *rq;
1790

1791
	raw_spin_lock_irqsave(&p->pi_lock, flags);
1792 1793 1794 1795 1796 1797
#ifdef CONFIG_SMP
	/*
	 * Fork balancing, do it here and not earlier because:
	 *  - cpus_allowed can change in the fork path
	 *  - any previously selected cpu might disappear through hotplug
	 */
1798
	set_task_cpu(p, select_task_rq(p, SD_BALANCE_FORK, 0));
1799 1800
#endif

1801
	rq = __task_rq_lock(p);
P
Peter Zijlstra 已提交
1802
	activate_task(rq, p, 0);
P
Peter Zijlstra 已提交
1803
	p->on_rq = 1;
1804
	trace_sched_wakeup_new(p, true);
P
Peter Zijlstra 已提交
1805
	check_preempt_curr(rq, p, WF_FORK);
1806
#ifdef CONFIG_SMP
1807 1808
	if (p->sched_class->task_woken)
		p->sched_class->task_woken(rq, p);
1809
#endif
1810
	task_rq_unlock(rq, p, &flags);
L
Linus Torvalds 已提交
1811 1812
}

1813 1814 1815
#ifdef CONFIG_PREEMPT_NOTIFIERS

/**
1816
 * preempt_notifier_register - tell me when current is being preempted & rescheduled
R
Randy Dunlap 已提交
1817
 * @notifier: notifier struct to register
1818 1819 1820 1821 1822 1823 1824 1825 1826
 */
void preempt_notifier_register(struct preempt_notifier *notifier)
{
	hlist_add_head(&notifier->link, &current->preempt_notifiers);
}
EXPORT_SYMBOL_GPL(preempt_notifier_register);

/**
 * preempt_notifier_unregister - no longer interested in preemption notifications
R
Randy Dunlap 已提交
1827
 * @notifier: notifier struct to unregister
1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856
 *
 * This is safe to call from within a preemption notifier.
 */
void preempt_notifier_unregister(struct preempt_notifier *notifier)
{
	hlist_del(&notifier->link);
}
EXPORT_SYMBOL_GPL(preempt_notifier_unregister);

static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
{
	struct preempt_notifier *notifier;
	struct hlist_node *node;

	hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
		notifier->ops->sched_in(notifier, raw_smp_processor_id());
}

static void
fire_sched_out_preempt_notifiers(struct task_struct *curr,
				 struct task_struct *next)
{
	struct preempt_notifier *notifier;
	struct hlist_node *node;

	hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
		notifier->ops->sched_out(notifier, next);
}

1857
#else /* !CONFIG_PREEMPT_NOTIFIERS */
1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868

static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
{
}

static void
fire_sched_out_preempt_notifiers(struct task_struct *curr,
				 struct task_struct *next)
{
}

1869
#endif /* CONFIG_PREEMPT_NOTIFIERS */
1870

1871 1872 1873
/**
 * prepare_task_switch - prepare to switch tasks
 * @rq: the runqueue preparing to switch
R
Randy Dunlap 已提交
1874
 * @prev: the current task that is being switched out
1875 1876 1877 1878 1879 1880 1881 1882 1883
 * @next: the task we are going to switch to.
 *
 * This is called with the rq lock held and interrupts off. It must
 * be paired with a subsequent finish_task_switch after the context
 * switch.
 *
 * prepare_task_switch sets up locking and calls architecture specific
 * hooks.
 */
1884 1885 1886
static inline void
prepare_task_switch(struct rq *rq, struct task_struct *prev,
		    struct task_struct *next)
1887
{
1888 1889
	sched_info_switch(prev, next);
	perf_event_task_sched_out(prev, next);
1890
	fire_sched_out_preempt_notifiers(prev, next);
1891 1892
	prepare_lock_switch(rq, next);
	prepare_arch_switch(next);
1893
	trace_sched_switch(prev, next);
1894 1895
}

L
Linus Torvalds 已提交
1896 1897
/**
 * finish_task_switch - clean up after a task-switch
1898
 * @rq: runqueue associated with task-switch
L
Linus Torvalds 已提交
1899 1900
 * @prev: the thread we just switched away from.
 *
1901 1902 1903 1904
 * finish_task_switch must be called after the context switch, paired
 * with a prepare_task_switch call before the context switch.
 * finish_task_switch will reconcile locking set up by prepare_task_switch,
 * and do any other architecture-specific cleanup actions.
L
Linus Torvalds 已提交
1905 1906
 *
 * Note that we may have delayed dropping an mm in context_switch(). If
I
Ingo Molnar 已提交
1907
 * so, we finish that here outside of the runqueue lock. (Doing it
L
Linus Torvalds 已提交
1908 1909 1910
 * with the lock held can cause deadlocks; see schedule() for
 * details.)
 */
A
Alexey Dobriyan 已提交
1911
static void finish_task_switch(struct rq *rq, struct task_struct *prev)
L
Linus Torvalds 已提交
1912 1913 1914
	__releases(rq->lock)
{
	struct mm_struct *mm = rq->prev_mm;
O
Oleg Nesterov 已提交
1915
	long prev_state;
L
Linus Torvalds 已提交
1916 1917 1918 1919 1920

	rq->prev_mm = NULL;

	/*
	 * A task struct has one reference for the use as "current".
1921
	 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
O
Oleg Nesterov 已提交
1922 1923
	 * schedule one last time. The schedule call will never return, and
	 * the scheduled task must drop that reference.
1924
	 * The test for TASK_DEAD must occur while the runqueue locks are
L
Linus Torvalds 已提交
1925 1926 1927 1928 1929
	 * still held, otherwise prev could be scheduled on another cpu, die
	 * there before we look at prev->state, and then the reference would
	 * be dropped twice.
	 *		Manfred Spraul <manfred@colorfullife.com>
	 */
O
Oleg Nesterov 已提交
1930
	prev_state = prev->state;
1931
	finish_arch_switch(prev);
1932 1933 1934
#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
	local_irq_disable();
#endif /* __ARCH_WANT_INTERRUPTS_ON_CTXSW */
1935
	perf_event_task_sched_in(prev, current);
1936 1937 1938
#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
	local_irq_enable();
#endif /* __ARCH_WANT_INTERRUPTS_ON_CTXSW */
1939
	finish_lock_switch(rq, prev);
S
Steven Rostedt 已提交
1940

1941
	fire_sched_in_preempt_notifiers(current);
L
Linus Torvalds 已提交
1942 1943
	if (mm)
		mmdrop(mm);
1944
	if (unlikely(prev_state == TASK_DEAD)) {
1945 1946 1947
		/*
		 * Remove function-return probe instances associated with this
		 * task and put them back on the free list.
I
Ingo Molnar 已提交
1948
		 */
1949
		kprobe_flush_task(prev);
L
Linus Torvalds 已提交
1950
		put_task_struct(prev);
1951
	}
L
Linus Torvalds 已提交
1952 1953
}

1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968
#ifdef CONFIG_SMP

/* assumes rq->lock is held */
static inline void pre_schedule(struct rq *rq, struct task_struct *prev)
{
	if (prev->sched_class->pre_schedule)
		prev->sched_class->pre_schedule(rq, prev);
}

/* rq->lock is NOT held, but preemption is disabled */
static inline void post_schedule(struct rq *rq)
{
	if (rq->post_schedule) {
		unsigned long flags;

1969
		raw_spin_lock_irqsave(&rq->lock, flags);
1970 1971
		if (rq->curr->sched_class->post_schedule)
			rq->curr->sched_class->post_schedule(rq);
1972
		raw_spin_unlock_irqrestore(&rq->lock, flags);
1973 1974 1975 1976 1977 1978

		rq->post_schedule = 0;
	}
}

#else
1979

1980 1981 1982 1983 1984 1985
static inline void pre_schedule(struct rq *rq, struct task_struct *p)
{
}

static inline void post_schedule(struct rq *rq)
{
L
Linus Torvalds 已提交
1986 1987
}

1988 1989
#endif

L
Linus Torvalds 已提交
1990 1991 1992 1993
/**
 * schedule_tail - first thing a freshly forked thread must call.
 * @prev: the thread we just switched away from.
 */
1994
asmlinkage void schedule_tail(struct task_struct *prev)
L
Linus Torvalds 已提交
1995 1996
	__releases(rq->lock)
{
1997 1998
	struct rq *rq = this_rq();

1999
	finish_task_switch(rq, prev);
2000

2001 2002 2003 2004 2005
	/*
	 * FIXME: do we need to worry about rq being invalidated by the
	 * task_switch?
	 */
	post_schedule(rq);
2006

2007 2008 2009 2010
#ifdef __ARCH_WANT_UNLOCKED_CTXSW
	/* In this case, finish_task_switch does not reenable preemption */
	preempt_enable();
#endif
L
Linus Torvalds 已提交
2011
	if (current->set_child_tid)
2012
		put_user(task_pid_vnr(current), current->set_child_tid);
L
Linus Torvalds 已提交
2013 2014 2015 2016 2017 2018
}

/*
 * context_switch - switch to the new MM and the new
 * thread's register state.
 */
I
Ingo Molnar 已提交
2019
static inline void
2020
context_switch(struct rq *rq, struct task_struct *prev,
2021
	       struct task_struct *next)
L
Linus Torvalds 已提交
2022
{
I
Ingo Molnar 已提交
2023
	struct mm_struct *mm, *oldmm;
L
Linus Torvalds 已提交
2024

2025
	prepare_task_switch(rq, prev, next);
2026

I
Ingo Molnar 已提交
2027 2028
	mm = next->mm;
	oldmm = prev->active_mm;
2029 2030 2031 2032 2033
	/*
	 * For paravirt, this is coupled with an exit in switch_to to
	 * combine the page table reload and the switch backend into
	 * one hypercall.
	 */
2034
	arch_start_context_switch(prev);
2035

2036
	if (!mm) {
L
Linus Torvalds 已提交
2037 2038 2039 2040 2041 2042
		next->active_mm = oldmm;
		atomic_inc(&oldmm->mm_count);
		enter_lazy_tlb(oldmm, next);
	} else
		switch_mm(oldmm, mm, next);

2043
	if (!prev->mm) {
L
Linus Torvalds 已提交
2044 2045 2046
		prev->active_mm = NULL;
		rq->prev_mm = oldmm;
	}
2047 2048 2049 2050 2051 2052 2053
	/*
	 * Since the runqueue lock will be released by the next
	 * task (which is an invalid locking op but in the case
	 * of the scheduler it's an obvious special-case), so we
	 * do an early lockdep release here:
	 */
#ifndef __ARCH_WANT_UNLOCKED_CTXSW
2054
	spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
2055
#endif
L
Linus Torvalds 已提交
2056 2057 2058 2059

	/* Here we just switch the register state and the stack. */
	switch_to(prev, next, prev);

I
Ingo Molnar 已提交
2060 2061 2062 2063 2064 2065 2066
	barrier();
	/*
	 * this_rq must be evaluated again because prev may have moved
	 * CPUs since it called schedule(), thus the 'rq' on its stack
	 * frame will be invalid.
	 */
	finish_task_switch(this_rq(), prev);
L
Linus Torvalds 已提交
2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083
}

/*
 * nr_running, nr_uninterruptible and nr_context_switches:
 *
 * externally visible scheduler statistics: current number of runnable
 * threads, current number of uninterruptible-sleeping threads, total
 * number of context switches performed since bootup.
 */
unsigned long nr_running(void)
{
	unsigned long i, sum = 0;

	for_each_online_cpu(i)
		sum += cpu_rq(i)->nr_running;

	return sum;
2084
}
L
Linus Torvalds 已提交
2085 2086

unsigned long nr_uninterruptible(void)
2087
{
L
Linus Torvalds 已提交
2088
	unsigned long i, sum = 0;
2089

2090
	for_each_possible_cpu(i)
L
Linus Torvalds 已提交
2091
		sum += cpu_rq(i)->nr_uninterruptible;
2092 2093

	/*
L
Linus Torvalds 已提交
2094 2095
	 * Since we read the counters lockless, it might be slightly
	 * inaccurate. Do not allow it to go below zero though:
2096
	 */
L
Linus Torvalds 已提交
2097 2098
	if (unlikely((long)sum < 0))
		sum = 0;
2099

L
Linus Torvalds 已提交
2100
	return sum;
2101 2102
}

L
Linus Torvalds 已提交
2103
unsigned long long nr_context_switches(void)
2104
{
2105 2106
	int i;
	unsigned long long sum = 0;
2107

2108
	for_each_possible_cpu(i)
L
Linus Torvalds 已提交
2109
		sum += cpu_rq(i)->nr_switches;
2110

L
Linus Torvalds 已提交
2111 2112
	return sum;
}
2113

L
Linus Torvalds 已提交
2114 2115 2116
unsigned long nr_iowait(void)
{
	unsigned long i, sum = 0;
2117

2118
	for_each_possible_cpu(i)
L
Linus Torvalds 已提交
2119
		sum += atomic_read(&cpu_rq(i)->nr_iowait);
2120

L
Linus Torvalds 已提交
2121 2122
	return sum;
}
2123

2124
unsigned long nr_iowait_cpu(int cpu)
2125
{
2126
	struct rq *this = cpu_rq(cpu);
2127 2128
	return atomic_read(&this->nr_iowait);
}
2129

2130 2131 2132 2133 2134
unsigned long this_cpu_load(void)
{
	struct rq *this = this_rq();
	return this->cpu_load[0];
}
2135

2136

2137 2138 2139 2140 2141
/* Variables and functions for calc_load */
static atomic_long_t calc_load_tasks;
static unsigned long calc_load_update;
unsigned long avenrun[3];
EXPORT_SYMBOL(avenrun);
2142

2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157
static long calc_load_fold_active(struct rq *this_rq)
{
	long nr_active, delta = 0;

	nr_active = this_rq->nr_running;
	nr_active += (long) this_rq->nr_uninterruptible;

	if (nr_active != this_rq->calc_load_active) {
		delta = nr_active - this_rq->calc_load_active;
		this_rq->calc_load_active = nr_active;
	}

	return delta;
}

2158 2159 2160 2161 2162 2163 2164 2165 2166
static unsigned long
calc_load(unsigned long load, unsigned long exp, unsigned long active)
{
	load *= exp;
	load += active * (FIXED_1 - exp);
	load += 1UL << (FSHIFT - 1);
	return load >> FSHIFT;
}

2167 2168 2169 2170 2171 2172 2173 2174
#ifdef CONFIG_NO_HZ
/*
 * For NO_HZ we delay the active fold to the next LOAD_FREQ update.
 *
 * When making the ILB scale, we should try to pull this in as well.
 */
static atomic_long_t calc_load_tasks_idle;

2175
void calc_load_account_idle(struct rq *this_rq)
2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195
{
	long delta;

	delta = calc_load_fold_active(this_rq);
	if (delta)
		atomic_long_add(delta, &calc_load_tasks_idle);
}

static long calc_load_fold_idle(void)
{
	long delta = 0;

	/*
	 * Its got a race, we don't care...
	 */
	if (atomic_long_read(&calc_load_tasks_idle))
		delta = atomic_long_xchg(&calc_load_tasks_idle, 0);

	return delta;
}
2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317

/**
 * fixed_power_int - compute: x^n, in O(log n) time
 *
 * @x:         base of the power
 * @frac_bits: fractional bits of @x
 * @n:         power to raise @x to.
 *
 * By exploiting the relation between the definition of the natural power
 * function: x^n := x*x*...*x (x multiplied by itself for n times), and
 * the binary encoding of numbers used by computers: n := \Sum n_i * 2^i,
 * (where: n_i \elem {0, 1}, the binary vector representing n),
 * we find: x^n := x^(\Sum n_i * 2^i) := \Prod x^(n_i * 2^i), which is
 * of course trivially computable in O(log_2 n), the length of our binary
 * vector.
 */
static unsigned long
fixed_power_int(unsigned long x, unsigned int frac_bits, unsigned int n)
{
	unsigned long result = 1UL << frac_bits;

	if (n) for (;;) {
		if (n & 1) {
			result *= x;
			result += 1UL << (frac_bits - 1);
			result >>= frac_bits;
		}
		n >>= 1;
		if (!n)
			break;
		x *= x;
		x += 1UL << (frac_bits - 1);
		x >>= frac_bits;
	}

	return result;
}

/*
 * a1 = a0 * e + a * (1 - e)
 *
 * a2 = a1 * e + a * (1 - e)
 *    = (a0 * e + a * (1 - e)) * e + a * (1 - e)
 *    = a0 * e^2 + a * (1 - e) * (1 + e)
 *
 * a3 = a2 * e + a * (1 - e)
 *    = (a0 * e^2 + a * (1 - e) * (1 + e)) * e + a * (1 - e)
 *    = a0 * e^3 + a * (1 - e) * (1 + e + e^2)
 *
 *  ...
 *
 * an = a0 * e^n + a * (1 - e) * (1 + e + ... + e^n-1) [1]
 *    = a0 * e^n + a * (1 - e) * (1 - e^n)/(1 - e)
 *    = a0 * e^n + a * (1 - e^n)
 *
 * [1] application of the geometric series:
 *
 *              n         1 - x^(n+1)
 *     S_n := \Sum x^i = -------------
 *             i=0          1 - x
 */
static unsigned long
calc_load_n(unsigned long load, unsigned long exp,
	    unsigned long active, unsigned int n)
{

	return calc_load(load, fixed_power_int(exp, FSHIFT, n), active);
}

/*
 * NO_HZ can leave us missing all per-cpu ticks calling
 * calc_load_account_active(), but since an idle CPU folds its delta into
 * calc_load_tasks_idle per calc_load_account_idle(), all we need to do is fold
 * in the pending idle delta if our idle period crossed a load cycle boundary.
 *
 * Once we've updated the global active value, we need to apply the exponential
 * weights adjusted to the number of cycles missed.
 */
static void calc_global_nohz(unsigned long ticks)
{
	long delta, active, n;

	if (time_before(jiffies, calc_load_update))
		return;

	/*
	 * If we crossed a calc_load_update boundary, make sure to fold
	 * any pending idle changes, the respective CPUs might have
	 * missed the tick driven calc_load_account_active() update
	 * due to NO_HZ.
	 */
	delta = calc_load_fold_idle();
	if (delta)
		atomic_long_add(delta, &calc_load_tasks);

	/*
	 * If we were idle for multiple load cycles, apply them.
	 */
	if (ticks >= LOAD_FREQ) {
		n = ticks / LOAD_FREQ;

		active = atomic_long_read(&calc_load_tasks);
		active = active > 0 ? active * FIXED_1 : 0;

		avenrun[0] = calc_load_n(avenrun[0], EXP_1, active, n);
		avenrun[1] = calc_load_n(avenrun[1], EXP_5, active, n);
		avenrun[2] = calc_load_n(avenrun[2], EXP_15, active, n);

		calc_load_update += n * LOAD_FREQ;
	}

	/*
	 * Its possible the remainder of the above division also crosses
	 * a LOAD_FREQ period, the regular check in calc_global_load()
	 * which comes after this will take care of that.
	 *
	 * Consider us being 11 ticks before a cycle completion, and us
	 * sleeping for 4*LOAD_FREQ + 22 ticks, then the above code will
	 * age us 4 cycles, and the test in calc_global_load() will
	 * pick up the final one.
	 */
}
2318
#else
2319
void calc_load_account_idle(struct rq *this_rq)
2320 2321 2322 2323 2324 2325 2326
{
}

static inline long calc_load_fold_idle(void)
{
	return 0;
}
2327 2328 2329 2330

static void calc_global_nohz(unsigned long ticks)
{
}
2331 2332
#endif

2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345
/**
 * get_avenrun - get the load average array
 * @loads:	pointer to dest load array
 * @offset:	offset to add
 * @shift:	shift count to shift the result left
 *
 * These values are estimates at best, so no need for locking.
 */
void get_avenrun(unsigned long *loads, unsigned long offset, int shift)
{
	loads[0] = (avenrun[0] + offset) << shift;
	loads[1] = (avenrun[1] + offset) << shift;
	loads[2] = (avenrun[2] + offset) << shift;
2346 2347 2348
}

/*
2349 2350
 * calc_load - update the avenrun load estimates 10 ticks after the
 * CPUs have updated calc_load_tasks.
2351
 */
2352
void calc_global_load(unsigned long ticks)
2353
{
2354
	long active;
L
Linus Torvalds 已提交
2355

2356 2357 2358
	calc_global_nohz(ticks);

	if (time_before(jiffies, calc_load_update + 10))
2359
		return;
L
Linus Torvalds 已提交
2360

2361 2362
	active = atomic_long_read(&calc_load_tasks);
	active = active > 0 ? active * FIXED_1 : 0;
L
Linus Torvalds 已提交
2363

2364 2365 2366
	avenrun[0] = calc_load(avenrun[0], EXP_1, active);
	avenrun[1] = calc_load(avenrun[1], EXP_5, active);
	avenrun[2] = calc_load(avenrun[2], EXP_15, active);
I
Ingo Molnar 已提交
2367

2368 2369
	calc_load_update += LOAD_FREQ;
}
L
Linus Torvalds 已提交
2370

2371
/*
2372 2373
 * Called from update_cpu_load() to periodically update this CPU's
 * active count.
2374 2375 2376
 */
static void calc_load_account_active(struct rq *this_rq)
{
2377
	long delta;
2378

2379 2380
	if (time_before(jiffies, this_rq->calc_load_update))
		return;
2381

2382 2383 2384
	delta  = calc_load_fold_active(this_rq);
	delta += calc_load_fold_idle();
	if (delta)
2385
		atomic_long_add(delta, &calc_load_tasks);
2386 2387

	this_rq->calc_load_update += LOAD_FREQ;
2388 2389
}

2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456
/*
 * The exact cpuload at various idx values, calculated at every tick would be
 * load = (2^idx - 1) / 2^idx * load + 1 / 2^idx * cur_load
 *
 * If a cpu misses updates for n-1 ticks (as it was idle) and update gets called
 * on nth tick when cpu may be busy, then we have:
 * load = ((2^idx - 1) / 2^idx)^(n-1) * load
 * load = (2^idx - 1) / 2^idx) * load + 1 / 2^idx * cur_load
 *
 * decay_load_missed() below does efficient calculation of
 * load = ((2^idx - 1) / 2^idx)^(n-1) * load
 * avoiding 0..n-1 loop doing load = ((2^idx - 1) / 2^idx) * load
 *
 * The calculation is approximated on a 128 point scale.
 * degrade_zero_ticks is the number of ticks after which load at any
 * particular idx is approximated to be zero.
 * degrade_factor is a precomputed table, a row for each load idx.
 * Each column corresponds to degradation factor for a power of two ticks,
 * based on 128 point scale.
 * Example:
 * row 2, col 3 (=12) says that the degradation at load idx 2 after
 * 8 ticks is 12/128 (which is an approximation of exact factor 3^8/4^8).
 *
 * With this power of 2 load factors, we can degrade the load n times
 * by looking at 1 bits in n and doing as many mult/shift instead of
 * n mult/shifts needed by the exact degradation.
 */
#define DEGRADE_SHIFT		7
static const unsigned char
		degrade_zero_ticks[CPU_LOAD_IDX_MAX] = {0, 8, 32, 64, 128};
static const unsigned char
		degrade_factor[CPU_LOAD_IDX_MAX][DEGRADE_SHIFT + 1] = {
					{0, 0, 0, 0, 0, 0, 0, 0},
					{64, 32, 8, 0, 0, 0, 0, 0},
					{96, 72, 40, 12, 1, 0, 0},
					{112, 98, 75, 43, 15, 1, 0},
					{120, 112, 98, 76, 45, 16, 2} };

/*
 * Update cpu_load for any missed ticks, due to tickless idle. The backlog
 * would be when CPU is idle and so we just decay the old load without
 * adding any new load.
 */
static unsigned long
decay_load_missed(unsigned long load, unsigned long missed_updates, int idx)
{
	int j = 0;

	if (!missed_updates)
		return load;

	if (missed_updates >= degrade_zero_ticks[idx])
		return 0;

	if (idx == 1)
		return load >> missed_updates;

	while (missed_updates) {
		if (missed_updates % 2)
			load = (load * degrade_factor[idx][j]) >> DEGRADE_SHIFT;

		missed_updates >>= 1;
		j++;
	}
	return load;
}

2457
/*
I
Ingo Molnar 已提交
2458
 * Update rq->cpu_load[] statistics. This function is usually called every
2459 2460
 * scheduler tick (TICK_NSEC). With tickless idle this will not be called
 * every tick. We fix it up based on jiffies.
2461
 */
2462
void update_cpu_load(struct rq *this_rq)
2463
{
2464
	unsigned long this_load = this_rq->load.weight;
2465 2466
	unsigned long curr_jiffies = jiffies;
	unsigned long pending_updates;
I
Ingo Molnar 已提交
2467
	int i, scale;
2468

I
Ingo Molnar 已提交
2469
	this_rq->nr_load_updates++;
2470

2471 2472 2473 2474 2475 2476 2477
	/* Avoid repeated calls on same jiffy, when moving in and out of idle */
	if (curr_jiffies == this_rq->last_load_update_tick)
		return;

	pending_updates = curr_jiffies - this_rq->last_load_update_tick;
	this_rq->last_load_update_tick = curr_jiffies;

I
Ingo Molnar 已提交
2478
	/* Update our load: */
2479 2480
	this_rq->cpu_load[0] = this_load; /* Fasttrack for idx 0 */
	for (i = 1, scale = 2; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
I
Ingo Molnar 已提交
2481
		unsigned long old_load, new_load;
2482

I
Ingo Molnar 已提交
2483
		/* scale is effectively 1 << i now, and >> i divides by scale */
2484

I
Ingo Molnar 已提交
2485
		old_load = this_rq->cpu_load[i];
2486
		old_load = decay_load_missed(old_load, pending_updates - 1, i);
I
Ingo Molnar 已提交
2487
		new_load = this_load;
I
Ingo Molnar 已提交
2488 2489 2490 2491 2492 2493
		/*
		 * Round up the averaging division if load is increasing. This
		 * prevents us from getting stuck on 9 if the load is 10, for
		 * example.
		 */
		if (new_load > old_load)
2494 2495 2496
			new_load += scale - 1;

		this_rq->cpu_load[i] = (old_load * (scale - 1) + new_load) >> i;
I
Ingo Molnar 已提交
2497
	}
2498 2499

	sched_avg_update(this_rq);
2500 2501 2502 2503 2504
}

static void update_cpu_load_active(struct rq *this_rq)
{
	update_cpu_load(this_rq);
2505

2506
	calc_load_account_active(this_rq);
2507 2508
}

I
Ingo Molnar 已提交
2509
#ifdef CONFIG_SMP
2510

2511
/*
P
Peter Zijlstra 已提交
2512 2513
 * sched_exec - execve() is a valuable balancing opportunity, because at
 * this point the task has the smallest effective memory and cache footprint.
2514
 */
P
Peter Zijlstra 已提交
2515
void sched_exec(void)
2516
{
P
Peter Zijlstra 已提交
2517
	struct task_struct *p = current;
L
Linus Torvalds 已提交
2518
	unsigned long flags;
2519
	int dest_cpu;
2520

2521
	raw_spin_lock_irqsave(&p->pi_lock, flags);
2522
	dest_cpu = p->sched_class->select_task_rq(p, SD_BALANCE_EXEC, 0);
2523 2524
	if (dest_cpu == smp_processor_id())
		goto unlock;
P
Peter Zijlstra 已提交
2525

2526
	if (likely(cpu_active(dest_cpu))) {
2527
		struct migration_arg arg = { p, dest_cpu };
2528

2529 2530
		raw_spin_unlock_irqrestore(&p->pi_lock, flags);
		stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg);
L
Linus Torvalds 已提交
2531 2532
		return;
	}
2533
unlock:
2534
	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
L
Linus Torvalds 已提交
2535
}
I
Ingo Molnar 已提交
2536

L
Linus Torvalds 已提交
2537 2538 2539
#endif

DEFINE_PER_CPU(struct kernel_stat, kstat);
2540
DEFINE_PER_CPU(struct kernel_cpustat, kernel_cpustat);
L
Linus Torvalds 已提交
2541 2542

EXPORT_PER_CPU_SYMBOL(kstat);
2543
EXPORT_PER_CPU_SYMBOL(kernel_cpustat);
L
Linus Torvalds 已提交
2544 2545

/*
2546
 * Return any ns on the sched_clock that have not yet been accounted in
2547
 * @p in case that task is currently running.
2548 2549
 *
 * Called with task_rq_lock() held on @rq.
L
Linus Torvalds 已提交
2550
 */
2551 2552 2553 2554 2555 2556
static u64 do_task_delta_exec(struct task_struct *p, struct rq *rq)
{
	u64 ns = 0;

	if (task_current(rq, p)) {
		update_rq_clock(rq);
2557
		ns = rq->clock_task - p->se.exec_start;
2558 2559 2560 2561 2562 2563 2564
		if ((s64)ns < 0)
			ns = 0;
	}

	return ns;
}

2565
unsigned long long task_delta_exec(struct task_struct *p)
L
Linus Torvalds 已提交
2566 2567
{
	unsigned long flags;
2568
	struct rq *rq;
2569
	u64 ns = 0;
2570

2571
	rq = task_rq_lock(p, &flags);
2572
	ns = do_task_delta_exec(p, rq);
2573
	task_rq_unlock(rq, p, &flags);
2574

2575 2576
	return ns;
}
2577

2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590
/*
 * Return accounted runtime for the task.
 * In case the task is currently running, return the runtime plus current's
 * pending runtime that have not been accounted yet.
 */
unsigned long long task_sched_runtime(struct task_struct *p)
{
	unsigned long flags;
	struct rq *rq;
	u64 ns = 0;

	rq = task_rq_lock(p, &flags);
	ns = p->se.sum_exec_runtime + do_task_delta_exec(p, rq);
2591
	task_rq_unlock(rq, p, &flags);
2592 2593 2594

	return ns;
}
2595

2596 2597 2598 2599 2600
#ifdef CONFIG_CGROUP_CPUACCT
struct cgroup_subsys cpuacct_subsys;
struct cpuacct root_cpuacct;
#endif

2601 2602
static inline void task_group_account_field(struct task_struct *p, int index,
					    u64 tmp)
2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631
{
#ifdef CONFIG_CGROUP_CPUACCT
	struct kernel_cpustat *kcpustat;
	struct cpuacct *ca;
#endif
	/*
	 * Since all updates are sure to touch the root cgroup, we
	 * get ourselves ahead and touch it first. If the root cgroup
	 * is the only cgroup, then nothing else should be necessary.
	 *
	 */
	__get_cpu_var(kernel_cpustat).cpustat[index] += tmp;

#ifdef CONFIG_CGROUP_CPUACCT
	if (unlikely(!cpuacct_subsys.active))
		return;

	rcu_read_lock();
	ca = task_ca(p);
	while (ca && (ca != &root_cpuacct)) {
		kcpustat = this_cpu_ptr(ca->cpustat);
		kcpustat->cpustat[index] += tmp;
		ca = parent_ca(ca);
	}
	rcu_read_unlock();
#endif
}


L
Linus Torvalds 已提交
2632 2633 2634 2635
/*
 * Account user cpu time to a process.
 * @p: the process that the cpu time gets accounted to
 * @cputime: the cpu time spent in user space since the last update
2636
 * @cputime_scaled: cputime scaled by cpu frequency
L
Linus Torvalds 已提交
2637
 */
2638 2639
void account_user_time(struct task_struct *p, cputime_t cputime,
		       cputime_t cputime_scaled)
L
Linus Torvalds 已提交
2640
{
2641
	int index;
L
Linus Torvalds 已提交
2642

2643
	/* Add user time to process. */
2644 2645
	p->utime += cputime;
	p->utimescaled += cputime_scaled;
2646
	account_group_user_time(p, cputime);
L
Linus Torvalds 已提交
2647

2648
	index = (TASK_NICE(p) > 0) ? CPUTIME_NICE : CPUTIME_USER;
2649

L
Linus Torvalds 已提交
2650
	/* Add user time to cpustat. */
2651
	task_group_account_field(p, index, (__force u64) cputime);
2652

2653 2654
	/* Account for user time used */
	acct_update_integrals(p);
L
Linus Torvalds 已提交
2655 2656
}

2657 2658 2659 2660
/*
 * Account guest cpu time to a process.
 * @p: the process that the cpu time gets accounted to
 * @cputime: the cpu time spent in virtual machine since the last update
2661
 * @cputime_scaled: cputime scaled by cpu frequency
2662
 */
2663 2664
static void account_guest_time(struct task_struct *p, cputime_t cputime,
			       cputime_t cputime_scaled)
2665
{
2666
	u64 *cpustat = kcpustat_this_cpu->cpustat;
2667

2668
	/* Add guest time to process. */
2669 2670
	p->utime += cputime;
	p->utimescaled += cputime_scaled;
2671
	account_group_user_time(p, cputime);
2672
	p->gtime += cputime;
2673

2674
	/* Add guest time to cpustat. */
2675
	if (TASK_NICE(p) > 0) {
2676 2677
		cpustat[CPUTIME_NICE] += (__force u64) cputime;
		cpustat[CPUTIME_GUEST_NICE] += (__force u64) cputime;
2678
	} else {
2679 2680
		cpustat[CPUTIME_USER] += (__force u64) cputime;
		cpustat[CPUTIME_GUEST] += (__force u64) cputime;
2681
	}
2682 2683
}

2684 2685 2686 2687 2688 2689 2690 2691 2692
/*
 * Account system cpu time to a process and desired cpustat field
 * @p: the process that the cpu time gets accounted to
 * @cputime: the cpu time spent in kernel space since the last update
 * @cputime_scaled: cputime scaled by cpu frequency
 * @target_cputime64: pointer to cpustat field that has to be updated
 */
static inline
void __account_system_time(struct task_struct *p, cputime_t cputime,
2693
			cputime_t cputime_scaled, int index)
2694 2695
{
	/* Add system time to process. */
2696 2697
	p->stime += cputime;
	p->stimescaled += cputime_scaled;
2698 2699 2700
	account_group_system_time(p, cputime);

	/* Add system time to cpustat. */
2701
	task_group_account_field(p, index, (__force u64) cputime);
2702 2703 2704 2705 2706

	/* Account for system time used */
	acct_update_integrals(p);
}

L
Linus Torvalds 已提交
2707 2708 2709 2710 2711
/*
 * Account system cpu time to a process.
 * @p: the process that the cpu time gets accounted to
 * @hardirq_offset: the offset to subtract from hardirq_count()
 * @cputime: the cpu time spent in kernel space since the last update
2712
 * @cputime_scaled: cputime scaled by cpu frequency
L
Linus Torvalds 已提交
2713 2714
 */
void account_system_time(struct task_struct *p, int hardirq_offset,
2715
			 cputime_t cputime, cputime_t cputime_scaled)
L
Linus Torvalds 已提交
2716
{
2717
	int index;
L
Linus Torvalds 已提交
2718

2719
	if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0)) {
2720
		account_guest_time(p, cputime, cputime_scaled);
2721 2722
		return;
	}
2723

L
Linus Torvalds 已提交
2724
	if (hardirq_count() - hardirq_offset)
2725
		index = CPUTIME_IRQ;
2726
	else if (in_serving_softirq())
2727
		index = CPUTIME_SOFTIRQ;
L
Linus Torvalds 已提交
2728
	else
2729
		index = CPUTIME_SYSTEM;
2730

2731
	__account_system_time(p, cputime, cputime_scaled, index);
L
Linus Torvalds 已提交
2732 2733
}

2734
/*
L
Linus Torvalds 已提交
2735
 * Account for involuntary wait time.
2736
 * @cputime: the cpu time spent in involuntary wait
2737
 */
2738
void account_steal_time(cputime_t cputime)
2739
{
2740
	u64 *cpustat = kcpustat_this_cpu->cpustat;
2741

2742
	cpustat[CPUTIME_STEAL] += (__force u64) cputime;
2743 2744
}

L
Linus Torvalds 已提交
2745
/*
2746 2747
 * Account for idle time.
 * @cputime: the cpu time spent in idle wait
L
Linus Torvalds 已提交
2748
 */
2749
void account_idle_time(cputime_t cputime)
L
Linus Torvalds 已提交
2750
{
2751
	u64 *cpustat = kcpustat_this_cpu->cpustat;
2752
	struct rq *rq = this_rq();
L
Linus Torvalds 已提交
2753

2754
	if (atomic_read(&rq->nr_iowait) > 0)
2755
		cpustat[CPUTIME_IOWAIT] += (__force u64) cputime;
2756
	else
2757
		cpustat[CPUTIME_IDLE] += (__force u64) cputime;
L
Linus Torvalds 已提交
2758 2759
}

G
Glauber Costa 已提交
2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778
static __always_inline bool steal_account_process_tick(void)
{
#ifdef CONFIG_PARAVIRT
	if (static_branch(&paravirt_steal_enabled)) {
		u64 steal, st = 0;

		steal = paravirt_steal_clock(smp_processor_id());
		steal -= this_rq()->prev_steal_time;

		st = steal_ticks(steal);
		this_rq()->prev_steal_time += st * TICK_NSEC;

		account_steal_time(st);
		return st;
	}
#endif
	return false;
}

2779 2780
#ifndef CONFIG_VIRT_CPU_ACCOUNTING

2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806
#ifdef CONFIG_IRQ_TIME_ACCOUNTING
/*
 * Account a tick to a process and cpustat
 * @p: the process that the cpu time gets accounted to
 * @user_tick: is the tick from userspace
 * @rq: the pointer to rq
 *
 * Tick demultiplexing follows the order
 * - pending hardirq update
 * - pending softirq update
 * - user_time
 * - idle_time
 * - system time
 *   - check for guest_time
 *   - else account as system_time
 *
 * Check for hardirq is done both for system and user time as there is
 * no timer going off while we are on hardirq and hence we may never get an
 * opportunity to update it solely in system time.
 * p->stime and friends are only updated on system time and not on irq
 * softirq as those do not count in task exec_runtime any more.
 */
static void irqtime_account_process_tick(struct task_struct *p, int user_tick,
						struct rq *rq)
{
	cputime_t one_jiffy_scaled = cputime_to_scaled(cputime_one_jiffy);
2807
	u64 *cpustat = kcpustat_this_cpu->cpustat;
2808

G
Glauber Costa 已提交
2809 2810 2811
	if (steal_account_process_tick())
		return;

2812
	if (irqtime_account_hi_update()) {
2813
		cpustat[CPUTIME_IRQ] += (__force u64) cputime_one_jiffy;
2814
	} else if (irqtime_account_si_update()) {
2815
		cpustat[CPUTIME_SOFTIRQ] += (__force u64) cputime_one_jiffy;
2816 2817 2818 2819 2820 2821 2822
	} else if (this_cpu_ksoftirqd() == p) {
		/*
		 * ksoftirqd time do not get accounted in cpu_softirq_time.
		 * So, we have to handle it separately here.
		 * Also, p->stime needs to be updated for ksoftirqd.
		 */
		__account_system_time(p, cputime_one_jiffy, one_jiffy_scaled,
2823
					CPUTIME_SOFTIRQ);
2824 2825 2826 2827 2828 2829 2830 2831
	} else if (user_tick) {
		account_user_time(p, cputime_one_jiffy, one_jiffy_scaled);
	} else if (p == rq->idle) {
		account_idle_time(cputime_one_jiffy);
	} else if (p->flags & PF_VCPU) { /* System time or guest time */
		account_guest_time(p, cputime_one_jiffy, one_jiffy_scaled);
	} else {
		__account_system_time(p, cputime_one_jiffy, one_jiffy_scaled,
2832
					CPUTIME_SYSTEM);
2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843
	}
}

static void irqtime_account_idle_ticks(int ticks)
{
	int i;
	struct rq *rq = this_rq();

	for (i = 0; i < ticks; i++)
		irqtime_account_process_tick(current, 0, rq);
}
2844
#else /* CONFIG_IRQ_TIME_ACCOUNTING */
2845 2846 2847
static void irqtime_account_idle_ticks(int ticks) {}
static void irqtime_account_process_tick(struct task_struct *p, int user_tick,
						struct rq *rq) {}
2848
#endif /* CONFIG_IRQ_TIME_ACCOUNTING */
2849 2850 2851 2852 2853 2854 2855 2856

/*
 * Account a single tick of cpu time.
 * @p: the process that the cpu time gets accounted to
 * @user_tick: indicates if the tick is a user or a system tick
 */
void account_process_tick(struct task_struct *p, int user_tick)
{
2857
	cputime_t one_jiffy_scaled = cputime_to_scaled(cputime_one_jiffy);
2858 2859
	struct rq *rq = this_rq();

2860 2861 2862 2863 2864
	if (sched_clock_irqtime) {
		irqtime_account_process_tick(p, user_tick, rq);
		return;
	}

G
Glauber Costa 已提交
2865 2866 2867
	if (steal_account_process_tick())
		return;

2868
	if (user_tick)
2869
		account_user_time(p, cputime_one_jiffy, one_jiffy_scaled);
2870
	else if ((p != rq->idle) || (irq_count() != HARDIRQ_OFFSET))
2871
		account_system_time(p, HARDIRQ_OFFSET, cputime_one_jiffy,
2872 2873
				    one_jiffy_scaled);
	else
2874
		account_idle_time(cputime_one_jiffy);
2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892
}

/*
 * Account multiple ticks of steal time.
 * @p: the process from which the cpu time has been stolen
 * @ticks: number of stolen ticks
 */
void account_steal_ticks(unsigned long ticks)
{
	account_steal_time(jiffies_to_cputime(ticks));
}

/*
 * Account multiple ticks of idle time.
 * @ticks: number of stolen ticks
 */
void account_idle_ticks(unsigned long ticks)
{
2893 2894 2895 2896 2897 2898

	if (sched_clock_irqtime) {
		irqtime_account_idle_ticks(ticks);
		return;
	}

2899
	account_idle_time(jiffies_to_cputime(ticks));
L
Linus Torvalds 已提交
2900 2901
}

2902 2903
#endif

2904 2905 2906 2907
/*
 * Use precise platform statistics if available:
 */
#ifdef CONFIG_VIRT_CPU_ACCOUNTING
2908
void task_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
2909
{
2910 2911
	*ut = p->utime;
	*st = p->stime;
2912 2913
}

2914
void thread_group_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
2915
{
2916 2917 2918 2919 2920 2921
	struct task_cputime cputime;

	thread_group_cputime(p, &cputime);

	*ut = cputime.utime;
	*st = cputime.stime;
2922 2923
}
#else
2924 2925

#ifndef nsecs_to_cputime
2926
# define nsecs_to_cputime(__nsecs)	nsecs_to_jiffies(__nsecs)
2927 2928
#endif

2929
void task_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
2930
{
2931
	cputime_t rtime, utime = p->utime, total = utime + p->stime;
2932 2933 2934 2935

	/*
	 * Use CFS's precise accounting:
	 */
2936
	rtime = nsecs_to_cputime(p->se.sum_exec_runtime);
2937 2938

	if (total) {
2939
		u64 temp = (__force u64) rtime;
2940

2941 2942 2943
		temp *= (__force u64) utime;
		do_div(temp, (__force u32) total);
		utime = (__force cputime_t) temp;
2944 2945
	} else
		utime = rtime;
2946

2947 2948 2949
	/*
	 * Compare with previous values, to keep monotonicity:
	 */
2950
	p->prev_utime = max(p->prev_utime, utime);
2951
	p->prev_stime = max(p->prev_stime, rtime - p->prev_utime);
2952

2953 2954
	*ut = p->prev_utime;
	*st = p->prev_stime;
2955 2956
}

2957 2958 2959 2960
/*
 * Must be called with siglock held.
 */
void thread_group_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
2961
{
2962 2963 2964
	struct signal_struct *sig = p->signal;
	struct task_cputime cputime;
	cputime_t rtime, utime, total;
2965

2966
	thread_group_cputime(p, &cputime);
2967

2968
	total = cputime.utime + cputime.stime;
2969
	rtime = nsecs_to_cputime(cputime.sum_exec_runtime);
2970

2971
	if (total) {
2972
		u64 temp = (__force u64) rtime;
2973

2974 2975 2976
		temp *= (__force u64) cputime.utime;
		do_div(temp, (__force u32) total);
		utime = (__force cputime_t) temp;
2977 2978 2979 2980
	} else
		utime = rtime;

	sig->prev_utime = max(sig->prev_utime, utime);
2981
	sig->prev_stime = max(sig->prev_stime, rtime - sig->prev_utime);
2982 2983 2984

	*ut = sig->prev_utime;
	*st = sig->prev_stime;
2985 2986 2987
}
#endif

2988 2989 2990 2991 2992 2993 2994 2995
/*
 * This function gets called by the timer code, with HZ frequency.
 * We call it with interrupts disabled.
 */
void scheduler_tick(void)
{
	int cpu = smp_processor_id();
	struct rq *rq = cpu_rq(cpu);
I
Ingo Molnar 已提交
2996
	struct task_struct *curr = rq->curr;
2997 2998

	sched_clock_tick();
I
Ingo Molnar 已提交
2999

3000
	raw_spin_lock(&rq->lock);
3001
	update_rq_clock(rq);
3002
	update_cpu_load_active(rq);
P
Peter Zijlstra 已提交
3003
	curr->sched_class->task_tick(rq, curr, 0);
3004
	raw_spin_unlock(&rq->lock);
3005

3006
	perf_event_task_tick();
3007

3008
#ifdef CONFIG_SMP
3009
	rq->idle_balance = idle_cpu(cpu);
I
Ingo Molnar 已提交
3010
	trigger_load_balance(rq, cpu);
3011
#endif
L
Linus Torvalds 已提交
3012 3013
}

3014
notrace unsigned long get_parent_ip(unsigned long addr)
3015 3016 3017 3018 3019 3020 3021 3022
{
	if (in_lock_functions(addr)) {
		addr = CALLER_ADDR2;
		if (in_lock_functions(addr))
			addr = CALLER_ADDR3;
	}
	return addr;
}
L
Linus Torvalds 已提交
3023

3024 3025 3026
#if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
				defined(CONFIG_PREEMPT_TRACER))

3027
void __kprobes add_preempt_count(int val)
L
Linus Torvalds 已提交
3028
{
3029
#ifdef CONFIG_DEBUG_PREEMPT
L
Linus Torvalds 已提交
3030 3031 3032
	/*
	 * Underflow?
	 */
3033 3034
	if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
		return;
3035
#endif
L
Linus Torvalds 已提交
3036
	preempt_count() += val;
3037
#ifdef CONFIG_DEBUG_PREEMPT
L
Linus Torvalds 已提交
3038 3039 3040
	/*
	 * Spinlock count overflowing soon?
	 */
3041 3042
	DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
				PREEMPT_MASK - 10);
3043 3044 3045
#endif
	if (preempt_count() == val)
		trace_preempt_off(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
L
Linus Torvalds 已提交
3046 3047 3048
}
EXPORT_SYMBOL(add_preempt_count);

3049
void __kprobes sub_preempt_count(int val)
L
Linus Torvalds 已提交
3050
{
3051
#ifdef CONFIG_DEBUG_PREEMPT
L
Linus Torvalds 已提交
3052 3053 3054
	/*
	 * Underflow?
	 */
3055
	if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
3056
		return;
L
Linus Torvalds 已提交
3057 3058 3059
	/*
	 * Is the spinlock portion underflowing?
	 */
3060 3061 3062
	if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
			!(preempt_count() & PREEMPT_MASK)))
		return;
3063
#endif
3064

3065 3066
	if (preempt_count() == val)
		trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
L
Linus Torvalds 已提交
3067 3068 3069 3070 3071 3072 3073
	preempt_count() -= val;
}
EXPORT_SYMBOL(sub_preempt_count);

#endif

/*
I
Ingo Molnar 已提交
3074
 * Print scheduling while atomic bug:
L
Linus Torvalds 已提交
3075
 */
I
Ingo Molnar 已提交
3076
static noinline void __schedule_bug(struct task_struct *prev)
L
Linus Torvalds 已提交
3077
{
3078 3079
	struct pt_regs *regs = get_irq_regs();

3080 3081 3082
	if (oops_in_progress)
		return;

P
Peter Zijlstra 已提交
3083 3084
	printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
		prev->comm, prev->pid, preempt_count());
3085

I
Ingo Molnar 已提交
3086
	debug_show_held_locks(prev);
3087
	print_modules();
I
Ingo Molnar 已提交
3088 3089
	if (irqs_disabled())
		print_irqtrace_events(prev);
3090 3091 3092 3093 3094

	if (regs)
		show_regs(regs);
	else
		dump_stack();
I
Ingo Molnar 已提交
3095
}
L
Linus Torvalds 已提交
3096

I
Ingo Molnar 已提交
3097 3098 3099 3100 3101
/*
 * Various schedule()-time debugging checks and statistics:
 */
static inline void schedule_debug(struct task_struct *prev)
{
L
Linus Torvalds 已提交
3102
	/*
I
Ingo Molnar 已提交
3103
	 * Test if we are atomic. Since do_exit() needs to call into
L
Linus Torvalds 已提交
3104 3105 3106
	 * schedule() atomically, we ignore that path for now.
	 * Otherwise, whine if we are scheduling when we should not be.
	 */
3107
	if (unlikely(in_atomic_preempt_off() && !prev->exit_state))
I
Ingo Molnar 已提交
3108
		__schedule_bug(prev);
3109
	rcu_sleep_check();
I
Ingo Molnar 已提交
3110

L
Linus Torvalds 已提交
3111 3112
	profile_hit(SCHED_PROFILING, __builtin_return_address(0));

3113
	schedstat_inc(this_rq(), sched_count);
I
Ingo Molnar 已提交
3114 3115
}

P
Peter Zijlstra 已提交
3116
static void put_prev_task(struct rq *rq, struct task_struct *prev)
M
Mike Galbraith 已提交
3117
{
3118
	if (prev->on_rq || rq->skip_clock_update < 0)
3119
		update_rq_clock(rq);
P
Peter Zijlstra 已提交
3120
	prev->sched_class->put_prev_task(rq, prev);
M
Mike Galbraith 已提交
3121 3122
}

I
Ingo Molnar 已提交
3123 3124 3125 3126
/*
 * Pick up the highest-prio task:
 */
static inline struct task_struct *
3127
pick_next_task(struct rq *rq)
I
Ingo Molnar 已提交
3128
{
3129
	const struct sched_class *class;
I
Ingo Molnar 已提交
3130
	struct task_struct *p;
L
Linus Torvalds 已提交
3131 3132

	/*
I
Ingo Molnar 已提交
3133 3134
	 * Optimization: we know that if all tasks are in
	 * the fair class we can call that function directly:
L
Linus Torvalds 已提交
3135
	 */
3136
	if (likely(rq->nr_running == rq->cfs.h_nr_running)) {
3137
		p = fair_sched_class.pick_next_task(rq);
I
Ingo Molnar 已提交
3138 3139
		if (likely(p))
			return p;
L
Linus Torvalds 已提交
3140 3141
	}

3142
	for_each_class(class) {
3143
		p = class->pick_next_task(rq);
I
Ingo Molnar 已提交
3144 3145 3146
		if (p)
			return p;
	}
3147 3148

	BUG(); /* the idle class will always have a runnable task */
I
Ingo Molnar 已提交
3149
}
L
Linus Torvalds 已提交
3150

I
Ingo Molnar 已提交
3151
/*
3152
 * __schedule() is the main scheduler function.
I
Ingo Molnar 已提交
3153
 */
3154
static void __sched __schedule(void)
I
Ingo Molnar 已提交
3155 3156
{
	struct task_struct *prev, *next;
3157
	unsigned long *switch_count;
I
Ingo Molnar 已提交
3158
	struct rq *rq;
3159
	int cpu;
I
Ingo Molnar 已提交
3160

3161 3162
need_resched:
	preempt_disable();
I
Ingo Molnar 已提交
3163 3164
	cpu = smp_processor_id();
	rq = cpu_rq(cpu);
3165
	rcu_note_context_switch(cpu);
I
Ingo Molnar 已提交
3166 3167 3168
	prev = rq->curr;

	schedule_debug(prev);
L
Linus Torvalds 已提交
3169

3170
	if (sched_feat(HRTICK))
M
Mike Galbraith 已提交
3171
		hrtick_clear(rq);
P
Peter Zijlstra 已提交
3172

3173
	raw_spin_lock_irq(&rq->lock);
L
Linus Torvalds 已提交
3174

3175
	switch_count = &prev->nivcsw;
L
Linus Torvalds 已提交
3176
	if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
T
Tejun Heo 已提交
3177
		if (unlikely(signal_pending_state(prev->state, prev))) {
L
Linus Torvalds 已提交
3178
			prev->state = TASK_RUNNING;
T
Tejun Heo 已提交
3179
		} else {
3180 3181 3182
			deactivate_task(rq, prev, DEQUEUE_SLEEP);
			prev->on_rq = 0;

T
Tejun Heo 已提交
3183
			/*
3184 3185 3186
			 * If a worker went to sleep, notify and ask workqueue
			 * whether it wants to wake up a task to maintain
			 * concurrency.
T
Tejun Heo 已提交
3187 3188 3189 3190 3191 3192 3193 3194 3195
			 */
			if (prev->flags & PF_WQ_WORKER) {
				struct task_struct *to_wakeup;

				to_wakeup = wq_worker_sleeping(prev, cpu);
				if (to_wakeup)
					try_to_wake_up_local(to_wakeup);
			}
		}
I
Ingo Molnar 已提交
3196
		switch_count = &prev->nvcsw;
L
Linus Torvalds 已提交
3197 3198
	}

3199
	pre_schedule(rq, prev);
3200

I
Ingo Molnar 已提交
3201
	if (unlikely(!rq->nr_running))
L
Linus Torvalds 已提交
3202 3203
		idle_balance(cpu, rq);

M
Mike Galbraith 已提交
3204
	put_prev_task(rq, prev);
3205
	next = pick_next_task(rq);
3206 3207
	clear_tsk_need_resched(prev);
	rq->skip_clock_update = 0;
L
Linus Torvalds 已提交
3208 3209 3210 3211 3212 3213

	if (likely(prev != next)) {
		rq->nr_switches++;
		rq->curr = next;
		++*switch_count;

I
Ingo Molnar 已提交
3214
		context_switch(rq, prev, next); /* unlocks the rq */
P
Peter Zijlstra 已提交
3215
		/*
3216 3217 3218 3219
		 * The context switch have flipped the stack from under us
		 * and restored the local variables which were saved when
		 * this task called schedule() in the past. prev == current
		 * is still correct, but it can be moved to another cpu/rq.
P
Peter Zijlstra 已提交
3220 3221 3222
		 */
		cpu = smp_processor_id();
		rq = cpu_rq(cpu);
L
Linus Torvalds 已提交
3223
	} else
3224
		raw_spin_unlock_irq(&rq->lock);
L
Linus Torvalds 已提交
3225

3226
	post_schedule(rq);
L
Linus Torvalds 已提交
3227 3228

	preempt_enable_no_resched();
3229
	if (need_resched())
L
Linus Torvalds 已提交
3230 3231
		goto need_resched;
}
3232

3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244
static inline void sched_submit_work(struct task_struct *tsk)
{
	if (!tsk->state)
		return;
	/*
	 * If we are going to sleep and we have plugged IO queued,
	 * make sure to submit it to avoid deadlocks.
	 */
	if (blk_needs_flush_plug(tsk))
		blk_schedule_flush_plug(tsk);
}

S
Simon Kirby 已提交
3245
asmlinkage void __sched schedule(void)
3246
{
3247 3248 3249
	struct task_struct *tsk = current;

	sched_submit_work(tsk);
3250 3251
	__schedule();
}
L
Linus Torvalds 已提交
3252 3253
EXPORT_SYMBOL(schedule);

3254
#ifdef CONFIG_MUTEX_SPIN_ON_OWNER
3255

3256 3257 3258
static inline bool owner_running(struct mutex *lock, struct task_struct *owner)
{
	if (lock->owner != owner)
3259
		return false;
3260 3261

	/*
3262 3263 3264 3265
	 * Ensure we emit the owner->on_cpu, dereference _after_ checking
	 * lock->owner still matches owner, if that fails, owner might
	 * point to free()d memory, if it still matches, the rcu_read_lock()
	 * ensures the memory stays valid.
3266
	 */
3267
	barrier();
3268

3269
	return owner->on_cpu;
3270
}
3271

3272 3273 3274 3275 3276 3277 3278 3279
/*
 * Look out! "owner" is an entirely speculative pointer
 * access and not reliable.
 */
int mutex_spin_on_owner(struct mutex *lock, struct task_struct *owner)
{
	if (!sched_feat(OWNER_SPIN))
		return 0;
3280

3281
	rcu_read_lock();
3282 3283
	while (owner_running(lock, owner)) {
		if (need_resched())
3284
			break;
3285

3286
		arch_mutex_cpu_relax();
3287
	}
3288
	rcu_read_unlock();
3289

3290
	/*
3291 3292 3293
	 * We break out the loop above on need_resched() and when the
	 * owner changed, which is a sign for heavy contention. Return
	 * success only when lock->owner is NULL.
3294
	 */
3295
	return lock->owner == NULL;
3296 3297 3298
}
#endif

L
Linus Torvalds 已提交
3299 3300
#ifdef CONFIG_PREEMPT
/*
3301
 * this is the entry point to schedule() from in-kernel preemption
I
Ingo Molnar 已提交
3302
 * off of preempt_enable. Kernel preemptions off return from interrupt
L
Linus Torvalds 已提交
3303 3304
 * occur there and call schedule directly.
 */
3305
asmlinkage void __sched notrace preempt_schedule(void)
L
Linus Torvalds 已提交
3306 3307
{
	struct thread_info *ti = current_thread_info();
3308

L
Linus Torvalds 已提交
3309 3310
	/*
	 * If there is a non-zero preempt_count or interrupts are disabled,
I
Ingo Molnar 已提交
3311
	 * we do not want to preempt the current task. Just return..
L
Linus Torvalds 已提交
3312
	 */
N
Nick Piggin 已提交
3313
	if (likely(ti->preempt_count || irqs_disabled()))
L
Linus Torvalds 已提交
3314 3315
		return;

3316
	do {
3317
		add_preempt_count_notrace(PREEMPT_ACTIVE);
3318
		__schedule();
3319
		sub_preempt_count_notrace(PREEMPT_ACTIVE);
L
Linus Torvalds 已提交
3320

3321 3322 3323 3324 3325
		/*
		 * Check again in case we missed a preemption opportunity
		 * between schedule and now.
		 */
		barrier();
3326
	} while (need_resched());
L
Linus Torvalds 已提交
3327 3328 3329 3330
}
EXPORT_SYMBOL(preempt_schedule);

/*
3331
 * this is the entry point to schedule() from kernel preemption
L
Linus Torvalds 已提交
3332 3333 3334 3335 3336 3337 3338
 * off of irq context.
 * Note, that this is called and return with irqs disabled. This will
 * protect us against recursive calling from irq.
 */
asmlinkage void __sched preempt_schedule_irq(void)
{
	struct thread_info *ti = current_thread_info();
3339

3340
	/* Catch callers which need to be fixed */
L
Linus Torvalds 已提交
3341 3342
	BUG_ON(ti->preempt_count || !irqs_disabled());

3343 3344 3345
	do {
		add_preempt_count(PREEMPT_ACTIVE);
		local_irq_enable();
3346
		__schedule();
3347 3348
		local_irq_disable();
		sub_preempt_count(PREEMPT_ACTIVE);
L
Linus Torvalds 已提交
3349

3350 3351 3352 3353 3354
		/*
		 * Check again in case we missed a preemption opportunity
		 * between schedule and now.
		 */
		barrier();
3355
	} while (need_resched());
L
Linus Torvalds 已提交
3356 3357 3358 3359
}

#endif /* CONFIG_PREEMPT */

P
Peter Zijlstra 已提交
3360
int default_wake_function(wait_queue_t *curr, unsigned mode, int wake_flags,
I
Ingo Molnar 已提交
3361
			  void *key)
L
Linus Torvalds 已提交
3362
{
P
Peter Zijlstra 已提交
3363
	return try_to_wake_up(curr->private, mode, wake_flags);
L
Linus Torvalds 已提交
3364 3365 3366 3367
}
EXPORT_SYMBOL(default_wake_function);

/*
I
Ingo Molnar 已提交
3368 3369
 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
L
Linus Torvalds 已提交
3370 3371 3372
 * number) then we wake all the non-exclusive tasks and one exclusive task.
 *
 * There are circumstances in which we can try to wake a task which has already
I
Ingo Molnar 已提交
3373
 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
L
Linus Torvalds 已提交
3374 3375
 * zero in this (rare) case, and we handle it by continuing to scan the queue.
 */
3376
static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
P
Peter Zijlstra 已提交
3377
			int nr_exclusive, int wake_flags, void *key)
L
Linus Torvalds 已提交
3378
{
3379
	wait_queue_t *curr, *next;
L
Linus Torvalds 已提交
3380

3381
	list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
3382 3383
		unsigned flags = curr->flags;

P
Peter Zijlstra 已提交
3384
		if (curr->func(curr, mode, wake_flags, key) &&
3385
				(flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
L
Linus Torvalds 已提交
3386 3387 3388 3389 3390 3391 3392 3393 3394
			break;
	}
}

/**
 * __wake_up - wake up threads blocked on a waitqueue.
 * @q: the waitqueue
 * @mode: which threads
 * @nr_exclusive: how many wake-one or wake-many threads to wake up
3395
 * @key: is directly passed to the wakeup function
3396 3397 3398
 *
 * It may be assumed that this function implies a write memory barrier before
 * changing the task state if and only if any tasks are woken up.
L
Linus Torvalds 已提交
3399
 */
3400
void __wake_up(wait_queue_head_t *q, unsigned int mode,
I
Ingo Molnar 已提交
3401
			int nr_exclusive, void *key)
L
Linus Torvalds 已提交
3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413
{
	unsigned long flags;

	spin_lock_irqsave(&q->lock, flags);
	__wake_up_common(q, mode, nr_exclusive, 0, key);
	spin_unlock_irqrestore(&q->lock, flags);
}
EXPORT_SYMBOL(__wake_up);

/*
 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
 */
3414
void __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
L
Linus Torvalds 已提交
3415 3416 3417
{
	__wake_up_common(q, mode, 1, 0, NULL);
}
3418
EXPORT_SYMBOL_GPL(__wake_up_locked);
L
Linus Torvalds 已提交
3419

3420 3421 3422 3423
void __wake_up_locked_key(wait_queue_head_t *q, unsigned int mode, void *key)
{
	__wake_up_common(q, mode, 1, 0, key);
}
3424
EXPORT_SYMBOL_GPL(__wake_up_locked_key);
3425

L
Linus Torvalds 已提交
3426
/**
3427
 * __wake_up_sync_key - wake up threads blocked on a waitqueue.
L
Linus Torvalds 已提交
3428 3429 3430
 * @q: the waitqueue
 * @mode: which threads
 * @nr_exclusive: how many wake-one or wake-many threads to wake up
3431
 * @key: opaque value to be passed to wakeup targets
L
Linus Torvalds 已提交
3432 3433 3434 3435 3436 3437 3438
 *
 * The sync wakeup differs that the waker knows that it will schedule
 * away soon, so while the target thread will be woken up, it will not
 * be migrated to another CPU - ie. the two threads are 'synchronized'
 * with each other. This can prevent needless bouncing between CPUs.
 *
 * On UP it can prevent extra preemption.
3439 3440 3441
 *
 * It may be assumed that this function implies a write memory barrier before
 * changing the task state if and only if any tasks are woken up.
L
Linus Torvalds 已提交
3442
 */
3443 3444
void __wake_up_sync_key(wait_queue_head_t *q, unsigned int mode,
			int nr_exclusive, void *key)
L
Linus Torvalds 已提交
3445 3446
{
	unsigned long flags;
P
Peter Zijlstra 已提交
3447
	int wake_flags = WF_SYNC;
L
Linus Torvalds 已提交
3448 3449 3450 3451 3452

	if (unlikely(!q))
		return;

	if (unlikely(!nr_exclusive))
P
Peter Zijlstra 已提交
3453
		wake_flags = 0;
L
Linus Torvalds 已提交
3454 3455

	spin_lock_irqsave(&q->lock, flags);
P
Peter Zijlstra 已提交
3456
	__wake_up_common(q, mode, nr_exclusive, wake_flags, key);
L
Linus Torvalds 已提交
3457 3458
	spin_unlock_irqrestore(&q->lock, flags);
}
3459 3460 3461 3462 3463 3464 3465 3466 3467
EXPORT_SYMBOL_GPL(__wake_up_sync_key);

/*
 * __wake_up_sync - see __wake_up_sync_key()
 */
void __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
{
	__wake_up_sync_key(q, mode, nr_exclusive, NULL);
}
L
Linus Torvalds 已提交
3468 3469
EXPORT_SYMBOL_GPL(__wake_up_sync);	/* For internal use only */

3470 3471 3472 3473 3474 3475 3476 3477
/**
 * complete: - signals a single thread waiting on this completion
 * @x:  holds the state of this particular completion
 *
 * This will wake up a single thread waiting on this completion. Threads will be
 * awakened in the same order in which they were queued.
 *
 * See also complete_all(), wait_for_completion() and related routines.
3478 3479 3480
 *
 * It may be assumed that this function implies a write memory barrier before
 * changing the task state if and only if any tasks are woken up.
3481
 */
3482
void complete(struct completion *x)
L
Linus Torvalds 已提交
3483 3484 3485 3486 3487
{
	unsigned long flags;

	spin_lock_irqsave(&x->wait.lock, flags);
	x->done++;
3488
	__wake_up_common(&x->wait, TASK_NORMAL, 1, 0, NULL);
L
Linus Torvalds 已提交
3489 3490 3491 3492
	spin_unlock_irqrestore(&x->wait.lock, flags);
}
EXPORT_SYMBOL(complete);

3493 3494 3495 3496 3497
/**
 * complete_all: - signals all threads waiting on this completion
 * @x:  holds the state of this particular completion
 *
 * This will wake up all threads waiting on this particular completion event.
3498 3499 3500
 *
 * It may be assumed that this function implies a write memory barrier before
 * changing the task state if and only if any tasks are woken up.
3501
 */
3502
void complete_all(struct completion *x)
L
Linus Torvalds 已提交
3503 3504 3505 3506 3507
{
	unsigned long flags;

	spin_lock_irqsave(&x->wait.lock, flags);
	x->done += UINT_MAX/2;
3508
	__wake_up_common(&x->wait, TASK_NORMAL, 0, 0, NULL);
L
Linus Torvalds 已提交
3509 3510 3511 3512
	spin_unlock_irqrestore(&x->wait.lock, flags);
}
EXPORT_SYMBOL(complete_all);

3513 3514
static inline long __sched
do_wait_for_common(struct completion *x, long timeout, int state)
L
Linus Torvalds 已提交
3515 3516 3517 3518
{
	if (!x->done) {
		DECLARE_WAITQUEUE(wait, current);

C
Changli Gao 已提交
3519
		__add_wait_queue_tail_exclusive(&x->wait, &wait);
L
Linus Torvalds 已提交
3520
		do {
3521
			if (signal_pending_state(state, current)) {
3522 3523
				timeout = -ERESTARTSYS;
				break;
3524 3525
			}
			__set_current_state(state);
L
Linus Torvalds 已提交
3526 3527 3528
			spin_unlock_irq(&x->wait.lock);
			timeout = schedule_timeout(timeout);
			spin_lock_irq(&x->wait.lock);
3529
		} while (!x->done && timeout);
L
Linus Torvalds 已提交
3530
		__remove_wait_queue(&x->wait, &wait);
3531 3532
		if (!x->done)
			return timeout;
L
Linus Torvalds 已提交
3533 3534
	}
	x->done--;
3535
	return timeout ?: 1;
L
Linus Torvalds 已提交
3536 3537
}

3538 3539
static long __sched
wait_for_common(struct completion *x, long timeout, int state)
L
Linus Torvalds 已提交
3540 3541 3542 3543
{
	might_sleep();

	spin_lock_irq(&x->wait.lock);
3544
	timeout = do_wait_for_common(x, timeout, state);
L
Linus Torvalds 已提交
3545
	spin_unlock_irq(&x->wait.lock);
3546 3547
	return timeout;
}
L
Linus Torvalds 已提交
3548

3549 3550 3551 3552 3553 3554 3555 3556 3557 3558
/**
 * wait_for_completion: - waits for completion of a task
 * @x:  holds the state of this particular completion
 *
 * This waits to be signaled for completion of a specific task. It is NOT
 * interruptible and there is no timeout.
 *
 * See also similar routines (i.e. wait_for_completion_timeout()) with timeout
 * and interrupt capability. Also see complete().
 */
3559
void __sched wait_for_completion(struct completion *x)
3560 3561
{
	wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
L
Linus Torvalds 已提交
3562
}
3563
EXPORT_SYMBOL(wait_for_completion);
L
Linus Torvalds 已提交
3564

3565 3566 3567 3568 3569 3570 3571 3572
/**
 * wait_for_completion_timeout: - waits for completion of a task (w/timeout)
 * @x:  holds the state of this particular completion
 * @timeout:  timeout value in jiffies
 *
 * This waits for either a completion of a specific task to be signaled or for a
 * specified timeout to expire. The timeout is in jiffies. It is not
 * interruptible.
3573 3574 3575
 *
 * The return value is 0 if timed out, and positive (at least 1, or number of
 * jiffies left till timeout) if completed.
3576
 */
3577
unsigned long __sched
3578
wait_for_completion_timeout(struct completion *x, unsigned long timeout)
L
Linus Torvalds 已提交
3579
{
3580
	return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
L
Linus Torvalds 已提交
3581
}
3582
EXPORT_SYMBOL(wait_for_completion_timeout);
L
Linus Torvalds 已提交
3583

3584 3585 3586 3587 3588 3589
/**
 * wait_for_completion_interruptible: - waits for completion of a task (w/intr)
 * @x:  holds the state of this particular completion
 *
 * This waits for completion of a specific task to be signaled. It is
 * interruptible.
3590 3591
 *
 * The return value is -ERESTARTSYS if interrupted, 0 if completed.
3592
 */
3593
int __sched wait_for_completion_interruptible(struct completion *x)
I
Ingo Molnar 已提交
3594
{
3595 3596 3597 3598
	long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
	if (t == -ERESTARTSYS)
		return t;
	return 0;
I
Ingo Molnar 已提交
3599
}
3600
EXPORT_SYMBOL(wait_for_completion_interruptible);
L
Linus Torvalds 已提交
3601

3602 3603 3604 3605 3606 3607 3608
/**
 * wait_for_completion_interruptible_timeout: - waits for completion (w/(to,intr))
 * @x:  holds the state of this particular completion
 * @timeout:  timeout value in jiffies
 *
 * This waits for either a completion of a specific task to be signaled or for a
 * specified timeout to expire. It is interruptible. The timeout is in jiffies.
3609 3610 3611
 *
 * The return value is -ERESTARTSYS if interrupted, 0 if timed out,
 * positive (at least 1, or number of jiffies left till timeout) if completed.
3612
 */
3613
long __sched
3614 3615
wait_for_completion_interruptible_timeout(struct completion *x,
					  unsigned long timeout)
I
Ingo Molnar 已提交
3616
{
3617
	return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
I
Ingo Molnar 已提交
3618
}
3619
EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
L
Linus Torvalds 已提交
3620

3621 3622 3623 3624 3625 3626
/**
 * wait_for_completion_killable: - waits for completion of a task (killable)
 * @x:  holds the state of this particular completion
 *
 * This waits to be signaled for completion of a specific task. It can be
 * interrupted by a kill signal.
3627 3628
 *
 * The return value is -ERESTARTSYS if interrupted, 0 if completed.
3629
 */
M
Matthew Wilcox 已提交
3630 3631 3632 3633 3634 3635 3636 3637 3638
int __sched wait_for_completion_killable(struct completion *x)
{
	long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_KILLABLE);
	if (t == -ERESTARTSYS)
		return t;
	return 0;
}
EXPORT_SYMBOL(wait_for_completion_killable);

3639 3640 3641 3642 3643 3644 3645 3646
/**
 * wait_for_completion_killable_timeout: - waits for completion of a task (w/(to,killable))
 * @x:  holds the state of this particular completion
 * @timeout:  timeout value in jiffies
 *
 * This waits for either a completion of a specific task to be
 * signaled or for a specified timeout to expire. It can be
 * interrupted by a kill signal. The timeout is in jiffies.
3647 3648 3649
 *
 * The return value is -ERESTARTSYS if interrupted, 0 if timed out,
 * positive (at least 1, or number of jiffies left till timeout) if completed.
3650
 */
3651
long __sched
3652 3653 3654 3655 3656 3657 3658
wait_for_completion_killable_timeout(struct completion *x,
				     unsigned long timeout)
{
	return wait_for_common(x, timeout, TASK_KILLABLE);
}
EXPORT_SYMBOL(wait_for_completion_killable_timeout);

3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672
/**
 *	try_wait_for_completion - try to decrement a completion without blocking
 *	@x:	completion structure
 *
 *	Returns: 0 if a decrement cannot be done without blocking
 *		 1 if a decrement succeeded.
 *
 *	If a completion is being used as a counting completion,
 *	attempt to decrement the counter without blocking. This
 *	enables us to avoid waiting if the resource the completion
 *	is protecting is not available.
 */
bool try_wait_for_completion(struct completion *x)
{
3673
	unsigned long flags;
3674 3675
	int ret = 1;

3676
	spin_lock_irqsave(&x->wait.lock, flags);
3677 3678 3679 3680
	if (!x->done)
		ret = 0;
	else
		x->done--;
3681
	spin_unlock_irqrestore(&x->wait.lock, flags);
3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695
	return ret;
}
EXPORT_SYMBOL(try_wait_for_completion);

/**
 *	completion_done - Test to see if a completion has any waiters
 *	@x:	completion structure
 *
 *	Returns: 0 if there are waiters (wait_for_completion() in progress)
 *		 1 if there are no waiters.
 *
 */
bool completion_done(struct completion *x)
{
3696
	unsigned long flags;
3697 3698
	int ret = 1;

3699
	spin_lock_irqsave(&x->wait.lock, flags);
3700 3701
	if (!x->done)
		ret = 0;
3702
	spin_unlock_irqrestore(&x->wait.lock, flags);
3703 3704 3705 3706
	return ret;
}
EXPORT_SYMBOL(completion_done);

3707 3708
static long __sched
sleep_on_common(wait_queue_head_t *q, int state, long timeout)
L
Linus Torvalds 已提交
3709
{
I
Ingo Molnar 已提交
3710 3711 3712 3713
	unsigned long flags;
	wait_queue_t wait;

	init_waitqueue_entry(&wait, current);
L
Linus Torvalds 已提交
3714

3715
	__set_current_state(state);
L
Linus Torvalds 已提交
3716

3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730
	spin_lock_irqsave(&q->lock, flags);
	__add_wait_queue(q, &wait);
	spin_unlock(&q->lock);
	timeout = schedule_timeout(timeout);
	spin_lock_irq(&q->lock);
	__remove_wait_queue(q, &wait);
	spin_unlock_irqrestore(&q->lock, flags);

	return timeout;
}

void __sched interruptible_sleep_on(wait_queue_head_t *q)
{
	sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
L
Linus Torvalds 已提交
3731 3732 3733
}
EXPORT_SYMBOL(interruptible_sleep_on);

I
Ingo Molnar 已提交
3734
long __sched
I
Ingo Molnar 已提交
3735
interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
L
Linus Torvalds 已提交
3736
{
3737
	return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
L
Linus Torvalds 已提交
3738 3739 3740
}
EXPORT_SYMBOL(interruptible_sleep_on_timeout);

I
Ingo Molnar 已提交
3741
void __sched sleep_on(wait_queue_head_t *q)
L
Linus Torvalds 已提交
3742
{
3743
	sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
L
Linus Torvalds 已提交
3744 3745 3746
}
EXPORT_SYMBOL(sleep_on);

I
Ingo Molnar 已提交
3747
long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
L
Linus Torvalds 已提交
3748
{
3749
	return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
L
Linus Torvalds 已提交
3750 3751 3752
}
EXPORT_SYMBOL(sleep_on_timeout);

3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764
#ifdef CONFIG_RT_MUTEXES

/*
 * rt_mutex_setprio - set the current priority of a task
 * @p: task
 * @prio: prio value (kernel-internal form)
 *
 * This function changes the 'effective' priority of a task. It does
 * not touch ->normal_prio like __setscheduler().
 *
 * Used by the rt_mutex code to implement priority inheritance logic.
 */
3765
void rt_mutex_setprio(struct task_struct *p, int prio)
3766
{
3767
	int oldprio, on_rq, running;
3768
	struct rq *rq;
3769
	const struct sched_class *prev_class;
3770 3771 3772

	BUG_ON(prio < 0 || prio > MAX_PRIO);

3773
	rq = __task_rq_lock(p);
3774

3775
	trace_sched_pi_setprio(p, prio);
3776
	oldprio = p->prio;
3777
	prev_class = p->sched_class;
P
Peter Zijlstra 已提交
3778
	on_rq = p->on_rq;
3779
	running = task_current(rq, p);
3780
	if (on_rq)
3781
		dequeue_task(rq, p, 0);
3782 3783
	if (running)
		p->sched_class->put_prev_task(rq, p);
I
Ingo Molnar 已提交
3784 3785 3786 3787 3788 3789

	if (rt_prio(prio))
		p->sched_class = &rt_sched_class;
	else
		p->sched_class = &fair_sched_class;

3790 3791
	p->prio = prio;

3792 3793
	if (running)
		p->sched_class->set_curr_task(rq);
P
Peter Zijlstra 已提交
3794
	if (on_rq)
3795
		enqueue_task(rq, p, oldprio < prio ? ENQUEUE_HEAD : 0);
3796

P
Peter Zijlstra 已提交
3797
	check_class_changed(rq, p, prev_class, oldprio);
3798
	__task_rq_unlock(rq);
3799 3800 3801 3802
}

#endif

3803
void set_user_nice(struct task_struct *p, long nice)
L
Linus Torvalds 已提交
3804
{
I
Ingo Molnar 已提交
3805
	int old_prio, delta, on_rq;
L
Linus Torvalds 已提交
3806
	unsigned long flags;
3807
	struct rq *rq;
L
Linus Torvalds 已提交
3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819

	if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
		return;
	/*
	 * We have to be careful, if called from sys_setpriority(),
	 * the task might be in the middle of scheduling on another CPU.
	 */
	rq = task_rq_lock(p, &flags);
	/*
	 * The RT priorities are set via sched_setscheduler(), but we still
	 * allow the 'normal' nice value to be set - but as expected
	 * it wont have any effect on scheduling until the task is
I
Ingo Molnar 已提交
3820
	 * SCHED_FIFO/SCHED_RR:
L
Linus Torvalds 已提交
3821
	 */
3822
	if (task_has_rt_policy(p)) {
L
Linus Torvalds 已提交
3823 3824 3825
		p->static_prio = NICE_TO_PRIO(nice);
		goto out_unlock;
	}
P
Peter Zijlstra 已提交
3826
	on_rq = p->on_rq;
3827
	if (on_rq)
3828
		dequeue_task(rq, p, 0);
L
Linus Torvalds 已提交
3829 3830

	p->static_prio = NICE_TO_PRIO(nice);
3831
	set_load_weight(p);
3832 3833 3834
	old_prio = p->prio;
	p->prio = effective_prio(p);
	delta = p->prio - old_prio;
L
Linus Torvalds 已提交
3835

I
Ingo Molnar 已提交
3836
	if (on_rq) {
3837
		enqueue_task(rq, p, 0);
L
Linus Torvalds 已提交
3838
		/*
3839 3840
		 * If the task increased its priority or is running and
		 * lowered its priority, then reschedule its CPU:
L
Linus Torvalds 已提交
3841
		 */
3842
		if (delta < 0 || (delta > 0 && task_running(rq, p)))
L
Linus Torvalds 已提交
3843 3844 3845
			resched_task(rq->curr);
	}
out_unlock:
3846
	task_rq_unlock(rq, p, &flags);
L
Linus Torvalds 已提交
3847 3848 3849
}
EXPORT_SYMBOL(set_user_nice);

M
Matt Mackall 已提交
3850 3851 3852 3853 3854
/*
 * can_nice - check if a task can reduce its nice value
 * @p: task
 * @nice: nice value
 */
3855
int can_nice(const struct task_struct *p, const int nice)
M
Matt Mackall 已提交
3856
{
3857 3858
	/* convert nice value [19,-20] to rlimit style value [1,40] */
	int nice_rlim = 20 - nice;
3859

3860
	return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) ||
M
Matt Mackall 已提交
3861 3862 3863
		capable(CAP_SYS_NICE));
}

L
Linus Torvalds 已提交
3864 3865 3866 3867 3868 3869 3870 3871 3872
#ifdef __ARCH_WANT_SYS_NICE

/*
 * sys_nice - change the priority of the current process.
 * @increment: priority increment
 *
 * sys_setpriority is a more generic, but much slower function that
 * does similar things.
 */
3873
SYSCALL_DEFINE1(nice, int, increment)
L
Linus Torvalds 已提交
3874
{
3875
	long nice, retval;
L
Linus Torvalds 已提交
3876 3877 3878 3879 3880 3881

	/*
	 * Setpriority might change our priority at the same moment.
	 * We don't have to worry. Conceptually one call occurs first
	 * and we have a single winner.
	 */
M
Matt Mackall 已提交
3882 3883
	if (increment < -40)
		increment = -40;
L
Linus Torvalds 已提交
3884 3885 3886
	if (increment > 40)
		increment = 40;

3887
	nice = TASK_NICE(current) + increment;
L
Linus Torvalds 已提交
3888 3889 3890 3891 3892
	if (nice < -20)
		nice = -20;
	if (nice > 19)
		nice = 19;

M
Matt Mackall 已提交
3893 3894 3895
	if (increment < 0 && !can_nice(current, nice))
		return -EPERM;

L
Linus Torvalds 已提交
3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913
	retval = security_task_setnice(current, nice);
	if (retval)
		return retval;

	set_user_nice(current, nice);
	return 0;
}

#endif

/**
 * task_prio - return the priority value of a given task.
 * @p: the task in question.
 *
 * This is the priority value as seen by users in /proc.
 * RT tasks are offset by -200. Normal tasks are centered
 * around 0, value goes from -16 to +15.
 */
3914
int task_prio(const struct task_struct *p)
L
Linus Torvalds 已提交
3915 3916 3917 3918 3919 3920 3921 3922
{
	return p->prio - MAX_RT_PRIO;
}

/**
 * task_nice - return the nice value of a given task.
 * @p: the task in question.
 */
3923
int task_nice(const struct task_struct *p)
L
Linus Torvalds 已提交
3924 3925 3926
{
	return TASK_NICE(p);
}
P
Pavel Roskin 已提交
3927
EXPORT_SYMBOL(task_nice);
L
Linus Torvalds 已提交
3928 3929 3930 3931 3932 3933 3934

/**
 * idle_cpu - is a given cpu idle currently?
 * @cpu: the processor in question.
 */
int idle_cpu(int cpu)
{
T
Thomas Gleixner 已提交
3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948
	struct rq *rq = cpu_rq(cpu);

	if (rq->curr != rq->idle)
		return 0;

	if (rq->nr_running)
		return 0;

#ifdef CONFIG_SMP
	if (!llist_empty(&rq->wake_list))
		return 0;
#endif

	return 1;
L
Linus Torvalds 已提交
3949 3950 3951 3952 3953 3954
}

/**
 * idle_task - return the idle task for a given cpu.
 * @cpu: the processor in question.
 */
3955
struct task_struct *idle_task(int cpu)
L
Linus Torvalds 已提交
3956 3957 3958 3959 3960 3961 3962 3963
{
	return cpu_rq(cpu)->idle;
}

/**
 * find_process_by_pid - find a process with a matching PID value.
 * @pid: the pid in question.
 */
A
Alexey Dobriyan 已提交
3964
static struct task_struct *find_process_by_pid(pid_t pid)
L
Linus Torvalds 已提交
3965
{
3966
	return pid ? find_task_by_vpid(pid) : current;
L
Linus Torvalds 已提交
3967 3968 3969
}

/* Actually do priority change: must hold rq lock. */
I
Ingo Molnar 已提交
3970 3971
static void
__setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
L
Linus Torvalds 已提交
3972 3973 3974
{
	p->policy = policy;
	p->rt_priority = prio;
3975 3976 3977
	p->normal_prio = normal_prio(p);
	/* we are holding p->pi_lock already */
	p->prio = rt_mutex_getprio(p);
3978 3979 3980 3981
	if (rt_prio(p->prio))
		p->sched_class = &rt_sched_class;
	else
		p->sched_class = &fair_sched_class;
3982
	set_load_weight(p);
L
Linus Torvalds 已提交
3983 3984
}

3985 3986 3987 3988 3989 3990 3991 3992 3993 3994
/*
 * check the target process has a UID that matches the current process's
 */
static bool check_same_owner(struct task_struct *p)
{
	const struct cred *cred = current_cred(), *pcred;
	bool match;

	rcu_read_lock();
	pcred = __task_cred(p);
3995 3996 3997 3998 3999
	if (cred->user->user_ns == pcred->user->user_ns)
		match = (cred->euid == pcred->euid ||
			 cred->euid == pcred->uid);
	else
		match = false;
4000 4001 4002 4003
	rcu_read_unlock();
	return match;
}

4004
static int __sched_setscheduler(struct task_struct *p, int policy,
4005
				const struct sched_param *param, bool user)
L
Linus Torvalds 已提交
4006
{
4007
	int retval, oldprio, oldpolicy = -1, on_rq, running;
L
Linus Torvalds 已提交
4008
	unsigned long flags;
4009
	const struct sched_class *prev_class;
4010
	struct rq *rq;
4011
	int reset_on_fork;
L
Linus Torvalds 已提交
4012

4013 4014
	/* may grab non-irq protected spin_locks */
	BUG_ON(in_interrupt());
L
Linus Torvalds 已提交
4015 4016
recheck:
	/* double check policy once rq lock held */
4017 4018
	if (policy < 0) {
		reset_on_fork = p->sched_reset_on_fork;
L
Linus Torvalds 已提交
4019
		policy = oldpolicy = p->policy;
4020 4021 4022 4023 4024 4025 4026 4027 4028 4029
	} else {
		reset_on_fork = !!(policy & SCHED_RESET_ON_FORK);
		policy &= ~SCHED_RESET_ON_FORK;

		if (policy != SCHED_FIFO && policy != SCHED_RR &&
				policy != SCHED_NORMAL && policy != SCHED_BATCH &&
				policy != SCHED_IDLE)
			return -EINVAL;
	}

L
Linus Torvalds 已提交
4030 4031
	/*
	 * Valid priorities for SCHED_FIFO and SCHED_RR are
I
Ingo Molnar 已提交
4032 4033
	 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
	 * SCHED_BATCH and SCHED_IDLE is 0.
L
Linus Torvalds 已提交
4034 4035
	 */
	if (param->sched_priority < 0 ||
I
Ingo Molnar 已提交
4036
	    (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
4037
	    (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
L
Linus Torvalds 已提交
4038
		return -EINVAL;
4039
	if (rt_policy(policy) != (param->sched_priority != 0))
L
Linus Torvalds 已提交
4040 4041
		return -EINVAL;

4042 4043 4044
	/*
	 * Allow unprivileged RT tasks to decrease priority:
	 */
4045
	if (user && !capable(CAP_SYS_NICE)) {
4046
		if (rt_policy(policy)) {
4047 4048
			unsigned long rlim_rtprio =
					task_rlimit(p, RLIMIT_RTPRIO);
4049 4050 4051 4052 4053 4054 4055 4056 4057 4058

			/* can't set/change the rt policy */
			if (policy != p->policy && !rlim_rtprio)
				return -EPERM;

			/* can't increase priority */
			if (param->sched_priority > p->rt_priority &&
			    param->sched_priority > rlim_rtprio)
				return -EPERM;
		}
4059

I
Ingo Molnar 已提交
4060
		/*
4061 4062
		 * Treat SCHED_IDLE as nice 20. Only allow a switch to
		 * SCHED_NORMAL if the RLIMIT_NICE would normally permit it.
I
Ingo Molnar 已提交
4063
		 */
4064 4065 4066 4067
		if (p->policy == SCHED_IDLE && policy != SCHED_IDLE) {
			if (!can_nice(p, TASK_NICE(p)))
				return -EPERM;
		}
4068

4069
		/* can't change other user's priorities */
4070
		if (!check_same_owner(p))
4071
			return -EPERM;
4072 4073 4074 4075

		/* Normal users shall not reset the sched_reset_on_fork flag */
		if (p->sched_reset_on_fork && !reset_on_fork)
			return -EPERM;
4076
	}
L
Linus Torvalds 已提交
4077

4078
	if (user) {
4079
		retval = security_task_setscheduler(p);
4080 4081 4082 4083
		if (retval)
			return retval;
	}

4084 4085 4086
	/*
	 * make sure no PI-waiters arrive (or leave) while we are
	 * changing the priority of the task:
4087
	 *
L
Lucas De Marchi 已提交
4088
	 * To be able to change p->policy safely, the appropriate
L
Linus Torvalds 已提交
4089 4090
	 * runqueue lock must be held.
	 */
4091
	rq = task_rq_lock(p, &flags);
4092

4093 4094 4095 4096
	/*
	 * Changing the policy of the stop threads its a very bad idea
	 */
	if (p == rq->stop) {
4097
		task_rq_unlock(rq, p, &flags);
4098 4099 4100
		return -EINVAL;
	}

4101 4102 4103 4104 4105 4106 4107 4108 4109 4110 4111
	/*
	 * If not changing anything there's no need to proceed further:
	 */
	if (unlikely(policy == p->policy && (!rt_policy(policy) ||
			param->sched_priority == p->rt_priority))) {

		__task_rq_unlock(rq);
		raw_spin_unlock_irqrestore(&p->pi_lock, flags);
		return 0;
	}

4112 4113 4114 4115 4116 4117 4118
#ifdef CONFIG_RT_GROUP_SCHED
	if (user) {
		/*
		 * Do not allow realtime tasks into groups that have no runtime
		 * assigned.
		 */
		if (rt_bandwidth_enabled() && rt_policy(policy) &&
4119 4120
				task_group(p)->rt_bandwidth.rt_runtime == 0 &&
				!task_group_is_autogroup(task_group(p))) {
4121
			task_rq_unlock(rq, p, &flags);
4122 4123 4124 4125 4126
			return -EPERM;
		}
	}
#endif

L
Linus Torvalds 已提交
4127 4128 4129
	/* recheck policy now with rq lock held */
	if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
		policy = oldpolicy = -1;
4130
		task_rq_unlock(rq, p, &flags);
L
Linus Torvalds 已提交
4131 4132
		goto recheck;
	}
P
Peter Zijlstra 已提交
4133
	on_rq = p->on_rq;
4134
	running = task_current(rq, p);
4135
	if (on_rq)
4136
		deactivate_task(rq, p, 0);
4137 4138
	if (running)
		p->sched_class->put_prev_task(rq, p);
4139

4140 4141
	p->sched_reset_on_fork = reset_on_fork;

L
Linus Torvalds 已提交
4142
	oldprio = p->prio;
4143
	prev_class = p->sched_class;
I
Ingo Molnar 已提交
4144
	__setscheduler(rq, p, policy, param->sched_priority);
4145

4146 4147
	if (running)
		p->sched_class->set_curr_task(rq);
P
Peter Zijlstra 已提交
4148
	if (on_rq)
I
Ingo Molnar 已提交
4149
		activate_task(rq, p, 0);
4150

P
Peter Zijlstra 已提交
4151
	check_class_changed(rq, p, prev_class, oldprio);
4152
	task_rq_unlock(rq, p, &flags);
4153

4154 4155
	rt_mutex_adjust_pi(p);

L
Linus Torvalds 已提交
4156 4157
	return 0;
}
4158 4159 4160 4161 4162 4163 4164 4165 4166 4167

/**
 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
 * @p: the task in question.
 * @policy: new policy.
 * @param: structure containing the new RT priority.
 *
 * NOTE that the task may be already dead.
 */
int sched_setscheduler(struct task_struct *p, int policy,
4168
		       const struct sched_param *param)
4169 4170 4171
{
	return __sched_setscheduler(p, policy, param, true);
}
L
Linus Torvalds 已提交
4172 4173
EXPORT_SYMBOL_GPL(sched_setscheduler);

4174 4175 4176 4177 4178 4179 4180 4181 4182 4183 4184 4185
/**
 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
 * @p: the task in question.
 * @policy: new policy.
 * @param: structure containing the new RT priority.
 *
 * Just like sched_setscheduler, only don't bother checking if the
 * current context has permission.  For example, this is needed in
 * stop_machine(): we create temporary high priority worker threads,
 * but our caller might not have that capability.
 */
int sched_setscheduler_nocheck(struct task_struct *p, int policy,
4186
			       const struct sched_param *param)
4187 4188 4189 4190
{
	return __sched_setscheduler(p, policy, param, false);
}

I
Ingo Molnar 已提交
4191 4192
static int
do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
L
Linus Torvalds 已提交
4193 4194 4195
{
	struct sched_param lparam;
	struct task_struct *p;
4196
	int retval;
L
Linus Torvalds 已提交
4197 4198 4199 4200 4201

	if (!param || pid < 0)
		return -EINVAL;
	if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
		return -EFAULT;
4202 4203 4204

	rcu_read_lock();
	retval = -ESRCH;
L
Linus Torvalds 已提交
4205
	p = find_process_by_pid(pid);
4206 4207 4208
	if (p != NULL)
		retval = sched_setscheduler(p, policy, &lparam);
	rcu_read_unlock();
4209

L
Linus Torvalds 已提交
4210 4211 4212 4213 4214 4215 4216 4217 4218
	return retval;
}

/**
 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
 * @pid: the pid in question.
 * @policy: new policy.
 * @param: structure containing the new RT priority.
 */
4219 4220
SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
		struct sched_param __user *, param)
L
Linus Torvalds 已提交
4221
{
4222 4223 4224 4225
	/* negative values for policy are not valid */
	if (policy < 0)
		return -EINVAL;

L
Linus Torvalds 已提交
4226 4227 4228 4229 4230 4231 4232 4233
	return do_sched_setscheduler(pid, policy, param);
}

/**
 * sys_sched_setparam - set/change the RT priority of a thread
 * @pid: the pid in question.
 * @param: structure containing the new RT priority.
 */
4234
SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
L
Linus Torvalds 已提交
4235 4236 4237 4238 4239 4240 4241 4242
{
	return do_sched_setscheduler(pid, -1, param);
}

/**
 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
 * @pid: the pid in question.
 */
4243
SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
L
Linus Torvalds 已提交
4244
{
4245
	struct task_struct *p;
4246
	int retval;
L
Linus Torvalds 已提交
4247 4248

	if (pid < 0)
4249
		return -EINVAL;
L
Linus Torvalds 已提交
4250 4251

	retval = -ESRCH;
4252
	rcu_read_lock();
L
Linus Torvalds 已提交
4253 4254 4255 4256
	p = find_process_by_pid(pid);
	if (p) {
		retval = security_task_getscheduler(p);
		if (!retval)
4257 4258
			retval = p->policy
				| (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
L
Linus Torvalds 已提交
4259
	}
4260
	rcu_read_unlock();
L
Linus Torvalds 已提交
4261 4262 4263 4264
	return retval;
}

/**
4265
 * sys_sched_getparam - get the RT priority of a thread
L
Linus Torvalds 已提交
4266 4267 4268
 * @pid: the pid in question.
 * @param: structure containing the RT priority.
 */
4269
SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
L
Linus Torvalds 已提交
4270 4271
{
	struct sched_param lp;
4272
	struct task_struct *p;
4273
	int retval;
L
Linus Torvalds 已提交
4274 4275

	if (!param || pid < 0)
4276
		return -EINVAL;
L
Linus Torvalds 已提交
4277

4278
	rcu_read_lock();
L
Linus Torvalds 已提交
4279 4280 4281 4282 4283 4284 4285 4286 4287 4288
	p = find_process_by_pid(pid);
	retval = -ESRCH;
	if (!p)
		goto out_unlock;

	retval = security_task_getscheduler(p);
	if (retval)
		goto out_unlock;

	lp.sched_priority = p->rt_priority;
4289
	rcu_read_unlock();
L
Linus Torvalds 已提交
4290 4291 4292 4293 4294 4295 4296 4297 4298

	/*
	 * This one might sleep, we cannot do it with a spinlock held ...
	 */
	retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;

	return retval;

out_unlock:
4299
	rcu_read_unlock();
L
Linus Torvalds 已提交
4300 4301 4302
	return retval;
}

4303
long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
L
Linus Torvalds 已提交
4304
{
4305
	cpumask_var_t cpus_allowed, new_mask;
4306 4307
	struct task_struct *p;
	int retval;
L
Linus Torvalds 已提交
4308

4309
	get_online_cpus();
4310
	rcu_read_lock();
L
Linus Torvalds 已提交
4311 4312 4313

	p = find_process_by_pid(pid);
	if (!p) {
4314
		rcu_read_unlock();
4315
		put_online_cpus();
L
Linus Torvalds 已提交
4316 4317 4318
		return -ESRCH;
	}

4319
	/* Prevent p going away */
L
Linus Torvalds 已提交
4320
	get_task_struct(p);
4321
	rcu_read_unlock();
L
Linus Torvalds 已提交
4322

4323 4324 4325 4326 4327 4328 4329 4330
	if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
		retval = -ENOMEM;
		goto out_put_task;
	}
	if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
		retval = -ENOMEM;
		goto out_free_cpus_allowed;
	}
L
Linus Torvalds 已提交
4331
	retval = -EPERM;
4332
	if (!check_same_owner(p) && !task_ns_capable(p, CAP_SYS_NICE))
L
Linus Torvalds 已提交
4333 4334
		goto out_unlock;

4335
	retval = security_task_setscheduler(p);
4336 4337 4338
	if (retval)
		goto out_unlock;

4339 4340
	cpuset_cpus_allowed(p, cpus_allowed);
	cpumask_and(new_mask, in_mask, cpus_allowed);
P
Peter Zijlstra 已提交
4341
again:
4342
	retval = set_cpus_allowed_ptr(p, new_mask);
L
Linus Torvalds 已提交
4343

P
Paul Menage 已提交
4344
	if (!retval) {
4345 4346
		cpuset_cpus_allowed(p, cpus_allowed);
		if (!cpumask_subset(new_mask, cpus_allowed)) {
P
Paul Menage 已提交
4347 4348 4349 4350 4351
			/*
			 * We must have raced with a concurrent cpuset
			 * update. Just reset the cpus_allowed to the
			 * cpuset's cpus_allowed
			 */
4352
			cpumask_copy(new_mask, cpus_allowed);
P
Paul Menage 已提交
4353 4354 4355
			goto again;
		}
	}
L
Linus Torvalds 已提交
4356
out_unlock:
4357 4358 4359 4360
	free_cpumask_var(new_mask);
out_free_cpus_allowed:
	free_cpumask_var(cpus_allowed);
out_put_task:
L
Linus Torvalds 已提交
4361
	put_task_struct(p);
4362
	put_online_cpus();
L
Linus Torvalds 已提交
4363 4364 4365 4366
	return retval;
}

static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
4367
			     struct cpumask *new_mask)
L
Linus Torvalds 已提交
4368
{
4369 4370 4371 4372 4373
	if (len < cpumask_size())
		cpumask_clear(new_mask);
	else if (len > cpumask_size())
		len = cpumask_size();

L
Linus Torvalds 已提交
4374 4375 4376 4377 4378 4379 4380 4381 4382
	return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
}

/**
 * sys_sched_setaffinity - set the cpu affinity of a process
 * @pid: pid of the process
 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
 * @user_mask_ptr: user-space pointer to the new cpu mask
 */
4383 4384
SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
		unsigned long __user *, user_mask_ptr)
L
Linus Torvalds 已提交
4385
{
4386
	cpumask_var_t new_mask;
L
Linus Torvalds 已提交
4387 4388
	int retval;

4389 4390
	if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
		return -ENOMEM;
L
Linus Torvalds 已提交
4391

4392 4393 4394 4395 4396
	retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
	if (retval == 0)
		retval = sched_setaffinity(pid, new_mask);
	free_cpumask_var(new_mask);
	return retval;
L
Linus Torvalds 已提交
4397 4398
}

4399
long sched_getaffinity(pid_t pid, struct cpumask *mask)
L
Linus Torvalds 已提交
4400
{
4401
	struct task_struct *p;
4402
	unsigned long flags;
L
Linus Torvalds 已提交
4403 4404
	int retval;

4405
	get_online_cpus();
4406
	rcu_read_lock();
L
Linus Torvalds 已提交
4407 4408 4409 4410 4411 4412

	retval = -ESRCH;
	p = find_process_by_pid(pid);
	if (!p)
		goto out_unlock;

4413 4414 4415 4416
	retval = security_task_getscheduler(p);
	if (retval)
		goto out_unlock;

4417
	raw_spin_lock_irqsave(&p->pi_lock, flags);
4418
	cpumask_and(mask, &p->cpus_allowed, cpu_online_mask);
4419
	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
L
Linus Torvalds 已提交
4420 4421

out_unlock:
4422
	rcu_read_unlock();
4423
	put_online_cpus();
L
Linus Torvalds 已提交
4424

4425
	return retval;
L
Linus Torvalds 已提交
4426 4427 4428 4429 4430 4431 4432 4433
}

/**
 * sys_sched_getaffinity - get the cpu affinity of a process
 * @pid: pid of the process
 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
 * @user_mask_ptr: user-space pointer to hold the current cpu mask
 */
4434 4435
SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
		unsigned long __user *, user_mask_ptr)
L
Linus Torvalds 已提交
4436 4437
{
	int ret;
4438
	cpumask_var_t mask;
L
Linus Torvalds 已提交
4439

A
Anton Blanchard 已提交
4440
	if ((len * BITS_PER_BYTE) < nr_cpu_ids)
4441 4442
		return -EINVAL;
	if (len & (sizeof(unsigned long)-1))
L
Linus Torvalds 已提交
4443 4444
		return -EINVAL;

4445 4446
	if (!alloc_cpumask_var(&mask, GFP_KERNEL))
		return -ENOMEM;
L
Linus Torvalds 已提交
4447

4448 4449
	ret = sched_getaffinity(pid, mask);
	if (ret == 0) {
4450
		size_t retlen = min_t(size_t, len, cpumask_size());
4451 4452

		if (copy_to_user(user_mask_ptr, mask, retlen))
4453 4454
			ret = -EFAULT;
		else
4455
			ret = retlen;
4456 4457
	}
	free_cpumask_var(mask);
L
Linus Torvalds 已提交
4458

4459
	return ret;
L
Linus Torvalds 已提交
4460 4461 4462 4463 4464
}

/**
 * sys_sched_yield - yield the current processor to other threads.
 *
I
Ingo Molnar 已提交
4465 4466
 * This function yields the current CPU to other tasks. If there are no
 * other threads running on this CPU then this function will return.
L
Linus Torvalds 已提交
4467
 */
4468
SYSCALL_DEFINE0(sched_yield)
L
Linus Torvalds 已提交
4469
{
4470
	struct rq *rq = this_rq_lock();
L
Linus Torvalds 已提交
4471

4472
	schedstat_inc(rq, yld_count);
4473
	current->sched_class->yield_task(rq);
L
Linus Torvalds 已提交
4474 4475 4476 4477 4478 4479

	/*
	 * Since we are going to call schedule() anyway, there's
	 * no need to preempt or enable interrupts:
	 */
	__release(rq->lock);
4480
	spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
4481
	do_raw_spin_unlock(&rq->lock);
L
Linus Torvalds 已提交
4482 4483 4484 4485 4486 4487 4488
	preempt_enable_no_resched();

	schedule();

	return 0;
}

P
Peter Zijlstra 已提交
4489 4490 4491 4492 4493
static inline int should_resched(void)
{
	return need_resched() && !(preempt_count() & PREEMPT_ACTIVE);
}

A
Andrew Morton 已提交
4494
static void __cond_resched(void)
L
Linus Torvalds 已提交
4495
{
4496
	add_preempt_count(PREEMPT_ACTIVE);
4497
	__schedule();
4498
	sub_preempt_count(PREEMPT_ACTIVE);
L
Linus Torvalds 已提交
4499 4500
}

4501
int __sched _cond_resched(void)
L
Linus Torvalds 已提交
4502
{
P
Peter Zijlstra 已提交
4503
	if (should_resched()) {
L
Linus Torvalds 已提交
4504 4505 4506 4507 4508
		__cond_resched();
		return 1;
	}
	return 0;
}
4509
EXPORT_SYMBOL(_cond_resched);
L
Linus Torvalds 已提交
4510 4511

/*
4512
 * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
L
Linus Torvalds 已提交
4513 4514
 * call schedule, and on return reacquire the lock.
 *
I
Ingo Molnar 已提交
4515
 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
L
Linus Torvalds 已提交
4516 4517 4518
 * operations here to prevent schedule() from being called twice (once via
 * spin_unlock(), once by hand).
 */
4519
int __cond_resched_lock(spinlock_t *lock)
L
Linus Torvalds 已提交
4520
{
P
Peter Zijlstra 已提交
4521
	int resched = should_resched();
J
Jan Kara 已提交
4522 4523
	int ret = 0;

4524 4525
	lockdep_assert_held(lock);

N
Nick Piggin 已提交
4526
	if (spin_needbreak(lock) || resched) {
L
Linus Torvalds 已提交
4527
		spin_unlock(lock);
P
Peter Zijlstra 已提交
4528
		if (resched)
N
Nick Piggin 已提交
4529 4530 4531
			__cond_resched();
		else
			cpu_relax();
J
Jan Kara 已提交
4532
		ret = 1;
L
Linus Torvalds 已提交
4533 4534
		spin_lock(lock);
	}
J
Jan Kara 已提交
4535
	return ret;
L
Linus Torvalds 已提交
4536
}
4537
EXPORT_SYMBOL(__cond_resched_lock);
L
Linus Torvalds 已提交
4538

4539
int __sched __cond_resched_softirq(void)
L
Linus Torvalds 已提交
4540 4541 4542
{
	BUG_ON(!in_softirq());

P
Peter Zijlstra 已提交
4543
	if (should_resched()) {
4544
		local_bh_enable();
L
Linus Torvalds 已提交
4545 4546 4547 4548 4549 4550
		__cond_resched();
		local_bh_disable();
		return 1;
	}
	return 0;
}
4551
EXPORT_SYMBOL(__cond_resched_softirq);
L
Linus Torvalds 已提交
4552 4553 4554 4555

/**
 * yield - yield the current processor to other threads.
 *
4556
 * This is a shortcut for kernel-space yielding - it marks the
L
Linus Torvalds 已提交
4557 4558 4559 4560 4561 4562 4563 4564 4565
 * thread runnable and calls sys_sched_yield().
 */
void __sched yield(void)
{
	set_current_state(TASK_RUNNING);
	sys_sched_yield();
}
EXPORT_SYMBOL(yield);

4566 4567 4568 4569
/**
 * yield_to - yield the current processor to another thread in
 * your thread group, or accelerate that thread toward the
 * processor it's on.
R
Randy Dunlap 已提交
4570 4571
 * @p: target task
 * @preempt: whether task preemption is allowed or not
4572 4573 4574 4575 4576 4577 4578 4579 4580 4581 4582 4583 4584 4585 4586 4587 4588 4589 4590 4591 4592 4593 4594 4595 4596 4597 4598 4599 4600 4601 4602 4603 4604 4605
 *
 * It's the caller's job to ensure that the target task struct
 * can't go away on us before we can do any checks.
 *
 * Returns true if we indeed boosted the target task.
 */
bool __sched yield_to(struct task_struct *p, bool preempt)
{
	struct task_struct *curr = current;
	struct rq *rq, *p_rq;
	unsigned long flags;
	bool yielded = 0;

	local_irq_save(flags);
	rq = this_rq();

again:
	p_rq = task_rq(p);
	double_rq_lock(rq, p_rq);
	while (task_rq(p) != p_rq) {
		double_rq_unlock(rq, p_rq);
		goto again;
	}

	if (!curr->sched_class->yield_to_task)
		goto out;

	if (curr->sched_class != p->sched_class)
		goto out;

	if (task_running(p_rq, p) || p->state)
		goto out;

	yielded = curr->sched_class->yield_to_task(rq, p, preempt);
4606
	if (yielded) {
4607
		schedstat_inc(rq, yld_count);
4608 4609 4610 4611 4612 4613
		/*
		 * Make p's CPU reschedule; pick_next_entity takes care of
		 * fairness.
		 */
		if (preempt && rq != p_rq)
			resched_task(p_rq->curr);
4614 4615 4616 4617 4618 4619 4620
	} else {
		/*
		 * We might have set it in task_yield_fair(), but are
		 * not going to schedule(), so don't want to skip
		 * the next update.
		 */
		rq->skip_clock_update = 0;
4621
	}
4622 4623 4624 4625 4626 4627 4628 4629 4630 4631 4632 4633

out:
	double_rq_unlock(rq, p_rq);
	local_irq_restore(flags);

	if (yielded)
		schedule();

	return yielded;
}
EXPORT_SYMBOL_GPL(yield_to);

L
Linus Torvalds 已提交
4634
/*
I
Ingo Molnar 已提交
4635
 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
L
Linus Torvalds 已提交
4636 4637 4638 4639
 * that process accounting knows that this is a task in IO wait state.
 */
void __sched io_schedule(void)
{
4640
	struct rq *rq = raw_rq();
L
Linus Torvalds 已提交
4641

4642
	delayacct_blkio_start();
L
Linus Torvalds 已提交
4643
	atomic_inc(&rq->nr_iowait);
4644
	blk_flush_plug(current);
4645
	current->in_iowait = 1;
L
Linus Torvalds 已提交
4646
	schedule();
4647
	current->in_iowait = 0;
L
Linus Torvalds 已提交
4648
	atomic_dec(&rq->nr_iowait);
4649
	delayacct_blkio_end();
L
Linus Torvalds 已提交
4650 4651 4652 4653 4654
}
EXPORT_SYMBOL(io_schedule);

long __sched io_schedule_timeout(long timeout)
{
4655
	struct rq *rq = raw_rq();
L
Linus Torvalds 已提交
4656 4657
	long ret;

4658
	delayacct_blkio_start();
L
Linus Torvalds 已提交
4659
	atomic_inc(&rq->nr_iowait);
4660
	blk_flush_plug(current);
4661
	current->in_iowait = 1;
L
Linus Torvalds 已提交
4662
	ret = schedule_timeout(timeout);
4663
	current->in_iowait = 0;
L
Linus Torvalds 已提交
4664
	atomic_dec(&rq->nr_iowait);
4665
	delayacct_blkio_end();
L
Linus Torvalds 已提交
4666 4667 4668 4669 4670 4671 4672 4673 4674 4675
	return ret;
}

/**
 * sys_sched_get_priority_max - return maximum RT priority.
 * @policy: scheduling class.
 *
 * this syscall returns the maximum rt_priority that can be used
 * by a given scheduling class.
 */
4676
SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
L
Linus Torvalds 已提交
4677 4678 4679 4680 4681 4682 4683 4684 4685
{
	int ret = -EINVAL;

	switch (policy) {
	case SCHED_FIFO:
	case SCHED_RR:
		ret = MAX_USER_RT_PRIO-1;
		break;
	case SCHED_NORMAL:
4686
	case SCHED_BATCH:
I
Ingo Molnar 已提交
4687
	case SCHED_IDLE:
L
Linus Torvalds 已提交
4688 4689 4690 4691 4692 4693 4694 4695 4696 4697 4698 4699 4700
		ret = 0;
		break;
	}
	return ret;
}

/**
 * sys_sched_get_priority_min - return minimum RT priority.
 * @policy: scheduling class.
 *
 * this syscall returns the minimum rt_priority that can be used
 * by a given scheduling class.
 */
4701
SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
L
Linus Torvalds 已提交
4702 4703 4704 4705 4706 4707 4708 4709 4710
{
	int ret = -EINVAL;

	switch (policy) {
	case SCHED_FIFO:
	case SCHED_RR:
		ret = 1;
		break;
	case SCHED_NORMAL:
4711
	case SCHED_BATCH:
I
Ingo Molnar 已提交
4712
	case SCHED_IDLE:
L
Linus Torvalds 已提交
4713 4714 4715 4716 4717 4718 4719 4720 4721 4722 4723 4724 4725
		ret = 0;
	}
	return ret;
}

/**
 * sys_sched_rr_get_interval - return the default timeslice of a process.
 * @pid: pid of the process.
 * @interval: userspace pointer to the timeslice value.
 *
 * this syscall writes the default timeslice value of a given process
 * into the user-space timespec buffer. A value of '0' means infinity.
 */
4726
SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
4727
		struct timespec __user *, interval)
L
Linus Torvalds 已提交
4728
{
4729
	struct task_struct *p;
D
Dmitry Adamushko 已提交
4730
	unsigned int time_slice;
4731 4732
	unsigned long flags;
	struct rq *rq;
4733
	int retval;
L
Linus Torvalds 已提交
4734 4735 4736
	struct timespec t;

	if (pid < 0)
4737
		return -EINVAL;
L
Linus Torvalds 已提交
4738 4739

	retval = -ESRCH;
4740
	rcu_read_lock();
L
Linus Torvalds 已提交
4741 4742 4743 4744 4745 4746 4747 4748
	p = find_process_by_pid(pid);
	if (!p)
		goto out_unlock;

	retval = security_task_getscheduler(p);
	if (retval)
		goto out_unlock;

4749 4750
	rq = task_rq_lock(p, &flags);
	time_slice = p->sched_class->get_rr_interval(rq, p);
4751
	task_rq_unlock(rq, p, &flags);
D
Dmitry Adamushko 已提交
4752

4753
	rcu_read_unlock();
D
Dmitry Adamushko 已提交
4754
	jiffies_to_timespec(time_slice, &t);
L
Linus Torvalds 已提交
4755 4756
	retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
	return retval;
4757

L
Linus Torvalds 已提交
4758
out_unlock:
4759
	rcu_read_unlock();
L
Linus Torvalds 已提交
4760 4761 4762
	return retval;
}

4763
static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
4764

4765
void sched_show_task(struct task_struct *p)
L
Linus Torvalds 已提交
4766 4767
{
	unsigned long free = 0;
4768
	unsigned state;
L
Linus Torvalds 已提交
4769 4770

	state = p->state ? __ffs(p->state) + 1 : 0;
4771
	printk(KERN_INFO "%-15.15s %c", p->comm,
4772
		state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
4773
#if BITS_PER_LONG == 32
L
Linus Torvalds 已提交
4774
	if (state == TASK_RUNNING)
P
Peter Zijlstra 已提交
4775
		printk(KERN_CONT " running  ");
L
Linus Torvalds 已提交
4776
	else
P
Peter Zijlstra 已提交
4777
		printk(KERN_CONT " %08lx ", thread_saved_pc(p));
L
Linus Torvalds 已提交
4778 4779
#else
	if (state == TASK_RUNNING)
P
Peter Zijlstra 已提交
4780
		printk(KERN_CONT "  running task    ");
L
Linus Torvalds 已提交
4781
	else
P
Peter Zijlstra 已提交
4782
		printk(KERN_CONT " %016lx ", thread_saved_pc(p));
L
Linus Torvalds 已提交
4783 4784
#endif
#ifdef CONFIG_DEBUG_STACK_USAGE
4785
	free = stack_not_used(p);
L
Linus Torvalds 已提交
4786
#endif
P
Peter Zijlstra 已提交
4787
	printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
4788
		task_pid_nr(p), task_pid_nr(rcu_dereference(p->real_parent)),
4789
		(unsigned long)task_thread_info(p)->flags);
L
Linus Torvalds 已提交
4790

4791
	show_stack(p, NULL);
L
Linus Torvalds 已提交
4792 4793
}

I
Ingo Molnar 已提交
4794
void show_state_filter(unsigned long state_filter)
L
Linus Torvalds 已提交
4795
{
4796
	struct task_struct *g, *p;
L
Linus Torvalds 已提交
4797

4798
#if BITS_PER_LONG == 32
P
Peter Zijlstra 已提交
4799 4800
	printk(KERN_INFO
		"  task                PC stack   pid father\n");
L
Linus Torvalds 已提交
4801
#else
P
Peter Zijlstra 已提交
4802 4803
	printk(KERN_INFO
		"  task                        PC stack   pid father\n");
L
Linus Torvalds 已提交
4804
#endif
4805
	rcu_read_lock();
L
Linus Torvalds 已提交
4806 4807 4808
	do_each_thread(g, p) {
		/*
		 * reset the NMI-timeout, listing all files on a slow
L
Lucas De Marchi 已提交
4809
		 * console might take a lot of time:
L
Linus Torvalds 已提交
4810 4811
		 */
		touch_nmi_watchdog();
I
Ingo Molnar 已提交
4812
		if (!state_filter || (p->state & state_filter))
4813
			sched_show_task(p);
L
Linus Torvalds 已提交
4814 4815
	} while_each_thread(g, p);

4816 4817
	touch_all_softlockup_watchdogs();

I
Ingo Molnar 已提交
4818 4819 4820
#ifdef CONFIG_SCHED_DEBUG
	sysrq_sched_debug_show();
#endif
4821
	rcu_read_unlock();
I
Ingo Molnar 已提交
4822 4823 4824
	/*
	 * Only show locks if all tasks are dumped:
	 */
4825
	if (!state_filter)
I
Ingo Molnar 已提交
4826
		debug_show_all_locks();
L
Linus Torvalds 已提交
4827 4828
}

I
Ingo Molnar 已提交
4829 4830
void __cpuinit init_idle_bootup_task(struct task_struct *idle)
{
I
Ingo Molnar 已提交
4831
	idle->sched_class = &idle_sched_class;
I
Ingo Molnar 已提交
4832 4833
}

4834 4835 4836 4837 4838 4839 4840 4841
/**
 * init_idle - set up an idle thread for a given CPU
 * @idle: task in question
 * @cpu: cpu the idle task belongs to
 *
 * NOTE: this function does not set the idle thread's NEED_RESCHED
 * flag, to make booting more robust.
 */
4842
void __cpuinit init_idle(struct task_struct *idle, int cpu)
L
Linus Torvalds 已提交
4843
{
4844
	struct rq *rq = cpu_rq(cpu);
L
Linus Torvalds 已提交
4845 4846
	unsigned long flags;

4847
	raw_spin_lock_irqsave(&rq->lock, flags);
4848

I
Ingo Molnar 已提交
4849
	__sched_fork(idle);
4850
	idle->state = TASK_RUNNING;
I
Ingo Molnar 已提交
4851 4852
	idle->se.exec_start = sched_clock();

4853
	do_set_cpus_allowed(idle, cpumask_of(cpu));
4854 4855 4856 4857 4858 4859 4860 4861 4862 4863 4864
	/*
	 * We're having a chicken and egg problem, even though we are
	 * holding rq->lock, the cpu isn't yet set to this cpu so the
	 * lockdep check in task_group() will fail.
	 *
	 * Similar case to sched_fork(). / Alternatively we could
	 * use task_rq_lock() here and obtain the other rq->lock.
	 *
	 * Silence PROVE_RCU
	 */
	rcu_read_lock();
I
Ingo Molnar 已提交
4865
	__set_task_cpu(idle, cpu);
4866
	rcu_read_unlock();
L
Linus Torvalds 已提交
4867 4868

	rq->curr = rq->idle = idle;
P
Peter Zijlstra 已提交
4869 4870
#if defined(CONFIG_SMP)
	idle->on_cpu = 1;
4871
#endif
4872
	raw_spin_unlock_irqrestore(&rq->lock, flags);
L
Linus Torvalds 已提交
4873 4874

	/* Set the preempt count _outside_ the spinlocks! */
A
Al Viro 已提交
4875
	task_thread_info(idle)->preempt_count = 0;
4876

I
Ingo Molnar 已提交
4877 4878 4879 4880
	/*
	 * The idle tasks have their own, simple scheduling class:
	 */
	idle->sched_class = &idle_sched_class;
4881
	ftrace_graph_init_idle_task(idle, cpu);
4882 4883 4884
#if defined(CONFIG_SMP)
	sprintf(idle->comm, "%s/%d", INIT_TASK_COMM, cpu);
#endif
I
Ingo Molnar 已提交
4885 4886
}

L
Linus Torvalds 已提交
4887
#ifdef CONFIG_SMP
4888 4889 4890 4891
void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
{
	if (p->sched_class && p->sched_class->set_cpus_allowed)
		p->sched_class->set_cpus_allowed(p, new_mask);
4892 4893 4894

	cpumask_copy(&p->cpus_allowed, new_mask);
	p->rt.nr_cpus_allowed = cpumask_weight(new_mask);
4895 4896
}

L
Linus Torvalds 已提交
4897 4898 4899
/*
 * This is how migration works:
 *
4900 4901 4902 4903 4904 4905
 * 1) we invoke migration_cpu_stop() on the target CPU using
 *    stop_one_cpu().
 * 2) stopper starts to run (implicitly forcing the migrated thread
 *    off the CPU)
 * 3) it checks whether the migrated task is still in the wrong runqueue.
 * 4) if it's in the wrong runqueue then the migration thread removes
L
Linus Torvalds 已提交
4906
 *    it and puts it into the right queue.
4907 4908
 * 5) stopper completes and stop_one_cpu() returns and the migration
 *    is done.
L
Linus Torvalds 已提交
4909 4910 4911 4912 4913 4914 4915 4916
 */

/*
 * Change a given task's CPU affinity. Migrate the thread to a
 * proper CPU and schedule it away if the CPU it's executing on
 * is removed from the allowed bitmask.
 *
 * NOTE: the caller must have a valid reference to the task, the
I
Ingo Molnar 已提交
4917
 * task must not exit() & deallocate itself prematurely. The
L
Linus Torvalds 已提交
4918 4919
 * call is not atomic; no spinlocks may be held.
 */
4920
int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
L
Linus Torvalds 已提交
4921 4922
{
	unsigned long flags;
4923
	struct rq *rq;
4924
	unsigned int dest_cpu;
4925
	int ret = 0;
L
Linus Torvalds 已提交
4926 4927

	rq = task_rq_lock(p, &flags);
4928

4929 4930 4931
	if (cpumask_equal(&p->cpus_allowed, new_mask))
		goto out;

4932
	if (!cpumask_intersects(new_mask, cpu_active_mask)) {
L
Linus Torvalds 已提交
4933 4934 4935 4936
		ret = -EINVAL;
		goto out;
	}

4937
	if (unlikely((p->flags & PF_THREAD_BOUND) && p != current)) {
4938 4939 4940 4941
		ret = -EINVAL;
		goto out;
	}

4942
	do_set_cpus_allowed(p, new_mask);
4943

L
Linus Torvalds 已提交
4944
	/* Can the task run on the task's current CPU? If so, we're done */
4945
	if (cpumask_test_cpu(task_cpu(p), new_mask))
L
Linus Torvalds 已提交
4946 4947
		goto out;

4948
	dest_cpu = cpumask_any_and(cpu_active_mask, new_mask);
4949
	if (p->on_rq) {
4950
		struct migration_arg arg = { p, dest_cpu };
L
Linus Torvalds 已提交
4951
		/* Need help from migration thread: drop lock and wait. */
4952
		task_rq_unlock(rq, p, &flags);
4953
		stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
L
Linus Torvalds 已提交
4954 4955 4956 4957
		tlb_migrate_finish(p->mm);
		return 0;
	}
out:
4958
	task_rq_unlock(rq, p, &flags);
4959

L
Linus Torvalds 已提交
4960 4961
	return ret;
}
4962
EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
L
Linus Torvalds 已提交
4963 4964

/*
I
Ingo Molnar 已提交
4965
 * Move (not current) task off this cpu, onto dest cpu. We're doing
L
Linus Torvalds 已提交
4966 4967 4968 4969 4970 4971
 * this because either it can't run here any more (set_cpus_allowed()
 * away from this CPU, or CPU going down), or because we're
 * attempting to rebalance this task on exec (sched_exec).
 *
 * So we race with normal scheduler movements, but that's OK, as long
 * as the task is no longer on this CPU.
4972 4973
 *
 * Returns non-zero if task was successfully migrated.
L
Linus Torvalds 已提交
4974
 */
4975
static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
L
Linus Torvalds 已提交
4976
{
4977
	struct rq *rq_dest, *rq_src;
4978
	int ret = 0;
L
Linus Torvalds 已提交
4979

4980
	if (unlikely(!cpu_active(dest_cpu)))
4981
		return ret;
L
Linus Torvalds 已提交
4982 4983 4984 4985

	rq_src = cpu_rq(src_cpu);
	rq_dest = cpu_rq(dest_cpu);

4986
	raw_spin_lock(&p->pi_lock);
L
Linus Torvalds 已提交
4987 4988 4989
	double_rq_lock(rq_src, rq_dest);
	/* Already moved. */
	if (task_cpu(p) != src_cpu)
L
Linus Torvalds 已提交
4990
		goto done;
L
Linus Torvalds 已提交
4991
	/* Affinity changed (again). */
4992
	if (!cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
L
Linus Torvalds 已提交
4993
		goto fail;
L
Linus Torvalds 已提交
4994

4995 4996 4997 4998
	/*
	 * If we're not on a rq, the next wake-up will ensure we're
	 * placed properly.
	 */
P
Peter Zijlstra 已提交
4999
	if (p->on_rq) {
5000
		deactivate_task(rq_src, p, 0);
5001
		set_task_cpu(p, dest_cpu);
I
Ingo Molnar 已提交
5002
		activate_task(rq_dest, p, 0);
5003
		check_preempt_curr(rq_dest, p, 0);
L
Linus Torvalds 已提交
5004
	}
L
Linus Torvalds 已提交
5005
done:
5006
	ret = 1;
L
Linus Torvalds 已提交
5007
fail:
L
Linus Torvalds 已提交
5008
	double_rq_unlock(rq_src, rq_dest);
5009
	raw_spin_unlock(&p->pi_lock);
5010
	return ret;
L
Linus Torvalds 已提交
5011 5012 5013
}

/*
5014 5015 5016
 * migration_cpu_stop - this will be executed by a highprio stopper thread
 * and performs thread migration by bumping thread off CPU then
 * 'pushing' onto another runqueue.
L
Linus Torvalds 已提交
5017
 */
5018
static int migration_cpu_stop(void *data)
L
Linus Torvalds 已提交
5019
{
5020
	struct migration_arg *arg = data;
5021

5022 5023 5024 5025
	/*
	 * The original target cpu might have gone down and we might
	 * be on another cpu but it doesn't matter.
	 */
5026
	local_irq_disable();
5027
	__migrate_task(arg->task, raw_smp_processor_id(), arg->dest_cpu);
5028
	local_irq_enable();
L
Linus Torvalds 已提交
5029
	return 0;
5030 5031
}

L
Linus Torvalds 已提交
5032
#ifdef CONFIG_HOTPLUG_CPU
5033

5034
/*
5035 5036
 * Ensures that the idle task is using init_mm right before its cpu goes
 * offline.
5037
 */
5038
void idle_task_exit(void)
L
Linus Torvalds 已提交
5039
{
5040
	struct mm_struct *mm = current->active_mm;
5041

5042
	BUG_ON(cpu_online(smp_processor_id()));
5043

5044 5045 5046
	if (mm != &init_mm)
		switch_mm(mm, &init_mm, current);
	mmdrop(mm);
L
Linus Torvalds 已提交
5047 5048 5049 5050 5051 5052 5053 5054 5055
}

/*
 * While a dead CPU has no uninterruptible tasks queued at this point,
 * it might still have a nonzero ->nr_uninterruptible counter, because
 * for performance reasons the counter is not stricly tracking tasks to
 * their home CPUs. So we just add the counter to another CPU's counter,
 * to keep the global sum constant after CPU-down:
 */
5056
static void migrate_nr_uninterruptible(struct rq *rq_src)
L
Linus Torvalds 已提交
5057
{
5058
	struct rq *rq_dest = cpu_rq(cpumask_any(cpu_active_mask));
L
Linus Torvalds 已提交
5059 5060 5061 5062 5063

	rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
	rq_src->nr_uninterruptible = 0;
}

I
Ingo Molnar 已提交
5064
/*
5065
 * remove the tasks which were accounted by rq from calc_load_tasks.
L
Linus Torvalds 已提交
5066
 */
5067
static void calc_global_load_remove(struct rq *rq)
L
Linus Torvalds 已提交
5068
{
5069 5070
	atomic_long_sub(rq->calc_load_active, &calc_load_tasks);
	rq->calc_load_active = 0;
L
Linus Torvalds 已提交
5071 5072
}

5073
/*
5074 5075 5076 5077 5078 5079
 * Migrate all tasks from the rq, sleeping tasks will be migrated by
 * try_to_wake_up()->select_task_rq().
 *
 * Called with rq->lock held even though we'er in stop_machine() and
 * there's no concurrency possible, we hold the required locks anyway
 * because of lock validation efforts.
L
Linus Torvalds 已提交
5080
 */
5081
static void migrate_tasks(unsigned int dead_cpu)
L
Linus Torvalds 已提交
5082
{
5083
	struct rq *rq = cpu_rq(dead_cpu);
5084 5085
	struct task_struct *next, *stop = rq->stop;
	int dest_cpu;
L
Linus Torvalds 已提交
5086 5087

	/*
5088 5089 5090 5091 5092 5093 5094
	 * Fudge the rq selection such that the below task selection loop
	 * doesn't get stuck on the currently eligible stop task.
	 *
	 * We're currently inside stop_machine() and the rq is either stuck
	 * in the stop_machine_cpu_stop() loop, or we're executing this code,
	 * either way we should never end up calling schedule() until we're
	 * done here.
L
Linus Torvalds 已提交
5095
	 */
5096
	rq->stop = NULL;
5097

5098 5099 5100
	/* Ensure any throttled groups are reachable by pick_next_task */
	unthrottle_offline_cfs_rqs(rq);

I
Ingo Molnar 已提交
5101
	for ( ; ; ) {
5102 5103 5104 5105 5106
		/*
		 * There's this thread running, bail when that's the only
		 * remaining thread.
		 */
		if (rq->nr_running == 1)
I
Ingo Molnar 已提交
5107
			break;
5108

5109
		next = pick_next_task(rq);
5110
		BUG_ON(!next);
D
Dmitry Adamushko 已提交
5111
		next->sched_class->put_prev_task(rq, next);
5112

5113 5114 5115 5116 5117 5118 5119
		/* Find suitable destination for @next, with force if needed. */
		dest_cpu = select_fallback_rq(dead_cpu, next);
		raw_spin_unlock(&rq->lock);

		__migrate_task(next, dead_cpu, dest_cpu);

		raw_spin_lock(&rq->lock);
L
Linus Torvalds 已提交
5120
	}
5121

5122
	rq->stop = stop;
5123
}
5124

L
Linus Torvalds 已提交
5125 5126
#endif /* CONFIG_HOTPLUG_CPU */

5127 5128 5129
#if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)

static struct ctl_table sd_ctl_dir[] = {
5130 5131
	{
		.procname	= "sched_domain",
5132
		.mode		= 0555,
5133
	},
5134
	{}
5135 5136 5137
};

static struct ctl_table sd_ctl_root[] = {
5138 5139
	{
		.procname	= "kernel",
5140
		.mode		= 0555,
5141 5142
		.child		= sd_ctl_dir,
	},
5143
	{}
5144 5145 5146 5147 5148
};

static struct ctl_table *sd_alloc_ctl_entry(int n)
{
	struct ctl_table *entry =
5149
		kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
5150 5151 5152 5153

	return entry;
}

5154 5155
static void sd_free_ctl_entry(struct ctl_table **tablep)
{
5156
	struct ctl_table *entry;
5157

5158 5159 5160
	/*
	 * In the intermediate directories, both the child directory and
	 * procname are dynamically allocated and could fail but the mode
I
Ingo Molnar 已提交
5161
	 * will always be set. In the lowest directory the names are
5162 5163 5164
	 * static strings and all have proc handlers.
	 */
	for (entry = *tablep; entry->mode; entry++) {
5165 5166
		if (entry->child)
			sd_free_ctl_entry(&entry->child);
5167 5168 5169
		if (entry->proc_handler == NULL)
			kfree(entry->procname);
	}
5170 5171 5172 5173 5174

	kfree(*tablep);
	*tablep = NULL;
}

5175
static void
5176
set_table_entry(struct ctl_table *entry,
5177 5178 5179 5180 5181 5182 5183 5184 5185 5186 5187 5188 5189
		const char *procname, void *data, int maxlen,
		mode_t mode, proc_handler *proc_handler)
{
	entry->procname = procname;
	entry->data = data;
	entry->maxlen = maxlen;
	entry->mode = mode;
	entry->proc_handler = proc_handler;
}

static struct ctl_table *
sd_alloc_ctl_domain_table(struct sched_domain *sd)
{
5190
	struct ctl_table *table = sd_alloc_ctl_entry(13);
5191

5192 5193 5194
	if (table == NULL)
		return NULL;

5195
	set_table_entry(&table[0], "min_interval", &sd->min_interval,
5196
		sizeof(long), 0644, proc_doulongvec_minmax);
5197
	set_table_entry(&table[1], "max_interval", &sd->max_interval,
5198
		sizeof(long), 0644, proc_doulongvec_minmax);
5199
	set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
5200
		sizeof(int), 0644, proc_dointvec_minmax);
5201
	set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
5202
		sizeof(int), 0644, proc_dointvec_minmax);
5203
	set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
5204
		sizeof(int), 0644, proc_dointvec_minmax);
5205
	set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
5206
		sizeof(int), 0644, proc_dointvec_minmax);
5207
	set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
5208
		sizeof(int), 0644, proc_dointvec_minmax);
5209
	set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
5210
		sizeof(int), 0644, proc_dointvec_minmax);
5211
	set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
5212
		sizeof(int), 0644, proc_dointvec_minmax);
5213
	set_table_entry(&table[9], "cache_nice_tries",
5214 5215
		&sd->cache_nice_tries,
		sizeof(int), 0644, proc_dointvec_minmax);
5216
	set_table_entry(&table[10], "flags", &sd->flags,
5217
		sizeof(int), 0644, proc_dointvec_minmax);
5218 5219 5220
	set_table_entry(&table[11], "name", sd->name,
		CORENAME_MAX_SIZE, 0444, proc_dostring);
	/* &table[12] is terminator */
5221 5222 5223 5224

	return table;
}

5225
static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
5226 5227 5228 5229 5230 5231 5232 5233 5234
{
	struct ctl_table *entry, *table;
	struct sched_domain *sd;
	int domain_num = 0, i;
	char buf[32];

	for_each_domain(cpu, sd)
		domain_num++;
	entry = table = sd_alloc_ctl_entry(domain_num + 1);
5235 5236
	if (table == NULL)
		return NULL;
5237 5238 5239 5240 5241

	i = 0;
	for_each_domain(cpu, sd) {
		snprintf(buf, 32, "domain%d", i);
		entry->procname = kstrdup(buf, GFP_KERNEL);
5242
		entry->mode = 0555;
5243 5244 5245 5246 5247 5248 5249 5250
		entry->child = sd_alloc_ctl_domain_table(sd);
		entry++;
		i++;
	}
	return table;
}

static struct ctl_table_header *sd_sysctl_header;
5251
static void register_sched_domain_sysctl(void)
5252
{
5253
	int i, cpu_num = num_possible_cpus();
5254 5255 5256
	struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
	char buf[32];

5257 5258 5259
	WARN_ON(sd_ctl_dir[0].child);
	sd_ctl_dir[0].child = entry;

5260 5261 5262
	if (entry == NULL)
		return;

5263
	for_each_possible_cpu(i) {
5264 5265
		snprintf(buf, 32, "cpu%d", i);
		entry->procname = kstrdup(buf, GFP_KERNEL);
5266
		entry->mode = 0555;
5267
		entry->child = sd_alloc_ctl_cpu_table(i);
5268
		entry++;
5269
	}
5270 5271

	WARN_ON(sd_sysctl_header);
5272 5273
	sd_sysctl_header = register_sysctl_table(sd_ctl_root);
}
5274

5275
/* may be called multiple times per register */
5276 5277
static void unregister_sched_domain_sysctl(void)
{
5278 5279
	if (sd_sysctl_header)
		unregister_sysctl_table(sd_sysctl_header);
5280
	sd_sysctl_header = NULL;
5281 5282
	if (sd_ctl_dir[0].child)
		sd_free_ctl_entry(&sd_ctl_dir[0].child);
5283
}
5284
#else
5285 5286 5287 5288
static void register_sched_domain_sysctl(void)
{
}
static void unregister_sched_domain_sysctl(void)
5289 5290 5291 5292
{
}
#endif

5293 5294 5295 5296 5297
static void set_rq_online(struct rq *rq)
{
	if (!rq->online) {
		const struct sched_class *class;

5298
		cpumask_set_cpu(rq->cpu, rq->rd->online);
5299 5300 5301 5302 5303 5304 5305 5306 5307 5308 5309 5310 5311 5312 5313 5314 5315 5316 5317
		rq->online = 1;

		for_each_class(class) {
			if (class->rq_online)
				class->rq_online(rq);
		}
	}
}

static void set_rq_offline(struct rq *rq)
{
	if (rq->online) {
		const struct sched_class *class;

		for_each_class(class) {
			if (class->rq_offline)
				class->rq_offline(rq);
		}

5318
		cpumask_clear_cpu(rq->cpu, rq->rd->online);
5319 5320 5321 5322
		rq->online = 0;
	}
}

L
Linus Torvalds 已提交
5323 5324 5325 5326
/*
 * migration_call - callback that gets triggered when a CPU is added.
 * Here we can start up the necessary migration thread for the new CPU.
 */
5327 5328
static int __cpuinit
migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
L
Linus Torvalds 已提交
5329
{
5330
	int cpu = (long)hcpu;
L
Linus Torvalds 已提交
5331
	unsigned long flags;
5332
	struct rq *rq = cpu_rq(cpu);
L
Linus Torvalds 已提交
5333

5334
	switch (action & ~CPU_TASKS_FROZEN) {
5335

L
Linus Torvalds 已提交
5336
	case CPU_UP_PREPARE:
5337
		rq->calc_load_update = calc_load_update;
L
Linus Torvalds 已提交
5338
		break;
5339

L
Linus Torvalds 已提交
5340
	case CPU_ONLINE:
5341
		/* Update our root-domain */
5342
		raw_spin_lock_irqsave(&rq->lock, flags);
5343
		if (rq->rd) {
5344
			BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
5345 5346

			set_rq_online(rq);
5347
		}
5348
		raw_spin_unlock_irqrestore(&rq->lock, flags);
L
Linus Torvalds 已提交
5349
		break;
5350

L
Linus Torvalds 已提交
5351
#ifdef CONFIG_HOTPLUG_CPU
5352
	case CPU_DYING:
5353
		sched_ttwu_pending();
G
Gregory Haskins 已提交
5354
		/* Update our root-domain */
5355
		raw_spin_lock_irqsave(&rq->lock, flags);
G
Gregory Haskins 已提交
5356
		if (rq->rd) {
5357
			BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
5358
			set_rq_offline(rq);
G
Gregory Haskins 已提交
5359
		}
5360 5361
		migrate_tasks(cpu);
		BUG_ON(rq->nr_running != 1); /* the migration thread */
5362
		raw_spin_unlock_irqrestore(&rq->lock, flags);
5363 5364 5365

		migrate_nr_uninterruptible(rq);
		calc_global_load_remove(rq);
G
Gregory Haskins 已提交
5366
		break;
L
Linus Torvalds 已提交
5367 5368
#endif
	}
5369 5370 5371

	update_max_interval();

L
Linus Torvalds 已提交
5372 5373 5374
	return NOTIFY_OK;
}

5375 5376 5377
/*
 * Register at high priority so that task migration (migrate_all_tasks)
 * happens before everything else.  This has to be lower priority than
5378
 * the notifier in the perf_event subsystem, though.
L
Linus Torvalds 已提交
5379
 */
5380
static struct notifier_block __cpuinitdata migration_notifier = {
L
Linus Torvalds 已提交
5381
	.notifier_call = migration_call,
5382
	.priority = CPU_PRI_MIGRATION,
L
Linus Torvalds 已提交
5383 5384
};

5385 5386 5387 5388 5389 5390 5391 5392 5393 5394 5395 5396 5397 5398 5399 5400 5401 5402 5403 5404 5405 5406 5407 5408 5409
static int __cpuinit sched_cpu_active(struct notifier_block *nfb,
				      unsigned long action, void *hcpu)
{
	switch (action & ~CPU_TASKS_FROZEN) {
	case CPU_ONLINE:
	case CPU_DOWN_FAILED:
		set_cpu_active((long)hcpu, true);
		return NOTIFY_OK;
	default:
		return NOTIFY_DONE;
	}
}

static int __cpuinit sched_cpu_inactive(struct notifier_block *nfb,
					unsigned long action, void *hcpu)
{
	switch (action & ~CPU_TASKS_FROZEN) {
	case CPU_DOWN_PREPARE:
		set_cpu_active((long)hcpu, false);
		return NOTIFY_OK;
	default:
		return NOTIFY_DONE;
	}
}

5410
static int __init migration_init(void)
L
Linus Torvalds 已提交
5411 5412
{
	void *cpu = (void *)(long)smp_processor_id();
5413
	int err;
5414

5415
	/* Initialize migration for the boot CPU */
5416 5417
	err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
	BUG_ON(err == NOTIFY_BAD);
L
Linus Torvalds 已提交
5418 5419
	migration_call(&migration_notifier, CPU_ONLINE, cpu);
	register_cpu_notifier(&migration_notifier);
5420

5421 5422 5423 5424
	/* Register cpu active notifiers */
	cpu_notifier(sched_cpu_active, CPU_PRI_SCHED_ACTIVE);
	cpu_notifier(sched_cpu_inactive, CPU_PRI_SCHED_INACTIVE);

5425
	return 0;
L
Linus Torvalds 已提交
5426
}
5427
early_initcall(migration_init);
L
Linus Torvalds 已提交
5428 5429 5430
#endif

#ifdef CONFIG_SMP
5431

5432 5433
static cpumask_var_t sched_domains_tmpmask; /* sched_domains_mutex */

5434
#ifdef CONFIG_SCHED_DEBUG
I
Ingo Molnar 已提交
5435

5436 5437 5438 5439 5440 5441 5442 5443 5444 5445
static __read_mostly int sched_domain_debug_enabled;

static int __init sched_domain_debug_setup(char *str)
{
	sched_domain_debug_enabled = 1;

	return 0;
}
early_param("sched_debug", sched_domain_debug_setup);

5446
static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
5447
				  struct cpumask *groupmask)
L
Linus Torvalds 已提交
5448
{
I
Ingo Molnar 已提交
5449
	struct sched_group *group = sd->groups;
5450
	char str[256];
L
Linus Torvalds 已提交
5451

R
Rusty Russell 已提交
5452
	cpulist_scnprintf(str, sizeof(str), sched_domain_span(sd));
5453
	cpumask_clear(groupmask);
I
Ingo Molnar 已提交
5454 5455 5456 5457

	printk(KERN_DEBUG "%*s domain %d: ", level, "", level);

	if (!(sd->flags & SD_LOAD_BALANCE)) {
P
Peter Zijlstra 已提交
5458
		printk("does not load-balance\n");
I
Ingo Molnar 已提交
5459
		if (sd->parent)
P
Peter Zijlstra 已提交
5460 5461
			printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
					" has parent");
I
Ingo Molnar 已提交
5462
		return -1;
N
Nick Piggin 已提交
5463 5464
	}

P
Peter Zijlstra 已提交
5465
	printk(KERN_CONT "span %s level %s\n", str, sd->name);
I
Ingo Molnar 已提交
5466

5467
	if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
P
Peter Zijlstra 已提交
5468 5469
		printk(KERN_ERR "ERROR: domain->span does not contain "
				"CPU%d\n", cpu);
I
Ingo Molnar 已提交
5470
	}
5471
	if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
P
Peter Zijlstra 已提交
5472 5473
		printk(KERN_ERR "ERROR: domain->groups does not contain"
				" CPU%d\n", cpu);
I
Ingo Molnar 已提交
5474
	}
L
Linus Torvalds 已提交
5475

I
Ingo Molnar 已提交
5476
	printk(KERN_DEBUG "%*s groups:", level + 1, "");
L
Linus Torvalds 已提交
5477
	do {
I
Ingo Molnar 已提交
5478
		if (!group) {
P
Peter Zijlstra 已提交
5479 5480
			printk("\n");
			printk(KERN_ERR "ERROR: group is NULL\n");
L
Linus Torvalds 已提交
5481 5482 5483
			break;
		}

5484
		if (!group->sgp->power) {
P
Peter Zijlstra 已提交
5485 5486 5487
			printk(KERN_CONT "\n");
			printk(KERN_ERR "ERROR: domain->cpu_power not "
					"set\n");
I
Ingo Molnar 已提交
5488 5489
			break;
		}
L
Linus Torvalds 已提交
5490

5491
		if (!cpumask_weight(sched_group_cpus(group))) {
P
Peter Zijlstra 已提交
5492 5493
			printk(KERN_CONT "\n");
			printk(KERN_ERR "ERROR: empty group\n");
I
Ingo Molnar 已提交
5494 5495
			break;
		}
L
Linus Torvalds 已提交
5496

5497
		if (cpumask_intersects(groupmask, sched_group_cpus(group))) {
P
Peter Zijlstra 已提交
5498 5499
			printk(KERN_CONT "\n");
			printk(KERN_ERR "ERROR: repeated CPUs\n");
I
Ingo Molnar 已提交
5500 5501
			break;
		}
L
Linus Torvalds 已提交
5502

5503
		cpumask_or(groupmask, groupmask, sched_group_cpus(group));
L
Linus Torvalds 已提交
5504

R
Rusty Russell 已提交
5505
		cpulist_scnprintf(str, sizeof(str), sched_group_cpus(group));
5506

P
Peter Zijlstra 已提交
5507
		printk(KERN_CONT " %s", str);
5508
		if (group->sgp->power != SCHED_POWER_SCALE) {
P
Peter Zijlstra 已提交
5509
			printk(KERN_CONT " (cpu_power = %d)",
5510
				group->sgp->power);
5511
		}
L
Linus Torvalds 已提交
5512

I
Ingo Molnar 已提交
5513 5514
		group = group->next;
	} while (group != sd->groups);
P
Peter Zijlstra 已提交
5515
	printk(KERN_CONT "\n");
L
Linus Torvalds 已提交
5516

5517
	if (!cpumask_equal(sched_domain_span(sd), groupmask))
P
Peter Zijlstra 已提交
5518
		printk(KERN_ERR "ERROR: groups don't span domain->span\n");
L
Linus Torvalds 已提交
5519

5520 5521
	if (sd->parent &&
	    !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
P
Peter Zijlstra 已提交
5522 5523
		printk(KERN_ERR "ERROR: parent span is not a superset "
			"of domain->span\n");
I
Ingo Molnar 已提交
5524 5525
	return 0;
}
L
Linus Torvalds 已提交
5526

I
Ingo Molnar 已提交
5527 5528 5529
static void sched_domain_debug(struct sched_domain *sd, int cpu)
{
	int level = 0;
L
Linus Torvalds 已提交
5530

5531 5532 5533
	if (!sched_domain_debug_enabled)
		return;

I
Ingo Molnar 已提交
5534 5535 5536 5537
	if (!sd) {
		printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
		return;
	}
L
Linus Torvalds 已提交
5538

I
Ingo Molnar 已提交
5539 5540 5541
	printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);

	for (;;) {
5542
		if (sched_domain_debug_one(sd, cpu, level, sched_domains_tmpmask))
I
Ingo Molnar 已提交
5543
			break;
L
Linus Torvalds 已提交
5544 5545
		level++;
		sd = sd->parent;
5546
		if (!sd)
I
Ingo Molnar 已提交
5547 5548
			break;
	}
L
Linus Torvalds 已提交
5549
}
5550
#else /* !CONFIG_SCHED_DEBUG */
5551
# define sched_domain_debug(sd, cpu) do { } while (0)
5552
#endif /* CONFIG_SCHED_DEBUG */
L
Linus Torvalds 已提交
5553

5554
static int sd_degenerate(struct sched_domain *sd)
5555
{
5556
	if (cpumask_weight(sched_domain_span(sd)) == 1)
5557 5558 5559 5560 5561 5562
		return 1;

	/* Following flags need at least 2 groups */
	if (sd->flags & (SD_LOAD_BALANCE |
			 SD_BALANCE_NEWIDLE |
			 SD_BALANCE_FORK |
5563 5564 5565
			 SD_BALANCE_EXEC |
			 SD_SHARE_CPUPOWER |
			 SD_SHARE_PKG_RESOURCES)) {
5566 5567 5568 5569 5570
		if (sd->groups != sd->groups->next)
			return 0;
	}

	/* Following flags don't use groups */
5571
	if (sd->flags & (SD_WAKE_AFFINE))
5572 5573 5574 5575 5576
		return 0;

	return 1;
}

5577 5578
static int
sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
5579 5580 5581 5582 5583 5584
{
	unsigned long cflags = sd->flags, pflags = parent->flags;

	if (sd_degenerate(parent))
		return 1;

5585
	if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
5586 5587 5588 5589 5590 5591 5592
		return 0;

	/* Flags needing groups don't count if only 1 group in parent */
	if (parent->groups == parent->groups->next) {
		pflags &= ~(SD_LOAD_BALANCE |
				SD_BALANCE_NEWIDLE |
				SD_BALANCE_FORK |
5593 5594 5595
				SD_BALANCE_EXEC |
				SD_SHARE_CPUPOWER |
				SD_SHARE_PKG_RESOURCES);
5596 5597
		if (nr_node_ids == 1)
			pflags &= ~SD_SERIALIZE;
5598 5599 5600 5601 5602 5603 5604
	}
	if (~cflags & pflags)
		return 0;

	return 1;
}

5605
static void free_rootdomain(struct rcu_head *rcu)
5606
{
5607
	struct root_domain *rd = container_of(rcu, struct root_domain, rcu);
5608

5609
	cpupri_cleanup(&rd->cpupri);
5610 5611 5612 5613 5614 5615
	free_cpumask_var(rd->rto_mask);
	free_cpumask_var(rd->online);
	free_cpumask_var(rd->span);
	kfree(rd);
}

G
Gregory Haskins 已提交
5616 5617
static void rq_attach_root(struct rq *rq, struct root_domain *rd)
{
I
Ingo Molnar 已提交
5618
	struct root_domain *old_rd = NULL;
G
Gregory Haskins 已提交
5619 5620
	unsigned long flags;

5621
	raw_spin_lock_irqsave(&rq->lock, flags);
G
Gregory Haskins 已提交
5622 5623

	if (rq->rd) {
I
Ingo Molnar 已提交
5624
		old_rd = rq->rd;
G
Gregory Haskins 已提交
5625

5626
		if (cpumask_test_cpu(rq->cpu, old_rd->online))
5627
			set_rq_offline(rq);
G
Gregory Haskins 已提交
5628

5629
		cpumask_clear_cpu(rq->cpu, old_rd->span);
5630

I
Ingo Molnar 已提交
5631 5632 5633 5634 5635 5636 5637
		/*
		 * If we dont want to free the old_rt yet then
		 * set old_rd to NULL to skip the freeing later
		 * in this function:
		 */
		if (!atomic_dec_and_test(&old_rd->refcount))
			old_rd = NULL;
G
Gregory Haskins 已提交
5638 5639 5640 5641 5642
	}

	atomic_inc(&rd->refcount);
	rq->rd = rd;

5643
	cpumask_set_cpu(rq->cpu, rd->span);
5644
	if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
5645
		set_rq_online(rq);
G
Gregory Haskins 已提交
5646

5647
	raw_spin_unlock_irqrestore(&rq->lock, flags);
I
Ingo Molnar 已提交
5648 5649

	if (old_rd)
5650
		call_rcu_sched(&old_rd->rcu, free_rootdomain);
G
Gregory Haskins 已提交
5651 5652
}

5653
static int init_rootdomain(struct root_domain *rd)
G
Gregory Haskins 已提交
5654 5655 5656
{
	memset(rd, 0, sizeof(*rd));

5657
	if (!alloc_cpumask_var(&rd->span, GFP_KERNEL))
5658
		goto out;
5659
	if (!alloc_cpumask_var(&rd->online, GFP_KERNEL))
5660
		goto free_span;
5661
	if (!alloc_cpumask_var(&rd->rto_mask, GFP_KERNEL))
5662
		goto free_online;
5663

5664
	if (cpupri_init(&rd->cpupri) != 0)
5665
		goto free_rto_mask;
5666
	return 0;
5667

5668 5669
free_rto_mask:
	free_cpumask_var(rd->rto_mask);
5670 5671 5672 5673
free_online:
	free_cpumask_var(rd->online);
free_span:
	free_cpumask_var(rd->span);
5674
out:
5675
	return -ENOMEM;
G
Gregory Haskins 已提交
5676 5677
}

5678 5679 5680 5681 5682 5683
/*
 * By default the system creates a single root-domain with all cpus as
 * members (mimicking the global state we have today).
 */
struct root_domain def_root_domain;

G
Gregory Haskins 已提交
5684 5685
static void init_defrootdomain(void)
{
5686
	init_rootdomain(&def_root_domain);
5687

G
Gregory Haskins 已提交
5688 5689 5690
	atomic_set(&def_root_domain.refcount, 1);
}

5691
static struct root_domain *alloc_rootdomain(void)
G
Gregory Haskins 已提交
5692 5693 5694 5695 5696 5697 5698
{
	struct root_domain *rd;

	rd = kmalloc(sizeof(*rd), GFP_KERNEL);
	if (!rd)
		return NULL;

5699
	if (init_rootdomain(rd) != 0) {
5700 5701 5702
		kfree(rd);
		return NULL;
	}
G
Gregory Haskins 已提交
5703 5704 5705 5706

	return rd;
}

5707 5708 5709 5710 5711 5712 5713 5714 5715 5716 5717 5718 5719 5720 5721 5722 5723 5724 5725
static void free_sched_groups(struct sched_group *sg, int free_sgp)
{
	struct sched_group *tmp, *first;

	if (!sg)
		return;

	first = sg;
	do {
		tmp = sg->next;

		if (free_sgp && atomic_dec_and_test(&sg->sgp->ref))
			kfree(sg->sgp);

		kfree(sg);
		sg = tmp;
	} while (sg != first);
}

5726 5727 5728
static void free_sched_domain(struct rcu_head *rcu)
{
	struct sched_domain *sd = container_of(rcu, struct sched_domain, rcu);
5729 5730 5731 5732 5733 5734 5735 5736

	/*
	 * If its an overlapping domain it has private groups, iterate and
	 * nuke them all.
	 */
	if (sd->flags & SD_OVERLAP) {
		free_sched_groups(sd->groups, 1);
	} else if (atomic_dec_and_test(&sd->groups->ref)) {
5737
		kfree(sd->groups->sgp);
5738
		kfree(sd->groups);
5739
	}
5740 5741 5742 5743 5744 5745 5746 5747 5748 5749 5750 5751 5752 5753
	kfree(sd);
}

static void destroy_sched_domain(struct sched_domain *sd, int cpu)
{
	call_rcu(&sd->rcu, free_sched_domain);
}

static void destroy_sched_domains(struct sched_domain *sd, int cpu)
{
	for (; sd; sd = sd->parent)
		destroy_sched_domain(sd, cpu);
}

5754 5755 5756 5757 5758 5759 5760 5761 5762 5763 5764 5765 5766 5767 5768 5769 5770 5771 5772 5773 5774 5775 5776 5777 5778
/*
 * Keep a special pointer to the highest sched_domain that has
 * SD_SHARE_PKG_RESOURCE set (Last Level Cache Domain) for this
 * allows us to avoid some pointer chasing select_idle_sibling().
 *
 * Also keep a unique ID per domain (we use the first cpu number in
 * the cpumask of the domain), this allows us to quickly tell if
 * two cpus are in the same cache domain, see ttwu_share_cache().
 */
DEFINE_PER_CPU(struct sched_domain *, sd_llc);
DEFINE_PER_CPU(int, sd_llc_id);

static void update_top_cache_domain(int cpu)
{
	struct sched_domain *sd;
	int id = cpu;

	sd = highest_flag_domain(cpu, SD_SHARE_PKG_RESOURCES);
	if (sd)
		id = cpumask_first(sched_domain_span(sd));

	rcu_assign_pointer(per_cpu(sd_llc, cpu), sd);
	per_cpu(sd_llc_id, cpu) = id;
}

L
Linus Torvalds 已提交
5779
/*
I
Ingo Molnar 已提交
5780
 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
L
Linus Torvalds 已提交
5781 5782
 * hold the hotplug lock.
 */
I
Ingo Molnar 已提交
5783 5784
static void
cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
L
Linus Torvalds 已提交
5785
{
5786
	struct rq *rq = cpu_rq(cpu);
5787 5788 5789
	struct sched_domain *tmp;

	/* Remove the sched domains which do not contribute to scheduling. */
5790
	for (tmp = sd; tmp; ) {
5791 5792 5793
		struct sched_domain *parent = tmp->parent;
		if (!parent)
			break;
5794

5795
		if (sd_parent_degenerate(tmp, parent)) {
5796
			tmp->parent = parent->parent;
5797 5798
			if (parent->parent)
				parent->parent->child = tmp;
5799
			destroy_sched_domain(parent, cpu);
5800 5801
		} else
			tmp = tmp->parent;
5802 5803
	}

5804
	if (sd && sd_degenerate(sd)) {
5805
		tmp = sd;
5806
		sd = sd->parent;
5807
		destroy_sched_domain(tmp, cpu);
5808 5809 5810
		if (sd)
			sd->child = NULL;
	}
L
Linus Torvalds 已提交
5811

5812
	sched_domain_debug(sd, cpu);
L
Linus Torvalds 已提交
5813

G
Gregory Haskins 已提交
5814
	rq_attach_root(rq, rd);
5815
	tmp = rq->sd;
N
Nick Piggin 已提交
5816
	rcu_assign_pointer(rq->sd, sd);
5817
	destroy_sched_domains(tmp, cpu);
5818 5819

	update_top_cache_domain(cpu);
L
Linus Torvalds 已提交
5820 5821 5822
}

/* cpus with isolated domains */
5823
static cpumask_var_t cpu_isolated_map;
L
Linus Torvalds 已提交
5824 5825 5826 5827

/* Setup the mask of cpus configured for isolated domains */
static int __init isolated_cpu_setup(char *str)
{
R
Rusty Russell 已提交
5828
	alloc_bootmem_cpumask_var(&cpu_isolated_map);
R
Rusty Russell 已提交
5829
	cpulist_parse(str, cpu_isolated_map);
L
Linus Torvalds 已提交
5830 5831 5832
	return 1;
}

I
Ingo Molnar 已提交
5833
__setup("isolcpus=", isolated_cpu_setup);
L
Linus Torvalds 已提交
5834

5835
#ifdef CONFIG_NUMA
5836

5837 5838 5839 5840 5841
/**
 * find_next_best_node - find the next node to include in a sched_domain
 * @node: node whose sched_domain we're building
 * @used_nodes: nodes already in the sched_domain
 *
I
Ingo Molnar 已提交
5842
 * Find the next node to include in a given scheduling domain. Simply
5843 5844 5845 5846
 * finds the closest node not already in the @used_nodes map.
 *
 * Should use nodemask_t.
 */
5847
static int find_next_best_node(int node, nodemask_t *used_nodes)
5848
{
5849
	int i, n, val, min_val, best_node = -1;
5850 5851 5852

	min_val = INT_MAX;

5853
	for (i = 0; i < nr_node_ids; i++) {
5854
		/* Start at @node */
5855
		n = (node + i) % nr_node_ids;
5856 5857 5858 5859 5860

		if (!nr_cpus_node(n))
			continue;

		/* Skip already used nodes */
5861
		if (node_isset(n, *used_nodes))
5862 5863 5864 5865 5866 5867 5868 5869 5870 5871 5872
			continue;

		/* Simple min distance search */
		val = node_distance(node, n);

		if (val < min_val) {
			min_val = val;
			best_node = n;
		}
	}

5873 5874
	if (best_node != -1)
		node_set(best_node, *used_nodes);
5875 5876 5877 5878 5879 5880
	return best_node;
}

/**
 * sched_domain_node_span - get a cpumask for a node's sched_domain
 * @node: node whose cpumask we're constructing
5881
 * @span: resulting cpumask
5882
 *
I
Ingo Molnar 已提交
5883
 * Given a node, construct a good cpumask for its sched_domain to span. It
5884 5885 5886
 * should be one that prevents unnecessary balancing, but also spreads tasks
 * out optimally.
 */
5887
static void sched_domain_node_span(int node, struct cpumask *span)
5888
{
5889
	nodemask_t used_nodes;
5890
	int i;
5891

5892
	cpumask_clear(span);
5893
	nodes_clear(used_nodes);
5894

5895
	cpumask_or(span, span, cpumask_of_node(node));
5896
	node_set(node, used_nodes);
5897 5898

	for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
5899
		int next_node = find_next_best_node(node, &used_nodes);
5900 5901
		if (next_node < 0)
			break;
5902
		cpumask_or(span, span, cpumask_of_node(next_node));
5903 5904
	}
}
5905 5906 5907 5908 5909 5910 5911 5912 5913

static const struct cpumask *cpu_node_mask(int cpu)
{
	lockdep_assert_held(&sched_domains_mutex);

	sched_domain_node_span(cpu_to_node(cpu), sched_domains_tmpmask);

	return sched_domains_tmpmask;
}
5914 5915 5916 5917 5918

static const struct cpumask *cpu_allnodes_mask(int cpu)
{
	return cpu_possible_mask;
}
5919
#endif /* CONFIG_NUMA */
5920

5921 5922 5923 5924 5925
static const struct cpumask *cpu_cpu_mask(int cpu)
{
	return cpumask_of_node(cpu_to_node(cpu));
}

5926
int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
5927

5928 5929 5930
struct sd_data {
	struct sched_domain **__percpu sd;
	struct sched_group **__percpu sg;
5931
	struct sched_group_power **__percpu sgp;
5932 5933
};

5934
struct s_data {
5935
	struct sched_domain ** __percpu sd;
5936 5937 5938
	struct root_domain	*rd;
};

5939 5940
enum s_alloc {
	sa_rootdomain,
5941
	sa_sd,
5942
	sa_sd_storage,
5943 5944 5945
	sa_none,
};

5946 5947 5948
struct sched_domain_topology_level;

typedef struct sched_domain *(*sched_domain_init_f)(struct sched_domain_topology_level *tl, int cpu);
5949 5950
typedef const struct cpumask *(*sched_domain_mask_f)(int cpu);

5951 5952
#define SDTL_OVERLAP	0x01

5953
struct sched_domain_topology_level {
5954 5955
	sched_domain_init_f init;
	sched_domain_mask_f mask;
5956
	int		    flags;
5957
	struct sd_data      data;
5958 5959
};

5960 5961 5962 5963 5964 5965 5966 5967 5968 5969 5970 5971 5972 5973 5974 5975 5976 5977 5978
static int
build_overlap_sched_groups(struct sched_domain *sd, int cpu)
{
	struct sched_group *first = NULL, *last = NULL, *groups = NULL, *sg;
	const struct cpumask *span = sched_domain_span(sd);
	struct cpumask *covered = sched_domains_tmpmask;
	struct sd_data *sdd = sd->private;
	struct sched_domain *child;
	int i;

	cpumask_clear(covered);

	for_each_cpu(i, span) {
		struct cpumask *sg_span;

		if (cpumask_test_cpu(i, covered))
			continue;

		sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
5979
				GFP_KERNEL, cpu_to_node(cpu));
5980 5981 5982 5983 5984 5985 5986 5987 5988 5989 5990 5991 5992 5993 5994 5995 5996 5997 5998 5999 6000 6001 6002 6003 6004 6005 6006 6007 6008 6009 6010 6011 6012 6013 6014 6015 6016 6017

		if (!sg)
			goto fail;

		sg_span = sched_group_cpus(sg);

		child = *per_cpu_ptr(sdd->sd, i);
		if (child->child) {
			child = child->child;
			cpumask_copy(sg_span, sched_domain_span(child));
		} else
			cpumask_set_cpu(i, sg_span);

		cpumask_or(covered, covered, sg_span);

		sg->sgp = *per_cpu_ptr(sdd->sgp, cpumask_first(sg_span));
		atomic_inc(&sg->sgp->ref);

		if (cpumask_test_cpu(cpu, sg_span))
			groups = sg;

		if (!first)
			first = sg;
		if (last)
			last->next = sg;
		last = sg;
		last->next = first;
	}
	sd->groups = groups;

	return 0;

fail:
	free_sched_groups(first, 0);

	return -ENOMEM;
}

6018
static int get_group(int cpu, struct sd_data *sdd, struct sched_group **sg)
L
Linus Torvalds 已提交
6019
{
6020 6021
	struct sched_domain *sd = *per_cpu_ptr(sdd->sd, cpu);
	struct sched_domain *child = sd->child;
L
Linus Torvalds 已提交
6022

6023 6024
	if (child)
		cpu = cpumask_first(sched_domain_span(child));
6025

6026
	if (sg) {
6027
		*sg = *per_cpu_ptr(sdd->sg, cpu);
6028
		(*sg)->sgp = *per_cpu_ptr(sdd->sgp, cpu);
6029
		atomic_set(&(*sg)->sgp->ref, 1); /* for claim_allocations */
6030
	}
6031 6032

	return cpu;
6033 6034
}

6035
/*
6036 6037 6038
 * build_sched_groups will build a circular linked list of the groups
 * covered by the given span, and will set each group's ->cpumask correctly,
 * and ->cpu_power to 0.
6039 6040
 *
 * Assumes the sched_domain tree is fully constructed
6041
 */
6042 6043
static int
build_sched_groups(struct sched_domain *sd, int cpu)
L
Linus Torvalds 已提交
6044
{
6045 6046 6047
	struct sched_group *first = NULL, *last = NULL;
	struct sd_data *sdd = sd->private;
	const struct cpumask *span = sched_domain_span(sd);
6048
	struct cpumask *covered;
6049
	int i;
6050

6051 6052 6053 6054 6055 6056
	get_group(cpu, sdd, &sd->groups);
	atomic_inc(&sd->groups->ref);

	if (cpu != cpumask_first(sched_domain_span(sd)))
		return 0;

6057 6058 6059
	lockdep_assert_held(&sched_domains_mutex);
	covered = sched_domains_tmpmask;

6060
	cpumask_clear(covered);
6061

6062 6063 6064 6065
	for_each_cpu(i, span) {
		struct sched_group *sg;
		int group = get_group(i, sdd, &sg);
		int j;
6066

6067 6068
		if (cpumask_test_cpu(i, covered))
			continue;
6069

6070
		cpumask_clear(sched_group_cpus(sg));
6071
		sg->sgp->power = 0;
6072

6073 6074 6075
		for_each_cpu(j, span) {
			if (get_group(j, sdd, NULL) != group)
				continue;
6076

6077 6078 6079
			cpumask_set_cpu(j, covered);
			cpumask_set_cpu(j, sched_group_cpus(sg));
		}
6080

6081 6082 6083 6084 6085 6086 6087
		if (!first)
			first = sg;
		if (last)
			last->next = sg;
		last = sg;
	}
	last->next = first;
6088 6089

	return 0;
6090
}
6091

6092 6093 6094 6095 6096 6097 6098 6099 6100 6101 6102 6103
/*
 * Initialize sched groups cpu_power.
 *
 * cpu_power indicates the capacity of sched group, which is used while
 * distributing the load between different sched groups in a sched domain.
 * Typically cpu_power for all the groups in a sched domain will be same unless
 * there are asymmetries in the topology. If there are asymmetries, group
 * having more cpu_power will pickup more load compared to the group having
 * less cpu_power.
 */
static void init_sched_groups_power(int cpu, struct sched_domain *sd)
{
6104
	struct sched_group *sg = sd->groups;
6105

6106 6107 6108 6109 6110 6111
	WARN_ON(!sd || !sg);

	do {
		sg->group_weight = cpumask_weight(sched_group_cpus(sg));
		sg = sg->next;
	} while (sg != sd->groups);
6112

6113 6114
	if (cpu != group_first_cpu(sg))
		return;
6115

6116
	update_group_power(sd, cpu);
6117
	atomic_set(&sg->sgp->nr_busy_cpus, sg->group_weight);
6118 6119
}

6120 6121 6122
int __weak arch_sd_sibling_asym_packing(void)
{
       return 0*SD_ASYM_PACKING;
6123 6124
}

6125 6126 6127 6128 6129
/*
 * Initializers for schedule domains
 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
 */

6130 6131 6132 6133 6134 6135
#ifdef CONFIG_SCHED_DEBUG
# define SD_INIT_NAME(sd, type)		sd->name = #type
#else
# define SD_INIT_NAME(sd, type)		do { } while (0)
#endif

6136 6137 6138 6139 6140 6141 6142 6143 6144
#define SD_INIT_FUNC(type)						\
static noinline struct sched_domain *					\
sd_init_##type(struct sched_domain_topology_level *tl, int cpu) 	\
{									\
	struct sched_domain *sd = *per_cpu_ptr(tl->data.sd, cpu);	\
	*sd = SD_##type##_INIT;						\
	SD_INIT_NAME(sd, type);						\
	sd->private = &tl->data;					\
	return sd;							\
6145 6146 6147 6148 6149 6150 6151 6152 6153 6154 6155 6156 6157
}

SD_INIT_FUNC(CPU)
#ifdef CONFIG_NUMA
 SD_INIT_FUNC(ALLNODES)
 SD_INIT_FUNC(NODE)
#endif
#ifdef CONFIG_SCHED_SMT
 SD_INIT_FUNC(SIBLING)
#endif
#ifdef CONFIG_SCHED_MC
 SD_INIT_FUNC(MC)
#endif
6158 6159 6160
#ifdef CONFIG_SCHED_BOOK
 SD_INIT_FUNC(BOOK)
#endif
6161

6162
static int default_relax_domain_level = -1;
6163
int sched_domain_level_max;
6164 6165 6166

static int __init setup_relax_domain_level(char *str)
{
6167 6168 6169
	unsigned long val;

	val = simple_strtoul(str, NULL, 0);
6170
	if (val < sched_domain_level_max)
6171 6172
		default_relax_domain_level = val;

6173 6174 6175 6176 6177 6178 6179 6180 6181 6182 6183 6184 6185 6186 6187 6188 6189 6190
	return 1;
}
__setup("relax_domain_level=", setup_relax_domain_level);

static void set_domain_attribute(struct sched_domain *sd,
				 struct sched_domain_attr *attr)
{
	int request;

	if (!attr || attr->relax_domain_level < 0) {
		if (default_relax_domain_level < 0)
			return;
		else
			request = default_relax_domain_level;
	} else
		request = attr->relax_domain_level;
	if (request < sd->level) {
		/* turn off idle balance on this domain */
6191
		sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
6192 6193
	} else {
		/* turn on idle balance on this domain */
6194
		sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
6195 6196 6197
	}
}

6198 6199 6200
static void __sdt_free(const struct cpumask *cpu_map);
static int __sdt_alloc(const struct cpumask *cpu_map);

6201 6202 6203 6204 6205
static void __free_domain_allocs(struct s_data *d, enum s_alloc what,
				 const struct cpumask *cpu_map)
{
	switch (what) {
	case sa_rootdomain:
6206 6207
		if (!atomic_read(&d->rd->refcount))
			free_rootdomain(&d->rd->rcu); /* fall through */
6208 6209
	case sa_sd:
		free_percpu(d->sd); /* fall through */
6210
	case sa_sd_storage:
6211
		__sdt_free(cpu_map); /* fall through */
6212 6213 6214 6215
	case sa_none:
		break;
	}
}
6216

6217 6218 6219
static enum s_alloc __visit_domain_allocation_hell(struct s_data *d,
						   const struct cpumask *cpu_map)
{
6220 6221
	memset(d, 0, sizeof(*d));

6222 6223
	if (__sdt_alloc(cpu_map))
		return sa_sd_storage;
6224 6225 6226
	d->sd = alloc_percpu(struct sched_domain *);
	if (!d->sd)
		return sa_sd_storage;
6227
	d->rd = alloc_rootdomain();
6228
	if (!d->rd)
6229
		return sa_sd;
6230 6231
	return sa_rootdomain;
}
G
Gregory Haskins 已提交
6232

6233 6234 6235 6236 6237 6238 6239 6240 6241 6242 6243 6244
/*
 * NULL the sd_data elements we've used to build the sched_domain and
 * sched_group structure so that the subsequent __free_domain_allocs()
 * will not free the data we're using.
 */
static void claim_allocations(int cpu, struct sched_domain *sd)
{
	struct sd_data *sdd = sd->private;

	WARN_ON_ONCE(*per_cpu_ptr(sdd->sd, cpu) != sd);
	*per_cpu_ptr(sdd->sd, cpu) = NULL;

6245
	if (atomic_read(&(*per_cpu_ptr(sdd->sg, cpu))->ref))
6246
		*per_cpu_ptr(sdd->sg, cpu) = NULL;
6247 6248

	if (atomic_read(&(*per_cpu_ptr(sdd->sgp, cpu))->ref))
6249
		*per_cpu_ptr(sdd->sgp, cpu) = NULL;
6250 6251
}

6252 6253
#ifdef CONFIG_SCHED_SMT
static const struct cpumask *cpu_smt_mask(int cpu)
6254
{
6255
	return topology_thread_cpumask(cpu);
6256
}
6257
#endif
6258

6259 6260 6261
/*
 * Topology list, bottom-up.
 */
6262
static struct sched_domain_topology_level default_topology[] = {
6263 6264
#ifdef CONFIG_SCHED_SMT
	{ sd_init_SIBLING, cpu_smt_mask, },
6265
#endif
6266
#ifdef CONFIG_SCHED_MC
6267
	{ sd_init_MC, cpu_coregroup_mask, },
6268
#endif
6269 6270 6271 6272 6273
#ifdef CONFIG_SCHED_BOOK
	{ sd_init_BOOK, cpu_book_mask, },
#endif
	{ sd_init_CPU, cpu_cpu_mask, },
#ifdef CONFIG_NUMA
6274
	{ sd_init_NODE, cpu_node_mask, SDTL_OVERLAP, },
6275
	{ sd_init_ALLNODES, cpu_allnodes_mask, },
L
Linus Torvalds 已提交
6276
#endif
6277 6278 6279 6280 6281
	{ NULL, },
};

static struct sched_domain_topology_level *sched_domain_topology = default_topology;

6282 6283 6284 6285 6286 6287 6288 6289 6290 6291 6292 6293 6294 6295 6296 6297
static int __sdt_alloc(const struct cpumask *cpu_map)
{
	struct sched_domain_topology_level *tl;
	int j;

	for (tl = sched_domain_topology; tl->init; tl++) {
		struct sd_data *sdd = &tl->data;

		sdd->sd = alloc_percpu(struct sched_domain *);
		if (!sdd->sd)
			return -ENOMEM;

		sdd->sg = alloc_percpu(struct sched_group *);
		if (!sdd->sg)
			return -ENOMEM;

6298 6299 6300 6301
		sdd->sgp = alloc_percpu(struct sched_group_power *);
		if (!sdd->sgp)
			return -ENOMEM;

6302 6303 6304
		for_each_cpu(j, cpu_map) {
			struct sched_domain *sd;
			struct sched_group *sg;
6305
			struct sched_group_power *sgp;
6306 6307 6308 6309 6310 6311 6312 6313 6314 6315 6316 6317 6318 6319

		       	sd = kzalloc_node(sizeof(struct sched_domain) + cpumask_size(),
					GFP_KERNEL, cpu_to_node(j));
			if (!sd)
				return -ENOMEM;

			*per_cpu_ptr(sdd->sd, j) = sd;

			sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
					GFP_KERNEL, cpu_to_node(j));
			if (!sg)
				return -ENOMEM;

			*per_cpu_ptr(sdd->sg, j) = sg;
6320 6321 6322 6323 6324 6325 6326

			sgp = kzalloc_node(sizeof(struct sched_group_power),
					GFP_KERNEL, cpu_to_node(j));
			if (!sgp)
				return -ENOMEM;

			*per_cpu_ptr(sdd->sgp, j) = sgp;
6327 6328 6329 6330 6331 6332 6333 6334 6335 6336 6337 6338 6339 6340 6341
		}
	}

	return 0;
}

static void __sdt_free(const struct cpumask *cpu_map)
{
	struct sched_domain_topology_level *tl;
	int j;

	for (tl = sched_domain_topology; tl->init; tl++) {
		struct sd_data *sdd = &tl->data;

		for_each_cpu(j, cpu_map) {
6342 6343 6344
			struct sched_domain *sd = *per_cpu_ptr(sdd->sd, j);
			if (sd && (sd->flags & SD_OVERLAP))
				free_sched_groups(sd->groups, 0);
6345
			kfree(*per_cpu_ptr(sdd->sd, j));
6346
			kfree(*per_cpu_ptr(sdd->sg, j));
6347
			kfree(*per_cpu_ptr(sdd->sgp, j));
6348 6349 6350
		}
		free_percpu(sdd->sd);
		free_percpu(sdd->sg);
6351
		free_percpu(sdd->sgp);
6352 6353 6354
	}
}

6355 6356
struct sched_domain *build_sched_domain(struct sched_domain_topology_level *tl,
		struct s_data *d, const struct cpumask *cpu_map,
6357
		struct sched_domain_attr *attr, struct sched_domain *child,
6358 6359
		int cpu)
{
6360
	struct sched_domain *sd = tl->init(tl, cpu);
6361
	if (!sd)
6362
		return child;
6363 6364 6365

	set_domain_attribute(sd, attr);
	cpumask_and(sched_domain_span(sd), cpu_map, tl->mask(cpu));
6366 6367 6368
	if (child) {
		sd->level = child->level + 1;
		sched_domain_level_max = max(sched_domain_level_max, sd->level);
6369
		child->parent = sd;
6370
	}
6371
	sd->child = child;
6372 6373 6374 6375

	return sd;
}

6376 6377 6378 6379
/*
 * Build sched domains for a given set of cpus and attach the sched domains
 * to the individual cpus
 */
6380 6381
static int build_sched_domains(const struct cpumask *cpu_map,
			       struct sched_domain_attr *attr)
6382 6383
{
	enum s_alloc alloc_state = sa_none;
6384
	struct sched_domain *sd;
6385
	struct s_data d;
6386
	int i, ret = -ENOMEM;
6387

6388 6389 6390
	alloc_state = __visit_domain_allocation_hell(&d, cpu_map);
	if (alloc_state != sa_rootdomain)
		goto error;
6391

6392
	/* Set up domains for cpus specified by the cpu_map. */
6393
	for_each_cpu(i, cpu_map) {
6394 6395
		struct sched_domain_topology_level *tl;

6396
		sd = NULL;
6397
		for (tl = sched_domain_topology; tl->init; tl++) {
6398
			sd = build_sched_domain(tl, &d, cpu_map, attr, sd, i);
6399 6400
			if (tl->flags & SDTL_OVERLAP || sched_feat(FORCE_SD_OVERLAP))
				sd->flags |= SD_OVERLAP;
6401 6402
			if (cpumask_equal(cpu_map, sched_domain_span(sd)))
				break;
6403
		}
6404

6405 6406 6407
		while (sd->child)
			sd = sd->child;

6408
		*per_cpu_ptr(d.sd, i) = sd;
6409 6410 6411 6412 6413 6414
	}

	/* Build the groups for the domains */
	for_each_cpu(i, cpu_map) {
		for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
			sd->span_weight = cpumask_weight(sched_domain_span(sd));
6415 6416 6417 6418 6419 6420 6421
			if (sd->flags & SD_OVERLAP) {
				if (build_overlap_sched_groups(sd, i))
					goto error;
			} else {
				if (build_sched_groups(sd, i))
					goto error;
			}
6422
		}
6423
	}
6424

L
Linus Torvalds 已提交
6425
	/* Calculate CPU power for physical packages and nodes */
6426 6427 6428
	for (i = nr_cpumask_bits-1; i >= 0; i--) {
		if (!cpumask_test_cpu(i, cpu_map))
			continue;
6429

6430 6431
		for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
			claim_allocations(i, sd);
6432
			init_sched_groups_power(i, sd);
6433
		}
6434
	}
6435

L
Linus Torvalds 已提交
6436
	/* Attach the domains */
6437
	rcu_read_lock();
6438
	for_each_cpu(i, cpu_map) {
6439
		sd = *per_cpu_ptr(d.sd, i);
6440
		cpu_attach_domain(sd, d.rd, i);
L
Linus Torvalds 已提交
6441
	}
6442
	rcu_read_unlock();
6443

6444
	ret = 0;
6445
error:
6446
	__free_domain_allocs(&d, alloc_state, cpu_map);
6447
	return ret;
L
Linus Torvalds 已提交
6448
}
P
Paul Jackson 已提交
6449

6450
static cpumask_var_t *doms_cur;	/* current sched domains */
P
Paul Jackson 已提交
6451
static int ndoms_cur;		/* number of sched domains in 'doms_cur' */
I
Ingo Molnar 已提交
6452 6453
static struct sched_domain_attr *dattr_cur;
				/* attribues of custom domains in 'doms_cur' */
P
Paul Jackson 已提交
6454 6455 6456

/*
 * Special case: If a kmalloc of a doms_cur partition (array of
6457 6458
 * cpumask) fails, then fallback to a single sched domain,
 * as determined by the single cpumask fallback_doms.
P
Paul Jackson 已提交
6459
 */
6460
static cpumask_var_t fallback_doms;
P
Paul Jackson 已提交
6461

6462 6463 6464 6465 6466 6467
/*
 * arch_update_cpu_topology lets virtualized architectures update the
 * cpu core maps. It is supposed to return 1 if the topology changed
 * or 0 if it stayed the same.
 */
int __attribute__((weak)) arch_update_cpu_topology(void)
6468
{
6469
	return 0;
6470 6471
}

6472 6473 6474 6475 6476 6477 6478 6479 6480 6481 6482 6483 6484 6485 6486 6487 6488 6489 6490 6491 6492 6493 6494 6495 6496
cpumask_var_t *alloc_sched_domains(unsigned int ndoms)
{
	int i;
	cpumask_var_t *doms;

	doms = kmalloc(sizeof(*doms) * ndoms, GFP_KERNEL);
	if (!doms)
		return NULL;
	for (i = 0; i < ndoms; i++) {
		if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) {
			free_sched_domains(doms, i);
			return NULL;
		}
	}
	return doms;
}

void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms)
{
	unsigned int i;
	for (i = 0; i < ndoms; i++)
		free_cpumask_var(doms[i]);
	kfree(doms);
}

6497
/*
I
Ingo Molnar 已提交
6498
 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
P
Paul Jackson 已提交
6499 6500
 * For now this just excludes isolated cpus, but could be used to
 * exclude other special cases in the future.
6501
 */
6502
static int init_sched_domains(const struct cpumask *cpu_map)
6503
{
6504 6505
	int err;

6506
	arch_update_cpu_topology();
P
Paul Jackson 已提交
6507
	ndoms_cur = 1;
6508
	doms_cur = alloc_sched_domains(ndoms_cur);
P
Paul Jackson 已提交
6509
	if (!doms_cur)
6510 6511
		doms_cur = &fallback_doms;
	cpumask_andnot(doms_cur[0], cpu_map, cpu_isolated_map);
6512
	dattr_cur = NULL;
6513
	err = build_sched_domains(doms_cur[0], NULL);
6514
	register_sched_domain_sysctl();
6515 6516

	return err;
6517 6518 6519 6520 6521 6522
}

/*
 * Detach sched domains from a group of cpus specified in cpu_map
 * These cpus will now be attached to the NULL domain
 */
6523
static void detach_destroy_domains(const struct cpumask *cpu_map)
6524 6525 6526
{
	int i;

6527
	rcu_read_lock();
6528
	for_each_cpu(i, cpu_map)
G
Gregory Haskins 已提交
6529
		cpu_attach_domain(NULL, &def_root_domain, i);
6530
	rcu_read_unlock();
6531 6532
}

6533 6534 6535 6536 6537 6538 6539 6540 6541 6542 6543 6544 6545 6546 6547 6548
/* handle null as "default" */
static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
			struct sched_domain_attr *new, int idx_new)
{
	struct sched_domain_attr tmp;

	/* fast path */
	if (!new && !cur)
		return 1;

	tmp = SD_ATTR_INIT;
	return !memcmp(cur ? (cur + idx_cur) : &tmp,
			new ? (new + idx_new) : &tmp,
			sizeof(struct sched_domain_attr));
}

P
Paul Jackson 已提交
6549 6550
/*
 * Partition sched domains as specified by the 'ndoms_new'
I
Ingo Molnar 已提交
6551
 * cpumasks in the array doms_new[] of cpumasks. This compares
P
Paul Jackson 已提交
6552 6553 6554
 * doms_new[] to the current sched domain partitioning, doms_cur[].
 * It destroys each deleted domain and builds each new domain.
 *
6555
 * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'.
I
Ingo Molnar 已提交
6556 6557 6558
 * The masks don't intersect (don't overlap.) We should setup one
 * sched domain for each mask. CPUs not in any of the cpumasks will
 * not be load balanced. If the same cpumask appears both in the
P
Paul Jackson 已提交
6559 6560 6561
 * current 'doms_cur' domains and in the new 'doms_new', we can leave
 * it as it is.
 *
6562 6563 6564 6565 6566 6567
 * The passed in 'doms_new' should be allocated using
 * alloc_sched_domains.  This routine takes ownership of it and will
 * free_sched_domains it when done with it. If the caller failed the
 * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1,
 * and partition_sched_domains() will fallback to the single partition
 * 'fallback_doms', it also forces the domains to be rebuilt.
P
Paul Jackson 已提交
6568
 *
6569
 * If doms_new == NULL it will be replaced with cpu_online_mask.
6570 6571
 * ndoms_new == 0 is a special case for destroying existing domains,
 * and it will not create the default domain.
6572
 *
P
Paul Jackson 已提交
6573 6574
 * Call with hotplug lock held
 */
6575
void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
6576
			     struct sched_domain_attr *dattr_new)
P
Paul Jackson 已提交
6577
{
6578
	int i, j, n;
6579
	int new_topology;
P
Paul Jackson 已提交
6580

6581
	mutex_lock(&sched_domains_mutex);
6582

6583 6584 6585
	/* always unregister in case we don't destroy any domains */
	unregister_sched_domain_sysctl();

6586 6587 6588
	/* Let architecture update cpu core mappings. */
	new_topology = arch_update_cpu_topology();

6589
	n = doms_new ? ndoms_new : 0;
P
Paul Jackson 已提交
6590 6591 6592

	/* Destroy deleted domains */
	for (i = 0; i < ndoms_cur; i++) {
6593
		for (j = 0; j < n && !new_topology; j++) {
6594
			if (cpumask_equal(doms_cur[i], doms_new[j])
6595
			    && dattrs_equal(dattr_cur, i, dattr_new, j))
P
Paul Jackson 已提交
6596 6597 6598
				goto match1;
		}
		/* no match - a current sched domain not in new doms_new[] */
6599
		detach_destroy_domains(doms_cur[i]);
P
Paul Jackson 已提交
6600 6601 6602 6603
match1:
		;
	}

6604 6605
	if (doms_new == NULL) {
		ndoms_cur = 0;
6606
		doms_new = &fallback_doms;
6607
		cpumask_andnot(doms_new[0], cpu_active_mask, cpu_isolated_map);
6608
		WARN_ON_ONCE(dattr_new);
6609 6610
	}

P
Paul Jackson 已提交
6611 6612
	/* Build new domains */
	for (i = 0; i < ndoms_new; i++) {
6613
		for (j = 0; j < ndoms_cur && !new_topology; j++) {
6614
			if (cpumask_equal(doms_new[i], doms_cur[j])
6615
			    && dattrs_equal(dattr_new, i, dattr_cur, j))
P
Paul Jackson 已提交
6616 6617 6618
				goto match2;
		}
		/* no match - add a new doms_new */
6619
		build_sched_domains(doms_new[i], dattr_new ? dattr_new + i : NULL);
P
Paul Jackson 已提交
6620 6621 6622 6623 6624
match2:
		;
	}

	/* Remember the new sched domains */
6625 6626
	if (doms_cur != &fallback_doms)
		free_sched_domains(doms_cur, ndoms_cur);
6627
	kfree(dattr_cur);	/* kfree(NULL) is safe */
P
Paul Jackson 已提交
6628
	doms_cur = doms_new;
6629
	dattr_cur = dattr_new;
P
Paul Jackson 已提交
6630
	ndoms_cur = ndoms_new;
6631 6632

	register_sched_domain_sysctl();
6633

6634
	mutex_unlock(&sched_domains_mutex);
P
Paul Jackson 已提交
6635 6636
}

6637
#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
6638
static void reinit_sched_domains(void)
6639
{
6640
	get_online_cpus();
6641 6642 6643 6644

	/* Destroy domains first to force the rebuild */
	partition_sched_domains(0, NULL, NULL);

6645
	rebuild_sched_domains();
6646
	put_online_cpus();
6647 6648 6649 6650
}

static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
{
6651
	unsigned int level = 0;
6652

6653 6654 6655 6656 6657 6658 6659 6660 6661 6662 6663
	if (sscanf(buf, "%u", &level) != 1)
		return -EINVAL;

	/*
	 * level is always be positive so don't check for
	 * level < POWERSAVINGS_BALANCE_NONE which is 0
	 * What happens on 0 or 1 byte write,
	 * need to check for count as well?
	 */

	if (level >= MAX_POWERSAVINGS_BALANCE_LEVELS)
6664 6665 6666
		return -EINVAL;

	if (smt)
6667
		sched_smt_power_savings = level;
6668
	else
6669
		sched_mc_power_savings = level;
6670

6671
	reinit_sched_domains();
6672

6673
	return count;
6674 6675 6676
}

#ifdef CONFIG_SCHED_MC
6677
static ssize_t sched_mc_power_savings_show(struct sysdev_class *class,
6678
					   struct sysdev_class_attribute *attr,
6679
					   char *page)
6680 6681 6682
{
	return sprintf(page, "%u\n", sched_mc_power_savings);
}
6683
static ssize_t sched_mc_power_savings_store(struct sysdev_class *class,
6684
					    struct sysdev_class_attribute *attr,
6685
					    const char *buf, size_t count)
6686 6687 6688
{
	return sched_power_savings_store(buf, count, 0);
}
6689 6690 6691
static SYSDEV_CLASS_ATTR(sched_mc_power_savings, 0644,
			 sched_mc_power_savings_show,
			 sched_mc_power_savings_store);
6692 6693 6694
#endif

#ifdef CONFIG_SCHED_SMT
6695
static ssize_t sched_smt_power_savings_show(struct sysdev_class *dev,
6696
					    struct sysdev_class_attribute *attr,
6697
					    char *page)
6698 6699 6700
{
	return sprintf(page, "%u\n", sched_smt_power_savings);
}
6701
static ssize_t sched_smt_power_savings_store(struct sysdev_class *dev,
6702
					     struct sysdev_class_attribute *attr,
6703
					     const char *buf, size_t count)
6704 6705 6706
{
	return sched_power_savings_store(buf, count, 1);
}
6707 6708
static SYSDEV_CLASS_ATTR(sched_smt_power_savings, 0644,
		   sched_smt_power_savings_show,
A
Adrian Bunk 已提交
6709 6710 6711
		   sched_smt_power_savings_store);
#endif

6712
int __init sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
A
Adrian Bunk 已提交
6713 6714 6715 6716 6717 6718 6719 6720 6721 6722 6723 6724 6725 6726 6727
{
	int err = 0;

#ifdef CONFIG_SCHED_SMT
	if (smt_capable())
		err = sysfs_create_file(&cls->kset.kobj,
					&attr_sched_smt_power_savings.attr);
#endif
#ifdef CONFIG_SCHED_MC
	if (!err && mc_capable())
		err = sysfs_create_file(&cls->kset.kobj,
					&attr_sched_mc_power_savings.attr);
#endif
	return err;
}
6728
#endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
6729

L
Linus Torvalds 已提交
6730
/*
6731 6732 6733
 * Update cpusets according to cpu_active mask.  If cpusets are
 * disabled, cpuset_update_active_cpus() becomes a simple wrapper
 * around partition_sched_domains().
L
Linus Torvalds 已提交
6734
 */
6735 6736
static int cpuset_cpu_active(struct notifier_block *nfb, unsigned long action,
			     void *hcpu)
6737
{
6738
	switch (action & ~CPU_TASKS_FROZEN) {
6739
	case CPU_ONLINE:
6740
	case CPU_DOWN_FAILED:
6741
		cpuset_update_active_cpus();
6742
		return NOTIFY_OK;
6743 6744 6745 6746
	default:
		return NOTIFY_DONE;
	}
}
6747

6748 6749
static int cpuset_cpu_inactive(struct notifier_block *nfb, unsigned long action,
			       void *hcpu)
6750 6751 6752 6753 6754
{
	switch (action & ~CPU_TASKS_FROZEN) {
	case CPU_DOWN_PREPARE:
		cpuset_update_active_cpus();
		return NOTIFY_OK;
6755 6756 6757 6758 6759
	default:
		return NOTIFY_DONE;
	}
}

L
Linus Torvalds 已提交
6760 6761
void __init sched_init_smp(void)
{
6762 6763 6764
	cpumask_var_t non_isolated_cpus;

	alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
6765
	alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
6766

6767
	get_online_cpus();
6768
	mutex_lock(&sched_domains_mutex);
6769
	init_sched_domains(cpu_active_mask);
6770 6771 6772
	cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
	if (cpumask_empty(non_isolated_cpus))
		cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
6773
	mutex_unlock(&sched_domains_mutex);
6774
	put_online_cpus();
6775

6776 6777
	hotcpu_notifier(cpuset_cpu_active, CPU_PRI_CPUSET_ACTIVE);
	hotcpu_notifier(cpuset_cpu_inactive, CPU_PRI_CPUSET_INACTIVE);
6778 6779 6780 6781

	/* RT runtime code needs to handle some hotplug events */
	hotcpu_notifier(update_runtime, 0);

6782
	init_hrtick();
6783 6784

	/* Move init over to a non-isolated CPU */
6785
	if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
6786
		BUG();
I
Ingo Molnar 已提交
6787
	sched_init_granularity();
6788
	free_cpumask_var(non_isolated_cpus);
6789

6790
	init_sched_rt_class();
L
Linus Torvalds 已提交
6791 6792 6793 6794
}
#else
void __init sched_init_smp(void)
{
I
Ingo Molnar 已提交
6795
	sched_init_granularity();
L
Linus Torvalds 已提交
6796 6797 6798
}
#endif /* CONFIG_SMP */

6799 6800
const_debug unsigned int sysctl_timer_migration = 1;

L
Linus Torvalds 已提交
6801 6802 6803 6804 6805 6806 6807
int in_sched_functions(unsigned long addr)
{
	return in_lock_functions(addr) ||
		(addr >= (unsigned long)__sched_text_start
		&& addr < (unsigned long)__sched_text_end);
}

6808 6809
#ifdef CONFIG_CGROUP_SCHED
struct task_group root_task_group;
6810
#endif
P
Peter Zijlstra 已提交
6811

6812
DECLARE_PER_CPU(cpumask_var_t, load_balance_tmpmask);
P
Peter Zijlstra 已提交
6813

L
Linus Torvalds 已提交
6814 6815
void __init sched_init(void)
{
I
Ingo Molnar 已提交
6816
	int i, j;
6817 6818 6819 6820 6821 6822 6823
	unsigned long alloc_size = 0, ptr;

#ifdef CONFIG_FAIR_GROUP_SCHED
	alloc_size += 2 * nr_cpu_ids * sizeof(void **);
#endif
#ifdef CONFIG_RT_GROUP_SCHED
	alloc_size += 2 * nr_cpu_ids * sizeof(void **);
6824
#endif
6825
#ifdef CONFIG_CPUMASK_OFFSTACK
6826
	alloc_size += num_possible_cpus() * cpumask_size();
6827 6828
#endif
	if (alloc_size) {
6829
		ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
6830 6831

#ifdef CONFIG_FAIR_GROUP_SCHED
6832
		root_task_group.se = (struct sched_entity **)ptr;
6833 6834
		ptr += nr_cpu_ids * sizeof(void **);

6835
		root_task_group.cfs_rq = (struct cfs_rq **)ptr;
6836
		ptr += nr_cpu_ids * sizeof(void **);
6837

6838
#endif /* CONFIG_FAIR_GROUP_SCHED */
6839
#ifdef CONFIG_RT_GROUP_SCHED
6840
		root_task_group.rt_se = (struct sched_rt_entity **)ptr;
6841 6842
		ptr += nr_cpu_ids * sizeof(void **);

6843
		root_task_group.rt_rq = (struct rt_rq **)ptr;
6844 6845
		ptr += nr_cpu_ids * sizeof(void **);

6846
#endif /* CONFIG_RT_GROUP_SCHED */
6847 6848 6849 6850 6851 6852
#ifdef CONFIG_CPUMASK_OFFSTACK
		for_each_possible_cpu(i) {
			per_cpu(load_balance_tmpmask, i) = (void *)ptr;
			ptr += cpumask_size();
		}
#endif /* CONFIG_CPUMASK_OFFSTACK */
6853
	}
I
Ingo Molnar 已提交
6854

G
Gregory Haskins 已提交
6855 6856 6857 6858
#ifdef CONFIG_SMP
	init_defrootdomain();
#endif

6859 6860 6861 6862
	init_rt_bandwidth(&def_rt_bandwidth,
			global_rt_period(), global_rt_runtime());

#ifdef CONFIG_RT_GROUP_SCHED
6863
	init_rt_bandwidth(&root_task_group.rt_bandwidth,
6864
			global_rt_period(), global_rt_runtime());
6865
#endif /* CONFIG_RT_GROUP_SCHED */
6866

D
Dhaval Giani 已提交
6867
#ifdef CONFIG_CGROUP_SCHED
6868 6869
	list_add(&root_task_group.list, &task_groups);
	INIT_LIST_HEAD(&root_task_group.children);
6870
	INIT_LIST_HEAD(&root_task_group.siblings);
6871
	autogroup_init(&init_task);
6872

D
Dhaval Giani 已提交
6873
#endif /* CONFIG_CGROUP_SCHED */
P
Peter Zijlstra 已提交
6874

6875 6876 6877 6878 6879 6880
#ifdef CONFIG_CGROUP_CPUACCT
	root_cpuacct.cpustat = &kernel_cpustat;
	root_cpuacct.cpuusage = alloc_percpu(u64);
	/* Too early, not expected to fail */
	BUG_ON(!root_cpuacct.cpuusage);
#endif
6881
	for_each_possible_cpu(i) {
6882
		struct rq *rq;
L
Linus Torvalds 已提交
6883 6884

		rq = cpu_rq(i);
6885
		raw_spin_lock_init(&rq->lock);
N
Nick Piggin 已提交
6886
		rq->nr_running = 0;
6887 6888
		rq->calc_load_active = 0;
		rq->calc_load_update = jiffies + LOAD_FREQ;
6889
		init_cfs_rq(&rq->cfs);
P
Peter Zijlstra 已提交
6890
		init_rt_rq(&rq->rt, rq);
I
Ingo Molnar 已提交
6891
#ifdef CONFIG_FAIR_GROUP_SCHED
6892
		root_task_group.shares = ROOT_TASK_GROUP_LOAD;
P
Peter Zijlstra 已提交
6893
		INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
D
Dhaval Giani 已提交
6894
		/*
6895
		 * How much cpu bandwidth does root_task_group get?
D
Dhaval Giani 已提交
6896 6897 6898 6899
		 *
		 * In case of task-groups formed thr' the cgroup filesystem, it
		 * gets 100% of the cpu resources in the system. This overall
		 * system cpu resource is divided among the tasks of
6900
		 * root_task_group and its child task-groups in a fair manner,
D
Dhaval Giani 已提交
6901 6902 6903
		 * based on each entity's (task or task-group's) weight
		 * (se->load.weight).
		 *
6904
		 * In other words, if root_task_group has 10 tasks of weight
D
Dhaval Giani 已提交
6905 6906 6907
		 * 1024) and two child groups A0 and A1 (of weight 1024 each),
		 * then A0's share of the cpu resource is:
		 *
6908
		 *	A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
D
Dhaval Giani 已提交
6909
		 *
6910 6911
		 * We achieve this by letting root_task_group's tasks sit
		 * directly in rq->cfs (i.e root_task_group->se[] = NULL).
D
Dhaval Giani 已提交
6912
		 */
6913
		init_cfs_bandwidth(&root_task_group.cfs_bandwidth);
6914
		init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL);
D
Dhaval Giani 已提交
6915 6916 6917
#endif /* CONFIG_FAIR_GROUP_SCHED */

		rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
6918
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
6919
		INIT_LIST_HEAD(&rq->leaf_rt_rq_list);
6920
		init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL);
I
Ingo Molnar 已提交
6921
#endif
L
Linus Torvalds 已提交
6922

I
Ingo Molnar 已提交
6923 6924
		for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
			rq->cpu_load[j] = 0;
6925 6926 6927

		rq->last_load_update_tick = jiffies;

L
Linus Torvalds 已提交
6928
#ifdef CONFIG_SMP
N
Nick Piggin 已提交
6929
		rq->sd = NULL;
G
Gregory Haskins 已提交
6930
		rq->rd = NULL;
6931
		rq->cpu_power = SCHED_POWER_SCALE;
6932
		rq->post_schedule = 0;
L
Linus Torvalds 已提交
6933
		rq->active_balance = 0;
I
Ingo Molnar 已提交
6934
		rq->next_balance = jiffies;
L
Linus Torvalds 已提交
6935
		rq->push_cpu = 0;
6936
		rq->cpu = i;
6937
		rq->online = 0;
6938 6939
		rq->idle_stamp = 0;
		rq->avg_idle = 2*sysctl_sched_migration_cost;
6940
		rq_attach_root(rq, &def_root_domain);
6941
#ifdef CONFIG_NO_HZ
6942
		rq->nohz_flags = 0;
6943
#endif
L
Linus Torvalds 已提交
6944
#endif
P
Peter Zijlstra 已提交
6945
		init_rq_hrtick(rq);
L
Linus Torvalds 已提交
6946 6947 6948
		atomic_set(&rq->nr_iowait, 0);
	}

6949
	set_load_weight(&init_task);
6950

6951 6952 6953 6954
#ifdef CONFIG_PREEMPT_NOTIFIERS
	INIT_HLIST_HEAD(&init_task.preempt_notifiers);
#endif

6955
#ifdef CONFIG_RT_MUTEXES
6956
	plist_head_init(&init_task.pi_waiters);
6957 6958
#endif

L
Linus Torvalds 已提交
6959 6960 6961 6962 6963 6964 6965 6966 6967 6968 6969 6970 6971
	/*
	 * The boot idle thread does lazy MMU switching as well:
	 */
	atomic_inc(&init_mm.mm_count);
	enter_lazy_tlb(&init_mm, current);

	/*
	 * Make us the idle thread. Technically, schedule() should not be
	 * called from this thread, however somewhere below it might be,
	 * but because we are the idle thread, we just pick up running again
	 * when this runqueue becomes "idle".
	 */
	init_idle(current, smp_processor_id());
6972 6973 6974

	calc_load_update = jiffies + LOAD_FREQ;

I
Ingo Molnar 已提交
6975 6976 6977 6978
	/*
	 * During early bootup we pretend to be a normal task:
	 */
	current->sched_class = &fair_sched_class;
6979

6980
#ifdef CONFIG_SMP
6981
	zalloc_cpumask_var(&sched_domains_tmpmask, GFP_NOWAIT);
R
Rusty Russell 已提交
6982 6983 6984
	/* May be allocated at isolcpus cmdline parse time */
	if (cpu_isolated_map == NULL)
		zalloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT);
6985 6986
#endif
	init_sched_fair_class();
6987

6988
	scheduler_running = 1;
L
Linus Torvalds 已提交
6989 6990
}

6991
#ifdef CONFIG_DEBUG_ATOMIC_SLEEP
6992 6993
static inline int preempt_count_equals(int preempt_offset)
{
6994
	int nested = (preempt_count() & ~PREEMPT_ACTIVE) + rcu_preempt_depth();
6995

A
Arnd Bergmann 已提交
6996
	return (nested == preempt_offset);
6997 6998
}

6999
void __might_sleep(const char *file, int line, int preempt_offset)
L
Linus Torvalds 已提交
7000 7001 7002
{
	static unsigned long prev_jiffy;	/* ratelimiting */

7003
	rcu_sleep_check(); /* WARN_ON_ONCE() by default, no rate limit reqd. */
7004 7005
	if ((preempt_count_equals(preempt_offset) && !irqs_disabled()) ||
	    system_state != SYSTEM_RUNNING || oops_in_progress)
I
Ingo Molnar 已提交
7006 7007 7008 7009 7010
		return;
	if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
		return;
	prev_jiffy = jiffies;

P
Peter Zijlstra 已提交
7011 7012 7013 7014 7015 7016 7017
	printk(KERN_ERR
		"BUG: sleeping function called from invalid context at %s:%d\n",
			file, line);
	printk(KERN_ERR
		"in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
			in_atomic(), irqs_disabled(),
			current->pid, current->comm);
I
Ingo Molnar 已提交
7018 7019 7020 7021 7022

	debug_show_held_locks(current);
	if (irqs_disabled())
		print_irqtrace_events(current);
	dump_stack();
L
Linus Torvalds 已提交
7023 7024 7025 7026 7027
}
EXPORT_SYMBOL(__might_sleep);
#endif

#ifdef CONFIG_MAGIC_SYSRQ
7028 7029
static void normalize_task(struct rq *rq, struct task_struct *p)
{
P
Peter Zijlstra 已提交
7030 7031
	const struct sched_class *prev_class = p->sched_class;
	int old_prio = p->prio;
7032
	int on_rq;
7033

P
Peter Zijlstra 已提交
7034
	on_rq = p->on_rq;
7035 7036 7037 7038 7039 7040 7041
	if (on_rq)
		deactivate_task(rq, p, 0);
	__setscheduler(rq, p, SCHED_NORMAL, 0);
	if (on_rq) {
		activate_task(rq, p, 0);
		resched_task(rq->curr);
	}
P
Peter Zijlstra 已提交
7042 7043

	check_class_changed(rq, p, prev_class, old_prio);
7044 7045
}

L
Linus Torvalds 已提交
7046 7047
void normalize_rt_tasks(void)
{
7048
	struct task_struct *g, *p;
L
Linus Torvalds 已提交
7049
	unsigned long flags;
7050
	struct rq *rq;
L
Linus Torvalds 已提交
7051

7052
	read_lock_irqsave(&tasklist_lock, flags);
7053
	do_each_thread(g, p) {
7054 7055 7056 7057 7058 7059
		/*
		 * Only normalize user tasks:
		 */
		if (!p->mm)
			continue;

I
Ingo Molnar 已提交
7060 7061
		p->se.exec_start		= 0;
#ifdef CONFIG_SCHEDSTATS
7062 7063 7064
		p->se.statistics.wait_start	= 0;
		p->se.statistics.sleep_start	= 0;
		p->se.statistics.block_start	= 0;
I
Ingo Molnar 已提交
7065
#endif
I
Ingo Molnar 已提交
7066 7067 7068 7069 7070 7071 7072 7073

		if (!rt_task(p)) {
			/*
			 * Renice negative nice level userspace
			 * tasks back to 0:
			 */
			if (TASK_NICE(p) < 0 && p->mm)
				set_user_nice(p, 0);
L
Linus Torvalds 已提交
7074
			continue;
I
Ingo Molnar 已提交
7075
		}
L
Linus Torvalds 已提交
7076

7077
		raw_spin_lock(&p->pi_lock);
7078
		rq = __task_rq_lock(p);
L
Linus Torvalds 已提交
7079

7080
		normalize_task(rq, p);
7081

7082
		__task_rq_unlock(rq);
7083
		raw_spin_unlock(&p->pi_lock);
7084 7085
	} while_each_thread(g, p);

7086
	read_unlock_irqrestore(&tasklist_lock, flags);
L
Linus Torvalds 已提交
7087 7088 7089
}

#endif /* CONFIG_MAGIC_SYSRQ */
7090

7091
#if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB)
7092
/*
7093
 * These functions are only useful for the IA64 MCA handling, or kdb.
7094 7095 7096 7097 7098 7099 7100 7101 7102 7103 7104 7105 7106 7107
 *
 * They can only be called when the whole system has been
 * stopped - every CPU needs to be quiescent, and no scheduling
 * activity can take place. Using them for anything else would
 * be a serious bug, and as a result, they aren't even visible
 * under any other configuration.
 */

/**
 * curr_task - return the current task for a given cpu.
 * @cpu: the processor in question.
 *
 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
 */
7108
struct task_struct *curr_task(int cpu)
7109 7110 7111 7112
{
	return cpu_curr(cpu);
}

7113 7114 7115
#endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */

#ifdef CONFIG_IA64
7116 7117 7118 7119 7120 7121
/**
 * set_curr_task - set the current task for a given cpu.
 * @cpu: the processor in question.
 * @p: the task pointer to set.
 *
 * Description: This function must only be used when non-maskable interrupts
I
Ingo Molnar 已提交
7122 7123
 * are serviced on a separate stack. It allows the architecture to switch the
 * notion of the current task on a cpu in a non-blocking manner. This function
7124 7125 7126 7127 7128 7129 7130
 * must be called with all CPU's synchronized, and interrupts disabled, the
 * and caller must save the original value of the current task (see
 * curr_task() above) and restore that value before reenabling interrupts and
 * re-starting the system.
 *
 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
 */
7131
void set_curr_task(int cpu, struct task_struct *p)
7132 7133 7134 7135 7136
{
	cpu_curr(cpu) = p;
}

#endif
S
Srivatsa Vaddagiri 已提交
7137

7138
#ifdef CONFIG_RT_GROUP_SCHED
7139 7140
#else /* !CONFIG_RT_GROUP_SCHED */
#endif /* CONFIG_RT_GROUP_SCHED */
7141

D
Dhaval Giani 已提交
7142
#ifdef CONFIG_CGROUP_SCHED
7143 7144 7145
/* task_group_lock serializes the addition/removal of task groups */
static DEFINE_SPINLOCK(task_group_lock);

7146 7147 7148 7149
static void free_sched_group(struct task_group *tg)
{
	free_fair_sched_group(tg);
	free_rt_sched_group(tg);
7150
	autogroup_free(tg);
7151 7152 7153 7154
	kfree(tg);
}

/* allocate runqueue etc for a new task group */
7155
struct task_group *sched_create_group(struct task_group *parent)
7156 7157 7158 7159 7160 7161 7162 7163
{
	struct task_group *tg;
	unsigned long flags;

	tg = kzalloc(sizeof(*tg), GFP_KERNEL);
	if (!tg)
		return ERR_PTR(-ENOMEM);

7164
	if (!alloc_fair_sched_group(tg, parent))
7165 7166
		goto err;

7167
	if (!alloc_rt_sched_group(tg, parent))
7168 7169
		goto err;

7170
	spin_lock_irqsave(&task_group_lock, flags);
P
Peter Zijlstra 已提交
7171
	list_add_rcu(&tg->list, &task_groups);
P
Peter Zijlstra 已提交
7172 7173 7174 7175 7176

	WARN_ON(!parent); /* root should already exist */

	tg->parent = parent;
	INIT_LIST_HEAD(&tg->children);
7177
	list_add_rcu(&tg->siblings, &parent->children);
7178
	spin_unlock_irqrestore(&task_group_lock, flags);
S
Srivatsa Vaddagiri 已提交
7179

7180
	return tg;
S
Srivatsa Vaddagiri 已提交
7181 7182

err:
P
Peter Zijlstra 已提交
7183
	free_sched_group(tg);
S
Srivatsa Vaddagiri 已提交
7184 7185 7186
	return ERR_PTR(-ENOMEM);
}

7187
/* rcu callback to free various structures associated with a task group */
P
Peter Zijlstra 已提交
7188
static void free_sched_group_rcu(struct rcu_head *rhp)
S
Srivatsa Vaddagiri 已提交
7189 7190
{
	/* now it should be safe to free those cfs_rqs */
P
Peter Zijlstra 已提交
7191
	free_sched_group(container_of(rhp, struct task_group, rcu));
S
Srivatsa Vaddagiri 已提交
7192 7193
}

7194
/* Destroy runqueue etc associated with a task group */
7195
void sched_destroy_group(struct task_group *tg)
S
Srivatsa Vaddagiri 已提交
7196
{
7197
	unsigned long flags;
7198
	int i;
S
Srivatsa Vaddagiri 已提交
7199

7200 7201
	/* end participation in shares distribution */
	for_each_possible_cpu(i)
7202
		unregister_fair_sched_group(tg, i);
7203 7204

	spin_lock_irqsave(&task_group_lock, flags);
P
Peter Zijlstra 已提交
7205
	list_del_rcu(&tg->list);
P
Peter Zijlstra 已提交
7206
	list_del_rcu(&tg->siblings);
7207
	spin_unlock_irqrestore(&task_group_lock, flags);
7208 7209

	/* wait for possible concurrent references to cfs_rqs complete */
P
Peter Zijlstra 已提交
7210
	call_rcu(&tg->rcu, free_sched_group_rcu);
S
Srivatsa Vaddagiri 已提交
7211 7212
}

7213
/* change task's runqueue when it moves between groups.
I
Ingo Molnar 已提交
7214 7215 7216
 *	The caller of this function should have put the task in its new group
 *	by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
 *	reflect its new group.
7217 7218
 */
void sched_move_task(struct task_struct *tsk)
S
Srivatsa Vaddagiri 已提交
7219 7220 7221 7222 7223 7224 7225
{
	int on_rq, running;
	unsigned long flags;
	struct rq *rq;

	rq = task_rq_lock(tsk, &flags);

7226
	running = task_current(rq, tsk);
P
Peter Zijlstra 已提交
7227
	on_rq = tsk->on_rq;
S
Srivatsa Vaddagiri 已提交
7228

7229
	if (on_rq)
S
Srivatsa Vaddagiri 已提交
7230
		dequeue_task(rq, tsk, 0);
7231 7232
	if (unlikely(running))
		tsk->sched_class->put_prev_task(rq, tsk);
S
Srivatsa Vaddagiri 已提交
7233

P
Peter Zijlstra 已提交
7234
#ifdef CONFIG_FAIR_GROUP_SCHED
7235 7236 7237
	if (tsk->sched_class->task_move_group)
		tsk->sched_class->task_move_group(tsk, on_rq);
	else
P
Peter Zijlstra 已提交
7238
#endif
7239
		set_task_rq(tsk, task_cpu(tsk));
P
Peter Zijlstra 已提交
7240

7241 7242 7243
	if (unlikely(running))
		tsk->sched_class->set_curr_task(rq);
	if (on_rq)
7244
		enqueue_task(rq, tsk, 0);
S
Srivatsa Vaddagiri 已提交
7245

7246
	task_rq_unlock(rq, tsk, &flags);
S
Srivatsa Vaddagiri 已提交
7247
}
D
Dhaval Giani 已提交
7248
#endif /* CONFIG_CGROUP_SCHED */
S
Srivatsa Vaddagiri 已提交
7249

7250 7251
#ifdef CONFIG_FAIR_GROUP_SCHED
#endif
7252

7253
#if defined(CONFIG_RT_GROUP_SCHED) || defined(CONFIG_CFS_BANDWIDTH)
P
Peter Zijlstra 已提交
7254 7255 7256
static unsigned long to_ratio(u64 period, u64 runtime)
{
	if (runtime == RUNTIME_INF)
P
Peter Zijlstra 已提交
7257
		return 1ULL << 20;
P
Peter Zijlstra 已提交
7258

P
Peter Zijlstra 已提交
7259
	return div64_u64(runtime << 20, period);
P
Peter Zijlstra 已提交
7260
}
7261 7262 7263 7264 7265 7266 7267
#endif

#ifdef CONFIG_RT_GROUP_SCHED
/*
 * Ensure that the real time constraints are schedulable.
 */
static DEFINE_MUTEX(rt_constraints_mutex);
P
Peter Zijlstra 已提交
7268

P
Peter Zijlstra 已提交
7269 7270
/* Must be called with tasklist_lock held */
static inline int tg_has_rt_tasks(struct task_group *tg)
7271
{
P
Peter Zijlstra 已提交
7272
	struct task_struct *g, *p;
7273

P
Peter Zijlstra 已提交
7274
	do_each_thread(g, p) {
7275
		if (rt_task(p) && task_rq(p)->rt.tg == tg)
P
Peter Zijlstra 已提交
7276 7277
			return 1;
	} while_each_thread(g, p);
7278

P
Peter Zijlstra 已提交
7279 7280
	return 0;
}
7281

P
Peter Zijlstra 已提交
7282 7283 7284 7285 7286
struct rt_schedulable_data {
	struct task_group *tg;
	u64 rt_period;
	u64 rt_runtime;
};
7287

7288
static int tg_rt_schedulable(struct task_group *tg, void *data)
P
Peter Zijlstra 已提交
7289 7290 7291 7292 7293
{
	struct rt_schedulable_data *d = data;
	struct task_group *child;
	unsigned long total, sum = 0;
	u64 period, runtime;
7294

P
Peter Zijlstra 已提交
7295 7296
	period = ktime_to_ns(tg->rt_bandwidth.rt_period);
	runtime = tg->rt_bandwidth.rt_runtime;
7297

P
Peter Zijlstra 已提交
7298 7299 7300
	if (tg == d->tg) {
		period = d->rt_period;
		runtime = d->rt_runtime;
7301 7302
	}

7303 7304 7305 7306 7307
	/*
	 * Cannot have more runtime than the period.
	 */
	if (runtime > period && runtime != RUNTIME_INF)
		return -EINVAL;
P
Peter Zijlstra 已提交
7308

7309 7310 7311
	/*
	 * Ensure we don't starve existing RT tasks.
	 */
P
Peter Zijlstra 已提交
7312 7313
	if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
		return -EBUSY;
P
Peter Zijlstra 已提交
7314

P
Peter Zijlstra 已提交
7315
	total = to_ratio(period, runtime);
P
Peter Zijlstra 已提交
7316

7317 7318 7319 7320 7321
	/*
	 * Nobody can have more than the global setting allows.
	 */
	if (total > to_ratio(global_rt_period(), global_rt_runtime()))
		return -EINVAL;
P
Peter Zijlstra 已提交
7322

7323 7324 7325
	/*
	 * The sum of our children's runtime should not exceed our own.
	 */
P
Peter Zijlstra 已提交
7326 7327 7328
	list_for_each_entry_rcu(child, &tg->children, siblings) {
		period = ktime_to_ns(child->rt_bandwidth.rt_period);
		runtime = child->rt_bandwidth.rt_runtime;
P
Peter Zijlstra 已提交
7329

P
Peter Zijlstra 已提交
7330 7331 7332 7333
		if (child == d->tg) {
			period = d->rt_period;
			runtime = d->rt_runtime;
		}
P
Peter Zijlstra 已提交
7334

P
Peter Zijlstra 已提交
7335
		sum += to_ratio(period, runtime);
P
Peter Zijlstra 已提交
7336
	}
P
Peter Zijlstra 已提交
7337

P
Peter Zijlstra 已提交
7338 7339 7340 7341
	if (sum > total)
		return -EINVAL;

	return 0;
P
Peter Zijlstra 已提交
7342 7343
}

P
Peter Zijlstra 已提交
7344
static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
7345
{
7346 7347
	int ret;

P
Peter Zijlstra 已提交
7348 7349 7350 7351 7352 7353
	struct rt_schedulable_data data = {
		.tg = tg,
		.rt_period = period,
		.rt_runtime = runtime,
	};

7354 7355 7356 7357 7358
	rcu_read_lock();
	ret = walk_tg_tree(tg_rt_schedulable, tg_nop, &data);
	rcu_read_unlock();

	return ret;
7359 7360
}

7361
static int tg_set_rt_bandwidth(struct task_group *tg,
7362
		u64 rt_period, u64 rt_runtime)
P
Peter Zijlstra 已提交
7363
{
P
Peter Zijlstra 已提交
7364
	int i, err = 0;
P
Peter Zijlstra 已提交
7365 7366

	mutex_lock(&rt_constraints_mutex);
7367
	read_lock(&tasklist_lock);
P
Peter Zijlstra 已提交
7368 7369
	err = __rt_schedulable(tg, rt_period, rt_runtime);
	if (err)
P
Peter Zijlstra 已提交
7370
		goto unlock;
P
Peter Zijlstra 已提交
7371

7372
	raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
7373 7374
	tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
	tg->rt_bandwidth.rt_runtime = rt_runtime;
P
Peter Zijlstra 已提交
7375 7376 7377 7378

	for_each_possible_cpu(i) {
		struct rt_rq *rt_rq = tg->rt_rq[i];

7379
		raw_spin_lock(&rt_rq->rt_runtime_lock);
P
Peter Zijlstra 已提交
7380
		rt_rq->rt_runtime = rt_runtime;
7381
		raw_spin_unlock(&rt_rq->rt_runtime_lock);
P
Peter Zijlstra 已提交
7382
	}
7383
	raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
P
Peter Zijlstra 已提交
7384
unlock:
7385
	read_unlock(&tasklist_lock);
P
Peter Zijlstra 已提交
7386 7387 7388
	mutex_unlock(&rt_constraints_mutex);

	return err;
P
Peter Zijlstra 已提交
7389 7390
}

7391 7392 7393 7394 7395 7396 7397 7398 7399
int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
{
	u64 rt_runtime, rt_period;

	rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
	rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
	if (rt_runtime_us < 0)
		rt_runtime = RUNTIME_INF;

7400
	return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
7401 7402
}

P
Peter Zijlstra 已提交
7403 7404 7405 7406
long sched_group_rt_runtime(struct task_group *tg)
{
	u64 rt_runtime_us;

7407
	if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
P
Peter Zijlstra 已提交
7408 7409
		return -1;

7410
	rt_runtime_us = tg->rt_bandwidth.rt_runtime;
P
Peter Zijlstra 已提交
7411 7412 7413
	do_div(rt_runtime_us, NSEC_PER_USEC);
	return rt_runtime_us;
}
7414 7415 7416 7417 7418 7419 7420 7421

int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
{
	u64 rt_runtime, rt_period;

	rt_period = (u64)rt_period_us * NSEC_PER_USEC;
	rt_runtime = tg->rt_bandwidth.rt_runtime;

7422 7423 7424
	if (rt_period == 0)
		return -EINVAL;

7425
	return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
7426 7427 7428 7429 7430 7431 7432 7433 7434 7435 7436 7437 7438
}

long sched_group_rt_period(struct task_group *tg)
{
	u64 rt_period_us;

	rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
	do_div(rt_period_us, NSEC_PER_USEC);
	return rt_period_us;
}

static int sched_rt_global_constraints(void)
{
7439
	u64 runtime, period;
7440 7441
	int ret = 0;

7442 7443 7444
	if (sysctl_sched_rt_period <= 0)
		return -EINVAL;

7445 7446 7447 7448 7449 7450 7451 7452
	runtime = global_rt_runtime();
	period = global_rt_period();

	/*
	 * Sanity check on the sysctl variables.
	 */
	if (runtime > period && runtime != RUNTIME_INF)
		return -EINVAL;
7453

7454
	mutex_lock(&rt_constraints_mutex);
P
Peter Zijlstra 已提交
7455
	read_lock(&tasklist_lock);
7456
	ret = __rt_schedulable(NULL, 0, 0);
P
Peter Zijlstra 已提交
7457
	read_unlock(&tasklist_lock);
7458 7459 7460 7461
	mutex_unlock(&rt_constraints_mutex);

	return ret;
}
7462 7463 7464 7465 7466 7467 7468 7469 7470 7471

int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
{
	/* Don't accept realtime tasks when there is no way for them to run */
	if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
		return 0;

	return 1;
}

7472
#else /* !CONFIG_RT_GROUP_SCHED */
7473 7474
static int sched_rt_global_constraints(void)
{
P
Peter Zijlstra 已提交
7475 7476 7477
	unsigned long flags;
	int i;

7478 7479 7480
	if (sysctl_sched_rt_period <= 0)
		return -EINVAL;

7481 7482 7483 7484 7485 7486 7487
	/*
	 * There's always some RT tasks in the root group
	 * -- migration, kstopmachine etc..
	 */
	if (sysctl_sched_rt_runtime == 0)
		return -EBUSY;

7488
	raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
P
Peter Zijlstra 已提交
7489 7490 7491
	for_each_possible_cpu(i) {
		struct rt_rq *rt_rq = &cpu_rq(i)->rt;

7492
		raw_spin_lock(&rt_rq->rt_runtime_lock);
P
Peter Zijlstra 已提交
7493
		rt_rq->rt_runtime = global_rt_runtime();
7494
		raw_spin_unlock(&rt_rq->rt_runtime_lock);
P
Peter Zijlstra 已提交
7495
	}
7496
	raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
P
Peter Zijlstra 已提交
7497

7498 7499
	return 0;
}
7500
#endif /* CONFIG_RT_GROUP_SCHED */
7501 7502

int sched_rt_handler(struct ctl_table *table, int write,
7503
		void __user *buffer, size_t *lenp,
7504 7505 7506 7507 7508 7509 7510 7511 7512 7513
		loff_t *ppos)
{
	int ret;
	int old_period, old_runtime;
	static DEFINE_MUTEX(mutex);

	mutex_lock(&mutex);
	old_period = sysctl_sched_rt_period;
	old_runtime = sysctl_sched_rt_runtime;

7514
	ret = proc_dointvec(table, write, buffer, lenp, ppos);
7515 7516 7517 7518 7519 7520 7521 7522 7523 7524 7525 7526 7527 7528 7529 7530

	if (!ret && write) {
		ret = sched_rt_global_constraints();
		if (ret) {
			sysctl_sched_rt_period = old_period;
			sysctl_sched_rt_runtime = old_runtime;
		} else {
			def_rt_bandwidth.rt_runtime = global_rt_runtime();
			def_rt_bandwidth.rt_period =
				ns_to_ktime(global_rt_period());
		}
	}
	mutex_unlock(&mutex);

	return ret;
}
7531

7532
#ifdef CONFIG_CGROUP_SCHED
7533 7534

/* return corresponding task_group object of a cgroup */
7535
static inline struct task_group *cgroup_tg(struct cgroup *cgrp)
7536
{
7537 7538
	return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id),
			    struct task_group, css);
7539 7540 7541
}

static struct cgroup_subsys_state *
7542
cpu_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cgrp)
7543
{
7544
	struct task_group *tg, *parent;
7545

7546
	if (!cgrp->parent) {
7547
		/* This is early initialization for the top cgroup */
7548
		return &root_task_group.css;
7549 7550
	}

7551 7552
	parent = cgroup_tg(cgrp->parent);
	tg = sched_create_group(parent);
7553 7554 7555 7556 7557 7558
	if (IS_ERR(tg))
		return ERR_PTR(-ENOMEM);

	return &tg->css;
}

I
Ingo Molnar 已提交
7559 7560
static void
cpu_cgroup_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
7561
{
7562
	struct task_group *tg = cgroup_tg(cgrp);
7563 7564 7565 7566

	sched_destroy_group(tg);
}

I
Ingo Molnar 已提交
7567
static int
7568
cpu_cgroup_can_attach_task(struct cgroup *cgrp, struct task_struct *tsk)
7569
{
7570
#ifdef CONFIG_RT_GROUP_SCHED
7571
	if (!sched_rt_can_attach(cgroup_tg(cgrp), tsk))
7572 7573
		return -EINVAL;
#else
7574 7575 7576
	/* We don't support RT-tasks being in separate groups */
	if (tsk->sched_class != &fair_sched_class)
		return -EINVAL;
7577
#endif
7578 7579
	return 0;
}
7580 7581

static void
7582
cpu_cgroup_attach_task(struct cgroup *cgrp, struct task_struct *tsk)
7583 7584 7585 7586
{
	sched_move_task(tsk);
}

7587
static void
7588 7589
cpu_cgroup_exit(struct cgroup_subsys *ss, struct cgroup *cgrp,
		struct cgroup *old_cgrp, struct task_struct *task)
7590 7591 7592 7593 7594 7595 7596 7597 7598 7599 7600 7601
{
	/*
	 * cgroup_exit() is called in the copy_process() failure path.
	 * Ignore this case since the task hasn't ran yet, this avoids
	 * trying to poke a half freed task state from generic code.
	 */
	if (!(task->flags & PF_EXITING))
		return;

	sched_move_task(task);
}

7602
#ifdef CONFIG_FAIR_GROUP_SCHED
7603
static int cpu_shares_write_u64(struct cgroup *cgrp, struct cftype *cftype,
7604
				u64 shareval)
7605
{
7606
	return sched_group_set_shares(cgroup_tg(cgrp), scale_load(shareval));
7607 7608
}

7609
static u64 cpu_shares_read_u64(struct cgroup *cgrp, struct cftype *cft)
7610
{
7611
	struct task_group *tg = cgroup_tg(cgrp);
7612

7613
	return (u64) scale_load_down(tg->shares);
7614
}
7615 7616

#ifdef CONFIG_CFS_BANDWIDTH
7617 7618
static DEFINE_MUTEX(cfs_constraints_mutex);

7619 7620 7621
const u64 max_cfs_quota_period = 1 * NSEC_PER_SEC; /* 1s */
const u64 min_cfs_quota_period = 1 * NSEC_PER_MSEC; /* 1ms */

7622 7623
static int __cfs_schedulable(struct task_group *tg, u64 period, u64 runtime);

7624 7625
static int tg_set_cfs_bandwidth(struct task_group *tg, u64 period, u64 quota)
{
7626
	int i, ret = 0, runtime_enabled, runtime_was_enabled;
7627
	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
7628 7629 7630 7631 7632 7633 7634 7635 7636 7637 7638 7639 7640 7641 7642 7643 7644 7645 7646 7647

	if (tg == &root_task_group)
		return -EINVAL;

	/*
	 * Ensure we have at some amount of bandwidth every period.  This is
	 * to prevent reaching a state of large arrears when throttled via
	 * entity_tick() resulting in prolonged exit starvation.
	 */
	if (quota < min_cfs_quota_period || period < min_cfs_quota_period)
		return -EINVAL;

	/*
	 * Likewise, bound things on the otherside by preventing insane quota
	 * periods.  This also allows us to normalize in computing quota
	 * feasibility.
	 */
	if (period > max_cfs_quota_period)
		return -EINVAL;

7648 7649 7650 7651 7652
	mutex_lock(&cfs_constraints_mutex);
	ret = __cfs_schedulable(tg, period, quota);
	if (ret)
		goto out_unlock;

7653
	runtime_enabled = quota != RUNTIME_INF;
7654 7655
	runtime_was_enabled = cfs_b->quota != RUNTIME_INF;
	account_cfs_bandwidth_used(runtime_enabled, runtime_was_enabled);
7656 7657 7658
	raw_spin_lock_irq(&cfs_b->lock);
	cfs_b->period = ns_to_ktime(period);
	cfs_b->quota = quota;
7659

P
Paul Turner 已提交
7660
	__refill_cfs_bandwidth_runtime(cfs_b);
7661 7662 7663 7664 7665 7666
	/* restart the period timer (if active) to handle new period expiry */
	if (runtime_enabled && cfs_b->timer_active) {
		/* force a reprogram */
		cfs_b->timer_active = 0;
		__start_cfs_bandwidth(cfs_b);
	}
7667 7668 7669 7670
	raw_spin_unlock_irq(&cfs_b->lock);

	for_each_possible_cpu(i) {
		struct cfs_rq *cfs_rq = tg->cfs_rq[i];
7671
		struct rq *rq = cfs_rq->rq;
7672 7673

		raw_spin_lock_irq(&rq->lock);
7674
		cfs_rq->runtime_enabled = runtime_enabled;
7675
		cfs_rq->runtime_remaining = 0;
7676

7677
		if (cfs_rq->throttled)
7678
			unthrottle_cfs_rq(cfs_rq);
7679 7680
		raw_spin_unlock_irq(&rq->lock);
	}
7681 7682
out_unlock:
	mutex_unlock(&cfs_constraints_mutex);
7683

7684
	return ret;
7685 7686 7687 7688 7689 7690
}

int tg_set_cfs_quota(struct task_group *tg, long cfs_quota_us)
{
	u64 quota, period;

7691
	period = ktime_to_ns(tg->cfs_bandwidth.period);
7692 7693 7694 7695 7696 7697 7698 7699 7700 7701 7702 7703
	if (cfs_quota_us < 0)
		quota = RUNTIME_INF;
	else
		quota = (u64)cfs_quota_us * NSEC_PER_USEC;

	return tg_set_cfs_bandwidth(tg, period, quota);
}

long tg_get_cfs_quota(struct task_group *tg)
{
	u64 quota_us;

7704
	if (tg->cfs_bandwidth.quota == RUNTIME_INF)
7705 7706
		return -1;

7707
	quota_us = tg->cfs_bandwidth.quota;
7708 7709 7710 7711 7712 7713 7714 7715 7716 7717
	do_div(quota_us, NSEC_PER_USEC);

	return quota_us;
}

int tg_set_cfs_period(struct task_group *tg, long cfs_period_us)
{
	u64 quota, period;

	period = (u64)cfs_period_us * NSEC_PER_USEC;
7718
	quota = tg->cfs_bandwidth.quota;
7719 7720 7721 7722 7723 7724 7725 7726

	return tg_set_cfs_bandwidth(tg, period, quota);
}

long tg_get_cfs_period(struct task_group *tg)
{
	u64 cfs_period_us;

7727
	cfs_period_us = ktime_to_ns(tg->cfs_bandwidth.period);
7728 7729 7730 7731 7732 7733 7734 7735 7736 7737 7738 7739 7740 7741 7742 7743 7744 7745 7746 7747 7748 7749 7750 7751 7752 7753 7754
	do_div(cfs_period_us, NSEC_PER_USEC);

	return cfs_period_us;
}

static s64 cpu_cfs_quota_read_s64(struct cgroup *cgrp, struct cftype *cft)
{
	return tg_get_cfs_quota(cgroup_tg(cgrp));
}

static int cpu_cfs_quota_write_s64(struct cgroup *cgrp, struct cftype *cftype,
				s64 cfs_quota_us)
{
	return tg_set_cfs_quota(cgroup_tg(cgrp), cfs_quota_us);
}

static u64 cpu_cfs_period_read_u64(struct cgroup *cgrp, struct cftype *cft)
{
	return tg_get_cfs_period(cgroup_tg(cgrp));
}

static int cpu_cfs_period_write_u64(struct cgroup *cgrp, struct cftype *cftype,
				u64 cfs_period_us)
{
	return tg_set_cfs_period(cgroup_tg(cgrp), cfs_period_us);
}

7755 7756 7757 7758 7759 7760 7761 7762 7763 7764 7765 7766 7767 7768 7769 7770 7771 7772 7773 7774 7775 7776 7777 7778 7779 7780 7781 7782 7783 7784 7785 7786
struct cfs_schedulable_data {
	struct task_group *tg;
	u64 period, quota;
};

/*
 * normalize group quota/period to be quota/max_period
 * note: units are usecs
 */
static u64 normalize_cfs_quota(struct task_group *tg,
			       struct cfs_schedulable_data *d)
{
	u64 quota, period;

	if (tg == d->tg) {
		period = d->period;
		quota = d->quota;
	} else {
		period = tg_get_cfs_period(tg);
		quota = tg_get_cfs_quota(tg);
	}

	/* note: these should typically be equivalent */
	if (quota == RUNTIME_INF || quota == -1)
		return RUNTIME_INF;

	return to_ratio(period, quota);
}

static int tg_cfs_schedulable_down(struct task_group *tg, void *data)
{
	struct cfs_schedulable_data *d = data;
7787
	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
7788 7789 7790 7791 7792
	s64 quota = 0, parent_quota = -1;

	if (!tg->parent) {
		quota = RUNTIME_INF;
	} else {
7793
		struct cfs_bandwidth *parent_b = &tg->parent->cfs_bandwidth;
7794 7795 7796 7797 7798 7799 7800 7801 7802 7803 7804 7805 7806 7807 7808 7809 7810 7811 7812 7813

		quota = normalize_cfs_quota(tg, d);
		parent_quota = parent_b->hierarchal_quota;

		/*
		 * ensure max(child_quota) <= parent_quota, inherit when no
		 * limit is set
		 */
		if (quota == RUNTIME_INF)
			quota = parent_quota;
		else if (parent_quota != RUNTIME_INF && quota > parent_quota)
			return -EINVAL;
	}
	cfs_b->hierarchal_quota = quota;

	return 0;
}

static int __cfs_schedulable(struct task_group *tg, u64 period, u64 quota)
{
7814
	int ret;
7815 7816 7817 7818 7819 7820 7821 7822 7823 7824 7825
	struct cfs_schedulable_data data = {
		.tg = tg,
		.period = period,
		.quota = quota,
	};

	if (quota != RUNTIME_INF) {
		do_div(data.period, NSEC_PER_USEC);
		do_div(data.quota, NSEC_PER_USEC);
	}

7826 7827 7828 7829 7830
	rcu_read_lock();
	ret = walk_tg_tree(tg_cfs_schedulable_down, tg_nop, &data);
	rcu_read_unlock();

	return ret;
7831
}
7832 7833 7834 7835 7836

static int cpu_stats_show(struct cgroup *cgrp, struct cftype *cft,
		struct cgroup_map_cb *cb)
{
	struct task_group *tg = cgroup_tg(cgrp);
7837
	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
7838 7839 7840 7841 7842 7843 7844

	cb->fill(cb, "nr_periods", cfs_b->nr_periods);
	cb->fill(cb, "nr_throttled", cfs_b->nr_throttled);
	cb->fill(cb, "throttled_time", cfs_b->throttled_time);

	return 0;
}
7845
#endif /* CONFIG_CFS_BANDWIDTH */
7846
#endif /* CONFIG_FAIR_GROUP_SCHED */
7847

7848
#ifdef CONFIG_RT_GROUP_SCHED
M
Mirco Tischler 已提交
7849
static int cpu_rt_runtime_write(struct cgroup *cgrp, struct cftype *cft,
7850
				s64 val)
P
Peter Zijlstra 已提交
7851
{
7852
	return sched_group_set_rt_runtime(cgroup_tg(cgrp), val);
P
Peter Zijlstra 已提交
7853 7854
}

7855
static s64 cpu_rt_runtime_read(struct cgroup *cgrp, struct cftype *cft)
P
Peter Zijlstra 已提交
7856
{
7857
	return sched_group_rt_runtime(cgroup_tg(cgrp));
P
Peter Zijlstra 已提交
7858
}
7859 7860 7861 7862 7863 7864 7865 7866 7867 7868 7869

static int cpu_rt_period_write_uint(struct cgroup *cgrp, struct cftype *cftype,
		u64 rt_period_us)
{
	return sched_group_set_rt_period(cgroup_tg(cgrp), rt_period_us);
}

static u64 cpu_rt_period_read_uint(struct cgroup *cgrp, struct cftype *cft)
{
	return sched_group_rt_period(cgroup_tg(cgrp));
}
7870
#endif /* CONFIG_RT_GROUP_SCHED */
P
Peter Zijlstra 已提交
7871

7872
static struct cftype cpu_files[] = {
7873
#ifdef CONFIG_FAIR_GROUP_SCHED
7874 7875
	{
		.name = "shares",
7876 7877
		.read_u64 = cpu_shares_read_u64,
		.write_u64 = cpu_shares_write_u64,
7878
	},
7879
#endif
7880 7881 7882 7883 7884 7885 7886 7887 7888 7889 7890
#ifdef CONFIG_CFS_BANDWIDTH
	{
		.name = "cfs_quota_us",
		.read_s64 = cpu_cfs_quota_read_s64,
		.write_s64 = cpu_cfs_quota_write_s64,
	},
	{
		.name = "cfs_period_us",
		.read_u64 = cpu_cfs_period_read_u64,
		.write_u64 = cpu_cfs_period_write_u64,
	},
7891 7892 7893 7894
	{
		.name = "stat",
		.read_map = cpu_stats_show,
	},
7895
#endif
7896
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
7897
	{
P
Peter Zijlstra 已提交
7898
		.name = "rt_runtime_us",
7899 7900
		.read_s64 = cpu_rt_runtime_read,
		.write_s64 = cpu_rt_runtime_write,
P
Peter Zijlstra 已提交
7901
	},
7902 7903
	{
		.name = "rt_period_us",
7904 7905
		.read_u64 = cpu_rt_period_read_uint,
		.write_u64 = cpu_rt_period_write_uint,
7906
	},
7907
#endif
7908 7909 7910 7911
};

static int cpu_cgroup_populate(struct cgroup_subsys *ss, struct cgroup *cont)
{
7912
	return cgroup_add_files(cont, ss, cpu_files, ARRAY_SIZE(cpu_files));
7913 7914 7915
}

struct cgroup_subsys cpu_cgroup_subsys = {
I
Ingo Molnar 已提交
7916 7917 7918
	.name		= "cpu",
	.create		= cpu_cgroup_create,
	.destroy	= cpu_cgroup_destroy,
7919 7920
	.can_attach_task = cpu_cgroup_can_attach_task,
	.attach_task	= cpu_cgroup_attach_task,
7921
	.exit		= cpu_cgroup_exit,
I
Ingo Molnar 已提交
7922 7923
	.populate	= cpu_cgroup_populate,
	.subsys_id	= cpu_cgroup_subsys_id,
7924 7925 7926
	.early_init	= 1,
};

7927
#endif	/* CONFIG_CGROUP_SCHED */
7928 7929 7930 7931 7932 7933 7934 7935 7936 7937 7938 7939

#ifdef CONFIG_CGROUP_CPUACCT

/*
 * CPU accounting code for task groups.
 *
 * Based on the work by Paul Menage (menage@google.com) and Balbir Singh
 * (balbir@in.ibm.com).
 */

/* create a new cpu accounting group */
static struct cgroup_subsys_state *cpuacct_create(
7940
	struct cgroup_subsys *ss, struct cgroup *cgrp)
7941
{
7942
	struct cpuacct *ca;
7943

7944 7945 7946 7947
	if (!cgrp->parent)
		return &root_cpuacct.css;

	ca = kzalloc(sizeof(*ca), GFP_KERNEL);
7948
	if (!ca)
7949
		goto out;
7950 7951

	ca->cpuusage = alloc_percpu(u64);
7952 7953 7954
	if (!ca->cpuusage)
		goto out_free_ca;

7955 7956 7957
	ca->cpustat = alloc_percpu(struct kernel_cpustat);
	if (!ca->cpustat)
		goto out_free_cpuusage;
7958

7959
	return &ca->css;
7960

7961
out_free_cpuusage:
7962 7963 7964 7965 7966
	free_percpu(ca->cpuusage);
out_free_ca:
	kfree(ca);
out:
	return ERR_PTR(-ENOMEM);
7967 7968 7969
}

/* destroy an existing cpu accounting group */
I
Ingo Molnar 已提交
7970
static void
7971
cpuacct_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
7972
{
7973
	struct cpuacct *ca = cgroup_ca(cgrp);
7974

7975
	free_percpu(ca->cpustat);
7976 7977 7978 7979
	free_percpu(ca->cpuusage);
	kfree(ca);
}

7980 7981
static u64 cpuacct_cpuusage_read(struct cpuacct *ca, int cpu)
{
7982
	u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
7983 7984 7985 7986 7987 7988
	u64 data;

#ifndef CONFIG_64BIT
	/*
	 * Take rq->lock to make 64-bit read safe on 32-bit platforms.
	 */
7989
	raw_spin_lock_irq(&cpu_rq(cpu)->lock);
7990
	data = *cpuusage;
7991
	raw_spin_unlock_irq(&cpu_rq(cpu)->lock);
7992 7993 7994 7995 7996 7997 7998 7999 8000
#else
	data = *cpuusage;
#endif

	return data;
}

static void cpuacct_cpuusage_write(struct cpuacct *ca, int cpu, u64 val)
{
8001
	u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
8002 8003 8004 8005 8006

#ifndef CONFIG_64BIT
	/*
	 * Take rq->lock to make 64-bit write safe on 32-bit platforms.
	 */
8007
	raw_spin_lock_irq(&cpu_rq(cpu)->lock);
8008
	*cpuusage = val;
8009
	raw_spin_unlock_irq(&cpu_rq(cpu)->lock);
8010 8011 8012 8013 8014
#else
	*cpuusage = val;
#endif
}

8015
/* return total cpu usage (in nanoseconds) of a group */
8016
static u64 cpuusage_read(struct cgroup *cgrp, struct cftype *cft)
8017
{
8018
	struct cpuacct *ca = cgroup_ca(cgrp);
8019 8020 8021
	u64 totalcpuusage = 0;
	int i;

8022 8023
	for_each_present_cpu(i)
		totalcpuusage += cpuacct_cpuusage_read(ca, i);
8024 8025 8026 8027

	return totalcpuusage;
}

8028 8029 8030 8031 8032 8033 8034 8035 8036 8037 8038 8039
static int cpuusage_write(struct cgroup *cgrp, struct cftype *cftype,
								u64 reset)
{
	struct cpuacct *ca = cgroup_ca(cgrp);
	int err = 0;
	int i;

	if (reset) {
		err = -EINVAL;
		goto out;
	}

8040 8041
	for_each_present_cpu(i)
		cpuacct_cpuusage_write(ca, i, 0);
8042 8043 8044 8045 8046

out:
	return err;
}

8047 8048 8049 8050 8051 8052 8053 8054 8055 8056 8057 8058 8059 8060 8061
static int cpuacct_percpu_seq_read(struct cgroup *cgroup, struct cftype *cft,
				   struct seq_file *m)
{
	struct cpuacct *ca = cgroup_ca(cgroup);
	u64 percpu;
	int i;

	for_each_present_cpu(i) {
		percpu = cpuacct_cpuusage_read(ca, i);
		seq_printf(m, "%llu ", (unsigned long long) percpu);
	}
	seq_printf(m, "\n");
	return 0;
}

8062 8063 8064 8065 8066 8067
static const char *cpuacct_stat_desc[] = {
	[CPUACCT_STAT_USER] = "user",
	[CPUACCT_STAT_SYSTEM] = "system",
};

static int cpuacct_stats_show(struct cgroup *cgrp, struct cftype *cft,
8068
			      struct cgroup_map_cb *cb)
8069 8070
{
	struct cpuacct *ca = cgroup_ca(cgrp);
8071 8072
	int cpu;
	s64 val = 0;
8073

8074 8075 8076 8077
	for_each_online_cpu(cpu) {
		struct kernel_cpustat *kcpustat = per_cpu_ptr(ca->cpustat, cpu);
		val += kcpustat->cpustat[CPUTIME_USER];
		val += kcpustat->cpustat[CPUTIME_NICE];
8078
	}
8079 8080
	val = cputime64_to_clock_t(val);
	cb->fill(cb, cpuacct_stat_desc[CPUACCT_STAT_USER], val);
8081

8082 8083 8084 8085 8086 8087
	val = 0;
	for_each_online_cpu(cpu) {
		struct kernel_cpustat *kcpustat = per_cpu_ptr(ca->cpustat, cpu);
		val += kcpustat->cpustat[CPUTIME_SYSTEM];
		val += kcpustat->cpustat[CPUTIME_IRQ];
		val += kcpustat->cpustat[CPUTIME_SOFTIRQ];
8088
	}
8089 8090 8091 8092

	val = cputime64_to_clock_t(val);
	cb->fill(cb, cpuacct_stat_desc[CPUACCT_STAT_SYSTEM], val);

8093 8094 8095
	return 0;
}

8096 8097 8098
static struct cftype files[] = {
	{
		.name = "usage",
8099 8100
		.read_u64 = cpuusage_read,
		.write_u64 = cpuusage_write,
8101
	},
8102 8103 8104 8105
	{
		.name = "usage_percpu",
		.read_seq_string = cpuacct_percpu_seq_read,
	},
8106 8107 8108 8109
	{
		.name = "stat",
		.read_map = cpuacct_stats_show,
	},
8110 8111
};

8112
static int cpuacct_populate(struct cgroup_subsys *ss, struct cgroup *cgrp)
8113
{
8114
	return cgroup_add_files(cgrp, ss, files, ARRAY_SIZE(files));
8115 8116 8117 8118 8119 8120 8121
}

/*
 * charge this task's execution time to its accounting group.
 *
 * called with rq->lock held.
 */
8122
void cpuacct_charge(struct task_struct *tsk, u64 cputime)
8123 8124
{
	struct cpuacct *ca;
8125
	int cpu;
8126

L
Li Zefan 已提交
8127
	if (unlikely(!cpuacct_subsys.active))
8128 8129
		return;

8130
	cpu = task_cpu(tsk);
8131 8132 8133

	rcu_read_lock();

8134 8135
	ca = task_ca(tsk);

8136
	for (; ca; ca = parent_ca(ca)) {
8137
		u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
8138 8139
		*cpuusage += cputime;
	}
8140 8141

	rcu_read_unlock();
8142 8143 8144 8145 8146 8147 8148 8149 8150 8151
}

struct cgroup_subsys cpuacct_subsys = {
	.name = "cpuacct",
	.create = cpuacct_create,
	.destroy = cpuacct_destroy,
	.populate = cpuacct_populate,
	.subsys_id = cpuacct_subsys_id,
};
#endif	/* CONFIG_CGROUP_CPUACCT */