i2c-rk3x.c 34.9 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26
/*
 * Driver for I2C adapter in Rockchip RK3xxx SoC
 *
 * Max Schwarz <max.schwarz@online.de>
 * based on the patches by Rockchip Inc.
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License version 2 as
 * published by the Free Software Foundation.
 */

#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/i2c.h>
#include <linux/interrupt.h>
#include <linux/errno.h>
#include <linux/err.h>
#include <linux/platform_device.h>
#include <linux/io.h>
#include <linux/of_address.h>
#include <linux/of_irq.h>
#include <linux/spinlock.h>
#include <linux/clk.h>
#include <linux/wait.h>
#include <linux/mfd/syscon.h>
#include <linux/regmap.h>
27
#include <linux/math64.h>
28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60


/* Register Map */
#define REG_CON        0x00 /* control register */
#define REG_CLKDIV     0x04 /* clock divisor register */
#define REG_MRXADDR    0x08 /* slave address for REGISTER_TX */
#define REG_MRXRADDR   0x0c /* slave register address for REGISTER_TX */
#define REG_MTXCNT     0x10 /* number of bytes to be transmitted */
#define REG_MRXCNT     0x14 /* number of bytes to be received */
#define REG_IEN        0x18 /* interrupt enable */
#define REG_IPD        0x1c /* interrupt pending */
#define REG_FCNT       0x20 /* finished count */

/* Data buffer offsets */
#define TXBUFFER_BASE 0x100
#define RXBUFFER_BASE 0x200

/* REG_CON bits */
#define REG_CON_EN        BIT(0)
enum {
	REG_CON_MOD_TX = 0,      /* transmit data */
	REG_CON_MOD_REGISTER_TX, /* select register and restart */
	REG_CON_MOD_RX,          /* receive data */
	REG_CON_MOD_REGISTER_RX, /* broken: transmits read addr AND writes
				  * register addr */
};
#define REG_CON_MOD(mod)  ((mod) << 1)
#define REG_CON_MOD_MASK  (BIT(1) | BIT(2))
#define REG_CON_START     BIT(3)
#define REG_CON_STOP      BIT(4)
#define REG_CON_LASTACK   BIT(5) /* 1: send NACK after last received byte */
#define REG_CON_ACTACK    BIT(6) /* 1: stop if NACK is received */

61 62 63 64 65 66
#define REG_CON_TUNING_MASK GENMASK(15, 8)

#define REG_CON_SDA_CFG(cfg) ((cfg) << 8)
#define REG_CON_STA_CFG(cfg) ((cfg) << 12)
#define REG_CON_STO_CFG(cfg) ((cfg) << 14)

67 68 69 70 71 72 73 74 75 76 77 78 79 80
/* REG_MRXADDR bits */
#define REG_MRXADDR_VALID(x) BIT(24 + (x)) /* [x*8+7:x*8] of MRX[R]ADDR valid */

/* REG_IEN/REG_IPD bits */
#define REG_INT_BTF       BIT(0) /* a byte was transmitted */
#define REG_INT_BRF       BIT(1) /* a byte was received */
#define REG_INT_MBTF      BIT(2) /* master data transmit finished */
#define REG_INT_MBRF      BIT(3) /* master data receive finished */
#define REG_INT_START     BIT(4) /* START condition generated */
#define REG_INT_STOP      BIT(5) /* STOP condition generated */
#define REG_INT_NAKRCV    BIT(6) /* NACK received */
#define REG_INT_ALL       0x7f

/* Constants */
81
#define WAIT_TIMEOUT      1000 /* ms */
82 83
#define DEFAULT_SCL_RATE  (100 * 1000) /* Hz */

84 85
/**
 * struct i2c_spec_values:
86
 * @min_hold_start_ns: min hold time (repeated) START condition
87 88 89 90
 * @min_low_ns: min LOW period of the SCL clock
 * @min_high_ns: min HIGH period of the SCL cloc
 * @min_setup_start_ns: min set-up time for a repeated START conditio
 * @max_data_hold_ns: max data hold time
91 92 93 94
 * @min_data_setup_ns: min data set-up time
 * @min_setup_stop_ns: min set-up time for STOP condition
 * @min_hold_buffer_ns: min bus free time between a STOP and
 * START condition
95 96
 */
struct i2c_spec_values {
97
	unsigned long min_hold_start_ns;
98 99 100 101
	unsigned long min_low_ns;
	unsigned long min_high_ns;
	unsigned long min_setup_start_ns;
	unsigned long max_data_hold_ns;
102 103 104
	unsigned long min_data_setup_ns;
	unsigned long min_setup_stop_ns;
	unsigned long min_hold_buffer_ns;
105 106 107
};

static const struct i2c_spec_values standard_mode_spec = {
108
	.min_hold_start_ns = 4000,
109 110 111 112
	.min_low_ns = 4700,
	.min_high_ns = 4000,
	.min_setup_start_ns = 4700,
	.max_data_hold_ns = 3450,
113 114 115
	.min_data_setup_ns = 250,
	.min_setup_stop_ns = 4000,
	.min_hold_buffer_ns = 4700,
116 117 118
};

static const struct i2c_spec_values fast_mode_spec = {
119
	.min_hold_start_ns = 600,
120 121 122 123
	.min_low_ns = 1300,
	.min_high_ns = 600,
	.min_setup_start_ns = 600,
	.max_data_hold_ns = 900,
124 125 126
	.min_data_setup_ns = 100,
	.min_setup_stop_ns = 600,
	.min_hold_buffer_ns = 1300,
127 128
};

129 130 131 132 133 134 135 136 137 138 139
static const struct i2c_spec_values fast_mode_plus_spec = {
	.min_hold_start_ns = 260,
	.min_low_ns = 500,
	.min_high_ns = 260,
	.min_setup_start_ns = 260,
	.max_data_hold_ns = 400,
	.min_data_setup_ns = 50,
	.min_setup_stop_ns = 260,
	.min_hold_buffer_ns = 500,
};

140 141 142 143
/**
 * struct rk3x_i2c_calced_timings:
 * @div_low: Divider output for low
 * @div_high: Divider output for high
144 145 146 147
 * @tuning: Used to adjust setup/hold data time,
 * setup/hold start time and setup stop time for
 * v1's calc_timings, the tuning should all be 0
 * for old hardware anyone using v0's calc_timings.
148 149 150 151
 */
struct rk3x_i2c_calced_timings {
	unsigned long div_low;
	unsigned long div_high;
152
	unsigned int tuning;
153 154
};

155 156 157 158 159 160 161 162 163 164
enum rk3x_i2c_state {
	STATE_IDLE,
	STATE_START,
	STATE_READ,
	STATE_WRITE,
	STATE_STOP
};

/**
 * @grf_offset: offset inside the grf regmap for setting the i2c type
165
 * @calc_timings: Callback function for i2c timing information calculated
166 167 168
 */
struct rk3x_i2c_soc_data {
	int grf_offset;
169 170
	int (*calc_timings)(unsigned long, struct i2c_timings *,
			    struct rk3x_i2c_calced_timings *);
171 172
};

173 174 175 176 177 178
/**
 * struct rk3x_i2c - private data of the controller
 * @adap: corresponding I2C adapter
 * @dev: device for this controller
 * @soc_data: related soc data struct
 * @regs: virtual memory area
179 180
 * @clk: function clk for rk3399 or function & Bus clks for others
 * @pclk: Bus clk for rk3399
181 182 183 184 185 186 187 188 189 190 191 192 193
 * @clk_rate_nb: i2c clk rate change notify
 * @t: I2C known timing information
 * @lock: spinlock for the i2c bus
 * @wait: the waitqueue to wait for i2c transfer
 * @busy: the condition for the event to wait for
 * @msg: current i2c message
 * @addr: addr of i2c slave device
 * @mode: mode of i2c transfer
 * @is_last_msg: flag determines whether it is the last msg in this transfer
 * @state: state of i2c transfer
 * @processed: byte length which has been send or received
 * @error: error code for i2c transfer
 */
194 195 196 197 198 199 200 201
struct rk3x_i2c {
	struct i2c_adapter adap;
	struct device *dev;
	struct rk3x_i2c_soc_data *soc_data;

	/* Hardware resources */
	void __iomem *regs;
	struct clk *clk;
202
	struct clk *pclk;
203
	struct notifier_block clk_rate_nb;
204 205

	/* Settings */
206
	struct i2c_timings t;
207 208 209 210 211 212 213 214 215 216 217 218 219 220

	/* Synchronization & notification */
	spinlock_t lock;
	wait_queue_head_t wait;
	bool busy;

	/* Current message */
	struct i2c_msg *msg;
	u8 addr;
	unsigned int mode;
	bool is_last_msg;

	/* I2C state machine */
	enum rk3x_i2c_state state;
221
	unsigned int processed;
222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246
	int error;
};

static inline void i2c_writel(struct rk3x_i2c *i2c, u32 value,
			      unsigned int offset)
{
	writel(value, i2c->regs + offset);
}

static inline u32 i2c_readl(struct rk3x_i2c *i2c, unsigned int offset)
{
	return readl(i2c->regs + offset);
}

/* Reset all interrupt pending bits */
static inline void rk3x_i2c_clean_ipd(struct rk3x_i2c *i2c)
{
	i2c_writel(i2c, REG_INT_ALL, REG_IPD);
}

/**
 * Generate a START condition, which triggers a REG_INT_START interrupt.
 */
static void rk3x_i2c_start(struct rk3x_i2c *i2c)
{
247
	u32 val = i2c_readl(i2c, REG_CON) & REG_CON_TUNING_MASK;
248 249 250 251

	i2c_writel(i2c, REG_INT_START, REG_IEN);

	/* enable adapter with correct mode, send START condition */
252
	val |= REG_CON_EN | REG_CON_MOD(i2c->mode) | REG_CON_START;
253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292

	/* if we want to react to NACK, set ACTACK bit */
	if (!(i2c->msg->flags & I2C_M_IGNORE_NAK))
		val |= REG_CON_ACTACK;

	i2c_writel(i2c, val, REG_CON);
}

/**
 * Generate a STOP condition, which triggers a REG_INT_STOP interrupt.
 *
 * @error: Error code to return in rk3x_i2c_xfer
 */
static void rk3x_i2c_stop(struct rk3x_i2c *i2c, int error)
{
	unsigned int ctrl;

	i2c->processed = 0;
	i2c->msg = NULL;
	i2c->error = error;

	if (i2c->is_last_msg) {
		/* Enable stop interrupt */
		i2c_writel(i2c, REG_INT_STOP, REG_IEN);

		i2c->state = STATE_STOP;

		ctrl = i2c_readl(i2c, REG_CON);
		ctrl |= REG_CON_STOP;
		i2c_writel(i2c, ctrl, REG_CON);
	} else {
		/* Signal rk3x_i2c_xfer to start the next message. */
		i2c->busy = false;
		i2c->state = STATE_IDLE;

		/*
		 * The HW is actually not capable of REPEATED START. But we can
		 * get the intended effect by resetting its internal state
		 * and issuing an ordinary START.
		 */
293 294
		ctrl = i2c_readl(i2c, REG_CON) & REG_CON_TUNING_MASK;
		i2c_writel(i2c, ctrl, REG_CON);
295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314

		/* signal that we are finished with the current msg */
		wake_up(&i2c->wait);
	}
}

/**
 * Setup a read according to i2c->msg
 */
static void rk3x_i2c_prepare_read(struct rk3x_i2c *i2c)
{
	unsigned int len = i2c->msg->len - i2c->processed;
	u32 con;

	con = i2c_readl(i2c, REG_CON);

	/*
	 * The hw can read up to 32 bytes at a time. If we need more than one
	 * chunk, send an ACK after the last byte of the current chunk.
	 */
315
	if (len > 32) {
316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344
		len = 32;
		con &= ~REG_CON_LASTACK;
	} else {
		con |= REG_CON_LASTACK;
	}

	/* make sure we are in plain RX mode if we read a second chunk */
	if (i2c->processed != 0) {
		con &= ~REG_CON_MOD_MASK;
		con |= REG_CON_MOD(REG_CON_MOD_RX);
	}

	i2c_writel(i2c, con, REG_CON);
	i2c_writel(i2c, len, REG_MRXCNT);
}

/**
 * Fill the transmit buffer with data from i2c->msg
 */
static void rk3x_i2c_fill_transmit_buf(struct rk3x_i2c *i2c)
{
	unsigned int i, j;
	u32 cnt = 0;
	u32 val;
	u8 byte;

	for (i = 0; i < 8; ++i) {
		val = 0;
		for (j = 0; j < 4; ++j) {
345
			if ((i2c->processed == i2c->msg->len) && (cnt != 0))
346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429
				break;

			if (i2c->processed == 0 && cnt == 0)
				byte = (i2c->addr & 0x7f) << 1;
			else
				byte = i2c->msg->buf[i2c->processed++];

			val |= byte << (j * 8);
			cnt++;
		}

		i2c_writel(i2c, val, TXBUFFER_BASE + 4 * i);

		if (i2c->processed == i2c->msg->len)
			break;
	}

	i2c_writel(i2c, cnt, REG_MTXCNT);
}


/* IRQ handlers for individual states */

static void rk3x_i2c_handle_start(struct rk3x_i2c *i2c, unsigned int ipd)
{
	if (!(ipd & REG_INT_START)) {
		rk3x_i2c_stop(i2c, -EIO);
		dev_warn(i2c->dev, "unexpected irq in START: 0x%x\n", ipd);
		rk3x_i2c_clean_ipd(i2c);
		return;
	}

	/* ack interrupt */
	i2c_writel(i2c, REG_INT_START, REG_IPD);

	/* disable start bit */
	i2c_writel(i2c, i2c_readl(i2c, REG_CON) & ~REG_CON_START, REG_CON);

	/* enable appropriate interrupts and transition */
	if (i2c->mode == REG_CON_MOD_TX) {
		i2c_writel(i2c, REG_INT_MBTF | REG_INT_NAKRCV, REG_IEN);
		i2c->state = STATE_WRITE;
		rk3x_i2c_fill_transmit_buf(i2c);
	} else {
		/* in any other case, we are going to be reading. */
		i2c_writel(i2c, REG_INT_MBRF | REG_INT_NAKRCV, REG_IEN);
		i2c->state = STATE_READ;
		rk3x_i2c_prepare_read(i2c);
	}
}

static void rk3x_i2c_handle_write(struct rk3x_i2c *i2c, unsigned int ipd)
{
	if (!(ipd & REG_INT_MBTF)) {
		rk3x_i2c_stop(i2c, -EIO);
		dev_err(i2c->dev, "unexpected irq in WRITE: 0x%x\n", ipd);
		rk3x_i2c_clean_ipd(i2c);
		return;
	}

	/* ack interrupt */
	i2c_writel(i2c, REG_INT_MBTF, REG_IPD);

	/* are we finished? */
	if (i2c->processed == i2c->msg->len)
		rk3x_i2c_stop(i2c, i2c->error);
	else
		rk3x_i2c_fill_transmit_buf(i2c);
}

static void rk3x_i2c_handle_read(struct rk3x_i2c *i2c, unsigned int ipd)
{
	unsigned int i;
	unsigned int len = i2c->msg->len - i2c->processed;
	u32 uninitialized_var(val);
	u8 byte;

	/* we only care for MBRF here. */
	if (!(ipd & REG_INT_MBRF))
		return;

	/* ack interrupt */
	i2c_writel(i2c, REG_INT_MBRF, REG_IPD);

430 431 432 433
	/* Can only handle a maximum of 32 bytes at a time */
	if (len > 32)
		len = 32;

434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509
	/* read the data from receive buffer */
	for (i = 0; i < len; ++i) {
		if (i % 4 == 0)
			val = i2c_readl(i2c, RXBUFFER_BASE + (i / 4) * 4);

		byte = (val >> ((i % 4) * 8)) & 0xff;
		i2c->msg->buf[i2c->processed++] = byte;
	}

	/* are we finished? */
	if (i2c->processed == i2c->msg->len)
		rk3x_i2c_stop(i2c, i2c->error);
	else
		rk3x_i2c_prepare_read(i2c);
}

static void rk3x_i2c_handle_stop(struct rk3x_i2c *i2c, unsigned int ipd)
{
	unsigned int con;

	if (!(ipd & REG_INT_STOP)) {
		rk3x_i2c_stop(i2c, -EIO);
		dev_err(i2c->dev, "unexpected irq in STOP: 0x%x\n", ipd);
		rk3x_i2c_clean_ipd(i2c);
		return;
	}

	/* ack interrupt */
	i2c_writel(i2c, REG_INT_STOP, REG_IPD);

	/* disable STOP bit */
	con = i2c_readl(i2c, REG_CON);
	con &= ~REG_CON_STOP;
	i2c_writel(i2c, con, REG_CON);

	i2c->busy = false;
	i2c->state = STATE_IDLE;

	/* signal rk3x_i2c_xfer that we are finished */
	wake_up(&i2c->wait);
}

static irqreturn_t rk3x_i2c_irq(int irqno, void *dev_id)
{
	struct rk3x_i2c *i2c = dev_id;
	unsigned int ipd;

	spin_lock(&i2c->lock);

	ipd = i2c_readl(i2c, REG_IPD);
	if (i2c->state == STATE_IDLE) {
		dev_warn(i2c->dev, "irq in STATE_IDLE, ipd = 0x%x\n", ipd);
		rk3x_i2c_clean_ipd(i2c);
		goto out;
	}

	dev_dbg(i2c->dev, "IRQ: state %d, ipd: %x\n", i2c->state, ipd);

	/* Clean interrupt bits we don't care about */
	ipd &= ~(REG_INT_BRF | REG_INT_BTF);

	if (ipd & REG_INT_NAKRCV) {
		/*
		 * We got a NACK in the last operation. Depending on whether
		 * IGNORE_NAK is set, we have to stop the operation and report
		 * an error.
		 */
		i2c_writel(i2c, REG_INT_NAKRCV, REG_IPD);

		ipd &= ~REG_INT_NAKRCV;

		if (!(i2c->msg->flags & I2C_M_IGNORE_NAK))
			rk3x_i2c_stop(i2c, -ENXIO);
	}

	/* is there anything left to handle? */
510
	if ((ipd & REG_INT_ALL) == 0)
511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534
		goto out;

	switch (i2c->state) {
	case STATE_START:
		rk3x_i2c_handle_start(i2c, ipd);
		break;
	case STATE_WRITE:
		rk3x_i2c_handle_write(i2c, ipd);
		break;
	case STATE_READ:
		rk3x_i2c_handle_read(i2c, ipd);
		break;
	case STATE_STOP:
		rk3x_i2c_handle_stop(i2c, ipd);
		break;
	case STATE_IDLE:
		break;
	}

out:
	spin_unlock(&i2c->lock);
	return IRQ_HANDLED;
}

535 536 537 538 539 540 541 542 543 544 545
/**
 * Get timing values of I2C specification
 *
 * @speed: Desired SCL frequency
 *
 * Returns: Matched i2c spec values.
 */
static const struct i2c_spec_values *rk3x_i2c_get_spec(unsigned int speed)
{
	if (speed <= 100000)
		return &standard_mode_spec;
546
	else if (speed <= 400000)
547
		return &fast_mode_spec;
548 549
	else
		return &fast_mode_plus_spec;
550 551
}

552 553 554 555
/**
 * Calculate divider values for desired SCL frequency
 *
 * @clk_rate: I2C input clock rate
556 557
 * @t: Known I2C timing information
 * @t_calc: Caculated rk3x private timings that would be written into regs
558 559 560 561 562
 *
 * Returns: 0 on success, -EINVAL if the goal SCL rate is too slow. In that case
 * a best-effort divider value is returned in divs. If the target rate is
 * too high, we silently use the highest possible rate.
 */
563 564 565
static int rk3x_i2c_v0_calc_timings(unsigned long clk_rate,
				    struct i2c_timings *t,
				    struct rk3x_i2c_calced_timings *t_calc)
566
{
567
	unsigned long min_low_ns, min_high_ns;
568 569
	unsigned long max_low_ns, min_total_ns;

570
	unsigned long clk_rate_khz, scl_rate_khz;
571 572 573 574 575 576 577

	unsigned long min_low_div, min_high_div;
	unsigned long max_low_div;

	unsigned long min_div_for_hold, min_total_div;
	unsigned long extra_div, extra_low_div, ideal_low_div;

578 579
	unsigned long data_hold_buffer_ns = 50;
	const struct i2c_spec_values *spec;
580 581
	int ret = 0;

582
	/* Only support standard-mode and fast-mode */
583 584
	if (WARN_ON(t->bus_freq_hz > 400000))
		t->bus_freq_hz = 400000;
585 586

	/* prevent scl_rate_khz from becoming 0 */
587 588
	if (WARN_ON(t->bus_freq_hz < 1000))
		t->bus_freq_hz = 1000;
589

590
	/*
591 592 593 594 595 596
	 * min_low_ns:  The minimum number of ns we need to hold low to
	 *		meet I2C specification, should include fall time.
	 * min_high_ns: The minimum number of ns we need to hold high to
	 *		meet I2C specification, should include rise time.
	 * max_low_ns:  The maximum number of ns we can hold low to meet
	 *		I2C specification.
597
	 *
598
	 * Note: max_low_ns should be (maximum data hold time * 2 - buffer)
599 600
	 *	 This is because the i2c host on Rockchip holds the data line
	 *	 for half the low time.
601
	 */
602 603
	spec = rk3x_i2c_get_spec(t->bus_freq_hz);
	min_high_ns = t->scl_rise_ns + spec->min_high_ns;
604 605 606 607 608 609 610 611 612

	/*
	 * Timings for repeated start:
	 * - controller appears to drop SDA at .875x (7/8) programmed clk high.
	 * - controller appears to keep SCL high for 2x programmed clk high.
	 *
	 * We need to account for those rules in picking our "high" time so
	 * we meet tSU;STA and tHD;STA times.
	 */
613 614 615 616 617 618 619 620
	min_high_ns = max(min_high_ns, DIV_ROUND_UP(
		(t->scl_rise_ns + spec->min_setup_start_ns) * 1000, 875));
	min_high_ns = max(min_high_ns, DIV_ROUND_UP(
		(t->scl_rise_ns + spec->min_setup_start_ns + t->sda_fall_ns +
		spec->min_high_ns), 2));

	min_low_ns = t->scl_fall_ns + spec->min_low_ns;
	max_low_ns =  spec->max_data_hold_ns * 2 - data_hold_buffer_ns;
621 622 623
	min_total_ns = min_low_ns + min_high_ns;

	/* Adjust to avoid overflow */
624
	clk_rate_khz = DIV_ROUND_UP(clk_rate, 1000);
625
	scl_rate_khz = t->bus_freq_hz / 1000;
626 627 628 629 630

	/*
	 * We need the total div to be >= this number
	 * so we don't clock too fast.
	 */
631
	min_total_div = DIV_ROUND_UP(clk_rate_khz, scl_rate_khz * 8);
632 633

	/* These are the min dividers needed for min hold times. */
634 635
	min_low_div = DIV_ROUND_UP(clk_rate_khz * min_low_ns, 8 * 1000000);
	min_high_div = DIV_ROUND_UP(clk_rate_khz * min_high_ns, 8 * 1000000);
636 637 638
	min_div_for_hold = (min_low_div + min_high_div);

	/*
639 640
	 * This is the maximum divider so we don't go over the maximum.
	 * We don't round up here (we round down) since this is a maximum.
641
	 */
642
	max_low_div = clk_rate_khz * max_low_ns / (8 * 1000000);
643 644 645 646 647 648 649 650 651 652 653 654 655

	if (min_low_div > max_low_div) {
		WARN_ONCE(true,
			  "Conflicting, min_low_div %lu, max_low_div %lu\n",
			  min_low_div, max_low_div);
		max_low_div = min_low_div;
	}

	if (min_div_for_hold > min_total_div) {
		/*
		 * Time needed to meet hold requirements is important.
		 * Just use that.
		 */
656 657
		t_calc->div_low = min_low_div;
		t_calc->div_high = min_high_div;
658 659 660 661 662 663 664 665 666 667 668 669
	} else {
		/*
		 * We've got to distribute some time among the low and high
		 * so we don't run too fast.
		 */
		extra_div = min_total_div - min_div_for_hold;

		/*
		 * We'll try to split things up perfectly evenly,
		 * biasing slightly towards having a higher div
		 * for low (spend more time low).
		 */
670
		ideal_low_div = DIV_ROUND_UP(clk_rate_khz * min_low_ns,
671 672
					     scl_rate_khz * 8 * min_total_ns);

673
		/* Don't allow it to go over the maximum */
674 675
		if (ideal_low_div > max_low_div)
			ideal_low_div = max_low_div;
676

677 678 679 680 681 682 683 684 685
		/*
		 * Handle when the ideal low div is going to take up
		 * more than we have.
		 */
		if (ideal_low_div > min_low_div + extra_div)
			ideal_low_div = min_low_div + extra_div;

		/* Give low the "ideal" and give high whatever extra is left */
		extra_low_div = ideal_low_div - min_low_div;
686 687
		t_calc->div_low = ideal_low_div;
		t_calc->div_high = min_high_div + (extra_div - extra_low_div);
688 689 690
	}

	/*
691 692 693
	 * Adjust to the fact that the hardware has an implicit "+1".
	 * NOTE: Above calculations always produce div_low > 0 and div_high > 0.
	 */
694 695
	t_calc->div_low--;
	t_calc->div_high--;
696

697
	/* Maximum divider supported by hw is 0xffff */
698 699
	if (t_calc->div_low > 0xffff) {
		t_calc->div_low = 0xffff;
700 701 702
		ret = -EINVAL;
	}

703 704
	if (t_calc->div_high > 0xffff) {
		t_calc->div_high = 0xffff;
705 706 707 708
		ret = -EINVAL;
	}

	return ret;
709 710
}

711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759
/**
 * Calculate timing values for desired SCL frequency
 *
 * @clk_rate: I2C input clock rate
 * @t: Known I2C timing information
 * @t_calc: Caculated rk3x private timings that would be written into regs
 *
 * Returns: 0 on success, -EINVAL if the goal SCL rate is too slow. In that case
 * a best-effort divider value is returned in divs. If the target rate is
 * too high, we silently use the highest possible rate.
 * The following formulas are v1's method to calculate timings.
 *
 * l = divl + 1;
 * h = divh + 1;
 * s = sda_update_config + 1;
 * u = start_setup_config + 1;
 * p = stop_setup_config + 1;
 * T = Tclk_i2c;
 *
 * tHigh = 8 * h * T;
 * tLow = 8 * l * T;
 *
 * tHD;sda = (l * s + 1) * T;
 * tSU;sda = [(8 - s) * l + 1] * T;
 * tI2C = 8 * (l + h) * T;
 *
 * tSU;sta = (8h * u + 1) * T;
 * tHD;sta = [8h * (u + 1) - 1] * T;
 * tSU;sto = (8h * p + 1) * T;
 */
static int rk3x_i2c_v1_calc_timings(unsigned long clk_rate,
				    struct i2c_timings *t,
				    struct rk3x_i2c_calced_timings *t_calc)
{
	unsigned long min_low_ns, min_high_ns, min_total_ns;
	unsigned long min_setup_start_ns, min_setup_data_ns;
	unsigned long min_setup_stop_ns, max_hold_data_ns;

	unsigned long clk_rate_khz, scl_rate_khz;

	unsigned long min_low_div, min_high_div;

	unsigned long min_div_for_hold, min_total_div;
	unsigned long extra_div, extra_low_div;
	unsigned long sda_update_cfg, stp_sta_cfg, stp_sto_cfg;

	const struct i2c_spec_values *spec;
	int ret = 0;

760 761 762
	/* Support standard-mode, fast-mode and fast-mode plus */
	if (WARN_ON(t->bus_freq_hz > 1000000))
		t->bus_freq_hz = 1000000;
763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871

	/* prevent scl_rate_khz from becoming 0 */
	if (WARN_ON(t->bus_freq_hz < 1000))
		t->bus_freq_hz = 1000;

	/*
	 * min_low_ns: The minimum number of ns we need to hold low to
	 *	       meet I2C specification, should include fall time.
	 * min_high_ns: The minimum number of ns we need to hold high to
	 *	        meet I2C specification, should include rise time.
	 */
	spec = rk3x_i2c_get_spec(t->bus_freq_hz);

	/* calculate min-divh and min-divl */
	clk_rate_khz = DIV_ROUND_UP(clk_rate, 1000);
	scl_rate_khz = t->bus_freq_hz / 1000;
	min_total_div = DIV_ROUND_UP(clk_rate_khz, scl_rate_khz * 8);

	min_high_ns = t->scl_rise_ns + spec->min_high_ns;
	min_high_div = DIV_ROUND_UP(clk_rate_khz * min_high_ns, 8 * 1000000);

	min_low_ns = t->scl_fall_ns + spec->min_low_ns;
	min_low_div = DIV_ROUND_UP(clk_rate_khz * min_low_ns, 8 * 1000000);

	/*
	 * Final divh and divl must be greater than 0, otherwise the
	 * hardware would not output the i2c clk.
	 */
	min_high_div = (min_high_div < 1) ? 2 : min_high_div;
	min_low_div = (min_low_div < 1) ? 2 : min_low_div;

	/* These are the min dividers needed for min hold times. */
	min_div_for_hold = (min_low_div + min_high_div);
	min_total_ns = min_low_ns + min_high_ns;

	/*
	 * This is the maximum divider so we don't go over the maximum.
	 * We don't round up here (we round down) since this is a maximum.
	 */
	if (min_div_for_hold >= min_total_div) {
		/*
		 * Time needed to meet hold requirements is important.
		 * Just use that.
		 */
		t_calc->div_low = min_low_div;
		t_calc->div_high = min_high_div;
	} else {
		/*
		 * We've got to distribute some time among the low and high
		 * so we don't run too fast.
		 * We'll try to split things up by the scale of min_low_div and
		 * min_high_div, biasing slightly towards having a higher div
		 * for low (spend more time low).
		 */
		extra_div = min_total_div - min_div_for_hold;
		extra_low_div = DIV_ROUND_UP(min_low_div * extra_div,
					     min_div_for_hold);

		t_calc->div_low = min_low_div + extra_low_div;
		t_calc->div_high = min_high_div + (extra_div - extra_low_div);
	}

	/*
	 * calculate sda data hold count by the rules, data_upd_st:3
	 * is a appropriate value to reduce calculated times.
	 */
	for (sda_update_cfg = 3; sda_update_cfg > 0; sda_update_cfg--) {
		max_hold_data_ns =  DIV_ROUND_UP((sda_update_cfg
						 * (t_calc->div_low) + 1)
						 * 1000000, clk_rate_khz);
		min_setup_data_ns =  DIV_ROUND_UP(((8 - sda_update_cfg)
						 * (t_calc->div_low) + 1)
						 * 1000000, clk_rate_khz);
		if ((max_hold_data_ns < spec->max_data_hold_ns) &&
		    (min_setup_data_ns > spec->min_data_setup_ns))
			break;
	}

	/* calculate setup start config */
	min_setup_start_ns = t->scl_rise_ns + spec->min_setup_start_ns;
	stp_sta_cfg = DIV_ROUND_UP(clk_rate_khz * min_setup_start_ns
			   - 1000000, 8 * 1000000 * (t_calc->div_high));

	/* calculate setup stop config */
	min_setup_stop_ns = t->scl_rise_ns + spec->min_setup_stop_ns;
	stp_sto_cfg = DIV_ROUND_UP(clk_rate_khz * min_setup_stop_ns
			   - 1000000, 8 * 1000000 * (t_calc->div_high));

	t_calc->tuning = REG_CON_SDA_CFG(--sda_update_cfg) |
			 REG_CON_STA_CFG(--stp_sta_cfg) |
			 REG_CON_STO_CFG(--stp_sto_cfg);

	t_calc->div_low--;
	t_calc->div_high--;

	/* Maximum divider supported by hw is 0xffff */
	if (t_calc->div_low > 0xffff) {
		t_calc->div_low = 0xffff;
		ret = -EINVAL;
	}

	if (t_calc->div_high > 0xffff) {
		t_calc->div_high = 0xffff;
		ret = -EINVAL;
	}

	return ret;
}

872
static void rk3x_i2c_adapt_div(struct rk3x_i2c *i2c, unsigned long clk_rate)
873
{
874
	struct i2c_timings *t = &i2c->t;
875
	struct rk3x_i2c_calced_timings calc;
876
	u64 t_low_ns, t_high_ns;
877 878
	unsigned long flags;
	u32 val;
879
	int ret;
880

881
	ret = i2c->soc_data->calc_timings(clk_rate, t, &calc);
882
	WARN_ONCE(ret != 0, "Could not reach SCL freq %u", t->bus_freq_hz);
883

884 885 886 887 888 889 890
	clk_enable(i2c->pclk);

	spin_lock_irqsave(&i2c->lock, flags);
	val = i2c_readl(i2c, REG_CON);
	val &= ~REG_CON_TUNING_MASK;
	val |= calc.tuning;
	i2c_writel(i2c, val, REG_CON);
891 892
	i2c_writel(i2c, (calc.div_high << 16) | (calc.div_low & 0xffff),
		   REG_CLKDIV);
893 894 895
	spin_unlock_irqrestore(&i2c->lock, flags);

	clk_disable(i2c->pclk);
896

897 898 899
	t_low_ns = div_u64(((u64)calc.div_low + 1) * 8 * 1000000000, clk_rate);
	t_high_ns = div_u64(((u64)calc.div_high + 1) * 8 * 1000000000,
			    clk_rate);
900
	dev_dbg(i2c->dev,
901 902
		"CLK %lukhz, Req %uns, Act low %lluns high %lluns\n",
		clk_rate / 1000,
903
		1000000000 / t->bus_freq_hz,
904
		t_low_ns, t_high_ns);
905
}
906

907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928
/**
 * rk3x_i2c_clk_notifier_cb - Clock rate change callback
 * @nb:		Pointer to notifier block
 * @event:	Notification reason
 * @data:	Pointer to notification data object
 *
 * The callback checks whether a valid bus frequency can be generated after the
 * change. If so, the change is acknowledged, otherwise the change is aborted.
 * New dividers are written to the HW in the pre- or post change notification
 * depending on the scaling direction.
 *
 * Code adapted from i2c-cadence.c.
 *
 * Return:	NOTIFY_STOP if the rate change should be aborted, NOTIFY_OK
 *		to acknowedge the change, NOTIFY_DONE if the notification is
 *		considered irrelevant.
 */
static int rk3x_i2c_clk_notifier_cb(struct notifier_block *nb, unsigned long
				    event, void *data)
{
	struct clk_notifier_data *ndata = data;
	struct rk3x_i2c *i2c = container_of(nb, struct rk3x_i2c, clk_rate_nb);
929
	struct rk3x_i2c_calced_timings calc;
930 931 932

	switch (event) {
	case PRE_RATE_CHANGE:
933 934 935 936 937 938 939
		/*
		 * Try the calculation (but don't store the result) ahead of
		 * time to see if we need to block the clock change.  Timings
		 * shouldn't actually take effect until rk3x_i2c_adapt_div().
		 */
		if (i2c->soc_data->calc_timings(ndata->new_rate, &i2c->t,
						&calc) != 0)
940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959
			return NOTIFY_STOP;

		/* scale up */
		if (ndata->new_rate > ndata->old_rate)
			rk3x_i2c_adapt_div(i2c, ndata->new_rate);

		return NOTIFY_OK;
	case POST_RATE_CHANGE:
		/* scale down */
		if (ndata->new_rate < ndata->old_rate)
			rk3x_i2c_adapt_div(i2c, ndata->new_rate);
		return NOTIFY_OK;
	case ABORT_RATE_CHANGE:
		/* scale up */
		if (ndata->new_rate > ndata->old_rate)
			rk3x_i2c_adapt_div(i2c, ndata->old_rate);
		return NOTIFY_OK;
	default:
		return NOTIFY_DONE;
	}
960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048
}

/**
 * Setup I2C registers for an I2C operation specified by msgs, num.
 *
 * Must be called with i2c->lock held.
 *
 * @msgs: I2C msgs to process
 * @num: Number of msgs
 *
 * returns: Number of I2C msgs processed or negative in case of error
 */
static int rk3x_i2c_setup(struct rk3x_i2c *i2c, struct i2c_msg *msgs, int num)
{
	u32 addr = (msgs[0].addr & 0x7f) << 1;
	int ret = 0;

	/*
	 * The I2C adapter can issue a small (len < 4) write packet before
	 * reading. This speeds up SMBus-style register reads.
	 * The MRXADDR/MRXRADDR hold the slave address and the slave register
	 * address in this case.
	 */

	if (num >= 2 && msgs[0].len < 4 &&
	    !(msgs[0].flags & I2C_M_RD) && (msgs[1].flags & I2C_M_RD)) {
		u32 reg_addr = 0;
		int i;

		dev_dbg(i2c->dev, "Combined write/read from addr 0x%x\n",
			addr >> 1);

		/* Fill MRXRADDR with the register address(es) */
		for (i = 0; i < msgs[0].len; ++i) {
			reg_addr |= msgs[0].buf[i] << (i * 8);
			reg_addr |= REG_MRXADDR_VALID(i);
		}

		/* msgs[0] is handled by hw. */
		i2c->msg = &msgs[1];

		i2c->mode = REG_CON_MOD_REGISTER_TX;

		i2c_writel(i2c, addr | REG_MRXADDR_VALID(0), REG_MRXADDR);
		i2c_writel(i2c, reg_addr, REG_MRXRADDR);

		ret = 2;
	} else {
		/*
		 * We'll have to do it the boring way and process the msgs
		 * one-by-one.
		 */

		if (msgs[0].flags & I2C_M_RD) {
			addr |= 1; /* set read bit */

			/*
			 * We have to transmit the slave addr first. Use
			 * MOD_REGISTER_TX for that purpose.
			 */
			i2c->mode = REG_CON_MOD_REGISTER_TX;
			i2c_writel(i2c, addr | REG_MRXADDR_VALID(0),
				   REG_MRXADDR);
			i2c_writel(i2c, 0, REG_MRXRADDR);
		} else {
			i2c->mode = REG_CON_MOD_TX;
		}

		i2c->msg = &msgs[0];

		ret = 1;
	}

	i2c->addr = msgs[0].addr;
	i2c->busy = true;
	i2c->state = STATE_START;
	i2c->processed = 0;
	i2c->error = 0;

	rk3x_i2c_clean_ipd(i2c);

	return ret;
}

static int rk3x_i2c_xfer(struct i2c_adapter *adap,
			 struct i2c_msg *msgs, int num)
{
	struct rk3x_i2c *i2c = (struct rk3x_i2c *)adap->algo_data;
	unsigned long timeout, flags;
1049
	u32 val;
1050 1051 1052 1053 1054 1055
	int ret = 0;
	int i;

	spin_lock_irqsave(&i2c->lock, flags);

	clk_enable(i2c->clk);
1056
	clk_enable(i2c->pclk);
1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089

	i2c->is_last_msg = false;

	/*
	 * Process msgs. We can handle more than one message at once (see
	 * rk3x_i2c_setup()).
	 */
	for (i = 0; i < num; i += ret) {
		ret = rk3x_i2c_setup(i2c, msgs + i, num - i);

		if (ret < 0) {
			dev_err(i2c->dev, "rk3x_i2c_setup() failed\n");
			break;
		}

		if (i + ret >= num)
			i2c->is_last_msg = true;

		spin_unlock_irqrestore(&i2c->lock, flags);

		rk3x_i2c_start(i2c);

		timeout = wait_event_timeout(i2c->wait, !i2c->busy,
					     msecs_to_jiffies(WAIT_TIMEOUT));

		spin_lock_irqsave(&i2c->lock, flags);

		if (timeout == 0) {
			dev_err(i2c->dev, "timeout, ipd: 0x%02x, state: %d\n",
				i2c_readl(i2c, REG_IPD), i2c->state);

			/* Force a STOP condition without interrupt */
			i2c_writel(i2c, 0, REG_IEN);
1090 1091 1092
			val = i2c_readl(i2c, REG_CON) & REG_CON_TUNING_MASK;
			val |= REG_CON_EN | REG_CON_STOP;
			i2c_writel(i2c, val, REG_CON);
1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105

			i2c->state = STATE_IDLE;

			ret = -ETIMEDOUT;
			break;
		}

		if (i2c->error) {
			ret = i2c->error;
			break;
		}
	}

1106
	clk_disable(i2c->pclk);
1107
	clk_disable(i2c->clk);
1108

1109 1110
	spin_unlock_irqrestore(&i2c->lock, flags);

1111
	return ret < 0 ? ret : num;
1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123
}

static u32 rk3x_i2c_func(struct i2c_adapter *adap)
{
	return I2C_FUNC_I2C | I2C_FUNC_SMBUS_EMUL | I2C_FUNC_PROTOCOL_MANGLING;
}

static const struct i2c_algorithm rk3x_i2c_algorithm = {
	.master_xfer		= rk3x_i2c_xfer,
	.functionality		= rk3x_i2c_func,
};

1124 1125
static const struct rk3x_i2c_soc_data rk3066_soc_data = {
	.grf_offset = 0x154,
1126
	.calc_timings = rk3x_i2c_v0_calc_timings,
1127 1128 1129 1130
};

static const struct rk3x_i2c_soc_data rk3188_soc_data = {
	.grf_offset = 0x0a4,
1131
	.calc_timings = rk3x_i2c_v0_calc_timings,
1132 1133 1134 1135
};

static const struct rk3x_i2c_soc_data rk3228_soc_data = {
	.grf_offset = -1,
1136
	.calc_timings = rk3x_i2c_v0_calc_timings,
1137 1138 1139 1140
};

static const struct rk3x_i2c_soc_data rk3288_soc_data = {
	.grf_offset = -1,
1141 1142 1143 1144 1145 1146
	.calc_timings = rk3x_i2c_v0_calc_timings,
};

static const struct rk3x_i2c_soc_data rk3399_soc_data = {
	.grf_offset = -1,
	.calc_timings = rk3x_i2c_v1_calc_timings,
1147 1148 1149
};

static const struct of_device_id rk3x_i2c_match[] = {
1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165
	{
		.compatible = "rockchip,rk3066-i2c",
		.data = (void *)&rk3066_soc_data
	},
	{
		.compatible = "rockchip,rk3188-i2c",
		.data = (void *)&rk3188_soc_data
	},
	{
		.compatible = "rockchip,rk3228-i2c",
		.data = (void *)&rk3228_soc_data
	},
	{
		.compatible = "rockchip,rk3288-i2c",
		.data = (void *)&rk3288_soc_data
	},
1166 1167 1168 1169
	{
		.compatible = "rockchip,rk3399-i2c",
		.data = (void *)&rk3399_soc_data
	},
1170
	{},
1171
};
1172
MODULE_DEVICE_TABLE(of, rk3x_i2c_match);
1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183

static int rk3x_i2c_probe(struct platform_device *pdev)
{
	struct device_node *np = pdev->dev.of_node;
	const struct of_device_id *match;
	struct rk3x_i2c *i2c;
	struct resource *mem;
	int ret = 0;
	int bus_nr;
	u32 value;
	int irq;
1184
	unsigned long clk_rate;
1185 1186 1187 1188 1189 1190 1191 1192

	i2c = devm_kzalloc(&pdev->dev, sizeof(struct rk3x_i2c), GFP_KERNEL);
	if (!i2c)
		return -ENOMEM;

	match = of_match_node(rk3x_i2c_match, np);
	i2c->soc_data = (struct rk3x_i2c_soc_data *)match->data;

1193 1194
	/* use common interface to get I2C timing properties */
	i2c_parse_fw_timings(&pdev->dev, &i2c->t, true);
1195

1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261
	strlcpy(i2c->adap.name, "rk3x-i2c", sizeof(i2c->adap.name));
	i2c->adap.owner = THIS_MODULE;
	i2c->adap.algo = &rk3x_i2c_algorithm;
	i2c->adap.retries = 3;
	i2c->adap.dev.of_node = np;
	i2c->adap.algo_data = i2c;
	i2c->adap.dev.parent = &pdev->dev;

	i2c->dev = &pdev->dev;

	spin_lock_init(&i2c->lock);
	init_waitqueue_head(&i2c->wait);

	mem = platform_get_resource(pdev, IORESOURCE_MEM, 0);
	i2c->regs = devm_ioremap_resource(&pdev->dev, mem);
	if (IS_ERR(i2c->regs))
		return PTR_ERR(i2c->regs);

	/* Try to set the I2C adapter number from dt */
	bus_nr = of_alias_get_id(np, "i2c");

	/*
	 * Switch to new interface if the SoC also offers the old one.
	 * The control bit is located in the GRF register space.
	 */
	if (i2c->soc_data->grf_offset >= 0) {
		struct regmap *grf;

		grf = syscon_regmap_lookup_by_phandle(np, "rockchip,grf");
		if (IS_ERR(grf)) {
			dev_err(&pdev->dev,
				"rk3x-i2c needs 'rockchip,grf' property\n");
			return PTR_ERR(grf);
		}

		if (bus_nr < 0) {
			dev_err(&pdev->dev, "rk3x-i2c needs i2cX alias");
			return -EINVAL;
		}

		/* 27+i: write mask, 11+i: value */
		value = BIT(27 + bus_nr) | BIT(11 + bus_nr);

		ret = regmap_write(grf, i2c->soc_data->grf_offset, value);
		if (ret != 0) {
			dev_err(i2c->dev, "Could not write to GRF: %d\n", ret);
			return ret;
		}
	}

	/* IRQ setup */
	irq = platform_get_irq(pdev, 0);
	if (irq < 0) {
		dev_err(&pdev->dev, "cannot find rk3x IRQ\n");
		return irq;
	}

	ret = devm_request_irq(&pdev->dev, irq, rk3x_i2c_irq,
			       0, dev_name(&pdev->dev), i2c);
	if (ret < 0) {
		dev_err(&pdev->dev, "cannot request IRQ\n");
		return ret;
	}

	platform_set_drvdata(pdev, i2c);

1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283
	if (i2c->soc_data->calc_timings == rk3x_i2c_v0_calc_timings) {
		/* Only one clock to use for bus clock and peripheral clock */
		i2c->clk = devm_clk_get(&pdev->dev, NULL);
		i2c->pclk = i2c->clk;
	} else {
		i2c->clk = devm_clk_get(&pdev->dev, "i2c");
		i2c->pclk = devm_clk_get(&pdev->dev, "pclk");
	}

	if (IS_ERR(i2c->clk)) {
		ret = PTR_ERR(i2c->clk);
		if (ret != -EPROBE_DEFER)
			dev_err(&pdev->dev, "Can't get bus clk: %d\n", ret);
		return ret;
	}
	if (IS_ERR(i2c->pclk)) {
		ret = PTR_ERR(i2c->pclk);
		if (ret != -EPROBE_DEFER)
			dev_err(&pdev->dev, "Can't get periph clk: %d\n", ret);
		return ret;
	}

1284 1285
	ret = clk_prepare(i2c->clk);
	if (ret < 0) {
1286
		dev_err(&pdev->dev, "Can't prepare bus clk: %d\n", ret);
1287 1288
		return ret;
	}
1289 1290 1291 1292 1293
	ret = clk_prepare(i2c->pclk);
	if (ret < 0) {
		dev_err(&pdev->dev, "Can't prepare periph clock: %d\n", ret);
		goto err_clk;
	}
1294

1295 1296 1297 1298
	i2c->clk_rate_nb.notifier_call = rk3x_i2c_clk_notifier_cb;
	ret = clk_notifier_register(i2c->clk, &i2c->clk_rate_nb);
	if (ret != 0) {
		dev_err(&pdev->dev, "Unable to register clock notifier\n");
1299
		goto err_pclk;
1300 1301 1302 1303 1304
	}

	clk_rate = clk_get_rate(i2c->clk);
	rk3x_i2c_adapt_div(i2c, clk_rate);

1305 1306 1307
	ret = i2c_add_adapter(&i2c->adap);
	if (ret < 0) {
		dev_err(&pdev->dev, "Could not register adapter\n");
1308
		goto err_clk_notifier;
1309 1310 1311 1312 1313 1314
	}

	dev_info(&pdev->dev, "Initialized RK3xxx I2C bus at %p\n", i2c->regs);

	return 0;

1315 1316
err_clk_notifier:
	clk_notifier_unregister(i2c->clk, &i2c->clk_rate_nb);
1317 1318
err_pclk:
	clk_unprepare(i2c->pclk);
1319 1320 1321 1322 1323 1324 1325 1326 1327 1328
err_clk:
	clk_unprepare(i2c->clk);
	return ret;
}

static int rk3x_i2c_remove(struct platform_device *pdev)
{
	struct rk3x_i2c *i2c = platform_get_drvdata(pdev);

	i2c_del_adapter(&i2c->adap);
1329 1330

	clk_notifier_unregister(i2c->clk, &i2c->clk_rate_nb);
1331
	clk_unprepare(i2c->pclk);
1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350
	clk_unprepare(i2c->clk);

	return 0;
}

static struct platform_driver rk3x_i2c_driver = {
	.probe   = rk3x_i2c_probe,
	.remove  = rk3x_i2c_remove,
	.driver  = {
		.name  = "rk3x-i2c",
		.of_match_table = rk3x_i2c_match,
	},
};

module_platform_driver(rk3x_i2c_driver);

MODULE_DESCRIPTION("Rockchip RK3xxx I2C Bus driver");
MODULE_AUTHOR("Max Schwarz <max.schwarz@online.de>");
MODULE_LICENSE("GPL v2");