i915_gem_request.c 28.2 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
/*
 * Copyright © 2008-2015 Intel Corporation
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice (including the next
 * paragraph) shall be included in all copies or substantial portions of the
 * Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
 * IN THE SOFTWARE.
 *
 */

25
#include <linux/prefetch.h>
26
#include <linux/dma-fence-array.h>
27

28 29
#include "i915_drv.h"

30
static const char *i915_fence_get_driver_name(struct dma_fence *fence)
31 32 33 34
{
	return "i915";
}

35
static const char *i915_fence_get_timeline_name(struct dma_fence *fence)
36 37 38 39 40 41 42
{
	/* Timelines are bound by eviction to a VM. However, since
	 * we only have a global seqno at the moment, we only have
	 * a single timeline. Note that each timeline will have
	 * multiple execution contexts (fence contexts) as we allow
	 * engines within a single timeline to execute in parallel.
	 */
43
	return to_request(fence)->timeline->common->name;
44 45
}

46
static bool i915_fence_signaled(struct dma_fence *fence)
47 48 49 50
{
	return i915_gem_request_completed(to_request(fence));
}

51
static bool i915_fence_enable_signaling(struct dma_fence *fence)
52 53 54 55 56 57 58 59
{
	if (i915_fence_signaled(fence))
		return false;

	intel_engine_enable_signaling(to_request(fence));
	return true;
}

60
static signed long i915_fence_wait(struct dma_fence *fence,
61
				   bool interruptible,
62
				   signed long timeout)
63
{
64
	return i915_wait_request(to_request(fence), interruptible, timeout);
65 66
}

67
static void i915_fence_value_str(struct dma_fence *fence, char *str, int size)
68 69 70 71
{
	snprintf(str, size, "%u", fence->seqno);
}

72
static void i915_fence_timeline_value_str(struct dma_fence *fence, char *str,
73 74 75 76 77 78
					  int size)
{
	snprintf(str, size, "%u",
		 intel_engine_get_seqno(to_request(fence)->engine));
}

79
static void i915_fence_release(struct dma_fence *fence)
80 81 82 83 84 85
{
	struct drm_i915_gem_request *req = to_request(fence);

	kmem_cache_free(req->i915->requests, req);
}

86
const struct dma_fence_ops i915_fence_ops = {
87 88 89 90 91 92 93 94 95 96
	.get_driver_name = i915_fence_get_driver_name,
	.get_timeline_name = i915_fence_get_timeline_name,
	.enable_signaling = i915_fence_enable_signaling,
	.signaled = i915_fence_signaled,
	.wait = i915_fence_wait,
	.release = i915_fence_release,
	.fence_value_str = i915_fence_value_str,
	.timeline_value_str = i915_fence_timeline_value_str,
};

97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135
int i915_gem_request_add_to_client(struct drm_i915_gem_request *req,
				   struct drm_file *file)
{
	struct drm_i915_private *dev_private;
	struct drm_i915_file_private *file_priv;

	WARN_ON(!req || !file || req->file_priv);

	if (!req || !file)
		return -EINVAL;

	if (req->file_priv)
		return -EINVAL;

	dev_private = req->i915;
	file_priv = file->driver_priv;

	spin_lock(&file_priv->mm.lock);
	req->file_priv = file_priv;
	list_add_tail(&req->client_list, &file_priv->mm.request_list);
	spin_unlock(&file_priv->mm.lock);

	return 0;
}

static inline void
i915_gem_request_remove_from_client(struct drm_i915_gem_request *request)
{
	struct drm_i915_file_private *file_priv = request->file_priv;

	if (!file_priv)
		return;

	spin_lock(&file_priv->mm.lock);
	list_del(&request->client_list);
	request->file_priv = NULL;
	spin_unlock(&file_priv->mm.lock);
}

136 137 138 139 140 141
void i915_gem_retire_noop(struct i915_gem_active *active,
			  struct drm_i915_gem_request *request)
{
	/* Space left intentionally blank */
}

142 143
static void i915_gem_request_retire(struct drm_i915_gem_request *request)
{
144 145
	struct i915_gem_active *active, *next;

146 147 148
	lockdep_assert_held(&request->i915->drm.struct_mutex);
	GEM_BUG_ON(!i915_gem_request_completed(request));

149
	trace_i915_gem_request_retire(request);
150
	list_del_init(&request->link);
151 152 153 154 155 156 157 158 159

	/* We know the GPU must have read the request to have
	 * sent us the seqno + interrupt, so use the position
	 * of tail of the request to update the last known position
	 * of the GPU head.
	 *
	 * Note this requires that we are always called in request
	 * completion order.
	 */
160
	list_del(&request->ring_link);
161
	request->ring->last_retired_head = request->postfix;
162

163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184
	/* Walk through the active list, calling retire on each. This allows
	 * objects to track their GPU activity and mark themselves as idle
	 * when their *last* active request is completed (updating state
	 * tracking lists for eviction, active references for GEM, etc).
	 *
	 * As the ->retire() may free the node, we decouple it first and
	 * pass along the auxiliary information (to avoid dereferencing
	 * the node after the callback).
	 */
	list_for_each_entry_safe(active, next, &request->active_list, link) {
		/* In microbenchmarks or focusing upon time inside the kernel,
		 * we may spend an inordinate amount of time simply handling
		 * the retirement of requests and processing their callbacks.
		 * Of which, this loop itself is particularly hot due to the
		 * cache misses when jumping around the list of i915_gem_active.
		 * So we try to keep this loop as streamlined as possible and
		 * also prefetch the next i915_gem_active to try and hide
		 * the likely cache miss.
		 */
		prefetchw(next);

		INIT_LIST_HEAD(&active->link);
185
		RCU_INIT_POINTER(active->request, NULL);
186 187 188 189

		active->retire(active, request);
	}

190 191 192 193 194 195 196 197
	i915_gem_request_remove_from_client(request);

	if (request->previous_context) {
		if (i915.enable_execlists)
			intel_lr_context_unpin(request->previous_context,
					       request->engine);
	}

198
	i915_gem_context_put(request->ctx);
199 200

	dma_fence_signal(&request->fence);
201
	i915_gem_request_put(request);
202 203 204 205 206 207 208 209
}

void i915_gem_request_retire_upto(struct drm_i915_gem_request *req)
{
	struct intel_engine_cs *engine = req->engine;
	struct drm_i915_gem_request *tmp;

	lockdep_assert_held(&req->i915->drm.struct_mutex);
210 211
	if (list_empty(&req->link))
		return;
212 213

	do {
214
		tmp = list_first_entry(&engine->timeline->requests,
215
				       typeof(*tmp), link);
216 217 218 219 220

		i915_gem_request_retire(tmp);
	} while (tmp != req);
}

221
static int i915_gem_check_wedge(struct drm_i915_private *dev_priv)
222
{
223 224 225
	struct i915_gpu_error *error = &dev_priv->gpu_error;

	if (i915_terminally_wedged(error))
226 227
		return -EIO;

228
	if (i915_reset_in_progress(error)) {
229 230 231
		/* Non-interruptible callers can't handle -EAGAIN, hence return
		 * -EIO unconditionally for these.
		 */
232
		if (!dev_priv->mm.interruptible)
233 234 235 236 237 238 239 240
			return -EIO;

		return -EAGAIN;
	}

	return 0;
}

241 242
static int i915_gem_init_global_seqno(struct drm_i915_private *dev_priv,
				      u32 seqno)
243
{
244
	struct i915_gem_timeline *timeline = &dev_priv->gt.global_timeline;
245
	struct intel_engine_cs *engine;
246
	enum intel_engine_id id;
247 248 249
	int ret;

	/* Carefully retire all requests without writing to the rings */
250 251 252 253 254 255
	ret = i915_gem_wait_for_idle(dev_priv,
				     I915_WAIT_INTERRUPTIBLE |
				     I915_WAIT_LOCKED);
	if (ret)
		return ret;

256 257 258
	i915_gem_retire_requests(dev_priv);

	/* If the seqno wraps around, we need to clear the breadcrumb rbtree */
259
	if (!i915_seqno_passed(seqno, timeline->next_seqno)) {
260 261 262
		while (intel_kick_waiters(dev_priv) ||
		       intel_kick_signalers(dev_priv))
			yield();
263
		yield();
264 265 266
	}

	/* Finally reset hw state */
267
	for_each_engine(engine, dev_priv, id)
268
		intel_engine_init_global_seqno(engine, seqno);
269 270 271 272

	return 0;
}

273
int i915_gem_set_global_seqno(struct drm_device *dev, u32 seqno)
274 275 276 277
{
	struct drm_i915_private *dev_priv = to_i915(dev);
	int ret;

278 279
	lockdep_assert_held(&dev_priv->drm.struct_mutex);

280 281 282 283 284 285
	if (seqno == 0)
		return -EINVAL;

	/* HWS page needs to be set less than what we
	 * will inject to ring
	 */
286
	ret = i915_gem_init_global_seqno(dev_priv, seqno - 1);
287 288 289
	if (ret)
		return ret;

290
	dev_priv->gt.global_timeline.next_seqno = seqno;
291 292 293
	return 0;
}

294 295
static int i915_gem_get_global_seqno(struct drm_i915_private *dev_priv,
				     u32 *seqno)
296
{
297 298
	struct i915_gem_timeline *tl = &dev_priv->gt.global_timeline;

299
	/* reserve 0 for non-seqno */
300
	if (unlikely(tl->next_seqno == 0)) {
301 302
		int ret;

303
		ret = i915_gem_init_global_seqno(dev_priv, 0);
304 305 306
		if (ret)
			return ret;

307
		tl->next_seqno = 1;
308 309
	}

310
	*seqno = tl->next_seqno++;
311 312 313
	return 0;
}

314 315 316 317 318
static int __i915_sw_fence_call
submit_notify(struct i915_sw_fence *fence, enum i915_sw_fence_notify state)
{
	struct drm_i915_gem_request *request =
		container_of(fence, typeof(*request), submit);
319
	struct intel_engine_cs *engine = request->engine;
320 321 322 323 324

	/* Will be called from irq-context when using foreign DMA fences */

	switch (state) {
	case FENCE_COMPLETE:
325 326
		engine->timeline->last_submitted_seqno = request->fence.seqno;
		engine->submit_request(request);
327 328 329 330 331 332 333 334 335
		break;

	case FENCE_FREE:
		break;
	}

	return NOTIFY_DONE;
}

336 337 338 339 340 341 342 343 344 345 346 347 348 349 350
/**
 * i915_gem_request_alloc - allocate a request structure
 *
 * @engine: engine that we wish to issue the request on.
 * @ctx: context that the request will be associated with.
 *       This can be NULL if the request is not directly related to
 *       any specific user context, in which case this function will
 *       choose an appropriate context to use.
 *
 * Returns a pointer to the allocated request if successful,
 * or an error code if not.
 */
struct drm_i915_gem_request *
i915_gem_request_alloc(struct intel_engine_cs *engine,
		       struct i915_gem_context *ctx)
351 352 353
{
	struct drm_i915_private *dev_priv = engine->i915;
	struct drm_i915_gem_request *req;
354
	u32 seqno;
355 356 357 358 359 360
	int ret;

	/* ABI: Before userspace accesses the GPU (e.g. execbuffer), report
	 * EIO if the GPU is already wedged, or EAGAIN to drop the struct_mutex
	 * and restart.
	 */
361
	ret = i915_gem_check_wedge(dev_priv);
362
	if (ret)
363
		return ERR_PTR(ret);
364

365
	/* Move the oldest request to the slab-cache (if not in use!) */
366
	req = list_first_entry_or_null(&engine->timeline->requests,
367
				       typeof(*req), link);
368 369
	if (req && i915_gem_request_completed(req))
		i915_gem_request_retire(req);
370

371 372 373 374 375
	/* Beware: Dragons be flying overhead.
	 *
	 * We use RCU to look up requests in flight. The lookups may
	 * race with the request being allocated from the slab freelist.
	 * That is the request we are writing to here, may be in the process
376
	 * of being read by __i915_gem_active_get_rcu(). As such,
377 378
	 * we have to be very careful when overwriting the contents. During
	 * the RCU lookup, we change chase the request->engine pointer,
379
	 * read the request->global_seqno and increment the reference count.
380 381 382 383
	 *
	 * The reference count is incremented atomically. If it is zero,
	 * the lookup knows the request is unallocated and complete. Otherwise,
	 * it is either still in use, or has been reallocated and reset
384 385
	 * with dma_fence_init(). This increment is safe for release as we
	 * check that the request we have a reference to and matches the active
386 387 388 389 390 391 392 393 394 395 396 397 398 399
	 * request.
	 *
	 * Before we increment the refcount, we chase the request->engine
	 * pointer. We must not call kmem_cache_zalloc() or else we set
	 * that pointer to NULL and cause a crash during the lookup. If
	 * we see the request is completed (based on the value of the
	 * old engine and seqno), the lookup is complete and reports NULL.
	 * If we decide the request is not completed (new engine or seqno),
	 * then we grab a reference and double check that it is still the
	 * active request - which it won't be and restart the lookup.
	 *
	 * Do not use kmem_cache_zalloc() here!
	 */
	req = kmem_cache_alloc(dev_priv->requests, GFP_KERNEL);
400
	if (!req)
401
		return ERR_PTR(-ENOMEM);
402

403
	ret = i915_gem_get_global_seqno(dev_priv, &seqno);
404 405 406
	if (ret)
		goto err;

407 408
	req->timeline = engine->timeline;

409
	spin_lock_init(&req->lock);
410 411 412
	dma_fence_init(&req->fence,
		       &i915_fence_ops,
		       &req->lock,
413
		       req->timeline->fence_context,
414
		       seqno);
415

416 417
	i915_sw_fence_init(&req->submit, submit_notify);

418
	INIT_LIST_HEAD(&req->active_list);
419 420
	req->i915 = dev_priv;
	req->engine = engine;
421
	req->global_seqno = seqno;
422
	req->ctx = i915_gem_context_get(ctx);
423

424 425 426
	/* No zalloc, must clear what we need by hand */
	req->previous_context = NULL;
	req->file_priv = NULL;
C
Chris Wilson 已提交
427
	req->batch = NULL;
428

429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444
	/*
	 * Reserve space in the ring buffer for all the commands required to
	 * eventually emit this request. This is to guarantee that the
	 * i915_add_request() call can't fail. Note that the reserve may need
	 * to be redone if the request is not actually submitted straight
	 * away, e.g. because a GPU scheduler has deferred it.
	 */
	req->reserved_space = MIN_SPACE_FOR_ADD_REQUEST;

	if (i915.enable_execlists)
		ret = intel_logical_ring_alloc_request_extras(req);
	else
		ret = intel_ring_alloc_request_extras(req);
	if (ret)
		goto err_ctx;

445 446 447 448 449 450 451
	/* Record the position of the start of the request so that
	 * should we detect the updated seqno part-way through the
	 * GPU processing the request, we never over-estimate the
	 * position of the head.
	 */
	req->head = req->ring->tail;

452
	return req;
453 454

err_ctx:
455
	i915_gem_context_put(ctx);
456 457
err:
	kmem_cache_free(dev_priv->requests, req);
458
	return ERR_PTR(ret);
459 460
}

461 462 463 464 465 466 467 468
static int
i915_gem_request_await_request(struct drm_i915_gem_request *to,
			       struct drm_i915_gem_request *from)
{
	int idx, ret;

	GEM_BUG_ON(to == from);

469
	if (to->timeline == from->timeline)
470 471
		return 0;

472 473 474 475 476 477 478
	if (to->engine == from->engine) {
		ret = i915_sw_fence_await_sw_fence_gfp(&to->submit,
						       &from->submit,
						       GFP_KERNEL);
		return ret < 0 ? ret : 0;
	}

479 480 481 482 483 484 485
	if (!from->global_seqno) {
		ret = i915_sw_fence_await_dma_fence(&to->submit,
						    &from->fence, 0,
						    GFP_KERNEL);
		return ret < 0 ? ret : 0;
	}

486
	idx = intel_engine_sync_index(from->engine, to->engine);
487
	if (from->global_seqno <= from->engine->semaphore.sync_seqno[idx])
488 489 490 491
		return 0;

	trace_i915_gem_ring_sync_to(to, from);
	if (!i915.semaphores) {
492 493 494 495 496 497 498
		if (!i915_spin_request(from, TASK_INTERRUPTIBLE, 2)) {
			ret = i915_sw_fence_await_dma_fence(&to->submit,
							    &from->fence, 0,
							    GFP_KERNEL);
			if (ret < 0)
				return ret;
		}
499 500 501 502 503 504
	} else {
		ret = to->engine->semaphore.sync_to(to, from);
		if (ret)
			return ret;
	}

505
	from->engine->semaphore.sync_seqno[idx] = from->global_seqno;
506 507 508
	return 0;
}

509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555
int
i915_gem_request_await_dma_fence(struct drm_i915_gem_request *req,
				 struct dma_fence *fence)
{
	struct dma_fence_array *array;
	int ret;
	int i;

	if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags))
		return 0;

	if (dma_fence_is_i915(fence))
		return i915_gem_request_await_request(req, to_request(fence));

	if (!dma_fence_is_array(fence)) {
		ret = i915_sw_fence_await_dma_fence(&req->submit,
						    fence, I915_FENCE_TIMEOUT,
						    GFP_KERNEL);
		return ret < 0 ? ret : 0;
	}

	/* Note that if the fence-array was created in signal-on-any mode,
	 * we should *not* decompose it into its individual fences. However,
	 * we don't currently store which mode the fence-array is operating
	 * in. Fortunately, the only user of signal-on-any is private to
	 * amdgpu and we should not see any incoming fence-array from
	 * sync-file being in signal-on-any mode.
	 */

	array = to_dma_fence_array(fence);
	for (i = 0; i < array->num_fences; i++) {
		struct dma_fence *child = array->fences[i];

		if (dma_fence_is_i915(child))
			ret = i915_gem_request_await_request(req,
							     to_request(child));
		else
			ret = i915_sw_fence_await_dma_fence(&req->submit,
							    child, I915_FENCE_TIMEOUT,
							    GFP_KERNEL);
		if (ret < 0)
			return ret;
	}

	return 0;
}

556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580
/**
 * i915_gem_request_await_object - set this request to (async) wait upon a bo
 *
 * @to: request we are wishing to use
 * @obj: object which may be in use on another ring.
 *
 * This code is meant to abstract object synchronization with the GPU.
 * Conceptually we serialise writes between engines inside the GPU.
 * We only allow one engine to write into a buffer at any time, but
 * multiple readers. To ensure each has a coherent view of memory, we must:
 *
 * - If there is an outstanding write request to the object, the new
 *   request must wait for it to complete (either CPU or in hw, requests
 *   on the same ring will be naturally ordered).
 *
 * - If we are a write request (pending_write_domain is set), the new
 *   request must wait for outstanding read requests to complete.
 *
 * Returns 0 if successful, else propagates up the lower layer error.
 */
int
i915_gem_request_await_object(struct drm_i915_gem_request *to,
			      struct drm_i915_gem_object *obj,
			      bool write)
{
581 582
	struct dma_fence *excl;
	int ret = 0;
583 584

	if (write) {
585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603
		struct dma_fence **shared;
		unsigned int count, i;

		ret = reservation_object_get_fences_rcu(obj->resv,
							&excl, &count, &shared);
		if (ret)
			return ret;

		for (i = 0; i < count; i++) {
			ret = i915_gem_request_await_dma_fence(to, shared[i]);
			if (ret)
				break;

			dma_fence_put(shared[i]);
		}

		for (; i < count; i++)
			dma_fence_put(shared[i]);
		kfree(shared);
604
	} else {
605
		excl = reservation_object_get_excl_rcu(obj->resv);
606 607
	}

608 609 610
	if (excl) {
		if (ret == 0)
			ret = i915_gem_request_await_dma_fence(to, excl);
611

612
		dma_fence_put(excl);
613 614
	}

615
	return ret;
616 617
}

618 619 620 621 622 623 624 625 626 627 628
static void i915_gem_mark_busy(const struct intel_engine_cs *engine)
{
	struct drm_i915_private *dev_priv = engine->i915;

	dev_priv->gt.active_engines |= intel_engine_flag(engine);
	if (dev_priv->gt.awake)
		return;

	intel_runtime_pm_get_noresume(dev_priv);
	dev_priv->gt.awake = true;

629
	intel_enable_gt_powersave(dev_priv);
630 631 632 633 634 635 636 637 638 639 640 641 642 643
	i915_update_gfx_val(dev_priv);
	if (INTEL_GEN(dev_priv) >= 6)
		gen6_rps_busy(dev_priv);

	queue_delayed_work(dev_priv->wq,
			   &dev_priv->gt.retire_work,
			   round_jiffies_up_relative(HZ));
}

/*
 * NB: This function is not allowed to fail. Doing so would mean the the
 * request is not being tracked for completion but the work itself is
 * going to happen on the hardware. This would be a Bad Thing(tm).
 */
644
void __i915_add_request(struct drm_i915_gem_request *request, bool flush_caches)
645
{
646 647
	struct intel_engine_cs *engine = request->engine;
	struct intel_ring *ring = request->ring;
648
	struct intel_timeline *timeline = request->timeline;
649
	struct drm_i915_gem_request *prev;
650 651 652 653
	u32 request_start;
	u32 reserved_tail;
	int ret;

654
	lockdep_assert_held(&request->i915->drm.struct_mutex);
655 656
	trace_i915_gem_request_add(request);

657 658 659 660 661
	/*
	 * To ensure that this call will not fail, space for its emissions
	 * should already have been reserved in the ring buffer. Let the ring
	 * know that it is time to use that space up.
	 */
662
	request_start = ring->tail;
663 664 665 666 667 668 669 670 671 672 673
	reserved_tail = request->reserved_space;
	request->reserved_space = 0;

	/*
	 * Emit any outstanding flushes - execbuf can fail to emit the flush
	 * after having emitted the batchbuffer command. Hence we need to fix
	 * things up similar to emitting the lazy request. The difference here
	 * is that the flush _must_ happen before the next request, no matter
	 * what.
	 */
	if (flush_caches) {
674
		ret = engine->emit_flush(request, EMIT_FLUSH);
675

676
		/* Not allowed to fail! */
677
		WARN(ret, "engine->emit_flush() failed: %d!\n", ret);
678 679
	}

680
	/* Record the position of the start of the breadcrumb so that
681 682
	 * should we detect the updated seqno part-way through the
	 * GPU processing the request, we never over-estimate the
683
	 * position of the ring's HEAD.
684
	 */
685
	request->postfix = ring->tail;
686 687

	/* Not allowed to fail! */
688 689
	ret = engine->emit_request(request);
	WARN(ret, "(%s)->emit_request failed: %d!\n", engine->name, ret);
690

691
	/* Sanity check that the reserved size was large enough. */
692
	ret = ring->tail - request_start;
693
	if (ret < 0)
694
		ret += ring->size;
695 696 697 698 699
	WARN_ONCE(ret > reserved_tail,
		  "Not enough space reserved (%d bytes) "
		  "for adding the request (%d bytes)\n",
		  reserved_tail, ret);

700 701 702 703 704
	/* Seal the request and mark it as pending execution. Note that
	 * we may inspect this state, without holding any locks, during
	 * hangcheck. Hence we apply the barrier to ensure that we do not
	 * see a more recent value in the hws than we are tracking.
	 */
705

706
	prev = i915_gem_active_raw(&timeline->last_request,
707 708 709 710 711
				   &request->i915->drm.struct_mutex);
	if (prev)
		i915_sw_fence_await_sw_fence(&request->submit, &prev->submit,
					     &request->submitq);

712
	request->emitted_jiffies = jiffies;
713 714 715 716
	request->previous_seqno = timeline->last_pending_seqno;
	timeline->last_pending_seqno = request->fence.seqno;
	i915_gem_active_set(&timeline->last_request, request);
	list_add_tail(&request->link, &timeline->requests);
717 718
	list_add_tail(&request->ring_link, &ring->request_list);

719
	i915_gem_mark_busy(engine);
720 721 722 723

	local_bh_disable();
	i915_sw_fence_commit(&request->submit);
	local_bh_enable(); /* Kick the execlists tasklet if just scheduled */
724 725
}

726 727 728 729 730 731 732 733 734 735
static void reset_wait_queue(wait_queue_head_t *q, wait_queue_t *wait)
{
	unsigned long flags;

	spin_lock_irqsave(&q->lock, flags);
	if (list_empty(&wait->task_list))
		__add_wait_queue(q, wait);
	spin_unlock_irqrestore(&q->lock, flags);
}

736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784
static unsigned long local_clock_us(unsigned int *cpu)
{
	unsigned long t;

	/* Cheaply and approximately convert from nanoseconds to microseconds.
	 * The result and subsequent calculations are also defined in the same
	 * approximate microseconds units. The principal source of timing
	 * error here is from the simple truncation.
	 *
	 * Note that local_clock() is only defined wrt to the current CPU;
	 * the comparisons are no longer valid if we switch CPUs. Instead of
	 * blocking preemption for the entire busywait, we can detect the CPU
	 * switch and use that as indicator of system load and a reason to
	 * stop busywaiting, see busywait_stop().
	 */
	*cpu = get_cpu();
	t = local_clock() >> 10;
	put_cpu();

	return t;
}

static bool busywait_stop(unsigned long timeout, unsigned int cpu)
{
	unsigned int this_cpu;

	if (time_after(local_clock_us(&this_cpu), timeout))
		return true;

	return this_cpu != cpu;
}

bool __i915_spin_request(const struct drm_i915_gem_request *req,
			 int state, unsigned long timeout_us)
{
	unsigned int cpu;

	/* When waiting for high frequency requests, e.g. during synchronous
	 * rendering split between the CPU and GPU, the finite amount of time
	 * required to set up the irq and wait upon it limits the response
	 * rate. By busywaiting on the request completion for a short while we
	 * can service the high frequency waits as quick as possible. However,
	 * if it is a slow request, we want to sleep as quickly as possible.
	 * The tradeoff between waiting and sleeping is roughly the time it
	 * takes to sleep on a request, on the order of a microsecond.
	 */

	timeout_us += local_clock_us(&cpu);
	do {
785
		if (__i915_gem_request_completed(req))
786 787 788 789 790 791 792 793 794 795 796 797 798 799
			return true;

		if (signal_pending_state(state, current))
			break;

		if (busywait_stop(timeout_us, cpu))
			break;

		cpu_relax_lowlatency();
	} while (!need_resched());

	return false;
}

800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842
static long
__i915_request_wait_for_submit(struct drm_i915_gem_request *request,
			       unsigned int flags,
			       long timeout)
{
	const int state = flags & I915_WAIT_INTERRUPTIBLE ?
		TASK_INTERRUPTIBLE : TASK_UNINTERRUPTIBLE;
	wait_queue_head_t *q = &request->i915->gpu_error.wait_queue;
	DEFINE_WAIT(reset);
	DEFINE_WAIT(wait);

	if (flags & I915_WAIT_LOCKED)
		add_wait_queue(q, &reset);

	do {
		prepare_to_wait(&request->submit.wait, &wait, state);

		if (i915_sw_fence_done(&request->submit))
			break;

		if (flags & I915_WAIT_LOCKED &&
		    i915_reset_in_progress(&request->i915->gpu_error)) {
			__set_current_state(TASK_RUNNING);
			i915_reset(request->i915);
			reset_wait_queue(q, &reset);
			continue;
		}

		if (signal_pending_state(state, current)) {
			timeout = -ERESTARTSYS;
			break;
		}

		timeout = io_schedule_timeout(timeout);
	} while (timeout);
	finish_wait(&request->submit.wait, &wait);

	if (flags & I915_WAIT_LOCKED)
		remove_wait_queue(q, &reset);

	return timeout;
}

843
/**
844
 * i915_wait_request - wait until execution of request has finished
845
 * @req: the request to wait upon
846
 * @flags: how to wait
847 848 849 850 851
 * @timeout: how long to wait in jiffies
 *
 * i915_wait_request() waits for the request to be completed, for a
 * maximum of @timeout jiffies (with MAX_SCHEDULE_TIMEOUT implying an
 * unbounded wait).
852
 *
853 854 855
 * If the caller holds the struct_mutex, the caller must pass I915_WAIT_LOCKED
 * in via the flags, and vice versa if the struct_mutex is not held, the caller
 * must not specify that the wait is locked.
856
 *
857 858 859 860
 * Returns the remaining time (in jiffies) if the request completed, which may
 * be zero or -ETIME if the request is unfinished after the timeout expires.
 * May return -EINTR is called with I915_WAIT_INTERRUPTIBLE and a signal is
 * pending before the request completes.
861
 */
862 863 864
long i915_wait_request(struct drm_i915_gem_request *req,
		       unsigned int flags,
		       long timeout)
865
{
866 867
	const int state = flags & I915_WAIT_INTERRUPTIBLE ?
		TASK_INTERRUPTIBLE : TASK_UNINTERRUPTIBLE;
868 869 870 871
	DEFINE_WAIT(reset);
	struct intel_wait wait;

	might_sleep();
872
#if IS_ENABLED(CONFIG_LOCKDEP)
873 874
	GEM_BUG_ON(debug_locks &&
		   !!lockdep_is_held(&req->i915->drm.struct_mutex) !=
875 876
		   !!(flags & I915_WAIT_LOCKED));
#endif
877
	GEM_BUG_ON(timeout < 0);
878 879

	if (i915_gem_request_completed(req))
880
		return timeout;
881

882 883
	if (!timeout)
		return -ETIME;
884 885 886

	trace_i915_gem_request_wait_begin(req);

887 888 889 890 891 892 893
	if (!i915_sw_fence_done(&req->submit)) {
		timeout = __i915_request_wait_for_submit(req, flags, timeout);
		if (timeout < 0)
			goto complete;

		GEM_BUG_ON(!i915_sw_fence_done(&req->submit));
	}
894
	GEM_BUG_ON(!req->global_seqno);
895

896
	/* Optimistic short spin before touching IRQs */
897 898 899 900
	if (i915_spin_request(req, state, 5))
		goto complete;

	set_current_state(state);
901 902
	if (flags & I915_WAIT_LOCKED)
		add_wait_queue(&req->i915->gpu_error.wait_queue, &reset);
903

904
	intel_wait_init(&wait, req->global_seqno);
905 906 907 908 909 910 911 912 913
	if (intel_engine_add_wait(req->engine, &wait))
		/* In order to check that we haven't missed the interrupt
		 * as we enabled it, we need to kick ourselves to do a
		 * coherent check on the seqno before we sleep.
		 */
		goto wakeup;

	for (;;) {
		if (signal_pending_state(state, current)) {
914
			timeout = -ERESTARTSYS;
915 916 917
			break;
		}

918 919
		if (!timeout) {
			timeout = -ETIME;
920 921 922
			break;
		}

923 924
		timeout = io_schedule_timeout(timeout);

925 926 927 928 929 930 931 932 933 934 935 936 937 938
		if (intel_wait_complete(&wait))
			break;

		set_current_state(state);

wakeup:
		/* Carefully check if the request is complete, giving time
		 * for the seqno to be visible following the interrupt.
		 * We also have to check in case we are kicked by the GPU
		 * reset in order to drop the struct_mutex.
		 */
		if (__i915_request_irq_complete(req))
			break;

939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957
		/* If the GPU is hung, and we hold the lock, reset the GPU
		 * and then check for completion. On a full reset, the engine's
		 * HW seqno will be advanced passed us and we are complete.
		 * If we do a partial reset, we have to wait for the GPU to
		 * resume and update the breadcrumb.
		 *
		 * If we don't hold the mutex, we can just wait for the worker
		 * to come along and update the breadcrumb (either directly
		 * itself, or indirectly by recovering the GPU).
		 */
		if (flags & I915_WAIT_LOCKED &&
		    i915_reset_in_progress(&req->i915->gpu_error)) {
			__set_current_state(TASK_RUNNING);
			i915_reset(req->i915);
			reset_wait_queue(&req->i915->gpu_error.wait_queue,
					 &reset);
			continue;
		}

958 959 960 961 962 963
		/* Only spin if we know the GPU is processing this request */
		if (i915_spin_request(req, state, 2))
			break;
	}

	intel_engine_remove_wait(req->engine, &wait);
964 965
	if (flags & I915_WAIT_LOCKED)
		remove_wait_queue(&req->i915->gpu_error.wait_queue, &reset);
966
	__set_current_state(TASK_RUNNING);
967

968 969 970
complete:
	trace_i915_gem_request_wait_end(req);

971
	return timeout;
972
}
973

974
static bool engine_retire_requests(struct intel_engine_cs *engine)
975 976 977
{
	struct drm_i915_gem_request *request, *next;

978 979
	list_for_each_entry_safe(request, next,
				 &engine->timeline->requests, link) {
980
		if (!i915_gem_request_completed(request))
981
			return false;
982 983 984

		i915_gem_request_retire(request);
	}
985 986

	return true;
987 988 989 990 991
}

void i915_gem_retire_requests(struct drm_i915_private *dev_priv)
{
	struct intel_engine_cs *engine;
992
	unsigned int tmp;
993 994 995 996 997 998 999 1000

	lockdep_assert_held(&dev_priv->drm.struct_mutex);

	if (dev_priv->gt.active_engines == 0)
		return;

	GEM_BUG_ON(!dev_priv->gt.awake);

1001
	for_each_engine_masked(engine, dev_priv, dev_priv->gt.active_engines, tmp)
1002
		if (engine_retire_requests(engine))
1003 1004 1005 1006 1007 1008 1009
			dev_priv->gt.active_engines &= ~intel_engine_flag(engine);

	if (dev_priv->gt.active_engines == 0)
		queue_delayed_work(dev_priv->wq,
				   &dev_priv->gt.idle_work,
				   msecs_to_jiffies(100));
}