smbdirect.c 74.1 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
/*
 *   Copyright (C) 2017, Microsoft Corporation.
 *
 *   Author(s): Long Li <longli@microsoft.com>
 *
 *   This program is free software;  you can redistribute it and/or modify
 *   it under the terms of the GNU General Public License as published by
 *   the Free Software Foundation; either version 2 of the License, or
 *   (at your option) any later version.
 *
 *   This program is distributed in the hope that it will be useful,
 *   but WITHOUT ANY WARRANTY;  without even the implied warranty of
 *   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See
 *   the GNU General Public License for more details.
 */
16
#include <linux/module.h>
17
#include <linux/highmem.h>
18
#include "smbdirect.h"
19
#include "cifs_debug.h"
20
#include "cifsproto.h"
21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44

static struct smbd_response *get_empty_queue_buffer(
		struct smbd_connection *info);
static struct smbd_response *get_receive_buffer(
		struct smbd_connection *info);
static void put_receive_buffer(
		struct smbd_connection *info,
		struct smbd_response *response);
static int allocate_receive_buffers(struct smbd_connection *info, int num_buf);
static void destroy_receive_buffers(struct smbd_connection *info);

static void put_empty_packet(
		struct smbd_connection *info, struct smbd_response *response);
static void enqueue_reassembly(
		struct smbd_connection *info,
		struct smbd_response *response, int data_length);
static struct smbd_response *_get_first_reassembly(
		struct smbd_connection *info);

static int smbd_post_recv(
		struct smbd_connection *info,
		struct smbd_response *response);

static int smbd_post_send_empty(struct smbd_connection *info);
45 46 47 48 49 50
static int smbd_post_send_data(
		struct smbd_connection *info,
		struct kvec *iov, int n_vec, int remaining_data_length);
static int smbd_post_send_page(struct smbd_connection *info,
		struct page *page, unsigned long offset,
		size_t size, int remaining_data_length);
51

52 53 54
static void destroy_mr_list(struct smbd_connection *info);
static int allocate_mr_list(struct smbd_connection *info);

55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114
/* SMBD version number */
#define SMBD_V1	0x0100

/* Port numbers for SMBD transport */
#define SMB_PORT	445
#define SMBD_PORT	5445

/* Address lookup and resolve timeout in ms */
#define RDMA_RESOLVE_TIMEOUT	5000

/* SMBD negotiation timeout in seconds */
#define SMBD_NEGOTIATE_TIMEOUT	120

/* SMBD minimum receive size and fragmented sized defined in [MS-SMBD] */
#define SMBD_MIN_RECEIVE_SIZE		128
#define SMBD_MIN_FRAGMENTED_SIZE	131072

/*
 * Default maximum number of RDMA read/write outstanding on this connection
 * This value is possibly decreased during QP creation on hardware limit
 */
#define SMBD_CM_RESPONDER_RESOURCES	32

/* Maximum number of retries on data transfer operations */
#define SMBD_CM_RETRY			6
/* No need to retry on Receiver Not Ready since SMBD manages credits */
#define SMBD_CM_RNR_RETRY		0

/*
 * User configurable initial values per SMBD transport connection
 * as defined in [MS-SMBD] 3.1.1.1
 * Those may change after a SMBD negotiation
 */
/* The local peer's maximum number of credits to grant to the peer */
int smbd_receive_credit_max = 255;

/* The remote peer's credit request of local peer */
int smbd_send_credit_target = 255;

/* The maximum single message size can be sent to remote peer */
int smbd_max_send_size = 1364;

/*  The maximum fragmented upper-layer payload receive size supported */
int smbd_max_fragmented_recv_size = 1024 * 1024;

/*  The maximum single-message size which can be received */
int smbd_max_receive_size = 8192;

/* The timeout to initiate send of a keepalive message on idle */
int smbd_keep_alive_interval = 120;

/*
 * User configurable initial values for RDMA transport
 * The actual values used may be lower and are limited to hardware capabilities
 */
/* Default maximum number of SGEs in a RDMA write/read */
int smbd_max_frmr_depth = 2048;

/* If payload is less than this byte, use RDMA send/recv not read/write */
int rdma_readwrite_threshold = 4096;
115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189

/* Transport logging functions
 * Logging are defined as classes. They can be OR'ed to define the actual
 * logging level via module parameter smbd_logging_class
 * e.g. cifs.smbd_logging_class=0xa0 will log all log_rdma_recv() and
 * log_rdma_event()
 */
#define LOG_OUTGOING			0x1
#define LOG_INCOMING			0x2
#define LOG_READ			0x4
#define LOG_WRITE			0x8
#define LOG_RDMA_SEND			0x10
#define LOG_RDMA_RECV			0x20
#define LOG_KEEP_ALIVE			0x40
#define LOG_RDMA_EVENT			0x80
#define LOG_RDMA_MR			0x100
static unsigned int smbd_logging_class;
module_param(smbd_logging_class, uint, 0644);
MODULE_PARM_DESC(smbd_logging_class,
	"Logging class for SMBD transport 0x0 to 0x100");

#define ERR		0x0
#define INFO		0x1
static unsigned int smbd_logging_level = ERR;
module_param(smbd_logging_level, uint, 0644);
MODULE_PARM_DESC(smbd_logging_level,
	"Logging level for SMBD transport, 0 (default): error, 1: info");

#define log_rdma(level, class, fmt, args...)				\
do {									\
	if (level <= smbd_logging_level || class & smbd_logging_class)	\
		cifs_dbg(VFS, "%s:%d " fmt, __func__, __LINE__, ##args);\
} while (0)

#define log_outgoing(level, fmt, args...) \
		log_rdma(level, LOG_OUTGOING, fmt, ##args)
#define log_incoming(level, fmt, args...) \
		log_rdma(level, LOG_INCOMING, fmt, ##args)
#define log_read(level, fmt, args...)	log_rdma(level, LOG_READ, fmt, ##args)
#define log_write(level, fmt, args...)	log_rdma(level, LOG_WRITE, fmt, ##args)
#define log_rdma_send(level, fmt, args...) \
		log_rdma(level, LOG_RDMA_SEND, fmt, ##args)
#define log_rdma_recv(level, fmt, args...) \
		log_rdma(level, LOG_RDMA_RECV, fmt, ##args)
#define log_keep_alive(level, fmt, args...) \
		log_rdma(level, LOG_KEEP_ALIVE, fmt, ##args)
#define log_rdma_event(level, fmt, args...) \
		log_rdma(level, LOG_RDMA_EVENT, fmt, ##args)
#define log_rdma_mr(level, fmt, args...) \
		log_rdma(level, LOG_RDMA_MR, fmt, ##args)

/*
 * Destroy the transport and related RDMA and memory resources
 * Need to go through all the pending counters and make sure on one is using
 * the transport while it is destroyed
 */
static void smbd_destroy_rdma_work(struct work_struct *work)
{
	struct smbd_response *response;
	struct smbd_connection *info =
		container_of(work, struct smbd_connection, destroy_work);
	unsigned long flags;

	log_rdma_event(INFO, "destroying qp\n");
	ib_drain_qp(info->id->qp);
	rdma_destroy_qp(info->id);

	/* Unblock all I/O waiting on the send queue */
	wake_up_interruptible_all(&info->wait_send_queue);

	log_rdma_event(INFO, "cancelling idle timer\n");
	cancel_delayed_work_sync(&info->idle_timer_work);
	log_rdma_event(INFO, "cancelling send immediate work\n");
	cancel_delayed_work_sync(&info->send_immediate_work);

190 191 192 193
	log_rdma_event(INFO, "wait for all send to finish\n");
	wait_event(info->wait_smbd_send_pending,
		info->smbd_send_pending == 0);

194 195
	log_rdma_event(INFO, "wait for all recv to finish\n");
	wake_up_interruptible(&info->wait_reassembly_queue);
196 197
	wait_event(info->wait_smbd_recv_pending,
		info->smbd_recv_pending == 0);
198 199 200 201 202 203 204

	log_rdma_event(INFO, "wait for all send posted to IB to finish\n");
	wait_event(info->wait_send_pending,
		atomic_read(&info->send_pending) == 0);
	wait_event(info->wait_send_payload_pending,
		atomic_read(&info->send_payload_pending) == 0);

205 206 207 208 209 210
	log_rdma_event(INFO, "freeing mr list\n");
	wake_up_interruptible_all(&info->wait_mr);
	wait_event(info->wait_for_mr_cleanup,
		atomic_read(&info->mr_used_count) == 0);
	destroy_mr_list(info);

211 212 213 214 215 216 217 218 219 220
	/* It's not posssible for upper layer to get to reassembly */
	log_rdma_event(INFO, "drain the reassembly queue\n");
	do {
		spin_lock_irqsave(&info->reassembly_queue_lock, flags);
		response = _get_first_reassembly(info);
		if (response) {
			list_del(&response->list);
			spin_unlock_irqrestore(
				&info->reassembly_queue_lock, flags);
			put_receive_buffer(info, response);
221 222
		} else
			spin_unlock_irqrestore(&info->reassembly_queue_lock, flags);
223
	} while (response);
224

225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466
	info->reassembly_data_length = 0;

	log_rdma_event(INFO, "free receive buffers\n");
	wait_event(info->wait_receive_queues,
		info->count_receive_queue + info->count_empty_packet_queue
			== info->receive_credit_max);
	destroy_receive_buffers(info);

	ib_free_cq(info->send_cq);
	ib_free_cq(info->recv_cq);
	ib_dealloc_pd(info->pd);
	rdma_destroy_id(info->id);

	/* free mempools */
	mempool_destroy(info->request_mempool);
	kmem_cache_destroy(info->request_cache);

	mempool_destroy(info->response_mempool);
	kmem_cache_destroy(info->response_cache);

	info->transport_status = SMBD_DESTROYED;
	wake_up_all(&info->wait_destroy);
}

static int smbd_process_disconnected(struct smbd_connection *info)
{
	schedule_work(&info->destroy_work);
	return 0;
}

static void smbd_disconnect_rdma_work(struct work_struct *work)
{
	struct smbd_connection *info =
		container_of(work, struct smbd_connection, disconnect_work);

	if (info->transport_status == SMBD_CONNECTED) {
		info->transport_status = SMBD_DISCONNECTING;
		rdma_disconnect(info->id);
	}
}

static void smbd_disconnect_rdma_connection(struct smbd_connection *info)
{
	queue_work(info->workqueue, &info->disconnect_work);
}

/* Upcall from RDMA CM */
static int smbd_conn_upcall(
		struct rdma_cm_id *id, struct rdma_cm_event *event)
{
	struct smbd_connection *info = id->context;

	log_rdma_event(INFO, "event=%d status=%d\n",
		event->event, event->status);

	switch (event->event) {
	case RDMA_CM_EVENT_ADDR_RESOLVED:
	case RDMA_CM_EVENT_ROUTE_RESOLVED:
		info->ri_rc = 0;
		complete(&info->ri_done);
		break;

	case RDMA_CM_EVENT_ADDR_ERROR:
		info->ri_rc = -EHOSTUNREACH;
		complete(&info->ri_done);
		break;

	case RDMA_CM_EVENT_ROUTE_ERROR:
		info->ri_rc = -ENETUNREACH;
		complete(&info->ri_done);
		break;

	case RDMA_CM_EVENT_ESTABLISHED:
		log_rdma_event(INFO, "connected event=%d\n", event->event);
		info->transport_status = SMBD_CONNECTED;
		wake_up_interruptible(&info->conn_wait);
		break;

	case RDMA_CM_EVENT_CONNECT_ERROR:
	case RDMA_CM_EVENT_UNREACHABLE:
	case RDMA_CM_EVENT_REJECTED:
		log_rdma_event(INFO, "connecting failed event=%d\n", event->event);
		info->transport_status = SMBD_DISCONNECTED;
		wake_up_interruptible(&info->conn_wait);
		break;

	case RDMA_CM_EVENT_DEVICE_REMOVAL:
	case RDMA_CM_EVENT_DISCONNECTED:
		/* This happenes when we fail the negotiation */
		if (info->transport_status == SMBD_NEGOTIATE_FAILED) {
			info->transport_status = SMBD_DISCONNECTED;
			wake_up(&info->conn_wait);
			break;
		}

		info->transport_status = SMBD_DISCONNECTED;
		smbd_process_disconnected(info);
		break;

	default:
		break;
	}

	return 0;
}

/* Upcall from RDMA QP */
static void
smbd_qp_async_error_upcall(struct ib_event *event, void *context)
{
	struct smbd_connection *info = context;

	log_rdma_event(ERR, "%s on device %s info %p\n",
		ib_event_msg(event->event), event->device->name, info);

	switch (event->event) {
	case IB_EVENT_CQ_ERR:
	case IB_EVENT_QP_FATAL:
		smbd_disconnect_rdma_connection(info);

	default:
		break;
	}
}

static inline void *smbd_request_payload(struct smbd_request *request)
{
	return (void *)request->packet;
}

static inline void *smbd_response_payload(struct smbd_response *response)
{
	return (void *)response->packet;
}

/* Called when a RDMA send is done */
static void send_done(struct ib_cq *cq, struct ib_wc *wc)
{
	int i;
	struct smbd_request *request =
		container_of(wc->wr_cqe, struct smbd_request, cqe);

	log_rdma_send(INFO, "smbd_request %p completed wc->status=%d\n",
		request, wc->status);

	if (wc->status != IB_WC_SUCCESS || wc->opcode != IB_WC_SEND) {
		log_rdma_send(ERR, "wc->status=%d wc->opcode=%d\n",
			wc->status, wc->opcode);
		smbd_disconnect_rdma_connection(request->info);
	}

	for (i = 0; i < request->num_sge; i++)
		ib_dma_unmap_single(request->info->id->device,
			request->sge[i].addr,
			request->sge[i].length,
			DMA_TO_DEVICE);

	if (request->has_payload) {
		if (atomic_dec_and_test(&request->info->send_payload_pending))
			wake_up(&request->info->wait_send_payload_pending);
	} else {
		if (atomic_dec_and_test(&request->info->send_pending))
			wake_up(&request->info->wait_send_pending);
	}

	mempool_free(request, request->info->request_mempool);
}

static void dump_smbd_negotiate_resp(struct smbd_negotiate_resp *resp)
{
	log_rdma_event(INFO, "resp message min_version %u max_version %u "
		"negotiated_version %u credits_requested %u "
		"credits_granted %u status %u max_readwrite_size %u "
		"preferred_send_size %u max_receive_size %u "
		"max_fragmented_size %u\n",
		resp->min_version, resp->max_version, resp->negotiated_version,
		resp->credits_requested, resp->credits_granted, resp->status,
		resp->max_readwrite_size, resp->preferred_send_size,
		resp->max_receive_size, resp->max_fragmented_size);
}

/*
 * Process a negotiation response message, according to [MS-SMBD]3.1.5.7
 * response, packet_length: the negotiation response message
 * return value: true if negotiation is a success, false if failed
 */
static bool process_negotiation_response(
		struct smbd_response *response, int packet_length)
{
	struct smbd_connection *info = response->info;
	struct smbd_negotiate_resp *packet = smbd_response_payload(response);

	if (packet_length < sizeof(struct smbd_negotiate_resp)) {
		log_rdma_event(ERR,
			"error: packet_length=%d\n", packet_length);
		return false;
	}

	if (le16_to_cpu(packet->negotiated_version) != SMBD_V1) {
		log_rdma_event(ERR, "error: negotiated_version=%x\n",
			le16_to_cpu(packet->negotiated_version));
		return false;
	}
	info->protocol = le16_to_cpu(packet->negotiated_version);

	if (packet->credits_requested == 0) {
		log_rdma_event(ERR, "error: credits_requested==0\n");
		return false;
	}
	info->receive_credit_target = le16_to_cpu(packet->credits_requested);

	if (packet->credits_granted == 0) {
		log_rdma_event(ERR, "error: credits_granted==0\n");
		return false;
	}
	atomic_set(&info->send_credits, le16_to_cpu(packet->credits_granted));

	atomic_set(&info->receive_credits, 0);

	if (le32_to_cpu(packet->preferred_send_size) > info->max_receive_size) {
		log_rdma_event(ERR, "error: preferred_send_size=%d\n",
			le32_to_cpu(packet->preferred_send_size));
		return false;
	}
	info->max_receive_size = le32_to_cpu(packet->preferred_send_size);

	if (le32_to_cpu(packet->max_receive_size) < SMBD_MIN_RECEIVE_SIZE) {
		log_rdma_event(ERR, "error: max_receive_size=%d\n",
			le32_to_cpu(packet->max_receive_size));
		return false;
	}
	info->max_send_size = min_t(int, info->max_send_size,
					le32_to_cpu(packet->max_receive_size));

	if (le32_to_cpu(packet->max_fragmented_size) <
			SMBD_MIN_FRAGMENTED_SIZE) {
		log_rdma_event(ERR, "error: max_fragmented_size=%d\n",
			le32_to_cpu(packet->max_fragmented_size));
		return false;
	}
	info->max_fragmented_send_size =
		le32_to_cpu(packet->max_fragmented_size);
467 468 469 470 471 472 473 474 475 476
	info->rdma_readwrite_threshold =
		rdma_readwrite_threshold > info->max_fragmented_send_size ?
		info->max_fragmented_send_size :
		rdma_readwrite_threshold;


	info->max_readwrite_size = min_t(u32,
			le32_to_cpu(packet->max_readwrite_size),
			info->max_frmr_depth * PAGE_SIZE);
	info->max_frmr_depth = info->max_readwrite_size / PAGE_SIZE;
477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771

	return true;
}

/*
 * Check and schedule to send an immediate packet
 * This is used to extend credtis to remote peer to keep the transport busy
 */
static void check_and_send_immediate(struct smbd_connection *info)
{
	if (info->transport_status != SMBD_CONNECTED)
		return;

	info->send_immediate = true;

	/*
	 * Promptly send a packet if our peer is running low on receive
	 * credits
	 */
	if (atomic_read(&info->receive_credits) <
		info->receive_credit_target - 1)
		queue_delayed_work(
			info->workqueue, &info->send_immediate_work, 0);
}

static void smbd_post_send_credits(struct work_struct *work)
{
	int ret = 0;
	int use_receive_queue = 1;
	int rc;
	struct smbd_response *response;
	struct smbd_connection *info =
		container_of(work, struct smbd_connection,
			post_send_credits_work);

	if (info->transport_status != SMBD_CONNECTED) {
		wake_up(&info->wait_receive_queues);
		return;
	}

	if (info->receive_credit_target >
		atomic_read(&info->receive_credits)) {
		while (true) {
			if (use_receive_queue)
				response = get_receive_buffer(info);
			else
				response = get_empty_queue_buffer(info);
			if (!response) {
				/* now switch to emtpy packet queue */
				if (use_receive_queue) {
					use_receive_queue = 0;
					continue;
				} else
					break;
			}

			response->type = SMBD_TRANSFER_DATA;
			response->first_segment = false;
			rc = smbd_post_recv(info, response);
			if (rc) {
				log_rdma_recv(ERR,
					"post_recv failed rc=%d\n", rc);
				put_receive_buffer(info, response);
				break;
			}

			ret++;
		}
	}

	spin_lock(&info->lock_new_credits_offered);
	info->new_credits_offered += ret;
	spin_unlock(&info->lock_new_credits_offered);

	atomic_add(ret, &info->receive_credits);

	/* Check if we can post new receive and grant credits to peer */
	check_and_send_immediate(info);
}

static void smbd_recv_done_work(struct work_struct *work)
{
	struct smbd_connection *info =
		container_of(work, struct smbd_connection, recv_done_work);

	/*
	 * We may have new send credits granted from remote peer
	 * If any sender is blcoked on lack of credets, unblock it
	 */
	if (atomic_read(&info->send_credits))
		wake_up_interruptible(&info->wait_send_queue);

	/*
	 * Check if we need to send something to remote peer to
	 * grant more credits or respond to KEEP_ALIVE packet
	 */
	check_and_send_immediate(info);
}

/* Called from softirq, when recv is done */
static void recv_done(struct ib_cq *cq, struct ib_wc *wc)
{
	struct smbd_data_transfer *data_transfer;
	struct smbd_response *response =
		container_of(wc->wr_cqe, struct smbd_response, cqe);
	struct smbd_connection *info = response->info;
	int data_length = 0;

	log_rdma_recv(INFO, "response=%p type=%d wc status=%d wc opcode %d "
		      "byte_len=%d pkey_index=%x\n",
		response, response->type, wc->status, wc->opcode,
		wc->byte_len, wc->pkey_index);

	if (wc->status != IB_WC_SUCCESS || wc->opcode != IB_WC_RECV) {
		log_rdma_recv(INFO, "wc->status=%d opcode=%d\n",
			wc->status, wc->opcode);
		smbd_disconnect_rdma_connection(info);
		goto error;
	}

	ib_dma_sync_single_for_cpu(
		wc->qp->device,
		response->sge.addr,
		response->sge.length,
		DMA_FROM_DEVICE);

	switch (response->type) {
	/* SMBD negotiation response */
	case SMBD_NEGOTIATE_RESP:
		dump_smbd_negotiate_resp(smbd_response_payload(response));
		info->full_packet_received = true;
		info->negotiate_done =
			process_negotiation_response(response, wc->byte_len);
		complete(&info->negotiate_completion);
		break;

	/* SMBD data transfer packet */
	case SMBD_TRANSFER_DATA:
		data_transfer = smbd_response_payload(response);
		data_length = le32_to_cpu(data_transfer->data_length);

		/*
		 * If this is a packet with data playload place the data in
		 * reassembly queue and wake up the reading thread
		 */
		if (data_length) {
			if (info->full_packet_received)
				response->first_segment = true;

			if (le32_to_cpu(data_transfer->remaining_data_length))
				info->full_packet_received = false;
			else
				info->full_packet_received = true;

			enqueue_reassembly(
				info,
				response,
				data_length);
		} else
			put_empty_packet(info, response);

		if (data_length)
			wake_up_interruptible(&info->wait_reassembly_queue);

		atomic_dec(&info->receive_credits);
		info->receive_credit_target =
			le16_to_cpu(data_transfer->credits_requested);
		atomic_add(le16_to_cpu(data_transfer->credits_granted),
			&info->send_credits);

		log_incoming(INFO, "data flags %d data_offset %d "
			"data_length %d remaining_data_length %d\n",
			le16_to_cpu(data_transfer->flags),
			le32_to_cpu(data_transfer->data_offset),
			le32_to_cpu(data_transfer->data_length),
			le32_to_cpu(data_transfer->remaining_data_length));

		/* Send a KEEP_ALIVE response right away if requested */
		info->keep_alive_requested = KEEP_ALIVE_NONE;
		if (le16_to_cpu(data_transfer->flags) &
				SMB_DIRECT_RESPONSE_REQUESTED) {
			info->keep_alive_requested = KEEP_ALIVE_PENDING;
		}

		queue_work(info->workqueue, &info->recv_done_work);
		return;

	default:
		log_rdma_recv(ERR,
			"unexpected response type=%d\n", response->type);
	}

error:
	put_receive_buffer(info, response);
}

static struct rdma_cm_id *smbd_create_id(
		struct smbd_connection *info,
		struct sockaddr *dstaddr, int port)
{
	struct rdma_cm_id *id;
	int rc;
	__be16 *sport;

	id = rdma_create_id(&init_net, smbd_conn_upcall, info,
		RDMA_PS_TCP, IB_QPT_RC);
	if (IS_ERR(id)) {
		rc = PTR_ERR(id);
		log_rdma_event(ERR, "rdma_create_id() failed %i\n", rc);
		return id;
	}

	if (dstaddr->sa_family == AF_INET6)
		sport = &((struct sockaddr_in6 *)dstaddr)->sin6_port;
	else
		sport = &((struct sockaddr_in *)dstaddr)->sin_port;

	*sport = htons(port);

	init_completion(&info->ri_done);
	info->ri_rc = -ETIMEDOUT;

	rc = rdma_resolve_addr(id, NULL, (struct sockaddr *)dstaddr,
		RDMA_RESOLVE_TIMEOUT);
	if (rc) {
		log_rdma_event(ERR, "rdma_resolve_addr() failed %i\n", rc);
		goto out;
	}
	wait_for_completion_interruptible_timeout(
		&info->ri_done, msecs_to_jiffies(RDMA_RESOLVE_TIMEOUT));
	rc = info->ri_rc;
	if (rc) {
		log_rdma_event(ERR, "rdma_resolve_addr() completed %i\n", rc);
		goto out;
	}

	info->ri_rc = -ETIMEDOUT;
	rc = rdma_resolve_route(id, RDMA_RESOLVE_TIMEOUT);
	if (rc) {
		log_rdma_event(ERR, "rdma_resolve_route() failed %i\n", rc);
		goto out;
	}
	wait_for_completion_interruptible_timeout(
		&info->ri_done, msecs_to_jiffies(RDMA_RESOLVE_TIMEOUT));
	rc = info->ri_rc;
	if (rc) {
		log_rdma_event(ERR, "rdma_resolve_route() completed %i\n", rc);
		goto out;
	}

	return id;

out:
	rdma_destroy_id(id);
	return ERR_PTR(rc);
}

/*
 * Test if FRWR (Fast Registration Work Requests) is supported on the device
 * This implementation requries FRWR on RDMA read/write
 * return value: true if it is supported
 */
static bool frwr_is_supported(struct ib_device_attr *attrs)
{
	if (!(attrs->device_cap_flags & IB_DEVICE_MEM_MGT_EXTENSIONS))
		return false;
	if (attrs->max_fast_reg_page_list_len == 0)
		return false;
	return true;
}

static int smbd_ia_open(
		struct smbd_connection *info,
		struct sockaddr *dstaddr, int port)
{
	int rc;

	info->id = smbd_create_id(info, dstaddr, port);
	if (IS_ERR(info->id)) {
		rc = PTR_ERR(info->id);
		goto out1;
	}

	if (!frwr_is_supported(&info->id->device->attrs)) {
		log_rdma_event(ERR,
			"Fast Registration Work Requests "
			"(FRWR) is not supported\n");
		log_rdma_event(ERR,
			"Device capability flags = %llx "
			"max_fast_reg_page_list_len = %u\n",
			info->id->device->attrs.device_cap_flags,
			info->id->device->attrs.max_fast_reg_page_list_len);
		rc = -EPROTONOSUPPORT;
		goto out2;
	}
772 773 774 775 776 777
	info->max_frmr_depth = min_t(int,
		smbd_max_frmr_depth,
		info->id->device->attrs.max_fast_reg_page_list_len);
	info->mr_type = IB_MR_TYPE_MEM_REG;
	if (info->id->device->attrs.device_cap_flags & IB_DEVICE_SG_GAPS_REG)
		info->mr_type = IB_MR_TYPE_SG_GAPS;
778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865

	info->pd = ib_alloc_pd(info->id->device, 0);
	if (IS_ERR(info->pd)) {
		rc = PTR_ERR(info->pd);
		log_rdma_event(ERR, "ib_alloc_pd() returned %d\n", rc);
		goto out2;
	}

	return 0;

out2:
	rdma_destroy_id(info->id);
	info->id = NULL;

out1:
	return rc;
}

/*
 * Send a negotiation request message to the peer
 * The negotiation procedure is in [MS-SMBD] 3.1.5.2 and 3.1.5.3
 * After negotiation, the transport is connected and ready for
 * carrying upper layer SMB payload
 */
static int smbd_post_send_negotiate_req(struct smbd_connection *info)
{
	struct ib_send_wr send_wr, *send_wr_fail;
	int rc = -ENOMEM;
	struct smbd_request *request;
	struct smbd_negotiate_req *packet;

	request = mempool_alloc(info->request_mempool, GFP_KERNEL);
	if (!request)
		return rc;

	request->info = info;

	packet = smbd_request_payload(request);
	packet->min_version = cpu_to_le16(SMBD_V1);
	packet->max_version = cpu_to_le16(SMBD_V1);
	packet->reserved = 0;
	packet->credits_requested = cpu_to_le16(info->send_credit_target);
	packet->preferred_send_size = cpu_to_le32(info->max_send_size);
	packet->max_receive_size = cpu_to_le32(info->max_receive_size);
	packet->max_fragmented_size =
		cpu_to_le32(info->max_fragmented_recv_size);

	request->num_sge = 1;
	request->sge[0].addr = ib_dma_map_single(
				info->id->device, (void *)packet,
				sizeof(*packet), DMA_TO_DEVICE);
	if (ib_dma_mapping_error(info->id->device, request->sge[0].addr)) {
		rc = -EIO;
		goto dma_mapping_failed;
	}

	request->sge[0].length = sizeof(*packet);
	request->sge[0].lkey = info->pd->local_dma_lkey;

	ib_dma_sync_single_for_device(
		info->id->device, request->sge[0].addr,
		request->sge[0].length, DMA_TO_DEVICE);

	request->cqe.done = send_done;

	send_wr.next = NULL;
	send_wr.wr_cqe = &request->cqe;
	send_wr.sg_list = request->sge;
	send_wr.num_sge = request->num_sge;
	send_wr.opcode = IB_WR_SEND;
	send_wr.send_flags = IB_SEND_SIGNALED;

	log_rdma_send(INFO, "sge addr=%llx length=%x lkey=%x\n",
		request->sge[0].addr,
		request->sge[0].length, request->sge[0].lkey);

	request->has_payload = false;
	atomic_inc(&info->send_pending);
	rc = ib_post_send(info->id->qp, &send_wr, &send_wr_fail);
	if (!rc)
		return 0;

	/* if we reach here, post send failed */
	log_rdma_send(ERR, "ib_post_send failed rc=%d\n", rc);
	atomic_dec(&info->send_pending);
	ib_dma_unmap_single(info->id->device, request->sge[0].addr,
		request->sge[0].length, DMA_TO_DEVICE);

866 867
	smbd_disconnect_rdma_connection(info);

868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030
dma_mapping_failed:
	mempool_free(request, info->request_mempool);
	return rc;
}

/*
 * Extend the credits to remote peer
 * This implements [MS-SMBD] 3.1.5.9
 * The idea is that we should extend credits to remote peer as quickly as
 * it's allowed, to maintain data flow. We allocate as much receive
 * buffer as possible, and extend the receive credits to remote peer
 * return value: the new credtis being granted.
 */
static int manage_credits_prior_sending(struct smbd_connection *info)
{
	int new_credits;

	spin_lock(&info->lock_new_credits_offered);
	new_credits = info->new_credits_offered;
	info->new_credits_offered = 0;
	spin_unlock(&info->lock_new_credits_offered);

	return new_credits;
}

/*
 * Check if we need to send a KEEP_ALIVE message
 * The idle connection timer triggers a KEEP_ALIVE message when expires
 * SMB_DIRECT_RESPONSE_REQUESTED is set in the message flag to have peer send
 * back a response.
 * return value:
 * 1 if SMB_DIRECT_RESPONSE_REQUESTED needs to be set
 * 0: otherwise
 */
static int manage_keep_alive_before_sending(struct smbd_connection *info)
{
	if (info->keep_alive_requested == KEEP_ALIVE_PENDING) {
		info->keep_alive_requested = KEEP_ALIVE_SENT;
		return 1;
	}
	return 0;
}

/*
 * Build and prepare the SMBD packet header
 * This function waits for avaialbe send credits and build a SMBD packet
 * header. The caller then optional append payload to the packet after
 * the header
 * intput values
 * size: the size of the payload
 * remaining_data_length: remaining data to send if this is part of a
 * fragmented packet
 * output values
 * request_out: the request allocated from this function
 * return values: 0 on success, otherwise actual error code returned
 */
static int smbd_create_header(struct smbd_connection *info,
		int size, int remaining_data_length,
		struct smbd_request **request_out)
{
	struct smbd_request *request;
	struct smbd_data_transfer *packet;
	int header_length;
	int rc;

	/* Wait for send credits. A SMBD packet needs one credit */
	rc = wait_event_interruptible(info->wait_send_queue,
		atomic_read(&info->send_credits) > 0 ||
		info->transport_status != SMBD_CONNECTED);
	if (rc)
		return rc;

	if (info->transport_status != SMBD_CONNECTED) {
		log_outgoing(ERR, "disconnected not sending\n");
		return -ENOENT;
	}
	atomic_dec(&info->send_credits);

	request = mempool_alloc(info->request_mempool, GFP_KERNEL);
	if (!request) {
		rc = -ENOMEM;
		goto err;
	}

	request->info = info;

	/* Fill in the packet header */
	packet = smbd_request_payload(request);
	packet->credits_requested = cpu_to_le16(info->send_credit_target);
	packet->credits_granted =
		cpu_to_le16(manage_credits_prior_sending(info));
	info->send_immediate = false;

	packet->flags = 0;
	if (manage_keep_alive_before_sending(info))
		packet->flags |= cpu_to_le16(SMB_DIRECT_RESPONSE_REQUESTED);

	packet->reserved = 0;
	if (!size)
		packet->data_offset = 0;
	else
		packet->data_offset = cpu_to_le32(24);
	packet->data_length = cpu_to_le32(size);
	packet->remaining_data_length = cpu_to_le32(remaining_data_length);
	packet->padding = 0;

	log_outgoing(INFO, "credits_requested=%d credits_granted=%d "
		"data_offset=%d data_length=%d remaining_data_length=%d\n",
		le16_to_cpu(packet->credits_requested),
		le16_to_cpu(packet->credits_granted),
		le32_to_cpu(packet->data_offset),
		le32_to_cpu(packet->data_length),
		le32_to_cpu(packet->remaining_data_length));

	/* Map the packet to DMA */
	header_length = sizeof(struct smbd_data_transfer);
	/* If this is a packet without payload, don't send padding */
	if (!size)
		header_length = offsetof(struct smbd_data_transfer, padding);

	request->num_sge = 1;
	request->sge[0].addr = ib_dma_map_single(info->id->device,
						 (void *)packet,
						 header_length,
						 DMA_BIDIRECTIONAL);
	if (ib_dma_mapping_error(info->id->device, request->sge[0].addr)) {
		mempool_free(request, info->request_mempool);
		rc = -EIO;
		goto err;
	}

	request->sge[0].length = header_length;
	request->sge[0].lkey = info->pd->local_dma_lkey;

	*request_out = request;
	return 0;

err:
	atomic_inc(&info->send_credits);
	return rc;
}

static void smbd_destroy_header(struct smbd_connection *info,
		struct smbd_request *request)
{

	ib_dma_unmap_single(info->id->device,
			    request->sge[0].addr,
			    request->sge[0].length,
			    DMA_TO_DEVICE);
	mempool_free(request, info->request_mempool);
	atomic_inc(&info->send_credits);
}

/* Post the send request */
static int smbd_post_send(struct smbd_connection *info,
		struct smbd_request *request, bool has_payload)
{
	struct ib_send_wr send_wr, *send_wr_fail;
	int rc, i;

	for (i = 0; i < request->num_sge; i++) {
		log_rdma_send(INFO,
1031
			"rdma_request sge[%d] addr=%llu length=%u\n",
1032
			i, request->sge[i].addr, request->sge[i].length);
1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066
		ib_dma_sync_single_for_device(
			info->id->device,
			request->sge[i].addr,
			request->sge[i].length,
			DMA_TO_DEVICE);
	}

	request->cqe.done = send_done;

	send_wr.next = NULL;
	send_wr.wr_cqe = &request->cqe;
	send_wr.sg_list = request->sge;
	send_wr.num_sge = request->num_sge;
	send_wr.opcode = IB_WR_SEND;
	send_wr.send_flags = IB_SEND_SIGNALED;

	if (has_payload) {
		request->has_payload = true;
		atomic_inc(&info->send_payload_pending);
	} else {
		request->has_payload = false;
		atomic_inc(&info->send_pending);
	}

	rc = ib_post_send(info->id->qp, &send_wr, &send_wr_fail);
	if (rc) {
		log_rdma_send(ERR, "ib_post_send failed rc=%d\n", rc);
		if (has_payload) {
			if (atomic_dec_and_test(&info->send_payload_pending))
				wake_up(&info->wait_send_payload_pending);
		} else {
			if (atomic_dec_and_test(&info->send_pending))
				wake_up(&info->wait_send_pending);
		}
1067
		smbd_disconnect_rdma_connection(info);
1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119
	} else
		/* Reset timer for idle connection after packet is sent */
		mod_delayed_work(info->workqueue, &info->idle_timer_work,
			info->keep_alive_interval*HZ);

	return rc;
}

static int smbd_post_send_sgl(struct smbd_connection *info,
	struct scatterlist *sgl, int data_length, int remaining_data_length)
{
	int num_sgs;
	int i, rc;
	struct smbd_request *request;
	struct scatterlist *sg;

	rc = smbd_create_header(
		info, data_length, remaining_data_length, &request);
	if (rc)
		return rc;

	num_sgs = sgl ? sg_nents(sgl) : 0;
	for_each_sg(sgl, sg, num_sgs, i) {
		request->sge[i+1].addr =
			ib_dma_map_page(info->id->device, sg_page(sg),
			       sg->offset, sg->length, DMA_BIDIRECTIONAL);
		if (ib_dma_mapping_error(
				info->id->device, request->sge[i+1].addr)) {
			rc = -EIO;
			request->sge[i+1].addr = 0;
			goto dma_mapping_failure;
		}
		request->sge[i+1].length = sg->length;
		request->sge[i+1].lkey = info->pd->local_dma_lkey;
		request->num_sge++;
	}

	rc = smbd_post_send(info, request, data_length);
	if (!rc)
		return 0;

dma_mapping_failure:
	for (i = 1; i < request->num_sge; i++)
		if (request->sge[i].addr)
			ib_dma_unmap_single(info->id->device,
					    request->sge[i].addr,
					    request->sge[i].length,
					    DMA_TO_DEVICE);
	smbd_destroy_header(info, request);
	return rc;
}

1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137
/*
 * Send a page
 * page: the page to send
 * offset: offset in the page to send
 * size: length in the page to send
 * remaining_data_length: remaining data to send in this payload
 */
static int smbd_post_send_page(struct smbd_connection *info, struct page *page,
		unsigned long offset, size_t size, int remaining_data_length)
{
	struct scatterlist sgl;

	sg_init_table(&sgl, 1);
	sg_set_page(&sgl, page, size, offset);

	return smbd_post_send_sgl(info, &sgl, size, remaining_data_length);
}

1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148
/*
 * Send an empty message
 * Empty message is used to extend credits to peer to for keep live
 * while there is no upper layer payload to send at the time
 */
static int smbd_post_send_empty(struct smbd_connection *info)
{
	info->count_send_empty++;
	return smbd_post_send_sgl(info, NULL, 0, 0);
}

1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177
/*
 * Send a data buffer
 * iov: the iov array describing the data buffers
 * n_vec: number of iov array
 * remaining_data_length: remaining data to send following this packet
 * in segmented SMBD packet
 */
static int smbd_post_send_data(
	struct smbd_connection *info, struct kvec *iov, int n_vec,
	int remaining_data_length)
{
	int i;
	u32 data_length = 0;
	struct scatterlist sgl[SMBDIRECT_MAX_SGE];

	if (n_vec > SMBDIRECT_MAX_SGE) {
		cifs_dbg(VFS, "Can't fit data to SGL, n_vec=%d\n", n_vec);
		return -ENOMEM;
	}

	sg_init_table(sgl, n_vec);
	for (i = 0; i < n_vec; i++) {
		data_length += iov[i].iov_len;
		sg_set_buf(&sgl[i], iov[i].iov_base, iov[i].iov_len);
	}

	return smbd_post_send_sgl(info, sgl, data_length, remaining_data_length);
}

1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208
/*
 * Post a receive request to the transport
 * The remote peer can only send data when a receive request is posted
 * The interaction is controlled by send/receive credit system
 */
static int smbd_post_recv(
		struct smbd_connection *info, struct smbd_response *response)
{
	struct ib_recv_wr recv_wr, *recv_wr_fail = NULL;
	int rc = -EIO;

	response->sge.addr = ib_dma_map_single(
				info->id->device, response->packet,
				info->max_receive_size, DMA_FROM_DEVICE);
	if (ib_dma_mapping_error(info->id->device, response->sge.addr))
		return rc;

	response->sge.length = info->max_receive_size;
	response->sge.lkey = info->pd->local_dma_lkey;

	response->cqe.done = recv_done;

	recv_wr.wr_cqe = &response->cqe;
	recv_wr.next = NULL;
	recv_wr.sg_list = &response->sge;
	recv_wr.num_sge = 1;

	rc = ib_post_recv(info->id->qp, &recv_wr, &recv_wr_fail);
	if (rc) {
		ib_dma_unmap_single(info->id->device, response->sge.addr,
				    response->sge.length, DMA_FROM_DEVICE);
1209
		smbd_disconnect_rdma_connection(info);
1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479
		log_rdma_recv(ERR, "ib_post_recv failed rc=%d\n", rc);
	}

	return rc;
}

/* Perform SMBD negotiate according to [MS-SMBD] 3.1.5.2 */
static int smbd_negotiate(struct smbd_connection *info)
{
	int rc;
	struct smbd_response *response = get_receive_buffer(info);

	response->type = SMBD_NEGOTIATE_RESP;
	rc = smbd_post_recv(info, response);
	log_rdma_event(INFO,
		"smbd_post_recv rc=%d iov.addr=%llx iov.length=%x "
		"iov.lkey=%x\n",
		rc, response->sge.addr,
		response->sge.length, response->sge.lkey);
	if (rc)
		return rc;

	init_completion(&info->negotiate_completion);
	info->negotiate_done = false;
	rc = smbd_post_send_negotiate_req(info);
	if (rc)
		return rc;

	rc = wait_for_completion_interruptible_timeout(
		&info->negotiate_completion, SMBD_NEGOTIATE_TIMEOUT * HZ);
	log_rdma_event(INFO, "wait_for_completion_timeout rc=%d\n", rc);

	if (info->negotiate_done)
		return 0;

	if (rc == 0)
		rc = -ETIMEDOUT;
	else if (rc == -ERESTARTSYS)
		rc = -EINTR;
	else
		rc = -ENOTCONN;

	return rc;
}

static void put_empty_packet(
		struct smbd_connection *info, struct smbd_response *response)
{
	spin_lock(&info->empty_packet_queue_lock);
	list_add_tail(&response->list, &info->empty_packet_queue);
	info->count_empty_packet_queue++;
	spin_unlock(&info->empty_packet_queue_lock);

	queue_work(info->workqueue, &info->post_send_credits_work);
}

/*
 * Implement Connection.FragmentReassemblyBuffer defined in [MS-SMBD] 3.1.1.1
 * This is a queue for reassembling upper layer payload and present to upper
 * layer. All the inncoming payload go to the reassembly queue, regardless of
 * if reassembly is required. The uuper layer code reads from the queue for all
 * incoming payloads.
 * Put a received packet to the reassembly queue
 * response: the packet received
 * data_length: the size of payload in this packet
 */
static void enqueue_reassembly(
	struct smbd_connection *info,
	struct smbd_response *response,
	int data_length)
{
	spin_lock(&info->reassembly_queue_lock);
	list_add_tail(&response->list, &info->reassembly_queue);
	info->reassembly_queue_length++;
	/*
	 * Make sure reassembly_data_length is updated after list and
	 * reassembly_queue_length are updated. On the dequeue side
	 * reassembly_data_length is checked without a lock to determine
	 * if reassembly_queue_length and list is up to date
	 */
	virt_wmb();
	info->reassembly_data_length += data_length;
	spin_unlock(&info->reassembly_queue_lock);
	info->count_reassembly_queue++;
	info->count_enqueue_reassembly_queue++;
}

/*
 * Get the first entry at the front of reassembly queue
 * Caller is responsible for locking
 * return value: the first entry if any, NULL if queue is empty
 */
static struct smbd_response *_get_first_reassembly(struct smbd_connection *info)
{
	struct smbd_response *ret = NULL;

	if (!list_empty(&info->reassembly_queue)) {
		ret = list_first_entry(
			&info->reassembly_queue,
			struct smbd_response, list);
	}
	return ret;
}

static struct smbd_response *get_empty_queue_buffer(
		struct smbd_connection *info)
{
	struct smbd_response *ret = NULL;
	unsigned long flags;

	spin_lock_irqsave(&info->empty_packet_queue_lock, flags);
	if (!list_empty(&info->empty_packet_queue)) {
		ret = list_first_entry(
			&info->empty_packet_queue,
			struct smbd_response, list);
		list_del(&ret->list);
		info->count_empty_packet_queue--;
	}
	spin_unlock_irqrestore(&info->empty_packet_queue_lock, flags);

	return ret;
}

/*
 * Get a receive buffer
 * For each remote send, we need to post a receive. The receive buffers are
 * pre-allocated in advance.
 * return value: the receive buffer, NULL if none is available
 */
static struct smbd_response *get_receive_buffer(struct smbd_connection *info)
{
	struct smbd_response *ret = NULL;
	unsigned long flags;

	spin_lock_irqsave(&info->receive_queue_lock, flags);
	if (!list_empty(&info->receive_queue)) {
		ret = list_first_entry(
			&info->receive_queue,
			struct smbd_response, list);
		list_del(&ret->list);
		info->count_receive_queue--;
		info->count_get_receive_buffer++;
	}
	spin_unlock_irqrestore(&info->receive_queue_lock, flags);

	return ret;
}

/*
 * Return a receive buffer
 * Upon returning of a receive buffer, we can post new receive and extend
 * more receive credits to remote peer. This is done immediately after a
 * receive buffer is returned.
 */
static void put_receive_buffer(
	struct smbd_connection *info, struct smbd_response *response)
{
	unsigned long flags;

	ib_dma_unmap_single(info->id->device, response->sge.addr,
		response->sge.length, DMA_FROM_DEVICE);

	spin_lock_irqsave(&info->receive_queue_lock, flags);
	list_add_tail(&response->list, &info->receive_queue);
	info->count_receive_queue++;
	info->count_put_receive_buffer++;
	spin_unlock_irqrestore(&info->receive_queue_lock, flags);

	queue_work(info->workqueue, &info->post_send_credits_work);
}

/* Preallocate all receive buffer on transport establishment */
static int allocate_receive_buffers(struct smbd_connection *info, int num_buf)
{
	int i;
	struct smbd_response *response;

	INIT_LIST_HEAD(&info->reassembly_queue);
	spin_lock_init(&info->reassembly_queue_lock);
	info->reassembly_data_length = 0;
	info->reassembly_queue_length = 0;

	INIT_LIST_HEAD(&info->receive_queue);
	spin_lock_init(&info->receive_queue_lock);
	info->count_receive_queue = 0;

	INIT_LIST_HEAD(&info->empty_packet_queue);
	spin_lock_init(&info->empty_packet_queue_lock);
	info->count_empty_packet_queue = 0;

	init_waitqueue_head(&info->wait_receive_queues);

	for (i = 0; i < num_buf; i++) {
		response = mempool_alloc(info->response_mempool, GFP_KERNEL);
		if (!response)
			goto allocate_failed;

		response->info = info;
		list_add_tail(&response->list, &info->receive_queue);
		info->count_receive_queue++;
	}

	return 0;

allocate_failed:
	while (!list_empty(&info->receive_queue)) {
		response = list_first_entry(
				&info->receive_queue,
				struct smbd_response, list);
		list_del(&response->list);
		info->count_receive_queue--;

		mempool_free(response, info->response_mempool);
	}
	return -ENOMEM;
}

static void destroy_receive_buffers(struct smbd_connection *info)
{
	struct smbd_response *response;

	while ((response = get_receive_buffer(info)))
		mempool_free(response, info->response_mempool);

	while ((response = get_empty_queue_buffer(info)))
		mempool_free(response, info->response_mempool);
}

/*
 * Check and send an immediate or keep alive packet
 * The condition to send those packets are defined in [MS-SMBD] 3.1.1.1
 * Connection.KeepaliveRequested and Connection.SendImmediate
 * The idea is to extend credits to server as soon as it becomes available
 */
static void send_immediate_work(struct work_struct *work)
{
	struct smbd_connection *info = container_of(
					work, struct smbd_connection,
					send_immediate_work.work);

	if (info->keep_alive_requested == KEEP_ALIVE_PENDING ||
	    info->send_immediate) {
		log_keep_alive(INFO, "send an empty message\n");
		smbd_post_send_empty(info);
	}
}

/* Implement idle connection timer [MS-SMBD] 3.1.6.2 */
static void idle_connection_timer(struct work_struct *work)
{
	struct smbd_connection *info = container_of(
					work, struct smbd_connection,
					idle_timer_work.work);

	if (info->keep_alive_requested != KEEP_ALIVE_NONE) {
		log_keep_alive(ERR,
			"error status info->keep_alive_requested=%d\n",
			info->keep_alive_requested);
		smbd_disconnect_rdma_connection(info);
		return;
	}

	log_keep_alive(INFO, "about to send an empty idle message\n");
	smbd_post_send_empty(info);

	/* Setup the next idle timeout work */
	queue_delayed_work(info->workqueue, &info->idle_timer_work,
			info->keep_alive_interval*HZ);
}

1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495
/* Destroy this SMBD connection, called from upper layer */
void smbd_destroy(struct smbd_connection *info)
{
	log_rdma_event(INFO, "destroying rdma session\n");

	/* Kick off the disconnection process */
	smbd_disconnect_rdma_connection(info);

	log_rdma_event(INFO, "wait for transport being destroyed\n");
	wait_event(info->wait_destroy,
		info->transport_status == SMBD_DESTROYED);

	destroy_workqueue(info->workqueue);
	kfree(info);
}

1496 1497 1498 1499 1500 1501 1502 1503 1504
/*
 * Reconnect this SMBD connection, called from upper layer
 * return value: 0 on success, or actual error code
 */
int smbd_reconnect(struct TCP_Server_Info *server)
{
	log_rdma_event(INFO, "reconnecting rdma session\n");

	if (!server->smbd_conn) {
L
Long Li 已提交
1505 1506
		log_rdma_event(INFO, "rdma session already destroyed\n");
		goto create_conn;
1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518
	}

	/*
	 * This is possible if transport is disconnected and we haven't received
	 * notification from RDMA, but upper layer has detected timeout
	 */
	if (server->smbd_conn->transport_status == SMBD_CONNECTED) {
		log_rdma_event(INFO, "disconnecting transport\n");
		smbd_disconnect_rdma_connection(server->smbd_conn);
	}

	/* wait until the transport is destroyed */
L
Long Li 已提交
1519 1520 1521
	if (!wait_event_timeout(server->smbd_conn->wait_destroy,
		server->smbd_conn->transport_status == SMBD_DESTROYED, 5*HZ))
		return -EAGAIN;
1522 1523 1524 1525

	destroy_workqueue(server->smbd_conn->workqueue);
	kfree(server->smbd_conn);

L
Long Li 已提交
1526
create_conn:
1527 1528 1529
	log_rdma_event(INFO, "creating rdma session\n");
	server->smbd_conn = smbd_get_connection(
		server, (struct sockaddr *) &server->dstaddr);
L
Long Li 已提交
1530 1531
	log_rdma_event(INFO, "created rdma session info=%p\n",
		server->smbd_conn);
1532 1533 1534 1535

	return server->smbd_conn ? 0 : -ENOENT;
}

1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610
static void destroy_caches_and_workqueue(struct smbd_connection *info)
{
	destroy_receive_buffers(info);
	destroy_workqueue(info->workqueue);
	mempool_destroy(info->response_mempool);
	kmem_cache_destroy(info->response_cache);
	mempool_destroy(info->request_mempool);
	kmem_cache_destroy(info->request_cache);
}

#define MAX_NAME_LEN	80
static int allocate_caches_and_workqueue(struct smbd_connection *info)
{
	char name[MAX_NAME_LEN];
	int rc;

	snprintf(name, MAX_NAME_LEN, "smbd_request_%p", info);
	info->request_cache =
		kmem_cache_create(
			name,
			sizeof(struct smbd_request) +
				sizeof(struct smbd_data_transfer),
			0, SLAB_HWCACHE_ALIGN, NULL);
	if (!info->request_cache)
		return -ENOMEM;

	info->request_mempool =
		mempool_create(info->send_credit_target, mempool_alloc_slab,
			mempool_free_slab, info->request_cache);
	if (!info->request_mempool)
		goto out1;

	snprintf(name, MAX_NAME_LEN, "smbd_response_%p", info);
	info->response_cache =
		kmem_cache_create(
			name,
			sizeof(struct smbd_response) +
				info->max_receive_size,
			0, SLAB_HWCACHE_ALIGN, NULL);
	if (!info->response_cache)
		goto out2;

	info->response_mempool =
		mempool_create(info->receive_credit_max, mempool_alloc_slab,
		       mempool_free_slab, info->response_cache);
	if (!info->response_mempool)
		goto out3;

	snprintf(name, MAX_NAME_LEN, "smbd_%p", info);
	info->workqueue = create_workqueue(name);
	if (!info->workqueue)
		goto out4;

	rc = allocate_receive_buffers(info, info->receive_credit_max);
	if (rc) {
		log_rdma_event(ERR, "failed to allocate receive buffers\n");
		goto out5;
	}

	return 0;

out5:
	destroy_workqueue(info->workqueue);
out4:
	mempool_destroy(info->response_mempool);
out3:
	kmem_cache_destroy(info->response_cache);
out2:
	mempool_destroy(info->request_mempool);
out1:
	kmem_cache_destroy(info->request_cache);
	return -ENOMEM;
}

/* Create a SMBD connection, called by upper layer */
1611
static struct smbd_connection *_smbd_get_connection(
1612 1613 1614 1615 1616 1617 1618
	struct TCP_Server_Info *server, struct sockaddr *dstaddr, int port)
{
	int rc;
	struct smbd_connection *info;
	struct rdma_conn_param conn_param;
	struct ib_qp_init_attr qp_attr;
	struct sockaddr_in *addr_in = (struct sockaddr_in *) dstaddr;
1619 1620
	struct ib_port_immutable port_immutable;
	u32 ird_ord_hdr[2];
1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708

	info = kzalloc(sizeof(struct smbd_connection), GFP_KERNEL);
	if (!info)
		return NULL;

	info->transport_status = SMBD_CONNECTING;
	rc = smbd_ia_open(info, dstaddr, port);
	if (rc) {
		log_rdma_event(INFO, "smbd_ia_open rc=%d\n", rc);
		goto create_id_failed;
	}

	if (smbd_send_credit_target > info->id->device->attrs.max_cqe ||
	    smbd_send_credit_target > info->id->device->attrs.max_qp_wr) {
		log_rdma_event(ERR,
			"consider lowering send_credit_target = %d. "
			"Possible CQE overrun, device "
			"reporting max_cpe %d max_qp_wr %d\n",
			smbd_send_credit_target,
			info->id->device->attrs.max_cqe,
			info->id->device->attrs.max_qp_wr);
		goto config_failed;
	}

	if (smbd_receive_credit_max > info->id->device->attrs.max_cqe ||
	    smbd_receive_credit_max > info->id->device->attrs.max_qp_wr) {
		log_rdma_event(ERR,
			"consider lowering receive_credit_max = %d. "
			"Possible CQE overrun, device "
			"reporting max_cpe %d max_qp_wr %d\n",
			smbd_receive_credit_max,
			info->id->device->attrs.max_cqe,
			info->id->device->attrs.max_qp_wr);
		goto config_failed;
	}

	info->receive_credit_max = smbd_receive_credit_max;
	info->send_credit_target = smbd_send_credit_target;
	info->max_send_size = smbd_max_send_size;
	info->max_fragmented_recv_size = smbd_max_fragmented_recv_size;
	info->max_receive_size = smbd_max_receive_size;
	info->keep_alive_interval = smbd_keep_alive_interval;

	if (info->id->device->attrs.max_sge < SMBDIRECT_MAX_SGE) {
		log_rdma_event(ERR, "warning: device max_sge = %d too small\n",
			info->id->device->attrs.max_sge);
		log_rdma_event(ERR, "Queue Pair creation may fail\n");
	}

	info->send_cq = NULL;
	info->recv_cq = NULL;
	info->send_cq = ib_alloc_cq(info->id->device, info,
			info->send_credit_target, 0, IB_POLL_SOFTIRQ);
	if (IS_ERR(info->send_cq)) {
		info->send_cq = NULL;
		goto alloc_cq_failed;
	}

	info->recv_cq = ib_alloc_cq(info->id->device, info,
			info->receive_credit_max, 0, IB_POLL_SOFTIRQ);
	if (IS_ERR(info->recv_cq)) {
		info->recv_cq = NULL;
		goto alloc_cq_failed;
	}

	memset(&qp_attr, 0, sizeof(qp_attr));
	qp_attr.event_handler = smbd_qp_async_error_upcall;
	qp_attr.qp_context = info;
	qp_attr.cap.max_send_wr = info->send_credit_target;
	qp_attr.cap.max_recv_wr = info->receive_credit_max;
	qp_attr.cap.max_send_sge = SMBDIRECT_MAX_SGE;
	qp_attr.cap.max_recv_sge = SMBDIRECT_MAX_SGE;
	qp_attr.cap.max_inline_data = 0;
	qp_attr.sq_sig_type = IB_SIGNAL_REQ_WR;
	qp_attr.qp_type = IB_QPT_RC;
	qp_attr.send_cq = info->send_cq;
	qp_attr.recv_cq = info->recv_cq;
	qp_attr.port_num = ~0;

	rc = rdma_create_qp(info->id, info->pd, &qp_attr);
	if (rc) {
		log_rdma_event(ERR, "rdma_create_qp failed %i\n", rc);
		goto create_qp_failed;
	}

	memset(&conn_param, 0, sizeof(conn_param));
	conn_param.initiator_depth = 0;

1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730
	conn_param.responder_resources =
		info->id->device->attrs.max_qp_rd_atom
			< SMBD_CM_RESPONDER_RESOURCES ?
		info->id->device->attrs.max_qp_rd_atom :
		SMBD_CM_RESPONDER_RESOURCES;
	info->responder_resources = conn_param.responder_resources;
	log_rdma_mr(INFO, "responder_resources=%d\n",
		info->responder_resources);

	/* Need to send IRD/ORD in private data for iWARP */
	info->id->device->get_port_immutable(
		info->id->device, info->id->port_num, &port_immutable);
	if (port_immutable.core_cap_flags & RDMA_CORE_PORT_IWARP) {
		ird_ord_hdr[0] = info->responder_resources;
		ird_ord_hdr[1] = 1;
		conn_param.private_data = ird_ord_hdr;
		conn_param.private_data_len = sizeof(ird_ord_hdr);
	} else {
		conn_param.private_data = NULL;
		conn_param.private_data_len = 0;
	}

1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769
	conn_param.retry_count = SMBD_CM_RETRY;
	conn_param.rnr_retry_count = SMBD_CM_RNR_RETRY;
	conn_param.flow_control = 0;
	init_waitqueue_head(&info->wait_destroy);

	log_rdma_event(INFO, "connecting to IP %pI4 port %d\n",
		&addr_in->sin_addr, port);

	init_waitqueue_head(&info->conn_wait);
	rc = rdma_connect(info->id, &conn_param);
	if (rc) {
		log_rdma_event(ERR, "rdma_connect() failed with %i\n", rc);
		goto rdma_connect_failed;
	}

	wait_event_interruptible(
		info->conn_wait, info->transport_status != SMBD_CONNECTING);

	if (info->transport_status != SMBD_CONNECTED) {
		log_rdma_event(ERR, "rdma_connect failed port=%d\n", port);
		goto rdma_connect_failed;
	}

	log_rdma_event(INFO, "rdma_connect connected\n");

	rc = allocate_caches_and_workqueue(info);
	if (rc) {
		log_rdma_event(ERR, "cache allocation failed\n");
		goto allocate_cache_failed;
	}

	init_waitqueue_head(&info->wait_send_queue);
	init_waitqueue_head(&info->wait_reassembly_queue);

	INIT_DELAYED_WORK(&info->idle_timer_work, idle_connection_timer);
	INIT_DELAYED_WORK(&info->send_immediate_work, send_immediate_work);
	queue_delayed_work(info->workqueue, &info->idle_timer_work,
		info->keep_alive_interval*HZ);

1770 1771 1772
	init_waitqueue_head(&info->wait_smbd_send_pending);
	info->smbd_send_pending = 0;

1773 1774 1775
	init_waitqueue_head(&info->wait_smbd_recv_pending);
	info->smbd_recv_pending = 0;

1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794
	init_waitqueue_head(&info->wait_send_pending);
	atomic_set(&info->send_pending, 0);

	init_waitqueue_head(&info->wait_send_payload_pending);
	atomic_set(&info->send_payload_pending, 0);

	INIT_WORK(&info->disconnect_work, smbd_disconnect_rdma_work);
	INIT_WORK(&info->destroy_work, smbd_destroy_rdma_work);
	INIT_WORK(&info->recv_done_work, smbd_recv_done_work);
	INIT_WORK(&info->post_send_credits_work, smbd_post_send_credits);
	info->new_credits_offered = 0;
	spin_lock_init(&info->lock_new_credits_offered);

	rc = smbd_negotiate(info);
	if (rc) {
		log_rdma_event(ERR, "smbd_negotiate rc=%d\n", rc);
		goto negotiation_failed;
	}

1795 1796 1797 1798 1799 1800
	rc = allocate_mr_list(info);
	if (rc) {
		log_rdma_mr(ERR, "memory registration allocation failed\n");
		goto allocate_mr_failed;
	}

1801 1802
	return info;

1803 1804 1805 1806 1807
allocate_mr_failed:
	/* At this point, need to a full transport shutdown */
	smbd_destroy(info);
	return NULL;

1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835
negotiation_failed:
	cancel_delayed_work_sync(&info->idle_timer_work);
	destroy_caches_and_workqueue(info);
	info->transport_status = SMBD_NEGOTIATE_FAILED;
	init_waitqueue_head(&info->conn_wait);
	rdma_disconnect(info->id);
	wait_event(info->conn_wait,
		info->transport_status == SMBD_DISCONNECTED);

allocate_cache_failed:
rdma_connect_failed:
	rdma_destroy_qp(info->id);

create_qp_failed:
alloc_cq_failed:
	if (info->send_cq)
		ib_free_cq(info->send_cq);
	if (info->recv_cq)
		ib_free_cq(info->recv_cq);

config_failed:
	ib_dealloc_pd(info->pd);
	rdma_destroy_id(info->id);

create_id_failed:
	kfree(info);
	return NULL;
}
1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852

struct smbd_connection *smbd_get_connection(
	struct TCP_Server_Info *server, struct sockaddr *dstaddr)
{
	struct smbd_connection *ret;
	int port = SMBD_PORT;

try_again:
	ret = _smbd_get_connection(server, dstaddr, port);

	/* Try SMB_PORT if SMBD_PORT doesn't work */
	if (!ret && port == SMBD_PORT) {
		port = SMB_PORT;
		goto try_again;
	}
	return ret;
}
1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866

/*
 * Receive data from receive reassembly queue
 * All the incoming data packets are placed in reassembly queue
 * buf: the buffer to read data into
 * size: the length of data to read
 * return value: actual data read
 * Note: this implementation copies the data from reassebmly queue to receive
 * buffers used by upper layer. This is not the optimal code path. A better way
 * to do it is to not have upper layer allocate its receive buffers but rather
 * borrow the buffer from reassembly queue, and return it after data is
 * consumed. But this will require more changes to upper layer code, and also
 * need to consider packet boundaries while they still being reassembled.
 */
1867 1868
static int smbd_recv_buf(struct smbd_connection *info, char *buf,
		unsigned int size)
1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945
{
	struct smbd_response *response;
	struct smbd_data_transfer *data_transfer;
	int to_copy, to_read, data_read, offset;
	u32 data_length, remaining_data_length, data_offset;
	int rc;

again:
	if (info->transport_status != SMBD_CONNECTED) {
		log_read(ERR, "disconnected\n");
		return -ENODEV;
	}

	/*
	 * No need to hold the reassembly queue lock all the time as we are
	 * the only one reading from the front of the queue. The transport
	 * may add more entries to the back of the queue at the same time
	 */
	log_read(INFO, "size=%d info->reassembly_data_length=%d\n", size,
		info->reassembly_data_length);
	if (info->reassembly_data_length >= size) {
		int queue_length;
		int queue_removed = 0;

		/*
		 * Need to make sure reassembly_data_length is read before
		 * reading reassembly_queue_length and calling
		 * _get_first_reassembly. This call is lock free
		 * as we never read at the end of the queue which are being
		 * updated in SOFTIRQ as more data is received
		 */
		virt_rmb();
		queue_length = info->reassembly_queue_length;
		data_read = 0;
		to_read = size;
		offset = info->first_entry_offset;
		while (data_read < size) {
			response = _get_first_reassembly(info);
			data_transfer = smbd_response_payload(response);
			data_length = le32_to_cpu(data_transfer->data_length);
			remaining_data_length =
				le32_to_cpu(
					data_transfer->remaining_data_length);
			data_offset = le32_to_cpu(data_transfer->data_offset);

			/*
			 * The upper layer expects RFC1002 length at the
			 * beginning of the payload. Return it to indicate
			 * the total length of the packet. This minimize the
			 * change to upper layer packet processing logic. This
			 * will be eventually remove when an intermediate
			 * transport layer is added
			 */
			if (response->first_segment && size == 4) {
				unsigned int rfc1002_len =
					data_length + remaining_data_length;
				*((__be32 *)buf) = cpu_to_be32(rfc1002_len);
				data_read = 4;
				response->first_segment = false;
				log_read(INFO, "returning rfc1002 length %d\n",
					rfc1002_len);
				goto read_rfc1002_done;
			}

			to_copy = min_t(int, data_length - offset, to_read);
			memcpy(
				buf + data_read,
				(char *)data_transfer + data_offset + offset,
				to_copy);

			/* move on to the next buffer? */
			if (to_copy == data_length - offset) {
				queue_length--;
				/*
				 * No need to lock if we are not at the
				 * end of the queue
				 */
1946 1947 1948
				if (queue_length)
					list_del(&response->list);
				else {
1949 1950
					spin_lock_irq(
						&info->reassembly_queue_lock);
1951
					list_del(&response->list);
1952 1953
					spin_unlock_irq(
						&info->reassembly_queue_lock);
1954 1955
				}
				queue_removed++;
1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973
				info->count_reassembly_queue--;
				info->count_dequeue_reassembly_queue++;
				put_receive_buffer(info, response);
				offset = 0;
				log_read(INFO, "put_receive_buffer offset=0\n");
			} else
				offset += to_copy;

			to_read -= to_copy;
			data_read += to_copy;

			log_read(INFO, "_get_first_reassembly memcpy %d bytes "
				"data_transfer_length-offset=%d after that "
				"to_read=%d data_read=%d offset=%d\n",
				to_copy, data_length - offset,
				to_read, data_read, offset);
		}

1974
		spin_lock_irq(&info->reassembly_queue_lock);
1975 1976
		info->reassembly_data_length -= data_read;
		info->reassembly_queue_length -= queue_removed;
1977
		spin_unlock_irq(&info->reassembly_queue_lock);
1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005

		info->first_entry_offset = offset;
		log_read(INFO, "returning to thread data_read=%d "
			"reassembly_data_length=%d first_entry_offset=%d\n",
			data_read, info->reassembly_data_length,
			info->first_entry_offset);
read_rfc1002_done:
		return data_read;
	}

	log_read(INFO, "wait_event on more data\n");
	rc = wait_event_interruptible(
		info->wait_reassembly_queue,
		info->reassembly_data_length >= size ||
			info->transport_status != SMBD_CONNECTED);
	/* Don't return any data if interrupted */
	if (rc)
		return -ENODEV;

	goto again;
}

/*
 * Receive a page from receive reassembly queue
 * page: the page to read data into
 * to_read: the length of data to read
 * return value: actual data read
 */
2006
static int smbd_recv_page(struct smbd_connection *info,
2007 2008
		struct page *page, unsigned int page_offset,
		unsigned int to_read)
2009 2010 2011
{
	int ret;
	char *to_address;
2012
	void *page_address;
2013 2014 2015 2016 2017 2018 2019

	/* make sure we have the page ready for read */
	ret = wait_event_interruptible(
		info->wait_reassembly_queue,
		info->reassembly_data_length >= to_read ||
			info->transport_status != SMBD_CONNECTED);
	if (ret)
2020
		return ret;
2021 2022

	/* now we can read from reassembly queue and not sleep */
2023 2024
	page_address = kmap_atomic(page);
	to_address = (char *) page_address + page_offset;
2025 2026 2027 2028 2029

	log_read(INFO, "reading from page=%p address=%p to_read=%d\n",
		page, to_address, to_read);

	ret = smbd_recv_buf(info, to_address, to_read);
2030
	kunmap_atomic(page_address);
2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043

	return ret;
}

/*
 * Receive data from transport
 * msg: a msghdr point to the buffer, can be ITER_KVEC or ITER_BVEC
 * return: total bytes read, or 0. SMB Direct will not do partial read.
 */
int smbd_recv(struct smbd_connection *info, struct msghdr *msg)
{
	char *buf;
	struct page *page;
2044
	unsigned int to_read, page_offset;
2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057
	int rc;

	info->smbd_recv_pending++;

	switch (msg->msg_iter.type) {
	case READ | ITER_KVEC:
		buf = msg->msg_iter.kvec->iov_base;
		to_read = msg->msg_iter.kvec->iov_len;
		rc = smbd_recv_buf(info, buf, to_read);
		break;

	case READ | ITER_BVEC:
		page = msg->msg_iter.bvec->bv_page;
2058
		page_offset = msg->msg_iter.bvec->bv_offset;
2059
		to_read = msg->msg_iter.bvec->bv_len;
2060
		rc = smbd_recv_page(info, page, page_offset, to_read);
2061 2062 2063 2064 2065 2066
		break;

	default:
		/* It's a bug in upper layer to get there */
		cifs_dbg(VFS, "CIFS: invalid msg type %d\n",
			msg->msg_iter.type);
2067
		rc = -EINVAL;
2068 2069 2070 2071 2072 2073 2074 2075 2076 2077
	}

	info->smbd_recv_pending--;
	wake_up(&info->wait_smbd_recv_pending);

	/* SMBDirect will read it all or nothing */
	if (rc > 0)
		msg->msg_iter.count = 0;
	return rc;
}
2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089

/*
 * Send data to transport
 * Each rqst is transported as a SMBDirect payload
 * rqst: the data to write
 * return value: 0 if successfully write, otherwise error code
 */
int smbd_send(struct smbd_connection *info, struct smb_rqst *rqst)
{
	struct kvec vec;
	int nvecs;
	int size;
2090
	unsigned int buflen = 0, remaining_data_length;
2091 2092 2093
	int start, i, j;
	int max_iov_size =
		info->max_send_size - sizeof(struct smbd_data_transfer);
2094
	struct kvec *iov;
2095 2096 2097 2098 2099 2100 2101 2102 2103
	int rc;

	info->smbd_send_pending++;
	if (info->transport_status != SMBD_CONNECTED) {
		rc = -ENODEV;
		goto done;
	}

	/*
2104 2105
	 * Skip the RFC1002 length defined in MS-SMB2 section 2.1
	 * It is used only for TCP transport in the iov[0]
2106 2107 2108
	 * In future we may want to add a transport layer under protocol
	 * layer so this will only be issued to TCP transport
	 */
2109 2110 2111 2112 2113 2114

	if (rqst->rq_iov[0].iov_len != 4) {
		log_write(ERR, "expected the pdu length in 1st iov, but got %zu\n", rqst->rq_iov[0].iov_len);
		return -EINVAL;
	}
	iov = &rqst->rq_iov[1];
2115 2116

	/* total up iov array first */
2117
	for (i = 0; i < rqst->rq_nvec-1; i++) {
2118 2119 2120
		buflen += iov[i].iov_len;
	}

2121 2122 2123 2124 2125
	/*
	 * Add in the page array if there is one. The caller needs to set
	 * rq_tailsz to PAGE_SIZE when the buffer has multiple pages and
	 * ends at page boundary
	 */
2126
	if (rqst->rq_npages) {
2127 2128 2129 2130 2131
		if (rqst->rq_npages == 1)
			buflen += rqst->rq_tailsz;
		else
			buflen += rqst->rq_pagesz * (rqst->rq_npages - 1) -
					rqst->rq_offset + rqst->rq_tailsz;
2132 2133 2134 2135 2136 2137 2138 2139 2140 2141
	}

	if (buflen + sizeof(struct smbd_data_transfer) >
		info->max_fragmented_send_size) {
		log_write(ERR, "payload size %d > max size %d\n",
			buflen, info->max_fragmented_send_size);
		rc = -EINVAL;
		goto done;
	}

2142 2143 2144 2145
	cifs_dbg(FYI, "Sending smb (RDMA): smb_len=%u\n", buflen);
	for (i = 0; i < rqst->rq_nvec-1; i++)
		dump_smb(iov[i].iov_base, iov[i].iov_len);

2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200
	remaining_data_length = buflen;

	log_write(INFO, "rqst->rq_nvec=%d rqst->rq_npages=%d rq_pagesz=%d "
		"rq_tailsz=%d buflen=%d\n",
		rqst->rq_nvec, rqst->rq_npages, rqst->rq_pagesz,
		rqst->rq_tailsz, buflen);

	start = i = iov[0].iov_len ? 0 : 1;
	buflen = 0;
	while (true) {
		buflen += iov[i].iov_len;
		if (buflen > max_iov_size) {
			if (i > start) {
				remaining_data_length -=
					(buflen-iov[i].iov_len);
				log_write(INFO, "sending iov[] from start=%d "
					"i=%d nvecs=%d "
					"remaining_data_length=%d\n",
					start, i, i-start,
					remaining_data_length);
				rc = smbd_post_send_data(
					info, &iov[start], i-start,
					remaining_data_length);
				if (rc)
					goto done;
			} else {
				/* iov[start] is too big, break it */
				nvecs = (buflen+max_iov_size-1)/max_iov_size;
				log_write(INFO, "iov[%d] iov_base=%p buflen=%d"
					" break to %d vectors\n",
					start, iov[start].iov_base,
					buflen, nvecs);
				for (j = 0; j < nvecs; j++) {
					vec.iov_base =
						(char *)iov[start].iov_base +
						j*max_iov_size;
					vec.iov_len = max_iov_size;
					if (j == nvecs-1)
						vec.iov_len =
							buflen -
							max_iov_size*(nvecs-1);
					remaining_data_length -= vec.iov_len;
					log_write(INFO,
						"sending vec j=%d iov_base=%p"
						" iov_len=%zu "
						"remaining_data_length=%d\n",
						j, vec.iov_base, vec.iov_len,
						remaining_data_length);
					rc = smbd_post_send_data(
						info, &vec, 1,
						remaining_data_length);
					if (rc)
						goto done;
				}
				i++;
2201
				if (i == rqst->rq_nvec-1)
2202
					break;
2203 2204 2205 2206 2207
			}
			start = i;
			buflen = 0;
		} else {
			i++;
2208
			if (i == rqst->rq_nvec-1) {
2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227
				/* send out all remaining vecs */
				remaining_data_length -= buflen;
				log_write(INFO,
					"sending iov[] from start=%d i=%d "
					"nvecs=%d remaining_data_length=%d\n",
					start, i, i-start,
					remaining_data_length);
				rc = smbd_post_send_data(info, &iov[start],
					i-start, remaining_data_length);
				if (rc)
					goto done;
				break;
			}
		}
		log_write(INFO, "looping i=%d buflen=%d\n", i, buflen);
	}

	/* now sending pages if there are any */
	for (i = 0; i < rqst->rq_npages; i++) {
2228 2229 2230
		unsigned int offset;

		rqst_page_get_length(rqst, i, &buflen, &offset);
2231 2232 2233 2234 2235 2236 2237 2238 2239 2240
		nvecs = (buflen + max_iov_size - 1) / max_iov_size;
		log_write(INFO, "sending pages buflen=%d nvecs=%d\n",
			buflen, nvecs);
		for (j = 0; j < nvecs; j++) {
			size = max_iov_size;
			if (j == nvecs-1)
				size = buflen - j*max_iov_size;
			remaining_data_length -= size;
			log_write(INFO, "sending pages i=%d offset=%d size=%d"
				" remaining_data_length=%d\n",
2241 2242
				i, j*max_iov_size+offset, size,
				remaining_data_length);
2243
			rc = smbd_post_send_page(
2244 2245
				info, rqst->rq_pages[i],
				j*max_iov_size + offset,
2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267
				size, remaining_data_length);
			if (rc)
				goto done;
		}
	}

done:
	/*
	 * As an optimization, we don't wait for individual I/O to finish
	 * before sending the next one.
	 * Send them all and wait for pending send count to get to 0
	 * that means all the I/Os have been out and we are good to return
	 */

	wait_event(info->wait_send_payload_pending,
		atomic_read(&info->send_payload_pending) == 0);

	info->smbd_send_pending--;
	wake_up(&info->wait_smbd_send_pending);

	return rc;
}
2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313

static void register_mr_done(struct ib_cq *cq, struct ib_wc *wc)
{
	struct smbd_mr *mr;
	struct ib_cqe *cqe;

	if (wc->status) {
		log_rdma_mr(ERR, "status=%d\n", wc->status);
		cqe = wc->wr_cqe;
		mr = container_of(cqe, struct smbd_mr, cqe);
		smbd_disconnect_rdma_connection(mr->conn);
	}
}

/*
 * The work queue function that recovers MRs
 * We need to call ib_dereg_mr() and ib_alloc_mr() before this MR can be used
 * again. Both calls are slow, so finish them in a workqueue. This will not
 * block I/O path.
 * There is one workqueue that recovers MRs, there is no need to lock as the
 * I/O requests calling smbd_register_mr will never update the links in the
 * mr_list.
 */
static void smbd_mr_recovery_work(struct work_struct *work)
{
	struct smbd_connection *info =
		container_of(work, struct smbd_connection, mr_recovery_work);
	struct smbd_mr *smbdirect_mr;
	int rc;

	list_for_each_entry(smbdirect_mr, &info->mr_list, list) {
		if (smbdirect_mr->state == MR_INVALIDATED ||
			smbdirect_mr->state == MR_ERROR) {

			if (smbdirect_mr->state == MR_INVALIDATED) {
				ib_dma_unmap_sg(
					info->id->device, smbdirect_mr->sgl,
					smbdirect_mr->sgl_count,
					smbdirect_mr->dir);
				smbdirect_mr->state = MR_READY;
			} else if (smbdirect_mr->state == MR_ERROR) {

				/* recover this MR entry */
				rc = ib_dereg_mr(smbdirect_mr->mr);
				if (rc) {
					log_rdma_mr(ERR,
2314
						"ib_dereg_mr failed rc=%x\n",
2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560
						rc);
					smbd_disconnect_rdma_connection(info);
				}

				smbdirect_mr->mr = ib_alloc_mr(
					info->pd, info->mr_type,
					info->max_frmr_depth);
				if (IS_ERR(smbdirect_mr->mr)) {
					log_rdma_mr(ERR,
						"ib_alloc_mr failed mr_type=%x "
						"max_frmr_depth=%x\n",
						info->mr_type,
						info->max_frmr_depth);
					smbd_disconnect_rdma_connection(info);
				}

				smbdirect_mr->state = MR_READY;
			}
			/* smbdirect_mr->state is updated by this function
			 * and is read and updated by I/O issuing CPUs trying
			 * to get a MR, the call to atomic_inc_return
			 * implicates a memory barrier and guarantees this
			 * value is updated before waking up any calls to
			 * get_mr() from the I/O issuing CPUs
			 */
			if (atomic_inc_return(&info->mr_ready_count) == 1)
				wake_up_interruptible(&info->wait_mr);
		}
	}
}

static void destroy_mr_list(struct smbd_connection *info)
{
	struct smbd_mr *mr, *tmp;

	cancel_work_sync(&info->mr_recovery_work);
	list_for_each_entry_safe(mr, tmp, &info->mr_list, list) {
		if (mr->state == MR_INVALIDATED)
			ib_dma_unmap_sg(info->id->device, mr->sgl,
				mr->sgl_count, mr->dir);
		ib_dereg_mr(mr->mr);
		kfree(mr->sgl);
		kfree(mr);
	}
}

/*
 * Allocate MRs used for RDMA read/write
 * The number of MRs will not exceed hardware capability in responder_resources
 * All MRs are kept in mr_list. The MR can be recovered after it's used
 * Recovery is done in smbd_mr_recovery_work. The content of list entry changes
 * as MRs are used and recovered for I/O, but the list links will not change
 */
static int allocate_mr_list(struct smbd_connection *info)
{
	int i;
	struct smbd_mr *smbdirect_mr, *tmp;

	INIT_LIST_HEAD(&info->mr_list);
	init_waitqueue_head(&info->wait_mr);
	spin_lock_init(&info->mr_list_lock);
	atomic_set(&info->mr_ready_count, 0);
	atomic_set(&info->mr_used_count, 0);
	init_waitqueue_head(&info->wait_for_mr_cleanup);
	/* Allocate more MRs (2x) than hardware responder_resources */
	for (i = 0; i < info->responder_resources * 2; i++) {
		smbdirect_mr = kzalloc(sizeof(*smbdirect_mr), GFP_KERNEL);
		if (!smbdirect_mr)
			goto out;
		smbdirect_mr->mr = ib_alloc_mr(info->pd, info->mr_type,
					info->max_frmr_depth);
		if (IS_ERR(smbdirect_mr->mr)) {
			log_rdma_mr(ERR, "ib_alloc_mr failed mr_type=%x "
				"max_frmr_depth=%x\n",
				info->mr_type, info->max_frmr_depth);
			goto out;
		}
		smbdirect_mr->sgl = kcalloc(
					info->max_frmr_depth,
					sizeof(struct scatterlist),
					GFP_KERNEL);
		if (!smbdirect_mr->sgl) {
			log_rdma_mr(ERR, "failed to allocate sgl\n");
			ib_dereg_mr(smbdirect_mr->mr);
			goto out;
		}
		smbdirect_mr->state = MR_READY;
		smbdirect_mr->conn = info;

		list_add_tail(&smbdirect_mr->list, &info->mr_list);
		atomic_inc(&info->mr_ready_count);
	}
	INIT_WORK(&info->mr_recovery_work, smbd_mr_recovery_work);
	return 0;

out:
	kfree(smbdirect_mr);

	list_for_each_entry_safe(smbdirect_mr, tmp, &info->mr_list, list) {
		ib_dereg_mr(smbdirect_mr->mr);
		kfree(smbdirect_mr->sgl);
		kfree(smbdirect_mr);
	}
	return -ENOMEM;
}

/*
 * Get a MR from mr_list. This function waits until there is at least one
 * MR available in the list. It may access the list while the
 * smbd_mr_recovery_work is recovering the MR list. This doesn't need a lock
 * as they never modify the same places. However, there may be several CPUs
 * issueing I/O trying to get MR at the same time, mr_list_lock is used to
 * protect this situation.
 */
static struct smbd_mr *get_mr(struct smbd_connection *info)
{
	struct smbd_mr *ret;
	int rc;
again:
	rc = wait_event_interruptible(info->wait_mr,
		atomic_read(&info->mr_ready_count) ||
		info->transport_status != SMBD_CONNECTED);
	if (rc) {
		log_rdma_mr(ERR, "wait_event_interruptible rc=%x\n", rc);
		return NULL;
	}

	if (info->transport_status != SMBD_CONNECTED) {
		log_rdma_mr(ERR, "info->transport_status=%x\n",
			info->transport_status);
		return NULL;
	}

	spin_lock(&info->mr_list_lock);
	list_for_each_entry(ret, &info->mr_list, list) {
		if (ret->state == MR_READY) {
			ret->state = MR_REGISTERED;
			spin_unlock(&info->mr_list_lock);
			atomic_dec(&info->mr_ready_count);
			atomic_inc(&info->mr_used_count);
			return ret;
		}
	}

	spin_unlock(&info->mr_list_lock);
	/*
	 * It is possible that we could fail to get MR because other processes may
	 * try to acquire a MR at the same time. If this is the case, retry it.
	 */
	goto again;
}

/*
 * Register memory for RDMA read/write
 * pages[]: the list of pages to register memory with
 * num_pages: the number of pages to register
 * tailsz: if non-zero, the bytes to register in the last page
 * writing: true if this is a RDMA write (SMB read), false for RDMA read
 * need_invalidate: true if this MR needs to be locally invalidated after I/O
 * return value: the MR registered, NULL if failed.
 */
struct smbd_mr *smbd_register_mr(
	struct smbd_connection *info, struct page *pages[], int num_pages,
	int tailsz, bool writing, bool need_invalidate)
{
	struct smbd_mr *smbdirect_mr;
	int rc, i;
	enum dma_data_direction dir;
	struct ib_reg_wr *reg_wr;
	struct ib_send_wr *bad_wr;

	if (num_pages > info->max_frmr_depth) {
		log_rdma_mr(ERR, "num_pages=%d max_frmr_depth=%d\n",
			num_pages, info->max_frmr_depth);
		return NULL;
	}

	smbdirect_mr = get_mr(info);
	if (!smbdirect_mr) {
		log_rdma_mr(ERR, "get_mr returning NULL\n");
		return NULL;
	}
	smbdirect_mr->need_invalidate = need_invalidate;
	smbdirect_mr->sgl_count = num_pages;
	sg_init_table(smbdirect_mr->sgl, num_pages);

	for (i = 0; i < num_pages - 1; i++)
		sg_set_page(&smbdirect_mr->sgl[i], pages[i], PAGE_SIZE, 0);

	sg_set_page(&smbdirect_mr->sgl[i], pages[i],
		tailsz ? tailsz : PAGE_SIZE, 0);

	dir = writing ? DMA_FROM_DEVICE : DMA_TO_DEVICE;
	smbdirect_mr->dir = dir;
	rc = ib_dma_map_sg(info->id->device, smbdirect_mr->sgl, num_pages, dir);
	if (!rc) {
		log_rdma_mr(INFO, "ib_dma_map_sg num_pages=%x dir=%x rc=%x\n",
			num_pages, dir, rc);
		goto dma_map_error;
	}

	rc = ib_map_mr_sg(smbdirect_mr->mr, smbdirect_mr->sgl, num_pages,
		NULL, PAGE_SIZE);
	if (rc != num_pages) {
		log_rdma_mr(INFO,
			"ib_map_mr_sg failed rc = %x num_pages = %x\n",
			rc, num_pages);
		goto map_mr_error;
	}

	ib_update_fast_reg_key(smbdirect_mr->mr,
		ib_inc_rkey(smbdirect_mr->mr->rkey));
	reg_wr = &smbdirect_mr->wr;
	reg_wr->wr.opcode = IB_WR_REG_MR;
	smbdirect_mr->cqe.done = register_mr_done;
	reg_wr->wr.wr_cqe = &smbdirect_mr->cqe;
	reg_wr->wr.num_sge = 0;
	reg_wr->wr.send_flags = IB_SEND_SIGNALED;
	reg_wr->mr = smbdirect_mr->mr;
	reg_wr->key = smbdirect_mr->mr->rkey;
	reg_wr->access = writing ?
			IB_ACCESS_REMOTE_WRITE | IB_ACCESS_LOCAL_WRITE :
			IB_ACCESS_REMOTE_READ;

	/*
	 * There is no need for waiting for complemtion on ib_post_send
	 * on IB_WR_REG_MR. Hardware enforces a barrier and order of execution
	 * on the next ib_post_send when we actaully send I/O to remote peer
	 */
	rc = ib_post_send(info->id->qp, &reg_wr->wr, &bad_wr);
	if (!rc)
		return smbdirect_mr;

	log_rdma_mr(ERR, "ib_post_send failed rc=%x reg_wr->key=%x\n",
		rc, reg_wr->key);

	/* If all failed, attempt to recover this MR by setting it MR_ERROR*/
map_mr_error:
	ib_dma_unmap_sg(info->id->device, smbdirect_mr->sgl,
		smbdirect_mr->sgl_count, smbdirect_mr->dir);

dma_map_error:
	smbdirect_mr->state = MR_ERROR;
	if (atomic_dec_and_test(&info->mr_used_count))
		wake_up(&info->wait_for_mr_cleanup);

2561 2562
	smbd_disconnect_rdma_connection(info);

2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630
	return NULL;
}

static void local_inv_done(struct ib_cq *cq, struct ib_wc *wc)
{
	struct smbd_mr *smbdirect_mr;
	struct ib_cqe *cqe;

	cqe = wc->wr_cqe;
	smbdirect_mr = container_of(cqe, struct smbd_mr, cqe);
	smbdirect_mr->state = MR_INVALIDATED;
	if (wc->status != IB_WC_SUCCESS) {
		log_rdma_mr(ERR, "invalidate failed status=%x\n", wc->status);
		smbdirect_mr->state = MR_ERROR;
	}
	complete(&smbdirect_mr->invalidate_done);
}

/*
 * Deregister a MR after I/O is done
 * This function may wait if remote invalidation is not used
 * and we have to locally invalidate the buffer to prevent data is being
 * modified by remote peer after upper layer consumes it
 */
int smbd_deregister_mr(struct smbd_mr *smbdirect_mr)
{
	struct ib_send_wr *wr, *bad_wr;
	struct smbd_connection *info = smbdirect_mr->conn;
	int rc = 0;

	if (smbdirect_mr->need_invalidate) {
		/* Need to finish local invalidation before returning */
		wr = &smbdirect_mr->inv_wr;
		wr->opcode = IB_WR_LOCAL_INV;
		smbdirect_mr->cqe.done = local_inv_done;
		wr->wr_cqe = &smbdirect_mr->cqe;
		wr->num_sge = 0;
		wr->ex.invalidate_rkey = smbdirect_mr->mr->rkey;
		wr->send_flags = IB_SEND_SIGNALED;

		init_completion(&smbdirect_mr->invalidate_done);
		rc = ib_post_send(info->id->qp, wr, &bad_wr);
		if (rc) {
			log_rdma_mr(ERR, "ib_post_send failed rc=%x\n", rc);
			smbd_disconnect_rdma_connection(info);
			goto done;
		}
		wait_for_completion(&smbdirect_mr->invalidate_done);
		smbdirect_mr->need_invalidate = false;
	} else
		/*
		 * For remote invalidation, just set it to MR_INVALIDATED
		 * and defer to mr_recovery_work to recover the MR for next use
		 */
		smbdirect_mr->state = MR_INVALIDATED;

	/*
	 * Schedule the work to do MR recovery for future I/Os
	 * MR recovery is slow and we don't want it to block the current I/O
	 */
	queue_work(info->workqueue, &info->mr_recovery_work);

done:
	if (atomic_dec_and_test(&info->mr_used_count))
		wake_up(&info->wait_for_mr_cleanup);

	return rc;
}